
Query Clustering using Click-Through Graph
Jeonghee Yi Farzin Maghoul

 Yahoo ! Inc. Yahoo! Inc.
 2811 Mission College Blvd. 2811 Mission College Blvd.
 Santa Clara, CA 95054 Santa Clara, CA 95054
 USA USA
 Jeonghee@yahoo-inc.com fmaghoul@yahoo-inc.com

ABSTRACT
In this paper we describe a problem of discovering query clusters
from a click-through graph of web search logs. The graph
consists of a set of web search queries, a set of pages selected for
the queries, and a set of directed edges that connects a query node
and a page node clicked by a user for the query. The proposed
method extracts all maximal bipartite cliques (bicliques) from a
click-through graph and compute an equivalence set of queries
(i.e., a query cluster) from the maximal bicliques. A cluster of
queries is formed from the queries in a biclique. We present a
scalable algorithm that enumerates all maximal bicliques from the
click-through graph. We have conducted experiments on Yahoo
web search queries and the result is promising.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval - Clustering; G.2.2 [Discrete Mathematics Graph
Theory]: Graph Theory – Graph algorithms

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Users who pose a query to a web search engine often have
specific information needs in mind, such as finding the address of
a business, an article about a historic event, a company’s home
page, and so on. Users select pages by clicking on links on a
search engine result page that deem to be closely relevant to their
intended information needs. Considering collective filtering, it is
reasonable to assume a frequently clicked set of pages for a query
reflects the kinds of information that the users intend to find by
posing the query. Further, it is observed that users of similar
information needs click on a similar set of pages, even though the
queries they pose may vary, thus forming a cluster of queries and
clicked pages that are more strongly connected to each other than
with the rest of queries and clicked pages. Based on the
observations, we hypothesize queries within such a cluster express
highly similar information needs and intention and group such
queries into a cluster.

We have designed a query clustering method that takes into
account the query and clicked page relationship, not considering
syntactic or semantic features on the query, such as keywords. It
is known that approaches based on keywords are not very suitable
for query clustering because of the short lengths of queries [5].

We represent the query and click-through page relationships by a
directed bipartite graph that consists of a set of queries, a set of

Figure 1: A hypothetical click-through graph

web page URLs, and a set of edges that connect a query node to a
page node in the graph. The proposed query clustering method
involves maximal biclique enumeration problem. Figure 1
illustrates a hypothetical click-through graph with three maximal
bicliques. The proposed algorithm will prune the three edges that
cross the cut lines, and discover three maximal bicliques as
illustrated in Figure 1.

2. DATASET and PREPROCESSING
In this study we used a set of randomly sampled click-through
data from the Yahoo web search query logs in Nov. 2008. The
sample data consists of over 16M unique queries, over 10M page
URLs, and over 92M edges connecting the nodes.

Like a typical web graph, the click-through graph exhibits the
power law distribution in terms of the out-degree of query nodes,
and the in-degree of clicked URLs. We prune the following nodes
and their associated edges in the preprocessing step:
• Web pages with in-degree higher than 100 and their in-coming

edges: these are pages of very broad topic and interest, such as
www.craigslist.org, and en.wikipedia.org. With those
types of pages, we would get too broad clusters, since the topics
of queries connected to those pages tend to be vary. There are
about 5% of unique URLs with this level of high in-degrees.

• Queries with out-degree greater than 10 and their out-going
edges: most normal user queries result in only a small number
of clicks, rarely more than 10 pages. Those with high out-
degree may include ones by robots for scraping or some special
types of queries. There are only about 0.1% of URL queries in
this category.

• Web pages with in-degree 1 and their in-coming edge.
• Queries with out-degree 1 and their out-going edge.
• Edges with click frequency less than a threshold τ

3. QUERY CLUSTERING ALGORITHMS
3.1 Biclique Generation
[3] shows maximal bicliques generation from a bipartite graph is a
special case of the maximal clique generation problem from a
general graph. Let G = (V1∪V2, E) be a bipartite graph, where V1

Copyright is held by the author/owner(s).
WWW 2009, April 20–24, 2009, Madrid, Spain.
ACM 978-1-60558-487-4/09/04.

 Biclique1 Biclique2 Biclique3

Queries
1

Cut

Queries
2 Queries

3

Pages
1 Pages

3 Pages
2 Cut

WWW 2009 MADRID! Poster Sessions: Wednesday, April 22, 2009

1055

and V2 are the two disjoint sets of nodes, and E is a set of edges
connecting nodes in V1 and V2. To generate maximal bicliques, G
is transformed to a general graph G’=(V1∪V2, E’), where E’=E∪
(V1×V1)∪(V2×V2). Then the maximal clique generation algorithm
for a general graph, such as the one in [4], can be applied on G’.
This algorithm, however, requires an increased amount of the
main memory space proportional to the entire expanded graph.

We deal with a very large click-through graph that would hardly
fit into main memory. We instead modified the bipartite core
generation algorithm in [2] to generate maximal bicliques. One of
the major advantages of the algorithm is that it does not require to
store the entire graph in memory. Instead it applies various
pruning techniques on sorted lists of nodes; one for queries, and
another for pages for click-through graph. The algorithm can be
further optimized to sort only once, and build only a small index
in main memory.

3.1.1 Iterative pruning
Since we are looking for query clusters larger than certain size,
queries and pages of which in- and out-degrees do not meet the
minimum size requirement can be eliminated.

To compute a biclique of size (i,j), query nodes with out-degree
smaller than i and their out-going edges are pruned. Similarly,
any page node with in-degree smaller than j and its associated
edges are pruned. This pruning step is iteratively applied until
there exists no more such nodes.

3.1.2 Biclique generation
At each step of the biclique generation algorithm we either
generate a biclique, or exclude a node and the associated edges
from the graph. After generating a biclique, the subgraph
corresponding to the biclique is removed from the click-through
graph. Starting from the maximum out-degree size, we repeat the
following steps iteratively for each decreasing value of i:

1. From a sorted list of queries, find all queries, qk, with out-
degree i, and list the neighbors of each qk, P(qk).

2. For each P(qk), generate the set of all in-coming queries,
Q(pl), of each page, pl ∈P(qk). (An index on the page URLs
is used for better performance.)

3. Find the intersection of all Q(pl);

!

Q(Pl)l"P(qk)I .

4. Let m denote the size of the query set,

!

Q(Pl)l"P(qk)I , and E
be a set of all edges between

!

Q(Pl)l"P(qk)I and P(qk).

4.1. If (m ≥ j), generate a biclique of size (i,m),
(

!

Q(Pl)l"P(qk)I ∪ P(qk), E). After generating a biclique,
remove all query and page nodes, and edges in the
biclique from the click-through graph (unless the node is
a part of another cluster).

4.2. If (m < j), remove all in-coming edges of nodes in P(qk)
that do not connect to a query node in the intersection

!

Q(Pl)l"P(qk)I . (This removes edges between the
bicliques, the edges that cross the cut lined on Figure 1.)

5. After removing all edges, apply the iterative pruning before
continuing with the next iteration with out-degree size i-1.

The generated bicliques are maximal.

3.2 Query Cluster Generation
For each biclique generated, the query set,

!

Q(Pl)l"P(qk)I forms
an equivalence set that becomes a query cluster.

4. EXPERIMENTS
After preprocessing with τ=2, there remain ~1.15M and ~2M
query and page nodes, and ~68M edges in the sample graph,
reduced from ~16M and ~10M nodes and ~ 92M edges,
respectively.

Figure 2: Number of query clusters

Figure 2 plots the number of query clusters extracted by our
algorithm. As expected, the numbers of maximal bicliques drop
significantly as the size of the cliques grow. The number may be
interpreted as lower bound of query clusters, as our method
considers only maximal bicliques. As we relax the equivalence
condition and consider strongly connected, but not necessarily
completely connected bipartite subgraphs as the candidates, it
may further reveal interesting quasi-equivalence sets of queries.
Due to the strict requirement of complete connectedness of the
clusters by the current algorithm, many potentially interesting
query clusters are excluded if they slightly violate the
requirements.

5. DISCUSSION AND FUTURE WORK
We have studied a problem of discovering query clusters and
proposed an algorithm that utilizes click-through data from search
engine query logs. The proposed method identifies all bicliques
and all queries in a biclique are equivalent in terms of user
information needs.

In the future, we plan to extend the algorithm to consider quasi-
bicliques as candidates of query clusters. This is expected to be a
more robust algorithm under the presence of slightly irregular
click patterns, if the threshold is properly set. We plan to apply a
frequency weight of each edge between a query and a clicked
page to distinguish noisy clicks.

6. REFERENCES
[1] J. J. Carrasco, D. C. Fain, K. J. Lang, and L. Zhukov. Clustering of

bipartite advertiser-keywork grdaph. Workshop on Large Scale
Clustering, ICDM 2003.

[2] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, Trawling the
web for emerging cyber-communities. The 8th Int. World Wide Web
Conference, 1999.

[3] K. Makino, and T. Uno, New algorithms for enumerating all maximal
cliques, The 9th Scandinavian Workshop on Algorithm Theory, 2004.

[4] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time
complexity for generating all maximal cliques and computational
experiments. Theoretical Computer Science, 363(1), pp.28-42, 2006.

[5] J. Wen, J. Nie, H. Zhang. Query clustering using user logs. ACM
Transactions on Information Systems, 20(1), pp. 59-31, 2002.

WWW 2009 MADRID! Poster Sessions: Wednesday, April 22, 2009

1056

