
Query Decomposition and View Maintenance for Query 
Languages for Unstructured Data 

Dan Suciu 

AT&T Research, USA 
suciuQresearch.att.com 

Abstract 

Recently, several query languages have been 
proposed for querying information sources 
whose data is not constrained by a schema, 
or whose schema is unknown. Examples in- 
clude: LOREL (for querying data combined 
from several heterogeneous sources), W3QS 
(for querying the World Wide Web); and 
UnQL (for querying unstructured data). 

The natural data model for such languages is 
that of a rooted, labeled graph. Their main 
novelty is the ability to express queries which 
traverse arbitrarily long paths in the graph, 
typically described by a regular expression. 
Such queries however may prove difficult to 
evaluate in the case when the data is dis- 
tributed on severalsites, with many edges go- 
ing between sites. A typical case is that of a 
collection of WWW sites, with links pointing 
freely from one site to another (even forming 
cycles). A naive query shipping strategy may 
force the query to migrate back and forth be- 
tween the various sites, leading to poor perfor- 
mance (or even non-termination). We present 
a technique for query decomposition, under 
which the query is shipped exactly once to ev- 
ery site, computed locally, then the local re- 
sults are shipped to the client, and assembled 
here into the final result. This technique is 
efficient, in that (a) only data which is part of 
the final result is shipped from the data sites 
to the client site, and (b) the total work done 
locally at all sites does not exceed that needed 
for computing the (unoptimized) query on a 
centralized version of the database. 

Permission to copy without fee 011 or part of this material is 
granted provided that the copies ore not made or distributed for 
direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice io 
given that copy’ng is by.permi.vsion of the Very Large Data Bose 
Endowment. To copy otherwise, or to republish, require8 o fee 
and/or special permission from the Endowment. 

Proceedings of the 22nd VLDB Conference 
Mumbai(Bombay), India, 1996 

We also show that the query decomposition 
technique can be adapted to derive a simple 
view maintenance method, for two forms of 
updates which we introduce for the graph data 
model. 

1 Introduction 

Several database query languages have been proposed 
recently, in which the data model is that of a la- 
beled tree, or, more generally, a labeled, rooted graph. 
Lore1 [QRS+95] was designed in conjunction with the 
Tsimmis project [PGMW95], to query data from in- 
formation sources which do not impose a rigid struc- 
ture, or whose structure is not completely known. 
UnQL [BDS95, BDHS96a], was motivated by the need 
to query self-describing databases, like the ACeDB 
databases popular among biologists, and also for data 
sources with unknown structure. Authors of both lan- 
guages suggest their suitability to query information 
sources on the World-Wide Web. WSQS [KS951 is 
a query language specifically designed for querying 
the World-Wide Web. It was motivated by the fact 
that today’s web search engines are restricted to con- 
tent based queries, which select a single page based 
on its content: W3QS was designed to ask structure 
based queries, addressing the hypertext organization 
itself. Another system developed for querying hyper- 
text structures is presented in [BK90]. 

The main common feature of these languages is 
their ability to follow arbitrarily long sequences of 
links. We illustrate this feature by giving a typical 
query, which we will use throughout this paper, based 
on an WWW example. 

Example 1.1 Suppose that we want to fetch all pub- 
lications from the Computer Science Department at 
the University of California at San Diego, whose home 
page is http : //wwu . ucsd . edu. The html structure we 
need to search is illustrated in Figure 1. It is conve- 
nient to view html data as a rooted, directed graph: 
nodes correspond to pages, edges to links, and each 
page is a set of all its outgoing links’. The prob- 

11n Figure 1, and throughout the paper, we will ignore the 
node content: thus our trees will have labeled edges, not nodes. 
In the case of html data we justify our choice by the fact that 
we focus on structural, rather than content baaed queries. See 
also [BDHS96a] for more justification of this model. 

227 



Figure 1: A fragment of http: //www.ucsd. edu, and 
the result of a query Q. 
lem in expressing this query in a relational or object- 
oriented query language is that we don’t know in ad- 
vance how many links to follow from the root to the 
CT-Department link, and from here to the Papers link. 
In a slightly modified UnQL syntax this query is ex- 
pressed as: 

select ‘Papers “.t 

where _ * . ‘W-Department,‘.- * . “Papers”.t in DB 

Here DB stands for the “database”, in this ex- 
ample the http : //www .ucsd. edu site. The symbol 
_ denotes any label, while * placed after some label 
means that it can be repeated 0 or more times. Thus 
-* means any sequence of labels. In short, the query 
starts from the root, follows all paths to an edge la- 
beled “CS Department”, from there follows all paths 
to an edge labeled “Papers”, and returns the set of all 
subtrees thus found. Of course, the same query can 
be applied to other university sites, to retrieve papers 
published in their Computer Science Departments. 

This example illustrates the main feature separat- 
ing query languages like UnQL, LOREL, W3QS from 
relational or object-oriented query languages: their 
ability to follow arbitrarily long sequences of links. 
Typically such sequences are described by regular ex- 
pressions. In particular we can compute the transitive 
closure of the link relation. Following [BDHS96a] we 
will call such languages un.&uctured.quey languages. 
Their natural data model is that of a rooted, directed 
graph, with labels attached to vertices, or edges, or 
both. Traditional relational databases are captured by 
this model as the special case of trees of a fixed depth 
([BDHS96a], see also Section 3 in this paper). Over 
relational databases however, the expressive power of 
such languages is no more powerful than that of the 
relational algebra [BDHS96a]. 

In this paper we discuss two problems in connection 
with such languages: query decomposition and view 
maintenance. We describe these two problems next. 

Query decomposition Information sources, some- 
times reside on a number of different sites. The 
database fragment in any one site may have ,a large 
number of links leading to other sites. To illustrate, 

Figure 2: The information source is distributed on two 
sites. 
suppose we want to consider UCSD’s web site in Ex-- 
ample 1.1, in conjunction with the web site of the San 
Diego Supercomputer Center, http : //www . sdsc . edu 
(Figure 2). A typical query & may start at the UCSD 
web site, but then will traverse back and forth links be- 
tween the two sites, aS it traverses sequences of links. 
E.g. the “C’S-Department” may have links to projects 
at the SDSC site, while from here we may follow links 
back to the UCSD site, etc: at any point, we may en- 
counter a “‘Papers” link. If query shipping is used for 
query evaluation, this implies that the query has to mi- 
grate between the two sites an arbitrary large number 
of times. The query decomposition problem requires 
the query & to be decomposed into two queries which 
can be computed independently on the fragments D B1 
and DB2 of the database residing at the two sites, 
and their results combined at the client’s site to yield 
Q(DB). Of course, this problem can be solved best 
when additional knowledge about the data distribu- 
tion is available, e.g. that the “CS-Department” link 
is unique and that it resides at the UCSD site. But 
our purpose here is to see how much we can accom- 
plish without any knowledge about the data distribu- 
tion: this is useful, e.g. when browsing an unfamil- 
iar information source. We will describe a technique 
which translates any query Q in a certain fragment 
of an unstructured query language, into a query Q’ 
which is decomposable, meaning that Q’(Dg) can be 
computed by computing Q’( D BI ) and Q’( D Bz) inde- 
pendently, then gluing the two results at the client’s 
site. Moreover, this decomposition is efficient: com- 
puting Q’(DB1) and Q’(DB2) is no more expensive 
than computing Q( D B) , using some naive evaluation 
strategy, when DB is centralized. However an opti- 
mized evaluation of Q( D B) could be more efficient on 
a centralized version of DB than that of computing 
Q’(DB1) and Q’(DB2) separately. 

View maintenance A view V is just the result of 
some query Q applied to the database: V = Q(DB). 
The view is materialized when the result V is stored 
at the client site for future use. The view maintenance 
problem consists in’ finding efficient techniques for up- 
dating the view V at the client site when the database 
is incrementally updated, say DB’ := DBi-k A, where 
A is much “smaller” than DB (+t defined in Sec- 
tion 3; for the case of relational databases represented 
as trees, insertion of an element into a set can be mod- 
eled as a special case of +I+). Ideally one would like 
the view update to depend only on the old view and 

228 



---.. . . . . . . . .._..._._____.......,,...... ..,“” ,,,.... ‘.’ 

Figure 3: The query Q logically 
database in three regions, Rl, R2, R3. 

partitions the 

the increment, V’ := f(V, A), not on DB. View main- 
tenance techniques for relational databases have been 
extensively discussed, see e.g. [GL95] for a list of ref- 
erences. In the case of unstructured data however, we 
face an additional problem: namely that of informing 
the client site where the update has taken place. The 
“where” information is taken for granted in the case 
of a relational query language. E.g. consider a rela- 
tional database with three relations RI, Rz, R3, and 
the view V = RI U or=3 (R2). In classic view mainte- 
nance algorithms the view will be updated differently, 
depending on whether RI, RZ or RJ has been updated. 
E.g. when Ri := R$ U A, then the view becomes 
V’ := VUcr~=s (A), but when. RS gets updated the view 
does not need to be changed. In an “unstructured” 
database there is no static partition of the data into 
distinct relations, but the partition is done dynami- 
cally, when the view is computed. The query in Ex- 
ample 1.1 defines a view which logically partitions the 
database into three regions, as in Figure 3. The regu- 
lar expression occurring in this query has an equivalent 
automaton with three states: the three regions corre- 
spond precisely to these states. View maintenance will 
be done differently after an update in region Rl than 
after updates in regions R2 or R3 respectively. Of 
course a view defined by another query may partition 
DB in a different way. In this paper we develop alge- 
braic techniques which transform any query Q in a cer- 
tain fragment of an unstructured query language into 
a query Q’ (the same as in the query decomposition 
problem), such that (1) Q(DB) can be computed eas- 
ily from Q’(DB), (2) the computation of Q’(DB) is no 
more expensive than a naive computation of Q(DB), 
and (3) Q’(A) “encapsulates” the information about 
which region has been affected by the update, and, 
furthermore: Q’(DB +t A) = Q’(DB) +t Q’(A). 

1.1 Relation to previous work 

We choose to describe our techniques in the context 
of the query language UnQL [BDHS96a, BDHS96bl. 
The language relies on a data model of rooted, labeled 
graphs, which was first described in [BDS95]. The 

same paper describes bisimulation between rooted, la- 
beled graphs, showing how this data model subsumes 
both the relational and the nested relational one. Fi- 
nally it introduces the basic algebraic operations asso- 
ciated to this data model, including tree concatenation 
(denoted +t in thii paper), and vext (“vertical” ext), 
observing that vext works nicely in conjunction with 
cyclic structures. The language UnQL is introduced 
in BDHS96a, BDHS96b], as a declarative language 
wit h pattern matching, and is shown to be equivalent 
to an algebraic language UnCAL, centered around +t 
and a generalized version of vext called gext (“gen- 
eralized” ext). [BDHS96a, BDHS96b] prove a num- 
ber of algebraic laws for gext which are intended to 
be used for query optimizations. In this paper we 
use these laws and additional ones, dealing with cyclic 
data, in order to derive our query decomposition tech- 
niques. We also need to add some additional opera- 
tions to UnCAL: namely we consider labeled graphs 
with several roots as first class objects in the language 
(much like the n-trees in [Cou83, pp 134]), and extend 
UnCAL with graph jwhposition, see Section 4. The 
equations associated to these new operations, much in 
the spirit of [Cou83, pp 1351, are simpler however than 
those for +t and gext. 

1.2 Applicability, assumptions and limitations 

Query language Although we describe our tech- 
niques in the context of the query language 
UnQL [BDS95, BDHS96a], they apply equally well for 
decomposing queries in (certain fragments of) LOREL 
or W3QS. It is important to notice however that dur- 
ing both query decomposition and view maintenance, 
we use in a critical way some of the particular language 
constructs in UnQL, such as tree concatenation, t-~ t’ 
(denoted Q in [BDHS96a]). Moreover we note that our 
techniques apply to some UnQL queries which are not 
expressible in LOREL or W3QS. 

Restrictions on the query language Our query 
decomposition technique works only for UnQL queries. 
satisfying two restrictions. The first requires the query 
to be “monotone”. In particular we cannot handle 
set difference, or incremental deletions. This is an ex- 
pected limitation, because our data model has a set 
semantics: in particular flat trees are just sets. For the 
case of relational databases, it is known [GL95] that 
bag semantics rather than set semantics is needed in 
order to do algebraic view maintenance for deletions. 
The second restriction requires the query to be join- 
free. This limitation is far less severe than it sounds, 
because in unstructured query languages the focus is 
on queries traversing long link sequences, which are 
join-free: as in object-oriented databases, most joins 
are replaced by link traversals. In fact all queries 
in W3QS [KS951 are join-free, while most interesting 
LOREL and UnQL examples [QRS+95, BDHSSSa] are 
join-free too. 

No knowledge about data distribution Our 
query decomposition method works without assuming 
any knowledge about how the data is distributed on 
the sites. While sometimes this may be useful, we 



consider it to be the most serious limitation of our ap- 
proach. In most cases minor knowledge about the data 
sources could help one decompose a query much better 
than we currently do. As part of future work, we plan 
to investigate how knowledge about data sites can be 
incorporated into our query decomposition method. 

Updates Our view maintenance techniques work for 
two kinds of updates: insertions and replacements. An 
insertion, in notation DB u A, means that some new 
subtree A is inserted at some particular node v in DB 
(Section 3): the root of A will be “merged” with v. 
This is a monotone operation, in that the resulting 
database has at least as many edges as the original 
one. The second kind of update, replace, allows us to 
replace a subtree rooted at a given node with another 
tree. This is not a monotone operation and can, to 
some extent, model deletions, like those in a relational 
databases. 

Update notification Our view maintenance tech- 
nique requires that the server informs the client when- 
ever a page (or, in general, a node in the graph) is 
updated. We refer the reader to [BD96, DB96] for 
update notification techniques for the WWW. 

Site selection and query capabilities We do not 
address the problem of site selection. Instead, we al- 
ways assume that the database is stored at a fixed, 
known, relatively small number of sites, say si, . . . , sk, 
which may have links between them. This assump- 
tion could be easily enforced, in the case of web sites, 
by simply ignoring all links pointing outside the set 
Sl,...,S&. Also, we assume no knowledge about the 
semantics of data stored at these sites, or about their 
query capabilities: in reality some sites may offer only 
restricted access, e.g. using a keyword search. For the 
case of conjunctive queries over relational databases, 
[LMSS96, LRU96] discuss techniques which can effi- 
ciently select the relevant sites and also use the limited 
query capabilities of such sites. 

2 An Example 

We illustrate the problems, and the techniques we pro- 
pose to solve them, for the query in Example 1.1. lt 
is easier to describe first the view maintenance tech- 
nique, so we will start with that. 

For view maintenance, we require a database DB 
to have all its updatable nodes explicitly marked. In 
an extreme case, all nodes could be marked as up- 
datable, but adopting this approach could lead to an 
increased storage requirement for some materialized 
views. When the view V = Q(DB) is iirst computed, 
the semantics of the UnQL query & is such that the 
result V encapsulates some (or all) markers of the 
updatable pages in DB. More, each such marker is 
tagged with the name of the (dynamically computed) 
region where it was encountered. Suppose now that 
the database DB is updated, say at a page marked X, 
in that a link to a new subgraph A is added to that 
page: in notation DB’ := DB+tx A. The server noti- 
fies the client about the update, by sending X and A. 
The client “looks up” the marker X in its view, and, if 

. 

nresent. reads the tae: of the resion where it occurred 
{RI, Rz; or Rs), the: updates The view dynamically, 
as shown next. In our particular example, in all three 
cases the view needs to be updated to V’ := V U A’, 
where A’ is as follows: 

1. If A is inserted before any X’S-Department” edge 
(in region Rl of Figure 3), then A’ = &l(A), 
where &l(A) is: 

select “Papers”.t 

where _ * . YTS-Department”.- * . ‘Papers”.t 

in A 

2. If A is inserted between a “CS-Department’ edge 
and a “Papers’ edge (region R2 of Figure 3)) then 
A’ =92(A), where Q,(A) is: 

select t 
where _ * . “Papers’.t in A 

3. Finally, if A is inserted after a “CS-Department’ 
and after a “Papers’ edge, then2 A’ = Qs(A) = 
A. 

While our informal description here sounds rather- 
procedural, the technique, as described further in this 
paper, is fully algebraic. 

We illustrate next query decomposition. Assume 
that the database DB is distributed on two different 
sites s and s’, with arbitrary many links between them: 
then a path of the form 

_ * . “CS-Department”.- * . “Papers” 

may travel back and forth between s and s’ an arbi- 
trary number of times. Since we assume no a priori 
knowledge about how the data is structured and/or 
partitioned on the two sites, we should be prepared to 
deal with more than one “CS-Department” links, with 
any number of “Papers’ links, and with any possible 
distribution of these links on the two sites. To de- 
compose the query we need to have a list of all input 
and output links at each site (Figure 4 (a)). Intu- 
itively, our method starts by decomposing the query 
Q into the three queries Qr , Qs, Qs described above, 
and then applies each of these three queries to every 
entry point at each site; this is illustrated by the six 
inputs Ql(X), . . . , Q3(Y) at the site s’ and the six in- 
puts Ql(V), . . . , 93(V) at the site s in Figure 4 (b). 
Now we observe that each of these queries logically 
partitions the database into up to three regions (Q2 
defines only two, while Qs only one). We want to tag 
each output link with the corresponding region name 
where it was found. But note that the three parti- 
tions are independent, and each output link may be 
“found” in more than one region, say in R3 by Qi, 
and in R2 by Qs. Hence we replicate each output link 
3 times, once for each region where it may be found. 
This is illustrated by the six outputs at sites s and s’ 

% this c&e the correct view update is of the form V’ := 
V +I A’; see Section 8. 

230 



Site s Site s’ 

Figure 4: Query decomposition for two sites. 

Figure 5: Intuitive meaning of an E edge. 

in Figure 4 (b). In the next step the results of the two 
independent computations are shipped to the client, 
where they are combined, by gluing the outputs with 
their “corresponding” inputs. 

3 Data Model 

As mentioned earlier, we adopt the data model 
in [BDS95, BDHS96al. Unlike the Tsimmis data 
model [PGMW95, QRS+95] it does not have object 
id’s, and has two additional features, markers and e- 
edges, which we use in a critical way for both query de- 
composition and view maintenance. We briefly review 
here the main ideas and refer the reader to [BDHSSGb] 
for a detailed description of the data model. 

Rooted graphs Let Label be the universe of all la- 
bels: it includes all strings, numbers, booleans., etc. A 
database is modeled as a rooted graph (i.e. a graph 
with a distinguished node called the root), whose edges 
are labeled with elements from Label U {E}. Here e is 
a special label,, denoting an “empty” symbol: when- 
ever two vertices V, v’ are connected by an c edge, the 
intended meaning is that all edges emerging from V’ 
should also emerge from v, see Figure 5. 

Trees Trees form a particularly interesting subset of 
the rooted graphs, and they suffice to represent sets 
and records. Figure 6 contains an example-of a rela- 
tional database and its representation as a tree. The 
following is a syntax for trees: 

The ::= {} 1 {Label + nee} 1 !&e U !I& 

Abbreviating {al =+- tl , . . . , a, =+- tn} for {al + tl} U 
. ..u{a.~t,),and{a}for{u~{}},thee~amplein 
Figure 6 is written as: 

Figure 6: A relational database represented as a tree. 

Figure 7: Illustration of tl +tx tz. 

We emphasize that this data model has set seman- 
tics. E.g. the trees {a, b+(c), b=%(c)} and {a, b=%-(c)} 
are considered equal. 

Markers In addition to the edge labels, some of the 
leaves of a graph are allowed to be labeled with spe- 
cial symbols, denoted X,Y,. . ., called mcrtlcers. Un- 
like labels, markers are not part of the information 
content of the database, but are used to control (1) 
where updates take place, and (2) how to connect 
fragments of a distributed database. They share some 
similarities with the object id’s used in the Tsimmis 
data model [PGMW95, QBS+95]. Markers allow us 
to define the concatenation operation +I-x: given two 
graphs tl, t2 and a marker X, tl +tx t2 denotes the 
database obtained by drawing E: edges from all leaves 
labeled X in tl to the root of t2. All occurrences of 
the old marker X in tl disappear in tl +tx t2. But all 
other markers in tl remain in tl +I-x t2, as well as all 
markers from t2, see Figure 7. 

Graphs with m inputs, n outputs To capture. 
the connection between fragments of a distributed 
database, we generalize from single input (the root of 
the tree) to m inputs. Alsb we call the markers on the 
leaves the outputa,of the tree, t&s reaching the notion 
of a tree (graph) with m ‘inputs and n outputs. For- 
mally,letX={X1,..., &,}andY={Yl,..., Y,}be 
two finite sets of markers, m 1 O,n 2 0. A database 

231 



c..” b 
\ 

$1 Y2 

Figure 8: A database with 
and outputs y = {Yi, Yz}. 

2 n . . . 

r-l 

A b 

Yl 

inputs X = {Xi, X2, X3) 

. ..X .,, 2. > -...,, n ” ,.:-.. 

I +-=l (E, E ;E 

t= I + + + I ret ‘=i\,;.,i,;,,,) + i.:; + I 
XlX2...Xn .T’ ..,... ‘... .’ ‘. _,,, .. 

Figure 9: Illustration of ret t where t has inputs and 
outputs {Xi,. . .,X,}. 
with inputs X and outputs & is a graph with edges 
labeled with elements from Label U {E} and in which 
some leaves may be labeled with markers in Y (as be- 
fore), and with m distinguished roots associated to 
Xl,..., X,,,.. We extend the syntax for trees to that 
of trees with inputs X and outputs Y, ?Zeex and to 
trees with a single, anonymous input and wrt 4’ outputs 
Y, lkeey: 

sense, they are redundant: every rooted graph with E 
edges can be shown to be bisimilar to a rooted graph 
without E edges [BDS95, BDHS96al. But this only 
works when the graphs have no markers. E.g. the tree 
{a}UXrepresentedwithanEedgeas {a+{},&+X}, 
is not equivalent to any tree without E edges. 

Notation As in [BDHS96a], by abuse of notation 
we call “trees” all graphs, even when they have cycles. 
Thus ZYeey denotes the set of all databases with a 
single anonymous input and outputs y, and Tree; 
that of all databases with inputs X, outputs Y. When 
Y E Y’, then B-eey C 7Yeeyl and Thee5 c nee$. 

TlkeeyX ::= (Xl := They;. . . ; x, := Th?ey) 

n@Y ::= {} 1 {Label + Tree,} ] Z?eey U They 

I yj(j = Ln> 

Canonical form Every database DB in ‘IZeey can 
be expressed (not necessarily uniquely) as: 

Figure 8 contains an example of a graph with inputs 
Xi, X2, X3 and outputs Yr , Yz, which is written as 
(Xl := {a=+ x u {b=2 Y2));Xz := {b=s {Yl u {b* 
&}}, a}; x3 := {c + {a,5 =+ Yi}}). By convention, 
there exists a single graph with inputs X = 0, namely 
the null graph, denoted () (no nodes, no edges: this is 
different from the empty set, {}, which has one node, 
no edges). We extend the -I+ operation as follows. 
For tl E Tree; and t2 E Tree%, tl -i+y t2 is the tree 

in ‘Bee; obtained by drawing an E edge from every 
output Yi in tl to the input Yi in t2, i = 1,n. 

232 

X1*xrecx(X1:=tl;...,X,:=t,) 0) 

for some set X = {XI,. . . , Xm}, where each of ti, 
i = 1, m is cycle free. 

Recursive definitions For t E ZYee$, recx t de- 
notes a graph obtained by adding an e-edge from 
every output Xi to the input Xi, i = 1, m (Fig- 
ure 9). Intuitively recx t is t +tx t +tx t +tx . . . 
E.g. recx (X := {a +X}) defines a loop labeled a. 

4 Representing Distributed Databases 

We will illustrate how a distributed database can be 
represented in our notation, using the example in Fig- 
ure 10, where DB is stored on two sites s,s’. We 
start by cutting the cross links, and inserting mark- 
ers in place: Xi, X2, Yi , Yz, where Xi is the input to 
the old root. Let t and t’ be the two fragments of the 
database residing at the two sites: here t E ‘l+ee$ and 

t’ E Zlee$‘, with X dsf {Xi, Yi,Ys},X’ ds {X2}, and 

Yef XUX’= {Xi,X2,fi,y2}. Here Xi denotes the 
root of DB. Then DB E free is recaptured as: 

Equality The notion of equality on rooted graphs 
is that of bisimilation [BDHS96a, BDS95]. In a nut- 
shell, two rooted graphs are bisimilar if, after (possible 
infinite) unfolding, e-edge removal, and duplicate sub- 
tree elimination at each node, the two resulting trees 
are equal. When restricted to tree representations of 
sets and records, as in Figure 6, the bisimilarity rela- 
tion is exactly the set and/or record equality. 

where (t; t’) is the jwtaposition of t and t’ (disjoint 
graph union). The recy . . . construct redraws the cross 
links, while Xi +ty (. . .) selects only the input labeled 
Xi as the unique, anonymous input of the database. 

E-Edges E-Edges are introduced for convenience of 
notation: most operations, like +t or ret, are easier 
defined in terms of E edges, than without them. On the 
other hand the reader may have noticed that, in some 

f$friJJ ~~~ 

\ - - - - - _ --J --------J ‘mm_ --- --, --------I 
site s site s’ t t’ 

Figure 10: A distributed database. 

Xl +ty (recy (t; t’)) 

In general, every database DB stored at, say, two 
sites 5,s’ can be expressed in a canonical form as 
Xi +tx recx (t; t’), with t stored at site s and t’ at 
site s’. Here t and t’ need not be cycle free. 

5 Thnsaction Language 

Our view maintenance technique works in conjunc- 
tion with a simple transaction language in the spirit 



(a) @) 

Figure 11: (a) A relational database with markers. (b) 
Same database after an update. 
of [GL95], which we describe next. A transaction is a 
sequence of atomic transactions of the form (1) DB := 
DB -I+ A, for y’ C y, or (2) DB := DB replacex, 0. 
We have defined u earlier. For the replace operation, 
assume ZIB is given in the canonical form (equation l), 
and’ F’ = 
x r-l X’ = I 

Xk, X&+1,. . . ,X,, X,,,+l, . . . , Xp} (that is 
Xk,. . . , X,}). Then, for 0 a tree with X’ 

entries, say 0 = (xk := Ok; Xk+l := &+I;. . . ; xp := 
Up), DB replacexl 0 is defined to be: 

xl ++x! recp (xl := tl, . . . , &-1 := t&l, 
&:=&,...Xp:=Op) 

Note that replace is rather unorthodox, in that it is de- 
fined on the particular representation of the database, 
and not on its meaning. More precisely, one can find 
trees DB and DB’ which are bisimilar, hence equal 
for our purposes, but for which DB replace 0 is not 
bisimilar to DB’ replace 0. 

Example 5.1 Consider the relational database DB 
in Figure 6. To model insertions in the relations rr 
and ~2, we redesign DB by introducing two markers 
X1 and X2, as in Figure 11. Then a traditional insert 
operation rl := rl U {(b, a)} is expressed as: 

DB := DB+kxl (XI := {tup=k{m+b,n=sa}UX1}) 

The resul,t is shown in Figure 11. Note that we ex- 
plicitly include . . . U XI, in order to allow for future 
insertions. 

6 Main Result 
Our key technique for query decomposition and view 
maintenance is to transform queries into decomposable 
queries. 

Definition 6.1 Let & be a query in UnQL. We say 
that & is decomposable ifi.+ 

1. For all t, t’, Q(t i-t t’) = Q(t) +I- Q(t’), and 

2. For all t, t’, Q(t; t’) = (Q(t);Q(t’)). 

t’ in item 1 and both t and t’ in item 2 are trees with 
named inputs, hence the definition only makes sense 
for queries acting on databases with named inputs. 

View maintenance for decomposable queries is easy: 
e.g. after an update DB’ := DB +t A, we have to up- 
date the view V = Q(DB) to V’ := V++&(A). Simi- 
larly, we show in Section 7 that query decomposition, 
in the sense of Section 1, is easily done for decompos- 
able queries. For this we need: 

Proposition 6.2 If Q is decomposable then: 

Q(rec (XI := tl; . . . Xk := tk)) = 

ret (&(X1 := tl); . . . &(Xk := tk)) 

Proof: We only give an informal argument. Since ret 
t is the same as the infinite unfolding t +I- t +I . . ., we 
haveQ(rect)=Q(t+tt+t-...)=Q(t)+tQ(t)Ct...= 
ret Q(t). Next we apply item 2 of Definition 6.1. 

As we shall see, not every UnQL query is decom- 
posable. However, in the theorem below, we prove 
that every query in the “positive, join-free fragment” 
of UnQL (definition in Section 8) can be obtained from 
a decomposable one with minor post-processing: this 
is the main result of our paper, and we will sketch the 
proof in Section 9. 

Theorem 6.3 For any query Q in the positive, join- 
free fragment of &a&L, there tit.9 a (positive, join- 
free) query Q’ and constant tree a such that the fol- 
lowing conditions hold: 

1. &=a+~-&‘. 

2. Q’ is decomposable. 

3. The cost of evaluating Q’ is no larger that that of 
a naive evaluation of Q. 

7 Applications 
We show here how Theorem 6.3 can be applied to 
query decomposition and view maintenance. 

7.1 Query Decomposition 

For illustration we shall assume that the database 
is stored on two sites s and s’: the technique de- 
scribed here generalizes straightforwardly to an arbi- 
trary number of sites. As in Section 4 we assume that 
DB is given in the canonical form X1 +I DBo where 
DBo = recx (t; t’) with t residing on site s and t’ on 

s’. Let Qs be the query Qo(DBo) dgf &(X1 -I+ DBo)~. 
We proceed as follows: 

Apply Theorem 6.3 to decompose Qc into: 
Qo Wo) = a +t Q’( DBo). Hence we have to 
compute Q’(DBo), which is Q’(recx (t; t’)). 

By item 2 of Theorem 6.3 and Proposition 6.2, 
Q’( rec,y (t; t’)) = recp (Q’(t); Q’(t’)), where X’ 
is the set of inputs and outputs of (Q’(t); Q’(t’)). 
Hence we compute Q’(t) at site s, and indepen- 
dently Q’(t’) at site s’. 

Send Q’(t) and Q’(t’) to the client site: this step 
is potentially inefficient and will be refined below. 
The client now holds (Q’(t); Q’(t’)). 

The client computes recxt (Q’(t); Q’(t’)) (which 
consists in drawing E edges from outputs to in- 
puts), thus obtaining Q’( DBo). Finally it com- 
putes Qo(DBo), as shown in step 1. 

STheorem 6.3 only applies to queries expecting databases 
with named inputs, hence it doss apply to Qo, but not to Q 
directly. 

233 



Parts of the graphs Q’(t) and Q’(t’) sent in step 3 
may turn out (during step 4) to be inaccessible from 
from the root of the final result Qo(DBo). To avoid 
sending these useless fragments in step 3, we refine it 
as follows: 

a Compute the accessibility gvh G 
for (Q’(t); Q’(t’)): nodes are markers X’, edges 
are pairs (X,X ) s.t. X’ is accessible from input. 
X E X’ in (Q’(t); Q’(t’)). The two fra&nenta of 
G are computed independently on sites s arid s’, 
then sent to the client. 

l The client computes the transitive closure of G: 
thii gives the accessiblity graph for Q’(D&) = 
recxl (Q’(t); Q’(t’)). Using this and the tree [Y, 
the client computes the set Xd C X’ of mark- 
ers acually used in the concatenation Qo(DBe) = 
a +I- Q’(DBo), i.e. a +i-xt Q’(D&) is equal to 
a *x; Q’(DBo). 

l The client sends the set X6 to 8 and s’. Next, 
step 3 is resumed, but having each server sent only 
the “accessible” fragment of Q’(t) (and Q’(t’) re- 
spectively) to the client, i.e. that under the inputs 
in X6. 

Finally we argue that the total cost of evaluating 
our decomposed query is no larger than that of com- 
puting Q(DB) on a centralized version of DB, using a 
naive evaluation method. Indeed Q and Q’ are equally 
expensive to compute. The key observation is that, 
under a non-optimized evaluation, Q’( ret (t; t’)) and 
ret (Q(t); Q(t’)) have the same cost too. An opti- 

mized evaluation however might do a better job with 
Q’( ret (t; t’)), because it can avoid processing unac- 
cessible parts. 

7.2 View Maintenance 

Let a view V be defined by the query Q, V dgf Q(DB). 
For simplicity we will assume that DB is a database 
with named inputs. The view maintenance method 
consists of the following. Let DB = X1 -I+ DBo be in 

!&ey, Qo(D&) dgf Q(X, +t DBo) be as before, and 
let QO = (Y +t Q’ be the decomposition of Qo given by 
Theorem 6.3. 

When the view V = Q(DB) is defined, compute 
and store V’ = Q’( DBo). In particular V = cx +t 
V’, and V’ encapsulates the markers Y. 

Assume that the database is updated as DB := 
DB +ty~ A, y’ c JJ. Send both the set of markers 
y’ and the tree A from the server to the client4. 
Compute here Q’(A) and update the materialized 
view to V’ := V’+tQ’(A). This is correct because 
Q’ is decomposable. 

Assume now that the database is updated to 
DB := DB replacex, 0. Again X’ and 0 are 

4Strictly speaking the set of markers Y’ can be extracted 
from A: it is exactly the set of inputs of A. 

sent to the client, which updates its view to 
V’ := V’ replace Q’(O). Again, this is correct, 
because Q’ is decomposable. 

Note that the new view can be computed only from 
rthe ,old one and from the increment A or 0: it does 
not depeQd directly on DB. This is possible because 
Q-is joiri-free. 

8 The calculus: UnCALo 

[BDHSSSa] introduces the language UnQL as a query 
language for browsing unstructured data, or data 
whose structure is only partially known. It is shown 
that UnQL is equivalent to a calculus, called UnCAL, 
much in the same way in which a certain fragment of 
SQL is equivalent to the relational algebra. Here we 
briefly review UnCAL. This is a rather dry formalism, 
and we refer the reader to [BDHSSSa] for a presenta- 
tion of the friendlier, and equivalent, UnQL language. 

Figure 12 lists the constructs of a monotone frag- 
ment of UnCAL, which we call UnCALo. UnCALo is 
obtained by restricting UnCAL in two ways: (1) the 
emptiness test isEmpty? is removed, and (2) the 
gext construct is replaced with the more restrictive 
vext one. One can show that all queries expressed in 
UnCALe are “monotone”, in a way which can be made 
formal [Bun95]. 

We briefly describe the constructs in Figure 12, 
where Q, &I, QZ are queries, a, a’ are label variables 
or constants, p is a user-defined predicate. DB stands 
for the input database, {} returns the empty set (one 
node, no edges), {a+Q} returns a singleton tree (here 
a is a label constant or a label variable), while &I U QZ 
returns the union of two trees. We can represent 
the latter conveniently using E edges, as in Figure 12. 
&I +A QZ concatenates &I with QZ (Section 3). 

The most complex construct is vextA(&Ql)(Qz). 
Here &I is an expression denoting a tree with inputs A 
and o&puts A, which may have z as a free label vari- 
able. Then vextA(Xz.Q1)(Qz) returns a tree obtained 
from Qz by replacing every edge labeled a with the 
tree Ql[u/s]. Figure 12 tries to illustrate this action 
fort~z!~~;~;$~ te;JA} has a single marker. We 

Next, A := Q rename: the unique, anonymous in- 
put of Q to A: i.e. when Q E neex, then A := Q 

is in ?+eey}. In the juxtaposition (Ql;Qz), the in- 
puts of &I and Q2 have to be disjoint: the result 
will be the union of the two graphs (which is not 

&I U Q2). That is, when &I E nee? ,Q2 E Z+eeF 

and Xl fl X2 = 0, then (91; Q2) is in Z+eezuxa. We 
abbreviate (Ql; (Q2; (. . . ; Qn . . .))) with 

I 
&I;. . . ; Qk). 

() is the null tree (no nodes, no edges . We have 
~Q;~;kd~ = C&2; Qd =d (Q; 0) = Q. A stads for 

A que’& is an expression with no free variables, 
except for DB, which is the query input. A 
query may use markers of its own, in constructs 
like ++A, mt,& A := Q,A, which we denote with 
A,A’,A,Az ,..., and which axe distinct from the 
markers X, X1,. . . , Y, Yl , . . . in the database DB. This 

234 



0 Query Q I Description I Meaning II 

if C then &I else Q-J conditional of the form a = a’ or-p(a) 
A 

A := Q1 single input named A & 
Al AZ,%3 BltUflj 

(Q1;9d juxtaposition IQ1 I1 
the null tree 

c 
A marker A A 

&I ftd Q2 

v=td&.&&&) 

concatenation 

expansion 
C a condrtron 

Figure 12: The UnCALe calculus. 
is much like in the case of oid’s: X, XI,. . . are like ex- 
ternal oid’s, and the query Q cannot access them. We 
allow one exception to this rule: a query on a database 
with named inputs may use the unique marker XI 
denoting the “root” input to DB: thus, the query 

QW'B) dgf Xr -I-IX DB is legal, but X2 sfxa DB 
or DB +ky, (YI := {a}) are not. 

The main construct of the language is vext. First 
we will explain how vextd(&.Q)(Q’) interacts with 
the input and output markers of Q’. Recall that Q 
must have A = {AI,. . . , Ap) as inputs and outputs, 
and assume that Q’ has inputs X = {Xl, . . . , Xm} and 
outputs y = {fi,..., Y,}. By definition vext returns 
a tree with p. m inputs and p. n outputs. To name 
them, we denote with U .V a new, distinct marker, for 
any two markers U, V. We require this operation to be 
injective, i.e. U * V = U’ . V’ ==s U = U’ and V = V’. 
Then, by definition, the inputs of vextd(Xz.Q)(Q’) are 

A * X dGf (Ai * Xj 1 Ai E A, Xj &’ X}, and the outputs 
are A. y. By convention, when Q’ has a single anony- 
mous input, then vextd(&.Q)(Q’) has inputs d. We 
illustrate next vext with a detailed example, and refer 
to [BDHSSSa] for a general definition of vext. 

Example 8.1 Recall the query in Example 1.1 which 
returns all papers in the Computer Science Depart- 
ment. We consider here a variant, which stops fol- 
lowing a path once it finds an “Papers” edge before 
a “C’S-Department”: intuitively this is an optimiza- 
tion, if one assumes that no department edge ever 
occurs after a “Papers” edge. Then Q can be ex- 
pressed as follows: AI +td (vextd(Az.Qr (z))(DB)), 

where A = {&&&} ad &l(z) is5: 

if 5 = “CS-Department” then 

(A :=A2;Az:=A:!;A3:={z+A3}) 

else if 5 = “Papers” then 

(Al := {}; A2 := {s =s As}; A3 := {cc =s A3}) 

else (AI := Al;A2 := A,;As := {z+-As}) 

&r(z) is best visualized graphically, as in Figure 13 
(4. Figure 13 (b) contains an example of a 
database with three outputs X = {X, Y, 2). Then 
vextd(Xz.Qr)(DB) returns a database with 9 outputs 
A . X, which is represented in Figure 13 (c). After 
eliminating e edges and the unaccessible part of the 
output graph we obtain the database in Figure 13 (d). 
Note that only the outputs As. Y and AZ. 2 remain in 
the result. The intuition is that the markers X, Y, 2 
are “copied” in the output, and “tagged” with the re- 
gion where they were found, as described in Section 2: 
that is A3 * Y means that Y has been found in region 3, 
while A2 -2 means that 2 was found in region 2. Note 
that marker X disappears: no matter how we extend 
DB at marker X (e.g. an update, or a link to another 
site), Q(DB) will not be affected. 

Q is not decomposable in the sense of Definition 6.1. 
However the sub-query Q’(t) = VeXtd(h.Ql)(t) is 
decomposable: when t E !ZIee$, t’ E !ZIeez then 

Q’(t) E Zlee$:$, Q’(t’) E lhe$s, and Q’(t +ty t’) = 

6The original query in Example 1.1 would have had A1 := AI 
instead of A1 := {} in the case 5 = “Fbpere”. 

235 



Q’(t) +t~.y Q’(t). Moreover, Q is easily recovered 
from Q’ as: Q = (Al +l-A1 Q’). Theorem 6.3 general- 
izes this observation. 

The query evaluation method for UnCAL con- 
sists in manipulating labeled graphs, as suggested in 
Figure 12, and occasionally “cleaning up” the graph, 
by reducing it under bisimilarity (this also eliminates 
the unaccessible parts). For the main construct, vext, 
there are two evaluation strategies, which we illustrate 
on vext(Xz.Q)(DB). (1) Start from the root in DB 
and traverse it recursively, using Q as an automata. 
For the example in Figure 13 (b), this will produce 
directly the graph in (d), without ever touching the 
unaccessible parts. (2) Process each edge of DB inde- 
pendently, by replacing it with Q, a process illustrated 
in Figure 13 (c): here a clean-up phase is required to 
get to (d). Method (1) can be more efficient, and we 
called the “optimized” evaluation; it needs special care 
to deal with cycles; method (2) makes more sense on 
.databases with more than one input, since there is no 
root to start from, but is more “naive” because it may 
end up constructing unnecessary fragments of a graph, 
which are later eliminated. The statement in item 3 
of Theorem 6.3 holds for both methods. However in 
the query decomposition method recall that we also 
need to replace Q(rec (t; t’)) with ret (Q(t); Q(t’)) for 
some decomposable Q: the cost of evaluating both of 
them is the same under method (2)) but method (1) 
could be more efficient on Q(rec (t; t’)), because it may 
avoid accessing parts of the database which are not 
needed. Therefore our query decomposition method 
has the same cost as computing Q(DB) on a central- 
ized version of DB using method (2)) but may be more 
expensive than Q(DB), when method (1) is used. 

We call a UnCALc expression Q constant if it 
doesn’t mention the input database DB. Note 
that in the example above, the sub-query Qi in 
vextA(Xs.Qi)(DB) is a constant expression. We call 
a query Q join-free if in every sub-query of the form 
v~bd~~.Ql)tQz), (1) Q i is constant and (2) Qi does 
not use any additional output \markers besides A. It 
is easy to extend the results in [BDHS96a] to show 
that the relational algebra operations union, selection 
and projection over relational databases expressed as 
trees, can be expressed as join-free UnCALe queries, 
and that intersection, cartesian product, and eqjoin 
can be expressed in UnCALe (but not as join-free 
queries). Condition (2) is imposed because we want 
to disallow self concatenation, like in DB +tB DB, in 
order for Theorem 6.3 to hold. Direct self concate 
nation is not possible in UnCALe, because we can- 
not use DB’s output markers in a query. But with- 
out rule (2) we can still do a self-concatenation in the 
form vextA(kQl)(DB)+tB DB in which &I uses the 
marker B $ A to place it deep into DB and leave it 
there. 

Finally, for the purpose of the results in Section 6, 
we call an UnQL query Q positive iff its translation 
into UnCAL given in [BDHS96a] is in UnCALe (i.e. 
doesn’t use isEmpty?). Similarly, we call Q join-free 
iff its translation is join-free. It is not difficult to de- 
sign syntactic conditions which are sufficient for UnQL 

queries to be positive and/or join-free. 

9 Decomposition Rules 

We sketch here the proof of Theorem 6.3, by describing 
the decomposition rules which, when applied to some 
query Q, transform it into (Y st Q’. The rules are given 
in Figure 14, and apply inductively on the sub-queries 
of Q. Note that in vextA(Xz.Qi)(Qs), Qi is a constant 
expression and hence does not need to be transformed. 
As a consequence the inductive transformation rules 
never reach an if - then - else construct. Before 
applying the rules, we transform the query Q ensuring 
that distinct veXt.4 subexpressions in Q use disjoint 
sets of markers A: if not, then we simply rename the 
markers in some of the VextA constructs. 

For the base case, when Q is DB E Tkee$, a has 
to be taken as the “identity on the inputs X”, i.e. 
(Xl := x1;...;x, := Xm). This is not expressible 
in UnCALe, because we do not have access to the sets 
of markers X, so we add a new construct, idx, denot- 
ing the identity on the inputs of DB. Hence, strictly 
speaking a will be an expression in UnCALe + idx. 

First we explain the juxtapositions in Figure 14. 
Consider any two sub-queries Qi and Q2 of some larger 
query Q, and let Qi and Qi be their transformations. 
Q’, and Qk may have common input markers, hence 
the (Qi ; Q!J construct is not quite correct. However 
we observe that the only possible common inputs are 
those in DB. More precisely, for Q{ (and similarly 
Q!J one of two cases arise: (1) every input in Qi is of 
the form A * (. . .), i.e. tagged with some marker A used 
in a @?xtA subexpression of Qi, hence private to Qi; 
in this case all inputs in Q: are disjoint from those in 
Q& and the juxtaposition (Qi ; Q!$ is correct. (2) Q: = 
(DB;Q’,), with all inputs of Qi tagged with private 
marker of Qi. In this case we inspect Qh: if it ‘%so 
has the form (DB;?!$, then we adopt for (9;;s;) 
the meaning. (DB;Q, ;Qy), i.e. copy only once the 
common part which is DB. 

We illustrate the correctness of the rules in Fig- 
ure 14 for vext, U and *A. Consider the query Q = 
vextA(Az.Qi)(Qz). First apply induction hypothesis 
to get Qs = (~2 +I- Qa (recall that Qi is constant). 

Then Figure 14 defines Q’ gf vextA(h.Q1)(&;) and 

(Y dzf veXtA(&.Qi)((Y2). We will use the following two 
equations: 

vextA(hQl)(tl +I t2) = 

=t,&=Ql)(tl) +t ve%t(~d?1)(tzj (2) 

v’=tA(~~.Ql)(tl; tz) = 

@‘WtA(~~.&dttd; ~btt~~.Qdttz)) (3) 

Equation 2 is from [BDHS96a], while 3 is a direct con- 
sequence of the definition of vext. First we check that 
Q = (Y +t Q’, which follows from equation 2. Next, 
using both equations 2 and 3, and the induction hy- 
pothesis that Qa is decomposable, one can easily check 
that Q’ is decomposable too. 

Consider now the case Q = Qi U Qs. First apply 
induction hypothesis to get Qi = oi +t Q:, i = I, 2. 

236 



“” 

hpan “.... 

f 

‘.., 
4 

5 

d ‘., 

i 

NY 

NX 

AlX AW A3x ; : AlX NZ A3X 

A1.Y NY NY 

Figure 13: Illustration of vext(Xz.&)(DB). 

Then Figure 14 defines Q’ dg (Qi; Qa), and Q dgf al U 
02. First check item 1 of Theorem 6.3: 

a+tQ’= 

= (al u a2) +t- (Q: ; Q’,> 
= (al t+Q:>u 

(a2 +t Q;> = 

= QluQz 

The first equality is true because of the separation of 
the inputs markers for Qi and Q’,, as explained above. 
They may share only input markers from the inputs of 
DB, and in this case their common part is exactly DB: 
hence (al U(YZ) -i-+(&i; Qh> = ((~1 +tQi)U(az t+Q6). 

Next we check item 2: 

Q’(tl 
= 
= 

*t2)= 

(Q;(tl +t tz); Q;(tl +t tz)) = 

(Q:(h) +t Q:(tz); 
Q;(h) +t Q;(td, = 

(Q:(h); Q’z(td) * 
(Q:(tz); Q%tz,, = 

Q’(h) -H Q’W 
&‘@I; tz) = 

= (Q:(tl; tz); Q;(tl;tz>) = 
= (Q:(tl);Q:(tl);Q:(tz>;Q~<tz>> = 

, = (Q:(h); Q:(tz); Qr,<td;Q;(tz,, = 
= (Q’h);Q’W - 

For the Q = &I +l-~ Qs construct, we again apply 
induction first, Qi = (pi +t Q:, i = 1,2. Obviously 
(Qi; Qh) is decomposable (as above), so it remains 
to show that &I H.4 QZ = (al +t,4 CM) +t- (Qi; 9;). 
For this, we first show by induction that every output 
marker of Qi is “tagged” with some output marker in 
Y. Hence none of markers in A may appear in Qi (this 
is a consequence of condition (2) of the join-freeness 
definition of Section 8). Hence we have: 

&l+td&= 

= (w+kQ;)i+~(~dtQ;) 
= ~~ft-~(Q:;~z)t+C?: 

= (al +A a2) * Q: +k Q; 
= (al ++A a2) +t (Q:; Q’,> 

10 Conclusions 
We have described a query decomposition method 
which can be used to compute efficiently queries 

237 



Figure 14: Rules for transforming any UnCALe join-free query Q into cr +t Q’, with Q’ decomposable. 
in unstructured query languages on distributed data 
sources. The decomposition is “efficient” in the sense 
that, under a certain naive evaluation strategy, the 
decomposed query is no more expensive to compute 
on the distributed database, than were the original if 
applied to a centralized database. Also, we have pro- 
posed two update operations for the underlying data 
model, and shown that the same query decomposition 
method can be used to derive a simple view mainte- 
nance method. 

Hypertext: Concepts: Systems, and Appli- 
cations. Procs. of the European Conf. on 
Hypertext, pages 67-80, 1990. 

Our methods work without any knowledge about 
the structure of the database. While sometimes this 
can be useful, in general it is more a limitation than 
a virtue: some simple knowledge about the database 
could improve the query decomposition. In future 
work we plan to develop techniques to incorporate such 
information in the query decomposition. 

Acknowledgments I would like to thank Peter 
Buneman and Gerd Hillebrand for their comments. 

References 

[BD96] 

[BDHSSSa] 

[BDHS96b] 

[BDS95] 

[BK90] 

Thomas Ball and Fred Douglis. An inter- 
net difference engine and its applications. 
In Prow of COMPCON, February 1996. 

Peter Buneman, Susan Davidson, Gerd 
Hillebrand, and Dan Suciu. A query lan- 
guage and optimization techniques for un- 
structured data. In SIGMOD, 1996. 

Peter Buneman, Susan Davidson, Gerd 
Hillebrand, and Dan Suciu. A query lan- 
guage and optimization techniques for un- 
structured data. Technical Report 96- 
09, University of Pennsylvania, Com- 
puter and Information Science Depart- 
ment, February 1996. 

Peter Buneman, Susan Davidson, and 
Dan Suciu. Programming constructs for 
unstructured data. In Proceedings of 
DBPL ‘95, Gubbio, Italy, September 1995. 

C. Beeri and Y. Kornatzky. A ,logical 
query language for hypoertext systems. In 

[Bun951 

[Cou83] 

[DB96] 

[GL95] 

[KS951 

[LMSS96] 

[LRU96] 

[PGMW95] 

[Qw+W 

Peter Buneman, 1995. Private communi- 
cation. 

B. Courcelle. Fundamental properties of 
infinite trees. Theoretical Computer Sci- 
ence, 25:95-169, 1983. 

Fred Douglis and Thomas Ball. Track- 
ing and viewing changes on the web. In 
Procs of USENIX Technical Conference, 
January 1996. 

Timothy Griffin and Leonid Libkin. In- 
cremental mainenance of views with du- 
plicates. In International Conference on 
Management of Data, pages 328-339, San 
Jose, California, June 1995. 

David Konopnicki and Oded Shmueli. 
Draft of W3QS: a query system for the 
World-Wide Web. In Proc. of VLDB, 
1995. 

Alon Levy, Albert0 Mendelzon, Yehoshua 
Sagiv, and Divesh Srivastava. Answer- 
ing queries using views. In Proceedings 
of the 14th Symposium on Principles of 
Database Systems, San Jose, CA, June 
1996. 

Alon Levy, Anand Rajaraman, and Jef- 
frey Ullman. Answering queries using lim- 
ited external processors. In PODS, 1996. 
To appear. 

Y. Papakonstantinou, H. Garcia-Molina, 
and J. Widom. Object exchange across 
heterogeneous information sources. In 
IEEE International Conference on Data 
Engineering, March 1995. 

D. Quass, A. Rajaraman, Y. Sagiv, J. Ull- 
man, and J. Widom. Querying semistruc- 
ture heterogeneous information. In In- 
ternational Conference on Deductive and 
Object Oriented Databases, 1995. 

238 


