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ABSTRACT 
In this paper we describe a problem of discovering query clusters 
from a click-through graph of web search logs.  The graph 
consists of a set of web search queries, a set of pages selected for 
the queries, and a set of directed edges that connects a query node 
and a page node clicked by a user for the query.  The proposed 
method extracts all maximal bipartite cliques (bicliques) from a 
click-through graph and compute an equivalence set of queries 
(i.e., a query cluster) from the maximal bicliques.  A cluster of 
queries is formed from the queries in a biclique.  We present a 
scalable algorithm that enumerates all maximal bicliques from the 
click-through graph. We have conducted experiments on Yahoo 
web search queries and the result is promising. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval - Clustering; G.2.2 [Discrete Mathematics Graph 
Theory]: Graph Theory – Graph algorithms  

General Terms 
Algorithms, Experimentation 

1. INTRODUCTION 
Users who pose a query to a web search engine often have 
specific information needs in mind, such as finding the address of 
a business, an article about a historic event, a company’s home 
page, and so on.  Users select pages by clicking on links on a 
search engine result page that deem to be closely relevant to their 
intended information needs. Considering collective filtering, it is 
reasonable to assume a frequently clicked set of pages for a query 
reflects the kinds of information that the users intend to find by 
posing the query. Further, it is observed that users of similar 
information needs click on a similar set of pages, even though the 
queries they pose may vary, thus forming a cluster of queries and 
clicked pages that are more strongly connected to each other than 
with the rest of queries and clicked pages.  Based on the 
observations, we hypothesize queries within such a cluster express 
highly similar information needs and intention and group such 
queries into a cluster. 

We have designed a query clustering method that takes into 
account the query and clicked page relationship, not considering 
syntactic or semantic features on the query, such as keywords.  It 
is known that approaches based on keywords are not very suitable 
for query clustering because of the short lengths of queries [5]. 

We represent the query and click-through page relationships by a 
directed  bipartite  graph  that consists of  a set of queries,  a set of  

 

 

 

   

 

 

 

 

 

 

Figure 1: A hypothetical click-through graph 

web page URLs, and a set of edges that connect a query node to a 
page node in the graph. The proposed query clustering method 
involves maximal biclique enumeration problem.  Figure 1 
illustrates a hypothetical click-through graph with three maximal 
bicliques.  The proposed algorithm will prune the three edges that 
cross the cut lines, and discover three maximal bicliques as 
illustrated in Figure 1. 

2. DATASET and PREPROCESSING 
In this study we used a set of randomly sampled click-through 
data from the Yahoo web search query logs in Nov. 2008. The 
sample data consists of over 16M unique queries, over 10M page 
URLs, and over 92M edges connecting the nodes. 

Like a typical web graph, the click-through graph exhibits the 
power law distribution in terms of the out-degree of query nodes, 
and the in-degree of clicked URLs.  We prune the following nodes 
and their associated edges in the preprocessing step: 
• Web pages with in-degree higher than 100 and their in-coming 

edges: these are pages of very broad topic and interest, such as 
www.craigslist.org, and en.wikipedia.org. With those 
types of pages, we would get too broad clusters, since the topics 
of queries connected to those pages tend to be vary.  There are 
about 5% of unique URLs with this level of high in-degrees. 

• Queries with out-degree greater than 10 and their out-going 
edges:  most normal user queries result in only a small number 
of clicks, rarely more than 10 pages.  Those with high out-
degree may include ones by robots for scraping or some special 
types of queries.  There are only about 0.1% of URL queries in 
this category. 

• Web pages with in-degree 1 and their in-coming edge. 
• Queries with out-degree 1 and their out-going edge. 
• Edges with click frequency less than a threshold τ 

3. QUERY CLUSTERING ALGORITHMS 
3.1 Biclique Generation 
[3] shows maximal bicliques generation from a bipartite graph is a 
special case of the maximal clique generation problem from a 
general graph.  Let G = (V1∪V2, E) be a bipartite graph, where V1 
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and V2 are the two disjoint sets of nodes, and E is a set of edges 
connecting nodes in V1 and V2.  To generate maximal bicliques, G 
is transformed to a general graph G’=(V1∪V2, E’), where E’=E∪ 
(V1×V1)∪(V2×V2).  Then the maximal clique generation algorithm 
for a general graph, such as the one in [4], can be applied on G’.  
This algorithm, however, requires an increased amount of the 
main memory space proportional to the entire expanded graph. 

We deal with a very large click-through graph that would hardly 
fit into main memory.  We instead modified the bipartite core 
generation algorithm in [2] to generate maximal bicliques.  One of 
the major advantages of the algorithm is that it does not require to 
store the entire graph in memory.  Instead it applies various 
pruning techniques on sorted lists of nodes; one for queries, and 
another for pages for click-through graph.  The algorithm can be 
further optimized to sort only once, and build only a small index 
in main memory. 

3.1.1 Iterative pruning 
Since we are looking for query clusters larger than certain size, 
queries and pages of which in- and out-degrees do not meet the 
minimum size requirement can be eliminated. 

To compute a biclique of size (i,j), query nodes with out-degree 
smaller than i and their out-going edges are pruned.  Similarly, 
any page node with in-degree smaller than j and its associated 
edges are pruned. This pruning step is iteratively applied until 
there exists no more such nodes. 

3.1.2 Biclique generation 
At each step of the biclique generation algorithm we either 
generate a biclique, or exclude a node and the associated edges 
from the graph.  After generating a biclique, the subgraph 
corresponding to the biclique is removed from the click-through 
graph.  Starting from the maximum out-degree size, we repeat the 
following steps iteratively for each decreasing value of i: 

1. From a sorted list of queries, find all queries, qk, with out-
degree i, and list the neighbors of each qk, P(qk).    

2. For each P(qk), generate the set of all in-coming queries, 
Q(pl), of each page, pl ∈P(qk).  (An index on the page URLs 
is used for better performance.) 

3. Find the intersection of all Q(pl);
  

! 

Q(Pl)l"P(qk)I .   

4. Let m denote the size of the query set,
  

! 

Q(Pl)l"P(qk)I , and E 
be a set of all edges between 

  

! 

Q(Pl)l"P(qk)I  and P(qk). 

4.1.  If (m ≥ j), generate a biclique of size (i,m), 
(
  

! 

Q(Pl)l"P(qk)I  ∪ P(qk), E). After generating a biclique, 
remove all query and page nodes, and edges in the 
biclique from the click-through graph (unless the node is 
a part of another cluster). 

4.2.  If (m < j), remove all in-coming edges of nodes in P(qk) 
that do not connect to a query node in the intersection 

  

! 

Q(Pl)l"P(qk)I .  (This removes edges between the 
bicliques, the edges that cross the cut lined on Figure 1.) 

5.  After removing all edges, apply the iterative pruning before 
continuing with the next iteration with out-degree size i-1. 

The generated bicliques are maximal.  

3.2 Query Cluster Generation 
For each biclique generated, the query set, 

  

! 

Q(Pl)l"P(qk)I forms 
an equivalence set that becomes a query cluster. 

4. EXPERIMENTS 
After preprocessing with τ=2, there remain ~1.15M and ~2M 
query and page nodes, and ~68M edges in the sample graph, 
reduced from ~16M and ~10M nodes and ~ 92M edges, 
respectively.  

 
Figure 2: Number of query clusters 

Figure 2 plots the number of query clusters extracted by our 
algorithm.  As expected, the numbers of maximal bicliques drop 
significantly as the size of the cliques grow.  The number may be 
interpreted as lower bound of query clusters, as our method 
considers only maximal bicliques.  As we relax the equivalence 
condition and consider strongly connected, but not necessarily 
completely connected bipartite subgraphs as the candidates, it 
may further reveal interesting quasi-equivalence sets of queries.  
Due to the strict requirement of complete connectedness of the 
clusters by the current algorithm, many potentially interesting 
query clusters are excluded if they slightly violate the 
requirements.   

5. DISCUSSION AND FUTURE WORK 
We have studied a problem of discovering query clusters and 
proposed an algorithm that utilizes click-through data from search 
engine query logs.  The proposed method identifies all bicliques 
and all queries in a biclique are equivalent in terms of user 
information needs.   

In the future, we plan to extend the algorithm to consider quasi-
bicliques as candidates of query clusters.  This is expected to be a 
more robust algorithm under the presence of slightly irregular 
click patterns, if the threshold is properly set. We plan to apply a 
frequency weight of each edge between a query and a clicked 
page to distinguish noisy clicks.  
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