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Abstract Recently, several techniques have been proposed to protect the user location

privacy for location-based services in the Euclidean space. Applying these techniques

directly to the road network environment would lead to privacy leakage and inefficient

query processing. In this paper, we propose a new location anonymization algorithm

that is designed specifically for the road network environment. Our algorithm relies

on the commonly used concept of spatial cloaking, where a user location is cloaked

into a set of connected road segments of a minimum total length L including at least

K users. Our algorithm is “query-aware” as it takes into account the query execution

cost at a database server and the query quality, i.e., the number of objects returned to

users by the database server, during the location anonymization process. In particular,

we develop a new cost function that balances between the query execution cost and

the query quality. Then, we introduce two versions of our algorithm, namely, pure

greedy and randomized greedy, that aim to minimize the developed cost function and

satisfy the user specified privacy requirements. To accommodate intervals with a high

workload, we introduce a shared execution paradigm that boosts the scalability of our

location anonymization algorithm and the database server to support large numbers

of queries received in a short time period. Extensive experimental results show that
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our algorithms are more efficient and scalable than the state-of-the-art technique, in

terms of both query execution cost and query quality. The results also show that our

algorithms have very strong resilience to two privacy attacks, namely, the replay attack

and the center-of-cloaked-area attack.

Keywords Location privacy · shared execution · location-based services · spatial

network databases · GIS

1 Introduction

Combining the functionality of map software, location-detection devices, wireless com-

munication, and database systems results in realizing location-based services as com-

mercial products and research prototypes. The main promise of location-based services

is to provide services for their users based on their locations. Location-based services

have become a major component in transportation applications (e.g., live traffic re-

ports), personal mobile devices (e.g., finding nearby stores or friends), advertising (e.g.,

sending e-coupons to nearby customers), and emergency control (e.g., dispatching am-

bulance). Recently, it becomes apparent that location-based services suffer from major

privacy leakage where users have to disclose their private location information to un-

trustworthy servers. As a result, several techniques have been proposed to anonymize

the user location information through false locations (e.g., [15,20,34]), space transfor-

mation (e.g., [10,19]), or spatial cloaking (e.g., [1–3,5–9,12,11,13,14,18,24,32,33]). In

this paper, we focus on the spatial cloaking technique as it is the most commonly

used technique and is applicable to various problem settings (e.g., distributed/peer-to-

peer environments [6,7,12,11], sensor networks [5,14], trajectories [33], and continuous

queries [3,32]).

Unfortunately, almost all previously proposed location anonymization techniques

suffer from two main drawbacks: (1) The location anonymization process is designed

completely independent from the underlying query processor. As a result, some of

these techniques may end up anonymizing the user location to an extent where it is

either very inefficient to execute a location-based query as a large number of queries

need to be sent to the server [20] or specialized query processing techniques need to

be developed [4,10,18,19,24]. (2) All techniques are designed only for the Euclidean

space. Applying these techniques to the road network environment results in privacy

leakage. Figure 1a depicts such a case where user q needs to be four anonymous with a

cloaked area of at least four grid cells. The gray area represents the cloaked area that

could be provided by a location anonymization technique designed for the Euclidean

space (e.g., [1,9,13,18,24]). With such a cloaked area, an adversary knows that the user

can be anywhere in the gray area. Figure 1b shows the same example with the drawing

of the underlying road network. Since all the four users are in the same road segment,

an adversary can pinpoint the exact road segment of user q. Thus, the cloaked area

violates the area privacy requirement, i.e., the user cannot be anywhere in the cloaked

area, as the user has to be in a single road segment only.

Although some location anonymization techniques have been proposed to preserve

the user location privacy for location-based services in road network environments [22,

25,31], they have different limitations. One of these techniques assumes a system-wide

static K-anonymity level for all mobile users [25]. This assumption not only degrades

the quality of services for those mobile users whose desired privacy requirements can
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Fig. 1 Spatial cloaking for the Euclidean space

be satisfied by smaller K values, but it also not realistic because mobile users tend

to have varying privacy requirements under different contexts or on different types

of objects of interest [9]. One of existing techniques relies on an existing Euclidean-

based anonymization technique to cloak the user location [22], so it still suffers from

the drawback of the Euclidean-based techniques. The other work designs a new loca-

tion anonymization algorithm that considers the query execution cost, and it supports

personalized K-anonymity privacy requirements and shared execution [31], but the un-

derlying basic star structure degrades the query processing efficiency and the shared

execution has not been fully utilized (i.e., the shared execution is limited to the queries

located on the same road segment).

In this paper, we overcome the above two main drawbacks by proposing a new

location anonymization algorithm that (a) is designed specifically for the road network

environment, and (b) not only aims to satisfy the user privacy requirements, but it

is also “query-aware” as it aims to balance between (1) the query execution cost at

a database server and (2) the query quality (i.e., a smaller set of objects returned

to the user indicates higher query quality). The main idea of our proposed “query-

aware” location anonymization technique is to blur a user location into a cloaked set of

connected road segments S such that S satisfies the user specified privacy requirements,

K-anonymity and minimum length L. The K-anonymity requirement indicates that S

must include at least K users while the minimum length L requirement indicates that

the total length of all road segments in S must be at least L. As the database server

only knows about a cloaked segment set S as a user’s location information, it has to

compute an answer set A that includes the exact query answer should the user be

anywhere within S. The smaller the size of the returned answer set A, the better query

quality the server will provide. Thus, the query quality is measured by the size of the

returned answer set. To achieve our goals, we design a new objective cost function that

encapsulates the query execution cost for both k-nearest-neighbor and range queries

with the query quality. Then, the objective of our road network location anonymization
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algorithm boils down to finding a cloaked set of road segments S that minimizes our

developed objective cost function while satisfying the user privacy requirements.

We present two versions of our proposed location anonymization algorithm. The

first version is a pure greedy approach where we repeatedly select road segments to be

included in a cloaked segment set S based on minimizing our developed objective cost

function. Although the pure greedy approach is simple and efficient, its deterministic

property would suffer from a reverse engineering attack, i.e., a replay attack, where

an adversary cracks the system to know the objective cost function and the produced

cloaked segment sets. To avoid such an attack, we propose another version of our al-

gorithm, termed randomized greedy approach, where we inject some randomness into

the greedy approach. To accommodate for cases of high workloads, e.g., traffic conges-

tions and rush hours, we propose a shared execution paradigm that boosts the system

scalability in terms of supporting large numbers of queries received within a short time

period. The main idea of the shared execution paradigm is to maximize the number of

shared road segments among the users’ cloaked segment sets. By doing so, location-

based queries at the shared road segments will be executed only once for multiple

queries. In general, the contributions of this paper can be summarized as follows:

1. We design a new objective cost function that, for a given cloaked set of connected

road segments S, balances between (a) the query execution cost for k-nearest-

neighbor and range queries, and (b) the query quality in terms of the number of

false objects returned to the user (Section 4).

2. We propose two greedy approaches, namely, pure greedy and randomized greedy,

that aim to find a cloaked set of road segments S for a given user such that (a) our

developed cost function is minimized, and (b) the user privacy requirements are

satisfied in terms of K-anonymity and minimum length L (Section 5).

3. We propose a shared execution paradigm that can be used in conjunction with

our two proposed greedy techniques to accommodate for cases where the server is

overloaded (Section 6).

4. We provide experimental evidence that our proposed algorithms effectively resist

to two privacy attacks, i.e., replay attack and center-of-cloaked-area attack, and it

is efficient and scalable for large numbers of users, queries, and objects, and strict

privacy requirements, while preserving the user location privacy in road networks

(Section 7).

The rest of this paper is organized as follows. Section 2 highlights related works.

Section 3 delineates our system model. Our query execution cost model is described in

Section 4. Section 5 presents our query-aware location anonymization algorithm. The

shared execution paradigm is described in Section 6. Section 7 describes two privacy

attacks and gives the experimental results. Finally, Section 8 concludes this paper.

2 Related Works

Location anonymization. Previous works in location anonymization can be classi-

fied into three categories: (1) False locations [15,20,34]. The basic idea is to send either

one or more fake locations that are related to the user location. (2) Space transfor-

mation [10,19]. The basic idea is to transform the location information into another

space where the spatial relationships among queries and data are encoded. (3) Spa-

tial cloaking [1–3,5–9,11–14,18,24,32,33,35]. The main idea is to blur users’ locations



5

into spatial regions that are guaranteed to satisfy the K-anonymity [29] and/or min-

imum region area privacy requirements [2,8,24]. The spatial cloaking technique has

been applied to various problem settings that include distributed/peer-to-peer envi-

ronments [6,7,11,12,35], sensor networks [5,14], trajectory data [33], and continuous

queries [3,32]. Unfortunately, none of these works address the road network environ-

ment nor consider the query processing cost, as the focus was mainly on the Euclidean

space and anonymizing user locations regardless of how difficult or inefficient is the

query processing. For example, some of these techniques require special features to

be developed at the query processor [4,10,18,19,24], while others result in submitting

several queries [20] or an incremental nearest-neighbor query [34] to a database server,

in order to get the query answer. To this end, our proposed location anonymization

algorithm not only considers the user personalized privacy requirement, but it also

takes in account the query execution cost during the anonymization process.

Architecture model. Based on whether a privacy-preserving technique requires a

third trusted party, termed location anonymizer, to be placed between the user and the

location-based database server, the related works can be classified into two categories:

(1) Anonymized queries [1,3,6,7,9,13,18,22,32,33,35]. In this category, users’ locations

have to go through a trusted location anonymizer that cloaks the user or query location

information into cloaked areas. In this case, the original query with a point location

is transformed to another query with a cloaked area. This trusted third party model

is commercially used in other fields, e.g., the Anonymizer1 for anonymous web surfing

and the PayPal2 for anonymous online payment. (2) No anonymizer [10,19,34]. In this

category, users can directly contact the database server by utilizing space transfor-

mation [19], private information retrieval [10], or anchor points [34]. All these query

processing techniques for both categories are totally independent of the anonymization

process. Unfortunately, these works consider only the Euclidean space, so they cannot

address the case of privacy-preserving query processing in road networks.

Location privacy in road networks. Some privacy-preserving techniques have

been proposed to protect the user location privacy in road network environments [22,

23,25,31]. Unfortunately, these works have different limitations. The work of [22] relies

solely on the Casper’s location anonymization algorithm [24], which is designed for the

Euclidean space, to blur a user location into a set of road segments that intersect a

cloaked area determined by the Casper’s algorithm. As a result, this work inherits the

drawbacks of the Euclidean location anonymization techniques. A hierarchical structure

is proposed for location anonymization in road networks [23]. However, such a static

hierarchical structure has a deterministic property for its cloaked areas, so it suffers

from a reverse engineering attack, e.g., a replay privacy attack [31]. To satisfy the

reciprocity property, the work [25] assumes a system-wide static K-anonymity level

for all mobile users. This assumption has two major drawbacks [31]: (1) It degrades

the quality of services for the mobile users whose desired privacy can be satisfied by

smaller K values. (2) This assumption is not realistic because mobile users tend to have

different privacy requirements under different contexts and for different types of objects

of interest. Among these related works, the work of [31], XStar, is closest to our work;

however, it has some other limitations. (a) Given a road network, XStar constructs

a star network by grouping neighboring road segments based on the estimated query

execution and communication cost, such that each node in the star network represents

1 Anonymizer. http://www.anonymizer.com
2 Paypal. http://www.paypal.com
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a star and has a degree of at least three. Since a node in the star network may be

very large, e.g., a star includes three long highways, the underlying basic star structure

will result in cloaked segment sets much larger than necessary. Such larger cloaked

segment sets not only lead to higher the query execution overhead at a database server,

but they also increase the size of candidate lists returned to the user, and thus, the

communication overhead also gets higher. (b) In XStar, the extent of shared execution

is limited, as it is only applied to queries located on the same road segment. Thus, the

concept of shared execution has not been fully utilized.

Our work can distinguish itself from XStar, as (1) it does not rely any underlying

basic structure for location anonymization, which also considers the query execution

cost and the query quality, i.e., the candidate list size, and (2) it designs a more effective

shared execution paradigm, where queries are dynamically grouped to share a set of

cloaked segments without any pre-specified location limit. Experimental evidence shows

that our proposed algorithms with the shared execution paradigm have more resilience

to the replay privacy attack than the state-of-the-art technique, i.e., XStar (Section 7).

3 System Model

In this section, we give the preliminaries of this paper, and then describe the under-

lying system architecture that consists of three main entities, mobile users, location

anonymizer, and location-based database server, and present the privacy model of our

system.

Preliminaries. The proposed location anonymization algorithm mainly blurs a

user’s location into a cloaked set of road segments S that is defined as a set of

connected road segments where the requesting user is residing therein, such that S

satisfies the user specified privacy requirements. In a cloaked set S, a vertex v is a

closed vertex if all edges connected to v are included in S; otherwise, v is an open

vertex. The underlying road network is modeled as a connected graph G = (V,E),

where V is a vertex set that represents the intersection and endpoints of the road

segments, while E is an edge set that represents the road segments.

Mobile users/privacy requirements. Mobile users register with the system

by specifying their personalized privacy requirements, i.e., K-anonymity and mini-

mum length L. K-anonymity privacy requirement indicates that the user wants to be

K-anonymous, i.e., indistinguishable among K users. The minimum length privacy re-

quirement L indicates that the minimum resolution of the blurred location information,

i.e., the total length of the road segments in S is at least L. Thus, a user’s location

must be blurred into a cloaked set S that contains at least K users and the total length

of the road segments in S is at least L. The minimum length privacy requirement is

particularly important in a dense area, where a large K-anonymity level results in a

cloaked segment set with only a few short road segments. In a special case that a user is

located in a very sensitive area, the user can specify a cloaked area that is way beyond

the sensitive area, and then the user’s location is blurred into a set of connected road

segments intersecting the cloaked area. We assume that this special case rarely takes

place, and in fact, our location anonymizer can easily deal with it, so this special case

is not the focus of this paper.

Location anonymizer. The location anonymizer is a trusted third party placed

between mobile users and the location-based database server. We assume that the lo-

cation anonymizer is placed at some cellular service provider through which the mo-
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bile users have access to location-based service providers. Furthermore, the location

anonymizer maintains an edge table that is a hash-table on edge ID [26]. For each edge

e, the tuple in the edge table stores (a) its endpoints, (b) its length, (c) the set of edges

connected to each of its endpoints, and (d) the list of objects currently residing in e.

Given n road segments in the underlying road network, m objects in the system, and

the maximum degree of an intersection of road segments d, the storage complexity of

the edge table is O(n×d+m). This is because each tuple stores at most 2×d adjacent

edges and each of the m objects is stored by only one tuple. Basically, the location

anonymizer blurs the location information of a user’s query into a cloaked set of road

segments S such that S satisfies the user’s privacy requirements. While blurring the

location information, the location anonymizer also removes any user identity to ensure

the pseudonymity of the location information [28]. Then, the location anonymizer sends

the anonymized query with the cloaked segment set to the database server. After the

location anonymizer receives a candidate list of answers from the database server, it

forwards the candidate list to the user. Finally, the user computes an exact answer from

the candidate list.

Location-based database server. The location-based database server is placed

at an untrustworthy service provider and has the capacity to deal with private queries

along with cloaked sets of road segments. Since the private queries can be easily boiled

down to traditional k-nearest-neighbor and range queries (described in Section 4),

the query processor embedded inside the database server only needs to employ any

existing k-nearest-neighbor and range query algorithms designed for road networks

(e.g., [16,21,27]). Furthermore, the database server also maintains an edge table as in

the location anonymizer. Instead of returning an exact answer, the database server

returns a candidate list of answers that is guaranteed to contain the exact answer to

the location anonymizer regardless of the exact user location within the given cloaked

segment set S.

Privacy model. In our system, the users are required to be authenticated with

the location anonymizer and they behave as defined in our algorithm. Since our system

only preserves the user location privacy for snapshot location-based queries, we assume

that an adversary is unable to infer that some particular snapshot queries are issued

by the same user or track a particular user. This assumption is realistic, as the location

anonymizer can guarantee the pseudonymity of the location information [28]. In other

words, the output of the location anonymizer to the location-based database server is

only a set of road segments and a location-based query (e.g., a range or k-nearest-

neighbor query) without any user identity. Furthermore, the query can be issued by

one user or a group of users formed by the shared execution paradigm. We will also

describe two attack models, namely, center-of-cloaked-area attack and replay attack. For

the replay privacy attack, we assume the worst scenario where an adversary knows the

users’ locations, but not their user identities, and the location anonymization algorithm.

Given a cloaked segment set of a user along with a query, the adversary wants to

employ the replay attack to find the road segment that contains the query issuer or the

center-of-cloaked-area attack to find the exact location of the query. We will evaluate

our system’s resilience to these two privacy attacks through simulated experiments

(Section 7).
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4 Cost Model for Private Queries

This section develops the cost model for both private k-nearest-neighbor (k-NN) and

range queries. This cost model will be used later by the location anonymizer (Section 5)

to find a cloaked set of road segments S that balances between minimizing the devel-

oped cost function while satisfying the user specified privacy requirements. Through-

out this section, we use the following terminologies and assumptions: (a) We assume

only an existing spatio-temporal query processor embedded inside the database server

to deal with private k-NN and range queries. Thus, the query processor can employ

any existing k-NN and range query processing algorithms designed for road networks

(e.g., [16,17,21,27]). (b) For any cloaked set of road segments S, we define two func-

tions Vo(S) and E(S) that return the number of open vertices (i.e., vertices where some

of its connected edges are not included in S) and the number of edges in S, respec-

tively. (c) Without loss of generality, we assume that all k-NN and range queries ask

about the same type of target objects (e.g., gas stations, taxis, or restaurants). There

are T such target objects and R road segments in the system. The information about

the number of target objects is given by the database server as hints. For all vertices

and edges in the road network, d and l represent the average degree of connectivity

of a vertex v (i.e., the number of edges connected to v) and the average edge length,

respectively.

4.1 Private k-Nearest-Neighbor Queries

A typical example of a k-nearest-neighbor (k-NN) query is “find the k nearest objects

of my location q = (x, y)”. However, with the anonymization process, the k-NN query

is transformed to a private one, i.e., “find the k nearest objects of my location, given

that my location is somewhere in a cloaked set of road segments S”.

Algorithm. An algorithm for a private k-NN query with a cloaked set of road

segments S will find a candidate list of answers where the exact answer of the original

query is guaranteed to be in the candidate list regardless of the actual user location

within S. To facilitate the development of the query cost model, given a cloaked set of

road segments S, we divide the query processing algorithm of private k-NN queries into

two steps: (1) Range Search Step. In this step, we mainly execute a traditional range

query of the form “find all target objects located within the road segments in S” where

we add all target objects within S to the candidate list. (2) External Search Step. In

this step, we mainly execute a traditional k-NN query at each open vertex in S, i.e.,

“find the closest k target objects to a vertex v”, where we add the answers of these

queries to the candidate list.

Thus, the execution of one private k-NN query boils down to executing one tra-

ditional range query and a set of traditional k-NN queries. Figure 2 depicts a private

k-NN query (k = 1), where the actual query location Q is represented as a triangle

located in edge v4v6. The cloaked segment set S of Q includes three edges v3v4, v4v6,

and v4v9, one closed vertex v4, and three open vertices v3, v6, and v9. Figure 2a depicts

the range search step, where we add all target objects of the three edges in S, o3 to

o7, to the candidate list. Figure 2b depicts the external search step, where the nearest

target object to each open vertex in S (enclosed in rectangles) is added to the candidate

list. The nearest target object of the open vertices v3, v6, and v9 are o2, o7, and o8,

respectively. As a result, the answer of the private k-NN query is a candidate list that
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(b) External Search Step

Fig. 2 Private k-nearest-neighbor query

contains seven objects o2 to o8. Notice that the exact answer, according to the exact

location of Q, is o7 which is included in the candidate list.

Cost model. The execution cost of a private k-NN query is the sum of the exe-

cution cost of the range search and external search steps. We will present the cost in

terms of the number of edges whose information is retrieved through the edge table

data structure as described in Section 3. For the range search step, we need to retrieve

the information (i.e., target objects) of all edges in S. This step results in a straight-

forward cost of E(S), i.e., the number of edges in S. For the external search step, we

will first consider the cost of issuing a traditional k-NN query at one open vertex. For

simplicity, we assume a uniform distribution of the T target objects over all the road

segments R in the road network. Thus, we will need to search within R/T segments to

find one closest target object to an open vertex. To find k nearest target objects, we

need to retrieve the information of R/T × k road segments, as we do the same for each

open vertex in S. The total cost of the external search step is Vo(S)×R/T × k, where

Vo(S) represents the number of open vertices in S. Given a cloaked segment set S, the

query execution cost of a private k-NN query is:

CostPkNN(S, k) = E(S) + Vo(S)×R/T × k. (1)

Note that our proposed location anonymization does not have any assumption for the

distribution of target objects and road segments, so it can use any object distribution

model, which is either provided by the service provider or estimated by our system

if appropriate statistics can be collected from the service provider, and a more so-

phisticated distribution model for road segments. However, the development of these

distribution models is out of the scope of this paper.

4.2 Private Range Queries

A typical example of a range query is “find all target objects within a network range

distance r of my location q = (x, y)”. However, with the anonymization process, the
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range query is transformed into a private one, i.e., “find all target objects within a

network range distance r of my location, given that my location is somewhere in a

cloaked set of road segments S”.

Algorithm. Similar to the case of private k-NN queries, an algorithm for a private

range query consists of two steps: (1) Range Search Step. The target objects residing in

the edges in S are added to the candidate list of answers. (2) External Search Step. The

target objects within a network range distance r from each open vertex in S are added

to the candidate list. Thus, a private range query boils down to Vo(S) + 1 traditional

range queries.

Cost model. The execution cost of the range search step of a private range query

is exactly the same as in the case of private k-NN queries, i.e., E(S). The execution cost

of the external search step is the sum of the cost of finding the target objects within a

network range distance r of each open vertex in S. For each open vertex in S, we need

to expand the search to ⌈r/l⌉ edges in all directions where l is the average edge length.

Given that the average degree of connectivity of a vertex is d, then, approximately, we

need to search a total of ⌈r/l⌉×d road segments for each open vertex in S. Thus, given

a cloaked set of road segments S, the query execution cost of a private range query is:

CostPRange(S, r) = E(S) + Vo(S)× ⌈r/l⌉ × d. (2)

5 Query-Aware Anonymization

As we have indicated earlier, there are two main factors that control the quality of

a cloaked set of road segments S, namely, the query execution cost and the query

quality. To realize the first factor, query execution cost, we will need to select S that

satisfies the user privacy requirements while minimizing the query cost models that

are developed in Section 4. On the other hand, to realize the second factor, the query

quality, we need to select S that satisfies the user privacy requirements and has the

number of users and length as close as possible to the anonymityK and minimum length

L privacy requirements, respectively. The main idea is that the shorter the length of S,

the smaller the size of the candidate list, and hence the better query quality the query

processor will provide.

In this section, we start by showing that realizing any of these two important factors

for S may significantly deteriorate the other factor (Section 5.1). Then, we develop

an objective cost function that aims to balance these two desired factors, the query

execution cost and the query quality (Section 5.2). Finally, we propose two greedy-

based anonymization approaches, namely, pure greedy and randomized greedy, that aim

to find a cloaked set of road segments S that minimizes our developed objective cost

function (Section 5.3).

5.1 Motivation: A Trade-off between Query Execution Cost and Query Quality

Figure 3 gives a trade-off between query execution cost and query quality for a cloaked

set of road segments S with privacy requirements K = 5 and L = 5. Each edge in the

road network has a pair (a, b), where a indicates the number of users in that edge while

b indicates the edge length. For example, the edge v1v3 has four users and of length

nine. Figure 3a gives a cloaked segment set Sq = {v2v3, v3v4, v4v6, v6v7} that is optimal
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Fig. 3 A trade-off between the query quality and the query execution cost

in terms of the query quality. In this case, Sq has the minimum possible length, i.e.,

Length(Sq) = 5, and the minimum possible number of users, i.e., NumUser(Sq) = 5.

In terms of the query execution cost, Sq has five open vertices (enclosed in rectangles)

and four edges (represented as black lines), i.e., Vo(Sq) = 5 and E(Sq) = 4. On the

other hand, Figure 3b gives a cloaked segment set Sc = {v4v6, v4v9} that is optimal in

terms of query execution cost as it is the one that has the minimum possible number

of open vertices, i.e., Vo(Sc) = 3, and edges, i.e., E(Sc) = 2, while still satisfying the

user privacy requirements. However, Sc may result in very bad query quality as the

total length of all road segments in Sc is 10 which is way above the minimum length

L privacy requirement. Table 1 gives a summary of the number of open vertices, the

number of edges and the total segment length of Sq and Sc.

Table 1 Two sample cloaked segments sets Sq and Sc

No. of open vertices (Vo) No. of edges (E) Total segment length
Sq 5 4 5
Sc 3 2 10

From these examples, we can see that trying to find the optimal Sq , i.e., maximizing

the query quality, results in having five open vertices and four edges (Figure 3a) which

is 66.7% (i.e., 5−3
3 × 100%) and 100% (i.e., 4−2

2 × 100%) worse than what we can get

from Sc (Figure 3b). On the other hand, trying to find the optimal Sc that gives the

minimal query execution cost, i.e., the minimum possible number of open vertices and

edges, results in the total segment length of 10 (Figure 3b) which is 100% ( 10−5
5 ×100%)

worse than what we can get from Sq (Figure 3a). This raises the issue of finding an

objective cost function that balances between the query execution cost and the query

quality.
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5.2 Objective Cost Function

As we have discussed in the previous section, we need an objective cost function that

balances between query execution cost and query quality. The query execution cost

is measured by the cost models described in Section 4. On the other hand, the query

quality is measured by the number of candidate target objects returned by a database

server given that the query location is within a cloaked set of road segments S. In

general, the number of candidate target objects returned to the user, i.e., the query

quality, is proportional to the total length of the road segments in S. Thus, the objective

cost function aims to find a cloaked segment set S, such that S not only satisfies the

user privacy requirements, but it also balances the query execution cost and the total

segment length (i.e., the query quality).

Based on these contradicting requirements, we distinguish between two cases for the

objective cost function based on whether a privacy requirement has satisfied or not. For

the K-anonymity privacy requirement, we consider two cases. Case 1: When a current

cloaked set of segments S has not yet satisfied this privacy requirement, we should

select some edges that contain more users to S. For example, if adding edge ei or ej to

S incurs the same query execution cost QCost(S) that is computed by using the cost

models described in Section 4, the objective cost function should give a smaller cost to

the edge containing more users; and thus, the objective cost function adjusts QCost(S)

by dividing it by a quality adjustment factor NumUser(S)/K, where an edge with more

users yields a larger quality adjustment factor and NumUser(S)/K < 1 because the

total number of users in S is less than K. Note that NumUser(S) must be at least one

because the firstly selected edge contains the requesting user. Case 2: When a current

cloaked set of segments S has satisfied the K-privacy requirement, since further adding

edges with more or less users to S does not affect the query quality, i.e., the total length

of the segments in S, the objective cost function no longer considers the K-anonymity

privacy requirement; hence, the quality adjustment factor is set to one.

For the minimum length L privacy requirement, we also consider two cases.

Case 1: When a current cloaked set of segments S has not yet satisfied this privacy

requirement, we should select some longer edges to S. Similar to the K-anonymity

privacy requirement, the objective cost function adjusts QCost(S) by dividing it by

a quality adjustment factor Length(S)/L, where a longer edge yields a larger quality

adjustment factor and Length(S)/L < 1 because the total length of the road segments

in S is less than L. Case 2: In case that the length privacy requirement has been

satisfied by a current cloaked set of segments S, the objective cost function gives a

larger value to longer edges, i.e., dividing QCost(S) by an inverse quality adjustment

factor L/Length(S), where a longer edge yields a smaller quality adjustment factor and

L/Length(S) > 1.

Since the quality adjustment factors of these two privacy requirements are nor-

malized to the corresponding privacy requirement, we can encapsulate them in our

objective cost function. Hence, the combined quality adjustment factors are:

QualityAdj(S) =



































NumUser(S)
K

×
Length(S)

L
, if NumUser(S)<K ∧ Length(S)<L;

NumUser(S)
K

× L
Length(S)

, if NumUser(S)<K ∧ Length(S)≥L;

1×
Length(S)

L
, if NumUser(S)≥K ∧ Length(S)<L;

1× L
Length(S) , if NumUser(S)≥K ∧ Length(S)≥L.

(3)
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Therefore, for each edge ei, we consider a new potential cloaked set of road segments

S = S ∪ {ei}, and we calculate the objective cost Cost(S,Q) as:

Cost(S,Q) =
QCost(S,Q)

QualityAdj(S)
, where (4)

QCost(S,Q) =

{

CostPkNN (S, k), if Q is a k-NN query;

CostPRange(S, r), if Q is a range query.
(5)

5.3 Greedy Approaches

Trying to find the optimal set of cloaked road segments S that minimizes a certain cost

function would require an exhaustive search process. As the underlying application of

road network anonymization (e.g., location-based services) is a real-time application

in which it is crucial to efficiently process the anonymization and query processing

in a minimal time, we avoid trying to get an optimal set S. Instead, we use a greedy

approach to minimize the objective cost function developed in Section 5.2. In particular,

we present two efficient greedy approaches, namely pure greedy and randomized greedy

approaches, that rely on the objective cost function designed for balancing a trade-off

between the query execution cost and the query quality.

5.3.1 Pure Greedy Approach

The idea of our greedy approach is to start from the road segment in which the querying

user is residing. If this road segment satisfies the user’s privacy requirements, we return

it to a location-based database server as the cloaked road segment S. Otherwise, we

check all adjacent road segments of S and greedily pick the road segment that minimizes

the objective cost function. We keep adding these adjacent road segments greedily to S

until S satisfies the user privacy requirements. As the objective cost function is heavily

dependent on the underlying query execution cost model, such approach may result in

different S for different query types.

Algorithm 1 depicts the pseudo code of the pure greedy approach of our query-

aware location anonymization algorithm. The algorithm has two input parameters, the

identifier of the user U who issues the query and the issued query Q. The algorithm

starts by initializing a cloaked set of road segments S with the edge e that includes the

user U (Line 3 in Algorithm 1). If the current S does not satisfy U ’s privacy require-

ments, i.e., U.K and U.L, we do the following three steps (Lines 4 to 8 in Algorithm 1):

(1) We construct the set R that consists of all road segments that are adjacent to

some road segment in S. (2) For each road segment ei ∈ R, we calculate the objective

cost to decide whether ei should be added to S for the input query Q based on the

objective cost function designed in Section 5.2. Then, we choose the best edge as the

one that minimizes the objective cost function should it have been added to S. (3) We

add that best edge to the current cloaked set of road segments S. We keep doing these

three steps until S satisfies U ’s privacy requirements, i.e., NumUser(S) ≥ U.K and

Length(S) ≥ U.L. In other words, the algorithm will put additional segments to S if

the total number of users in S is less than K or the total length of the segments in

S is less than L. Finally, we return S as the cloaked segment set for the user U . It is

important to note that S does satisfy the user privacy requirements while it aims to
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Algorithm 1 A Greedy Approach

1: function Greedy (User U , Query Q)
2: e← the road segment contains the user U

3: S ← {e}
4: while NumUser(S) < U.K or Length(S) < U.L do

5: R← All adjacent road segments of S
6: BestEdge← argminei∈R (Cost(S ∪ ei, Q))
7: S ← S ∪ BestEdge

8: end while

9: return S

minimize the query execution cost and maximize the query quality according to our

developed objective cost function.

Figure 4 gives an example to illustrate the greedy approach for the query-aware

location anonymization algorithm where the user issues a k-NN query Q1 where k = 3

while being five anonymous within a set of connected road segments with a total length

of at least five, i.e., K = 5 and L = 5. For ease of comparison and discussion, we use

the same road network that was used in Figure 3. Although we show only part of the

road network, we assume that the whole road network has R = 100, 000 road segments

and T = 1, 000 target objects. Hence, according to the query cost model developed

in Section 4, we will need to search R/T × k = 300 edges for each open vertex in

a cloaked segment set S. Since edge v4v6 contains Q1, we initially set the cloaked

set of road segments S to {v4v6}, where vertices v4 and v6 are open vertices that

are enclosed in rectangles. As S does not satisfy the user privacy requirements, i.e.,

NumUser(S) = 1 and Length(S) = 1, we compute the objective cost of the adjacent

edges of v4v6 and add the edge with the lowest cost to S. The cost of these adjacent

edges is Cost(S∪v5v6) = (3×300+2)/(min(5/5, 1)×min(4/5, 5/4)) = 902/(1×4/5) =

1127.5, Cost(S∪v6v7) = 902/(2/5×2/5) = 5637.5, Cost(S∪v3v4) = 902/(3/5×3/5) =

2505.6, and Cost(S ∪ v4v9) = 902/(1× 5/10) = 1804. Since edge v5v6 has the smallest

objective cost, we add v5v6 to S (Figure 4a).

However, S = {v4v6, v5v6} satisfies only the K-anonymity requirement, i.e.,

NumUser(S) = 5 and Length(S) = 4, so we compute the objective cost of the ad-

jacent edges of the edges in S. The cost of these adjacent edges is Cost(S ∪ v6v7) =

(3× 300 + 3)/(min(6/5, 1) ×min(5/5, 5/5)) = 903/(1 × 5/5) = 903, Cost(S ∪ v3v4) =

(4× 300 + 3)/(min(7/5, 1) ×min(6/5, 5/6)) = 1203/(1 × 5/6) = 1443.6, and Cost(S ∪

v4v9) = (4 × 300 + 3)/(min(14/5, 1) × min(13/5, 5/13)) = 1203/(1 × 5/13) = 3127.8.

Since edge v6v7 has the smallest objective cost, we add v6v7 to S (Figure 4b). Finally,

S = {v4v6, v5v6, v6v7} satisfies the user privacy requirements, i.e., NumUser(S) =

6 ≥ K and Length(S) = 5 ≥ L, and there are three open vertices in S, i.e., v4, v5,

and v7, that are enclosed in rectangles. This example shows that the developed ob-

jective cost function effectively balances between the query execution cost and the

query quality, because the cloaked segment set S has the maximal query quality, i.e.,

Length(S) = L = 5, and the query execution cost of S (i.e., Vo(S) = 3 and E(S) = 3)

is only slightly deteriorated compared to the optimal query cost (i.e., Vo(Sc) = 3 and

E(Sc) = 2) given in Section 5.1.
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Fig. 4 Example of the greedy approach

5.3.2 Randomized Greedy Approach

Although the greedy approach is simple and effective in terms of achieving privacy

requirements, minimizing the query execution cost, and maximizing the query quality,

the greedy approach is vulnerable to adversary attacks. Basically, we assume the worst

case that an adversary knows the number of users and length of each road segment,

and the adversary is able to crack the system to know or guess the used objective cost

function. Then, the adversary can know the road segment in which the user issuing the

query is residing through a reverse engineering process. For example, given a cloaked

set of road segments S, the adversary performs two main steps. (1) The adversary

selects a certain edge ei ∈ S, and then applies the revealed cost function in a greedy

manner for ei to compute another cloaked set of road segments S′. (2) If there is an

edge ej where ej ∈ S′ and ej /∈ S, the adversary knows that the user is not in ei. The

main idea is that if the user is in ei, S
′ should always be included in S, i.e., S′ ⊆ S,

before S′ is equal to S. The adversary can repeat these two steps for each edge in S for

all possible combinations of the user’s privacy requirements, i.e., K and L. When the

adversary achieves a case that S′ = S, it is likely that the user who issued the query

is in ei.

The main reason of having such a privacy attack is that the greedy approach re-

lies on a deterministic cost function to determine a cloaked set of road segments S.

To this end, we propose a randomized greedy approach for our query-aware location

anonymization algorithm. The idea is to inject some randomness into the process of

selecting road segments to S. Rather than solely relying on a greedy approach, we will

alternate between greedy and random approaches. Although injecting randomness into

the anonymization process may degrade the query processing performance, i.e., the

query execution cost and the query quality, but it significantly reduces, if not prevent,

the possibility of the adversary attack. To balance between the query processing per-

formance and the vulnerability of adversary attacks, we introduce a user parameter,

random factor (RandF ), that controls the level of randomness injected into the greedy
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Algorithm 2 A Randomized Greedy Approach

1: function RandomizedGreedy (User U , Query Q, Float RandF )
2: e← the road segment contains the user U

3: S ← {e}
4: while NumUser(S) < U.K or Length(S) < U.L do

5: R← All adjacent road segments of S
6: RandN ← a random number between 0 and 1, i.e., [0, 1)
7: if RandF > RandN then

8: BestEdge← a road segment is randomly selected from R

9: else

10: BestEdge← argminei∈R (Cost(S ∪ ei, Q))
11: end if

12: S ← S ∪ BestEdge

13: end while

14: return S

approach. When RandF is set to 0, our randomized greedy approach acts exactly as

the pure greedy approach. On the other hand, when RandF is set to 1, our randomized

greedy approach acts in a purely random way where we keep randomly selecting the

adjacent edges of a current cloaked segment set S until S satisfies the user privacy re-

quirements. In general, a larger RandF provides more secure privacy for the user, yet

it results in lower query processing performance. It is important to note that both the

pure greedy and randomized greedy approaches are guaranteed to generate a cloaked

set of road segments satisfying both the K-anonymity and minimum length L privacy

requirements.

Algorithm 2 gives the pseudo code of our randomized greedy approach. The pseudo

code is similar to that of the pure greedy approach in Algorithm 1 except for the part of

choosing an edge in the set of adjacent edges of S, R, to be added to the current cloaked

set of road segments S (Lines 6 to 11 in Algorithm 2). Basically, the randomized greedy

approach has an option to randomly select road segments to S. Thus, we generate

a random number between 0 and 1. If the input parameter RandF is greater than

the generated random number, we opt to randomly select a road segment among the

ones stored in R, i.e., the adjacent road segments of S. On the other hand, if the

input parameter RandF is less than the generated random number, we use our greedy

approach to select the road segment from R that minimizes the objective cost function

described in Section 5.2. By injecting randomness to the anonymization process, we

can prevent the reverse engineering attack as an adversary cannot guess the generated

random numbers.

6 Shared Execution Paradigm

As a location-based database server is likely to receive a numerous number of concurrent

queries, processing these queries individually would pose a system bottleneck. To tackle

this scalability issue, we propose a shared execution paradigm that aims to minimize

the number of queries executed by the database server for a set of private queries. The

main idea is to maximize the number of common vertices and edges in the cloaked

set of road segments of a set of similar queries issued from nearby users. Two or more

queries are similar if they belong to the same query type and interested in the same

target object type. It is important to note that the proposed shared execution paradigm

can be incorporated into both the pure greedy and randomized greedy approaches for
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Fig. 5 Motivating example of shared execution

query-aware location anonymization. In this section, we first give the motivation of the

shared execution paradigm, and then present the algorithm with a running example.

6.1 Motivation

Figure 5 depicts a motivating example of the proposed shared execution paradigm,

in which the location anonymizer receives three similar queries Q = {Q1, Q2, Q3}

at the same time. The privacy requirements of these queries are (Q1.K=5, Q1.L=5),

(Q2.K=6, Q2.L=7), and (Q3.K=3, Q3.L=6). Without the concept of shared execution,

we use the pure greedy approach to anonymize the location information of these queries

individually. Figure 4b gives the cloaked set of road segments S1 of Q1, while the

cloaked segment sets S2 and S3 of Q2 and Q3 are depicted in Figure 5a. Anonymizing

these queries individually results in three cloaked segment sets S1 = {v4v6, v5v6, v6v7},

S2 = {v1v3, v2v3, v3v4}, and S3 = {v6v7, v7v8, v8v10} that contain a total of nine

edges (represented as black lines) and ten open vertices (enclosed in rectangles), i.e.,

{v4, v5, v7} in S1, {v1, v2, v4} in S2, and {v6, v7, v8, v10} in S3. Thus, the database

server has to retrieve the target objects of these nine edges and execute the requested

query at each of these ten open vertices.

With the proposed shared execution paradigm, the location anonymization al-

gorithm aims to maximize the number of common open vertices and edges of the

cloaked segment sets of a set of similar queries. Figure 5b depicts the set S of dis-

tinct edges in the cloaked segment sets S1, S2, and S3 that are computed by the pure

greedy approach with our shared execution paradigm, in which S1 = {v4v6, v5v6, v6v7},

S2 = {v3v4, v4v6, v5v6, v6v7}, and S3 = {v3v4, v4v6, v6v7, v7v8}. Hence, S contains five

distinct edges (represented as black lines), i.e., v3v4, v4v6, v5v6, v6v7, and v7v8, and five

distinct open vertices (enclosed in rectangles), i.e., v3, v4, v5, v7, and v8. This exam-

ple shows that the shared execution paradigm reduces the number of edges and open

vertices among the cloaked segment sets of the three queries by 44.4% (i.e., from nine

edges to E(S) = 5) and 50% (i.e., from ten open vertices to Vo(S) = 5), respectively.
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Algorithm 3 A Greedy Approach with Shared Execution

1: function SharedExecutionGreedy (QuerySet Q)
2: S ← {∅}
3: Sort Q by the query parameter in decreasing order
4: for Each query Qi ∈ Q do

5: e← the road segment contains the user Ui of Qi

6: Si ← {e}
7: while NumUser(Si) < Ui.K or Length(Si) < Ui.L do

8: R← All adjacent road segments of Si

9: if R ∩ S is empty then

10: e← argminej∈R (Cost(Si ∪ ej , Qi))

11: else

12: e← argmaxej∈{R∩S} (Quality(Si ∪ ej))

13: end if

14: Si ← Si ∪ e

15: end while

16: S ← S ∪ Si

17: end for

18: return S

As a result, the database server needs to retrieve the target objects of five edges and

execute the requested query at five open vertices, and then share the answer of these

queries among Q1, Q2, and Q3.

6.2 Algorithm

Main idea. Given a set of n similar queries Q = {Q1, Q2, . . . , Qn} received by the

location anonymizer at the same time or within a short time interval, the shared ex-

ecution paradigm aims to maximize the number of common open vertices and edges

in the cloaked segment sets S1, S2, . . . , Sn for the queries in Q. S is a set of distinct

edges in the cloaked segment sets S1, S2, . . . , Sn, i.e., S =
⋃

1≤i≤n Si. In the shared

execution paradigm, when we are selecting an edge to a current cloaked segment set Si

for a query Qi, we give a higher priority to select an edge that is adjacent to Si and

has been selected by other preceding queries in Q for their cloaked segments sets. In

other words, given a set of adjacent edges R to Si, we first select an edge from {R∩S}.

The main reason is that adding any edge from S will have a zero query execution

cost because the query execution cost of the edges in S is absorbed by other queries

in Q. Thus, by using the quality function described in Section 5.2, we add the edge

that gives the highest quality of answers among the set {R ∩ S} to Si. However, in

case that {R∩S} is empty, we simply employ our objective cost function to select the

best candidate edge to Si. Although the shared execution paradigm would incur longer

anonymization time for some queries, it improves the average anonymization time of

the queries in the similar query set, and this sacrifice will be paid off by the significant

gain in the query processing at the database server. Experimental results in Section 7

give more details on this performance gain.

Algorithm. Algorithm 3 depicts the pseudo code of the shared execution paradigm

applied to the pure greedy approach (or the randomized greedy approach with the same

modifications). The input of the algorithm is a set of similar queries Q. We maintain

a set S to store the distinct edges in the cloaked set of road segments of each query

in Q. Initially, we set S to empty and sort the queries in Q by their parameters in



19

(2,2)(4,9)

(1,1)

v
2

v
3

v
1

v
9v

11

v
5

v
6

v
7

v
10

v
8

v
4
(1,1)

(4,3)

(1,4)

(0,4)

(9,9)

(1,2)

(1,2)

(1,1)Q
2

Q
3

(a) Add v4v6 to S2

(2,2)(4,9)

(1,1)

v
2

v
3

v
1

v
9v

11

v
5

v
6

v
7

v
10

v
8

v
4
(1,1)

(4,3)

(1,4)

(0,4)

(9,9)

(1,2)

(1,2)

(1,1)Q
2

Q
3

(b) Add v5v6 to S2

(2,2)(4,9)

(1,1)

v
2

v
3

v
1

v
9v

11

v
5

v
6

v
7

v
10

v
8

v
4
(1,1)

(4,3)

(1,4)

(0,4)

(9,9)

(1,2)

(1,2)

(1,1)Q
2

Q
3

(c) Add v6v7 to S2

(2,2)(4,9)

(1,1)

v
2

v
3

v
1

v
9v

11

v
5

v
6

v
7

v
10

v
8

v
4
(1,1)

(4,3)

(1,4)

(0,4)

(9,9)

(1,2)

(1,2)

(1,1)Q
2

Q
3
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Fig. 6 An example of the shared execution scheme for a query set Q = {Q1, Q2, Q3}

decreasing order, i.e., the value of k of k-NN queries or the network range distance r

of range queries (Lines 2 to 3 in Algorithm 3). The main idea behind this sorting is to

ensure that the answer of the requested query at a selected open vertex can be used by

a database server to answer the subsequent queries in Q. For example, a k-NN query

answer can be used to answer another k′-NN query if k ≥ k′. For each query Qi in

Q, the proposed shared execution paradigm is applied to the pure greedy approach (or

the randomized greedy approach) to find a cloaked set of road segments Si. First, we

set the edge that contains the querying user Ui to Si (Line 6 in Algorithm 3). If Si

does not satisfy the user privacy requirements, i.e., Ui.K and Ui.L, we repeatedly select

the adjacent edges of Si, R, to Si until Si satisfies the user privacy requirements. We

distinguish between two cases of selecting the best edge to Si. Case 1: {R∩S} is empty.

In this case, there is no adjacent edge of Si in S . Thus, we simply use the objective

cost function to select an edge with the best cost among the set of adjacent edges of
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Si, R (Line 10 in Algorithm 3). Case 2: {R ∩ S} is not empty. In this case, there are

some adjacent edges of Si are in S . We select an edge with the largest quality from the

set {R ∩ S} (Line 12 in Algorithm 3). It is important to note that choosing any edge

from {R∩S} just adds a zero cost to the query processing. After we find a cloaked set

of road segments Si for Qi, we update S accordingly (Line 16 in Algorithm 3). Finally,

we send the queries in Q along with their cloaked segment sets Si in a batch to the

database server.

Example. Figure 6 depicts an example of the shared execution paradigm applied

to the pure greedy approach where the query set contains three similar queries Q =

{Q1, Q2, Q3} that are sorted by their query parameters in decreasing order. The privacy

requirements of these queries are the same as in Section 6.1. First, we compute the

cloaked set of road segments S1 of Q1. Since Q1 is the first query in Q, i.e., S is

empty, we compute S1 based on the pure greedy approach, as depicted in Figure 4;

and hence, S = S1 = {v4v6, v5v6, v6v7}. Then, we process Q2 residing in edge v3v4, i.e.,

S2 = {v3v4}. Since only one of the adjacent edges of S2 is in S , i.e., v4v6, we add v4v6
to S2 (Figure 6a). Selecting v4v6 results in two adjacent edges of S2 in S , so we compute

the quality of these two edges, i.e., Quality(S2 ∪ v5v6) = min(7/6, 1)×min(6/7, 7/6) =

1 × 6/7 = 0.857 and Quality(S2 ∪ v6v7) = min(4/6, 1) ×min(4/7, 7/4) = 4/6 × 4/7 =

0.381. Thus, we add the edge with the highest quality, i.e., v5v6, to S2 (Figure 6b). Since

v6v7 is the only adjacent edge of S2 in S , we add v6v7 to S2 (Figure 6c). After that, S2 =

{v3v4, v4v6, v5v6, v6v7} satisfies the user privacy requirements, i.e., NumUser(S2) = 8

and Length(S2) = 7. The anonymization process of Q2 results in adding only one open

vertex v3 (enclosed in a rectangle) and one edge v3v4 to S . Similarly, we anonymize

the location information of Q3 residing in edge v7v8. The cloaked segment set of Q3

is S3 = {v3v4, v4v6, v6v7, v7v8} (Figure 6d) that results in only one open vertex v8
and edge v7v8 to be added to S . Finally, the cloaked segment sets of these three

queries contain five distinct open vertices (enclosed in rectangles) and five distinct

edges (represented as black lines), as depicted in Figure 5b.

7 Experimental Results

In this section, we experimentally evaluate the performance of the two versions of our

proposed query-aware location anonymization algorithm, i.e., pure greedy (denoted as

PG) and randomized greedy (denoted as RG). We also evaluate the performance of

the proposed shared execution paradigm incorporated into the pure greedy (denoted as

SPG) and randomized greedy (denoted as SRG) approaches.

Baseline algorithms. We compare our approaches with two previous works [22,

31]. Since the work of [22] uses the Casper’s location anonymization algorithm [24]

(denoted as Casper) that is designed for the Euclidean space to blur a user location

into a cloaked area. Then, a set of road segments intersecting the cloaked area forms a

cloaked segment set. The other previous work [31] (denoted as XStar) is the state-of-

the-art technique for location anonymization in road networks. To have a fair analysis

of its resilience to the privacy attacks ,i.e., the replay attack and the center-of-cloaked-

area attack, the same random factor of our randomized greedy approach is also applied

to this previous work.

Experiment settings. The simulated experiments are implemented in C++. In all

experiments, we generate a set of moving objects on the road map of Hennepin County,

Minnesota, USA (Figure 7). The input road map is extracted from the Tiger/Line files
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Fig. 7 The road map of Hennepin County, Minnesota, USA

Table 2 Parameter settings

Parameter Default Value Evaluation Range

Number of users 100,000 100,000 - 500,000
Number of objects 2,000 2,000 - 10,000
Number of queries 1,000 2,000 - 10,000
Anonymity levels (K) 200 100 - 500
Minimum total segment length (L) 1 km 5 km - 25 km
Requested number of objects k 10 1 - 20
Requested range distance r 1 km 5 km - 30 km
Object size 128 bytes 32 bytes - 512 bytes

that are publicly available [30]. The total area of the Hennepin County is 1,571 km2.

The road map has 57,020 edges and 42,135 vertices in which the average length of the

edges (l) is about 0.1 km and the average degree of connectivity of the vertices (d) is

2.7. Mobile users are initially distributed among the vertices, and then move along the

roads at speeds between 50 and 70 miles per hour. The experiments were run on an

Ubuntu Linux system with an Intel Core 2 Quad processor at 2.83GHz and 4GB RAM.

At the database server, we employ an incremental network expansion algorithm [27]

and a depth-first search algorithm to process k-nearest-neighbor (k-NN) and range

queries in the road network, respectively.

Parameter settings. Unless mentioned otherwise, the experiments consider

100,000 mobile users and 2,000 objects in the underlying road network in which 1,000

users issue queries. The default user privacy requirements, anonymity level K and mini-

mum length L, are K=200 and L=1 km. The random factor RandF for our randomized

greedy approach is set to 0.2. The query parameters of k-NN and range queries are

k=10 and r=1 km, respectively. The default size of an object is 128 bytes. The transmis-

sion bandwidth of the high-bandwidth wired communication link between the location

anonymizer and the service provider is 1,000 Mbps, and the transmission bandwidth

of the wireless communication link between the location anonymizer and the user is

10 Mbps. Table 2 gives a summary of the parameter settings.

Privacy attack models. In this section, we evaluate the privacy resilience of a

location anonymization algorithm against two privacy attack models, namely, the re-
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play attack [31] and the center-of-cloaked-area attack [7,35]. (1) Replay privacy attack.

In this attack, we assume the worst scenario where an adversary knows the location

anonymization algorithm, the user locations (but not their user identities) and the

statistics used by the objective cost function. Given a cloaked segment set S with a

query, the adversary wants to know which segment in S contains the query issuer. To

do that, the adversary re-runs the location anonymization for each segment s ∈ S, and

then calculates the linkability between the cloaked segment set of s, S′, and S using

the following equation:

linkability(s, S) = |S′ ∩ S|/|S| (6)

After calculating the linkability for each segment in S, the adversary infers that the

segment s∗ with the highest linkability contains the query issuer. The replay privacy

attack succeeds if s∗ contains the actual query issuer; otherwise, it fails. (2) Center-

of-cloaked-area privacy attack. In this attack, we assume that an adversary knows the

user locations (but not their user identities). Given a cloaked segment set S with a

query, the adversary wants to infer which user issues the query. The adversary first

computes a minimum bounding rectangle (MBR) of the segments in S. Then, the

adversary determines the distance between each user located on the segment in S and

the center of the MBR, and infers that the closest user u∗ to the center of the MBR is

the query issuer. The center-of-cloaked-area privacy attack succeeds if u∗ is the actual

query issuer; otherwise, it fails.

Performance metrics. We evaluate our algorithms with respect to five perfor-

mance measures, (1) the processing time, (2) the candidate list size, i.e., the query

quality, (3) the success rate of the replay privacy attack, (4) the success rate of the

center-of-cloaked-area privacy attack, and (5) the end-to-end performance. The pro-

cessing time is the sum of the average time consumed in the anonymization process (i.e.,

anonymization time) and the average query processing time at the database server. The

candidate list size measures the average number of objects returned to the users per

query. The success rate of the two privacy attacks indicates the privacy resilience of our

algorithms. The end-to-end performance measures the average overall query response

time per query, which includes the anonymization time at the location anonymizer, the

query processing time at the service provider, the transmission time of sending candi-

date lists from the service provider to the location anonymizer through high-bandwidth

wired channels, and the transmission time of sending candidate lists from the location

anonymizer to the user through wireless communication channels.

7.1 Number of Users

Figures 8 and 9 depict the scalability of our approaches with respect to varying the

number of users from 100,000 to 500,000 for k-NN and range queries, respectively. Since

the location anonymization is independent of query types, the resilience of the location

anonymization algorithm to any privacy attack is the same for any query types, and

thus, we only show the success rates of the replay and center-of-cloaked-area attacks

for k-NN queries.

Figure 8a gives that our approaches with the shared execution paradigm, SPG

and SRG, outperform the approaches without the shared execution paradigm, PG,

RG, and the baseline algorithm, Casper, and even XStar having the concept of shared
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execution, in terms of query processing time. The main reason is that our shared

execution paradigm dynamically finds a shared set of cloaked segments for a group of

queries without any limitation on their locations. However, XStar only shares a cloaked

segment set for the queries on the same segment. Casper gives the worst performance

in terms of query processing time because it does not consider the query execution

cost in road network environments. In general, the location anonymization time and

the query processing time of all the approaches improve as there are more users in the

system. This is due to the fact that smaller cloaked areas are generated to satisfy the

same required K-anonymity level when the number of users increases.

Figure 8b also gives that our approaches perform better than Casper and XStar

in terms of candidate list size. Since Casper does not take into account the underly-

ing road network environment, the total segment length of the cloaked segment sets

generated by Casper is longer than other approaches, which are designed for road net-

work environments. As a cloaked segment set with a longer segment length leads to

larger candidate list size, Casper gives the worst query quality. Since our approaches

do not rely on any specific basic unit structure for location anonymization, while XStar

needs to group neighboring segments to form stars as the basic unit structure for its

anonymization process, the total segment length of the cloaked segment sets of our
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approaches is shorter than XStar, and thus, our approaches give better query quality

than XStar.

Figures 8c and 8d depict the resilience of all the approaches to the replay and

center-of-cloaked-area privacy attacks, respectively. Since the success rate of the replay

attack of the pure greedy approach (PG) is always one, we do not show its result for

the replay attack. The experimental evidence shows that injecting randomness to a

location anonymization process effectively increases its resilience to the replay attack.

As Casper uses a data structure to do location anonymization, it is more vulnerable

to the replay attack. It is interesting to see that our shared execution paradigm also

improves the resilience to the replay attack. The reason is that the generation of a

shared set of cloaked segments depends on a set of queries; instead of only one query

in the non-shared execution paradigm, so an adversary is much more difficult to use

the replay attack for a shared set of cloaked segments. The result shows that our SRG

provides much better privacy guarantee than XStar for the replay attack. In terms of

the center-of-cloaked-area privacy attack, all the approaches have very strong resilience

to the attack, i.e., its success rate is less than 0.016 for all the approaches.

Figure 9 shows similar results for range queries, where our approaches with the

shared execution paradigm, SPG and SRG, outperform our non-shared execution ap-

proaches, PG and RG, and the baseline algorithms, Casper and XStar, in terms of

processing time (Figure 9a). Since our approaches generate cloaked segment sets with

shorter total segment lengths, they provide better query quality, i.e., a smaller candi-

date list size, than the baseline algorithms, Casper and XStar (Figure 9b).

7.2 Number of Queries

Figures 10 and 11 give the performance of all the approaches with respect to increasing

the number of objects from 2,000 to 10,000 for k-NN and range queries, respectively.

The processing time of the non-shared execution approaches, PG, RG, and Casper,

is only slightly affected by the increase of the number of queries in the system for

both k-NN and range queries, as depicted in Figures 10a and 11a, respectively. On the

other hand, the processing time of the shared execution approaches, SPG, SRG, and

XStar, improves when there are more querying users. The reason is that when there are
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more querying users, it has a higher chance that a cloaked segment set shared by more

queries, and thus, more queries share the query execution cost of the cloaked segment

set. Our approaches with the shared execution paradigm also generate cloaked segment

sets with shorter total segment lengths, so they provide better query quality than other

approaches (Figures 10b and 11b).

Figures 10c shows that the resilience to the replay privacy attack of the shared

execution approaches, SPG, SRG, and XStar gets stronger, as the number of queries

increases. The reason is that the generation of the cloaked segment set not only depends

on the cost function, but it also depends on the properties of other queries, e.g., their

distribution, their privacy requirements, and the order of anonymizing them; and thus,

when more segments in a cloaked segment set are shared by other queries, it is more

difficult for an adversary to infer which segment in the cloaked segment set contains the

actual query issuer. The result provides evidence that the shared execution paradigm

can reduce the query processing overhead and improve the resilience to the replay

privacy attack.
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7.3 Number of Objects

Figures 12 and 13 give the performance of all the approaches with respect to increasing

the number of objects in the system from 2,000 to 10,000 for k-NN and range queries,

respectively. Since varying the number of objects at the service provider does not affect

the location anonymization, the execution overhead and resilience to the privacy attacks

of the location anonymization algorithms are not affected. It is interesting to see that

the processing time of k-NN queries decreases as there are more objects in the system,

as depicted in Figure 12a. The reason is that the query processor can find the requested

number of nearest objects for each open vertex in a cloaked segment set by searching

a smaller number of road segments when the number of objects increases. On the

other hand, the processing time of range queries slightly increases when there are more

objects in the system (Figure 13a). This is because the query processor has to search

the requested distance from each open vertex in a cloaked segment set regardless of the

object distribution. When there are more objects in the system, the query processor

has to retrieve more objects for a segment, and thus, the query processing time slightly

increases. Since a candidate answer list must contains the objects located within a
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cloaked segment set for both k-NN and range queries, when the number of objects

increases, the candidate answer list contains more objects (Figures 12b and 13b).

7.4 K-Anonymity Privacy Requirements

Figures 14 and 15 depict the performance of all the approaches for k-NN and range

queries, respectively, as the user required K-anonymity level increases from 100 to

500. It is expected that when the location anonymization algorithm has to generate

larger cloaked segment sets to satisfy the stricter privacy requirements, the location

anonymization overhead of all the approaches increases (Figures 14a and 15a). Since

our approaches with the shared execution paradigm, SPG and SRG, effectively share

cloaked segments among queries, they perform better than the baseline algorithms,

Casper and XStar, as the user requires stricter K-anonymity levels. Such larger cloaked

segment sets lead to larger candidate lists returned to the user, so the query quality

gets worse when K increases (Figures 14b and 15b).

As the user requires stricter K-anonymity levels for their queries, it is expected that

the resilience to the replay privacy attack increases (Figures 14c and 15c). The result

shows that our randomized greedy approaches, RG and SRG, have better resilience to

the replay attack than XStar. Similar to other experiments, Figures 14d and 15d show

that the success rate of the center-of-cloaked-area privacy attack is very small, i.e.,

0.025, for all the approaches, even though the approach not designed for road network

environments, i.e., Casper.

7.5 Query Parameters

In this section, we evaluate the performance of all the approaches with respect to vary-

ing the requested number of objects for k-NN queries from 1 to 20 (Figure 16) and

the range distance r for range queries from 0.5 km to 3 km (Figure 17). Since varying

k and r for k-NN and range queries, respectively, does not affect the cloaked segment

sets generated by the location anonymization process, the location anonymization time

and the resilience to the privacy attacks of the location anonymization process are not
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Fig. 14 K-anonymity levels (k-nearest-neighbor queries)

affected. It is expected that when k and r get larger, the query execution overhead

increases (Figures 16a and 17a) and larger candidate lists are returned to users (Fig-

ures 16b and 17b). The results also show that our approaches with the shared execution

paradigm, SPG and SRG, perform better than the baseline algorithms, Casper and XS-

tar, when k and r get larger.

7.6 End-to-End Performance

This section evaluates the end-to-end query response time of all the approaches for

k-NN and range queries with respect to increasing the number of users from 100,000

to 500,000 and the object size from 32 bytes to 512 bytes, as the results are depicted

in Figures 18 and 19, respectively. The end-to-end query response time includes the

location anonymization time at the location anonymizer (represented by black bars),

the query processing time at the database server (represented by dark grey bars),

the transmission of sending candidate lists from the database server to the location

anonymizer (represented by light grey bars), and the transmission of sending candidate

lists from the location anonymizer to the user (represented by white bars).
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Fig. 15 K-anonymity levels (range queries)
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Fig. 16 Requested number of objects (k-nearest-neighbor queries)

Figure 18 gives the same trend for both k-NN and range queries, where the trans-

mission overhead for the user dominates the end-to-end query response time. This is

because we assume the user communicates with the location anonymizer through wire-

less communication channels, e.g., IEEE 802.11. Since our approaches with the shared

execution paradigm, SPG and SRG, effectively share cloaked segments among queries,

the number of objects transmitted from the database server to the location anonymizer

is much smaller than other approaches. However, after the location anonymizer gets the

objects returned from a set of shared queries, it has to determine the candidate list for

each individual user from the returned objects and send the candidate list to each user

separately, and thus, the shared execution paradigm cannot reduce the transmission

time of sending candidate lists to users. Fortunately, our approaches generate smaller

cloaked segment sets than the baseline algorithms, Casper and XStar, so they incur

lower communication overhead than the baseline algorithms.

Figure 19 depicts the expected results that the end-to-end query response time gets

longer when the object size increases. As the object size gets larger, the transmission

time between the location anonymizer and the database server and between the location

anonymizer and the user increase. Since our approaches with the shared execution
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Fig. 17 Range distance (range queries)

paradigm, SPG and SRG, generate cloaked segment sets with shorter total segment

lengths than other approaches, they give the best performance in terms of the overall

query response time.

8 Conclusion

This paper proposed a query-aware location anonymization algorithm for road network

environments. Our algorithm aims to blur a user location into a set of connected road

segments S such that: (a) there exist at least K users in S to satisfy the K-anonymity

privacy requirement, and the total segment length of the road segments in S is at least

L to fulfill the minimum length L privacy requirement, (b) the query execution cost of

the requested query over S is minimized, and (c) the query quality of S is maximized

(i.e., the candidate list size returned to the user is minimized). Based on a developed

objective cost function that takes into account the user specified privacy requirements,

the query execution cost, and the query quality, we proposed two greedy-based ap-

proaches, pure greedy and randomized greedy approaches, for location anonymization

in road networks. To accommodate intervals with a high workload, we also proposed

a shared execution paradigm to improve the scalability of our location anonymization

process and the query processing of a database server to support larger numbers of

quires in a short time period. Extensive experimental results show that our location

anonymization algorithms are efficient and scalable, while preserving the user location

privacy and enabling high quality services through minimizing the developed objective

cost function. Injecting randomness into our location anonymization algorithms effec-

tively avoids the replay privacy attack. The results also depict that our algorithms with

the shared execution paradigm outperform the state-of-the-art location anonymization

technique designed for road network environments, in terms of both query response

time and query quality.
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