
Query By Humming
Musical Information Retrieval in

An Audio Database

Asif Ghias Jonathan Logan David Chamberlin
Brian C. Smith

Cornell University
fghias,bsmithg@cs.cornell.edu, logan@ghs.com, chamber@engr.sgi.com

ABSTRACT
The emergence of audio and video data types in databases
will require new information retrieval methods adapted to the
specific characteristics and needs of these data types. An ef-
fective and natural way of querying a musical audio database
is by humming the tune of a song. In this paper, a system for
querying an audio database by humming is described along
with a scheme for representing the melodic information in a
song as relative pitch changes. Relevant difficulties involved
with tracking pitch are enumerated, along with the approach
we followed, and the performance results of system indicat-
ing its effectiveness are presented.

KEYWORDS: Musical information retrieval, multimedia
databases, pitch tracking

Introduction
Next generation databases will include image, audio and
video data in addition to traditional text and numerical data.
These data types will require query methods that are more
appropriate and natural to the type of respective data. For in-
stance, a natural way to query an image database is to retrieve
images based on operations on images or sketches supplied as
input. Similarly a natural way of querying an audio database

(of songs) is to hum the tune of a song.

Such a system would be useful in any multimedia database
containing musical data by providing an alternative and natu-
ral way of querying. One can also imagine a widespread use
of such a system in commercial music industry, music radio
and TV stations, music stores and even for one’s personal
use.

In this paper, we address the issue of how to specify a hummed
query and report on an efficient query execution implemen-
tation using approximate pattern matching. Our approach
hinges upon the observation that melodic contour, defined as
the sequence of relative differences in pitch between succes-
sive notes, can be used to discriminate between melodies.
Handel[3] indicates that melodic contour is one of the most
important methods that listeners use to determine similarities
between melodies. We currently use an alphabet of three
possible relationships between pitches (‘U’, ‘D’, and ‘S’),
representing the situations where a note is above, below or
the same as the previous note, which can be pitch-tracked
quite robustly. With the current implementation of our sys-
tem we are successfully able to retrieve most songs within 12
notes. Our database currently comprises a collection of all
parts (melody and otherwise) from 183 songs, suggesting that
three-way discrimination would be useful for finding a par-
ticular song among a private music collection, but that higher
resolutions will probably be necessary for larger databases.

This paper is organized as follows. The first section describes
the architecture of the current system. The second section de-
scribes what pitch is, why it is important in representing the
melodic contents of songs, several techniques for tracking

pitch we tried and discarded, and the method we settled on.
Next we discuss pattern matching as it is used in the current
implementation of the database. The last two sections de-
scribe our evaluation of the current system and specifie some
future extensions that we are considering incorporating in the
existing system.

System Architecture
There are three main components to the our system: a pitch-
tracking module, a melody database, and a query engine. The
architecture is illustrated in Figure . Operation of the system
is straight-forward. Queries are hummed into a microphone,
digitized, and fed into a pitch-tracking module. The result,
a contour representation of the hummed melody, is fed into
the query engine, which produces a ranked list of matching
melodies.

Pitch Tracker

Melody Database Query Engine

MIDI Songs

Ranked List
of

Matching Melodies

Hummed Queries

Digital Audio

Melodic Contour

Figure 1: System Architecture

The database of melodies was acquired by processing public
domain MIDI songs, and is stored as a flat-file database. Pitch
tracking is performed in Matlab, chosen for its built-in audio
processing capabilities and the ease of testing a number of
algorithms within it. Hummed queries may be recorded in
a variety of formats, depending upon the platform-specific
audio input capabilities of Matlab. We have experimented
with 16-bit, 44Khz WAV format on a Pentium system, and
8-bit, 8Khz AU format on a Sun Sparcstation. The query
engine uses an approximate pattern matching algorithm[1],
described in below, in order to tolerate humming errors.

Tracking Pitch in Hummed Queries
This section describes how user input to the system (hum-
ming) is converted into a sequence of relative pitch transi-
tions. A note in the input is classified in one of three ways: a
note is either the same as the previous note (S), higher than
previous note (U), or lower than the previous note (D). Thus,
the input is converted into a string with a three letter alphabet
(U,D,S). For example, the introductory theme Beethoven’s
5th Symphony would be converted into the sequence: - S S
D U S S D (the first note is ignored as it has no previous
pitch).

To accomplish this conversion, a sequence of pitches in the
melody must be isolated and tracked. This is not as straight-
forward as it sounds, however, as there is still considerable

controversy over exactly what pitch is. The general concept
of pitch is clear: given a note, the pitch is the frequency
that most closely matches what we hear. Performing this
conversion in a computer can become troublesome because
some intricacies of human hearing are still not understood.
For instance, if we play the 4th, 5th, and 6th harmonics of
some fundamental frequency, we actually hear the fundamen-
tal frequency, not the harmonics even though the fundamental
frequency is not present. This phenomenon was first discov-
ered by Schouten in some pioneer investigations carried out
from 1938 to 1940. Schouten studied the pitch of periodic
sound waves produced by an optical siren in which the fun-
damental of 200Hz was canceled completely. The pitch of
the complex tone, however, was the same as that prior to the
elimination of the fundamental. [12]

Since we were interested in tracking pitch in humming, we
examined methods for automatically tracking pitch in a hu-
man voice. Before we can estimate the pitch of an acoustic
signal, we must first understand how this signal is created,
which requires forming a model of sound production at the
source. The vibrations of the vocal cords in voiced sounds
are caused as a consequence of forces that are exerted on the
laryngeal walls when air flows through the glottis (the gap
between the vocal cords1). Hess [5] describes a model of the
vocal cords as proposed by Hirano [6]. For the purposes of
this paper though, it is sufficient to know that the glottis re-
peatedly opens and closes thus providingbursts of air through
the vocal tract.

The vocal tract can be modeled as a linear passive transmis-
sion system with a transfer function H(z). If we add an
additional transfer function R(z) which takes into account
the radiation, the output impedance of the vocal tract can ap-
proximately be set to zero. In the neutral position where the
vocal tract can be regarded as a uniform tube, the resonances
of the vocal tract occur at sound wavelengths of

� =
4L

(2k � 1)c
; k = 1; 2; 3; : : : (1)

With L = 17cm (average value of vocal-tract length) and a
sound propagation speed of c = 340m

s
, the frequencies of

these resonances will be:

Fk = (2k � 1) � 500Hz; k = 1; 2; 3; : : : (2)

The frequencies Fk are called formant frequencies.

The resulting sound that we hear is considered to be the con-
volution of the excitation pulse created by the glottis and the
formant frequencies. Therefore, if we want to model a speech
signal, we start with a train of excitation pulses as shown in
figure 2. For the formant frequencies, use equation (2) with
k 2 f1; 2; 3g. This gives formant frequencies: F1 = 500Hz,
F2 = 1500Hz, and F3 = 2500Hz. Combining these fre-
quencies and adding an exponential envelope produces the
formant structure shown in figure 3. By convolving the train
of excitation pulses with the formant structure, we get a syn-
thesized pitch as shown in figure 4.

1The terms vocal folds and vocal chords are more or less used as syn-
onyms in the literature

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Excitation Signal (K=1)

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Train of Excitation Signals

Figure 2: Excitation signal used to create the synthe-
sized pitch. The period in the train of excitations is
T0 = 0:01s making the pitch 100Hz.

0 10 20 30 40 50 60 70 80
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
"Formant Signal"

Figure 3: Formant structure created using 500Hz,
1500Hz and 2500Hz as the formant frequencies

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

1

2

3

4

5

Time (ms)

Synthesized Pitch of 100Hz

Figure 4: Synthesized pitch of 100Hz created by con-
volving the train of excitation pulses (spaced by 0.01s)
and the formant structure

Now that we have a model of the human voice, how can it be
converted to pitch? The most prevalent view on pitch is that
what we hear as pitch is actually the frequency at which the
bursts of air occur. So if we can track those bursts of air we
can find the pitch of the segment.

Tracking pitch

We tried three methods for tracking pitch: Autocorrelation,
Maximum Likelihood, Cepstrum Analysis.

� Autocorrelation
Autocorrelation is one of the oldest of the classical pitch
trackers[7]. Autocorrelation isolates and tracks the peak en-
ergy levels of the signal which is a measure of the pitch.
Referring back to figure 3, we see that the signal s(n) peaks
where the impulses occur. Therefore, tracking the frequency
of this peaks should give us the pitch of the signal.
In order to get the frequency of these peaks we can employ
autocorrelation as defined by:

R(l) =
1X

k=�1

h(k)h(l + k) (3)

Unfortunately autocorrelation is subject to aliasing (picking
an integer multiple of the actual pitch) and is computationally
complex. We found our implementation of autocorrelation to
require approximately 45 seconds for 10 seconds of 44KHz,
16-bit audio on a 90MHz pentium workstation.
� Maximum Likelihood
Maximum Likelihood[14] is a modification of Autocorrela-
tion that increases the accuracy of the pitch and decreases the
chances of aliasing.

Unfortunately, the computational complexity of this method
makes autocorrelation look blindingly fast. A straight-forward
implementation in Matlab takes approximately one hour to
evaluate 10 seconds of audio on a 90MHz Pentium worksta-
tion. With some optimizations,we improved the performance
to approximately 15 minutes per 10 seconds of audio, but this
is still far too slow for our purposes. Therefore, we discarded
this method. For a detailed explanation of this method, the
reader may refer to [14].
� Cepstrum Analysis
Cepstrum analysis is the definitive classical method of pitch
extraction. For an explanation, the reader is directed to Op-
penheim and Schafer’s original work in [10] or in a more
compact form in [11]. We found that this method did not
give very accurate results for humming.

The output of these methods can be construed as a sequence of
frequency estimations for successive pitches in the input. We
convert these estimates into a three-step contour representa-
tion by comparing each estimated pitch with the previous one.
In our system adjacent pitches are considered the same if they
are within a quarter-step of each other (on an equal-tempered
musical scale), but this parameter is adjustable.

After analyzing the costs and benefits of these methods, we
decided to use a modified form of autocorrelation for our
implementation.

Searching the database
Having described how the user input (a hummed tune) is
converted into a string in a 3 letter alphabet, we now discuss
our method for searching an audio database. Our method of
searching the database is simple. Songs in the database are
preprocessed to convert the melody into a stream of U,D,S
characters, and the converted user input (the key) is compared
with all the songs. The pattern-matching uses a ‘fuzzy’ search
to allow for errors within the matches. These errors reflect
the inaccuracies in the way people hum as well as errors in
the representation of the songs themselves.

For performing the key-search within the database we need
an efficient approximate pattern matching algorithm. By
“approximate” we mean that the algorithm should be able to
take into account various forms of errors.

Figure summarizes the various forms of errors anticipated
in a typical pattern matching scheme. The algorithm that

sbbla s bla saabla

casablanca casablanca casablancaText:

Pattern:
Transposition error Dropout error Duplication error

Figure 5: Three forms of anticipated errors with one
mismatch

we adopted for this purpose is described by Baesa-Yates and
Perleberg [1]. This algorithm addresses the problem of string
matching with k mismatches. The problem consists of finding
all instances of a pattern string P = p1p2p3:::pm in a text
stringT = t1t2t3::tn such that there are at most kmismatches
(characters that are not the same) for each instance of P in

T . When k = 0 (no mismatches) we have the simple string
matching problem, solvable in O(n) time. When k = m,
every substring of T of length m qualifies as a match, since
every character of P can be mismatched. Each of the errors
in the figure above corresponds to k=1.

It is worth mentioning that several algorithms have been
developed that address the problem of approximate string
matching. Running times have ranged from O(mn) for the
brute force algorithm to O(kn) [9] or O(n log(m)) [2]. The
algorithm that we adopted offers better performance for av-
erage cases than most other algorithms.

The worst case for this algorithm occurs when P (the key)
consists of m occurrences of a single distinct character, and
T (contour representation of song) consists of n instances
of that character. In this case the running time is O(mn).
However this is neither a common nor useful situation for
our purposes. In the average case of an alphabet in which
each character is equally likely to occur, the running time is
O(n(1 + m

jΓj) where jΓj is the size of the alphabet.

The database incorporates the key-searching scheme (using
pattern matching techniques explained above). We envi-
sioned the following design goals for the database. For a
given query, the database returns a list of songs ranked by
how well they matched the query, not just one best match.
The number of matches that the database should retrieve de-
pends upon the error-tolerance used during the key-search.
This error-tolerance could be set in one of two possible ways:
either it can be a user-definable parameter or the database
can itself determine this parameter based on, for example by
heuristics that depends on the length of the key. This design
gives the user an opportunity to perform queries even if the
user is not sure of some notes within the tune.

From the results of the query the user can identify the song
of interest. If the list is too large, the user can perform a
new query on a restricted search list consisting of songs just
retrieved. A consequence of this scheme is that the user can
identify sets of songs that contain similar melodies.

Evaluation
This section describes the results of an experimental evalua-
tion of the system. Our evaluation tested the tolerance of the
system with respect to input errors, whether from mistakes in
the user’s humming or from problems with the pitch-tracking.

Robustness
The effectiveness of this method is directly related to the accu-
racy with which pitches that are hummed can be tracked and
the accuracy of the melodic information within the database.
Under ideal circumstances, we can achieve close to 100% ac-
curacy tracking humming, where ideal circumstances mean
the user places a small amount of space between each note
and hits each note strongly. For this purpose, humming short
notes is encouraged. Even more ideal is for the user to as-
pirate the notes as much as possible, perhaps going so far as
to voice a vowel, as in “haaa haaa haaa”. We have currently
only experimented with male voices.

The evaluation database currently contains a total of 183

songs. Each song was converted from public domain General
MIDI sources. Melodies from different musical genres were
included, including both classical and popular music. A few
simple heuristics were used to cut down on the amount of
irrelevant information from the data, e.g. MIDI channel 10
was ignored as this is reserved for percussion in the General
MIDI standard. However the database still contains a great
deal of information unrelated to the main theme of the melody.
Even with this limitation, we discovered that sequences of 10-
12 pitch transitions were sufficient to discriminate 90% of the
songs.

As a consequence of using a fast approximate string matching
algorithm, search keys can be matched with any portion of
the melody, rather than just the beginning. As the size of the
database grows larger, however, this may not prove to be an
advantage.

Performance
The version of the pitch-tracker using a modified form of
autocorrelation2 takes between 20 and 45 seconds on a Sparc10
workstation to process typical sequences of hummed notes.
A brute-force search of the database unsurprisingly shows
linear growth with the size of the database, but remains be-
low 4 seconds for 100 songs on a Sparc2. Therefore the
search time is currently effectively limited by the efficiency
of the pitch-tracker.

Contour representations for each song are currently stored in
separate files, so opening and closing files becomes a signif-
icant overhead. Performance could be improved by packing
all the songs into one file, or by using a database manager.
We plan to modularize our code to make it independent of
any particular database schema.

Future directions and Related Work
We plan to improve the performance and speed and robust-
ness of the pitch-tracking algorithm by using a cubic-spline
wavelet. The cubic spline wavelet peaks at discontinuities in
the signal (i.e. the air impulses). One of the most significant
features of the wavelet analysis is that it can be computed in
O(n) time. Currently, the pitch tracker is the slowest link in
our system, so using wavelets for this purpose has obvious
advantages.

The pattern matching algorithm in its present form does not
discriminate the various forms of pattern matching errors
discussed earlier, but only accounts for them collectively.
Some forms of errors may be more common than others
depending upon the way people casually hum different tunes.
For example drop-out errors reflected as dropped notes in
tunes are more common than transposition or duplication
errors. Tuning the key-search so that it is more tolerant to
drop-out errors, for example, may yield better results.

The melodic contours of the source songs are currently gen-
erated automatically from MIDI data, which is convenient
but not optimal. More accuracy and less redundant informa-
tion could be obtained by entering the melodic themes for

2The modifications include low-pass filtering and center-clipping (as
described in Sondhi’s paper [13]) which help eliminate the formant structure
that generally causes difficulty for autocorrelation based pitch detectors.

particular songs by hand. From a research standpoint, an
interesting question is how to extract melodies from complex
audio signals[4].

Finally, we would like to characterize the improvement gained
by increasing the resolution of the relative pitch differences
by considering query alphabets of three, five and more pos-
sible relationships between adjacent pitches. Early exper-
iments using an alphabet of five relative pitch differences
(same, higher, much higher, lower, much lower) verified that
changes of this sort are promising. One drawback of intro-
ducing more resolution is that the user must be somewhat
more accurate in the intervals they actually hum. We will
explore the various tradeoffs involved. An important issue
is precisely where to draw the line between notes that are a
little higher from the previous note and those that are much
higher.

Previous work on efficiently searching a database of melodies
by humming seems to be limited. Mike Hawley [4] briefly
discusses a method of querying a collection of melodic themes
by searching for exact matches of sequences of relative pitches
input by a MIDI keyboard. We have incorporated approxi-
mate pattern matching, implementing an actual audio database
(of MIDI songs) and most significantly by allowing queries
to be hummed. Kageyama and Takashima [8] published a
paper on retrieving melodies using a hummed melody in a
Japanese journal, but we were unable to locate a translated
version.

REFERENCES
1. Ricardo A. Baesa-Yates and Chris H. Perleberg. Fast

and practical approximate string matching. Combinato-
rial Pattern Matching, Third Annual Symposium, pages
185–192, 1992.

2. Ricardo Baeza-Yates and G.H. Gonnet. Fast string
matching with mismatches. Information and Compu-
tation, 1992.

3. Stephen Handel. Listening: An Introduction to the Per-
ception of Auditory Events. The MIT Press, 1989.

4. Michael Jerome Hawley. Structure out of Sound. PhD
thesis, MIT, September 1993.

5. Wolfgang Hess. Pitch Determination of Speech Signals.
Springer-Verlag, Berlin Heidelberg, 1983.

6. M. Hirano. Structure and vibratory behavior of the
vocal folds. In M. Sawashima and F.S. Cooper, editors,
Dynamic aspects of speech production, pages 13–27.
University of Tokyo Press, 1976.

7. L.R. Rabiner J.J. Dubnowski and R.W. Schafer. Real-
time digital hardware pitch detector. IEEE Transactions
on Acoustics, Speech and Signal Processing, ASSP-
24(1):2–8, Feb 1976.

8. T. Kageyama and Y. Takashima. A melody retrieval
method with hummed melody (language: Japanese).
Transactions of the Institute of Electronics, Information
and Communication Engineers D-II, J77D-II(8):1543–
1551, August 1994.

9. G. Landau and U. Vishkin. Efficient string matching
with k mismatches. Theoretical Computer Science,
43:239–249, 1986.

10. A. V. Oppenheim. A speech analysis-synthesis system
based on homomorphic filtering. J. Acoustical Society
of America, 45:458–465, February 1969.

11. Alan V. Oppenheim and Ronald W. Schafer. Discrete-
time Signal Processing. Prentice Hall, Englewood
Cliffs, NJ, 1989.

12. R. Plomp. Aspects of tone sensation. Academic Press,
London, 1976.

13. M. M. Sondhi. New methods of pitch extraction. IEEE
Trans. Audio Electroacoust. (Special Issue on Speech
Communication and Processing—PartII, AU-16:262–
266, June 1968.

14. James D. Wise, James R. Caprio, and Thomas W.
Parks. Maximum likelihood pitch estimation. IEEE
Trans. Acoust., Speech, Signal Processing, 24(5):418–
423, October 1976.

