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When searching sequence databases for RNAs, it is desirable to score both primary sequence and RNA secondary
structure similarity. Covariance models (CMs) are probabilistic models well-suited for RNA similarity search
applications. However, the computational complexity of CM dynamic programming alignment algorithms has limited
their practical application. Here we describe an acceleration method called query-dependent banding (QDB), which
uses the probabilistic query CM to precalculate regions of the dynamic programming lattice that have negligible
probability, independently of the target database. We have implemented QDB in the freely available Infernal software
package. QDB reduces the average case time complexity of CM alignment from LN2.4 to LN1.3 for a query RNA of N
residues and a target database of L residues, resulting in a 4-fold speedup for typical RNA queries. Combined with
other improvements to Infernal, including informative mixture Dirichlet priors on model parameters, benchmarks also
show increased sensitivity and specificity resulting from improved parameterization.
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Introduction

Many functional RNAs conserve a base-paired secondary
structure. Conserved RNA secondary structure induces long-
distance pairwise correlations in homologous RNA sequen-
ces. When performing database searches to identify homol-
ogous structural RNAs, it is desirable for RNA similarity
search programs to score a combination of secondary
structure and primary sequence conservation.

A variety of approaches for RNA similarity searching have
been described. There are specialized programs for identify-
ing one particular RNA family or motif, such as programs
that identify transfer RNAs [1,2], small nucleolar RNAs [3,4],
microRNAs [5,6], signal recognition particle (SRP) RNAs [7],
and rho-independent transcription terminators [8]. There are
also pattern-matching algorithms that rely on expertly
designed query patterns [9]. However, the most generally
useful approaches are those that take any RNA (or any
multiple RNA alignment) as a query and use an appropriate
scoring system to search a sequence database and rank high-
scoring similarities [10,11], just as programs like Blast (http://
www.ncbi.nlm.nih.gov/BLAST/) do for linear sequence com-
parison [12].

In a general search program, one wants to score a
combination of RNA sequence and structural conservation
in a principled rather than an ad hoc manner. A satisfactory
solution to this problem is known, using probabilistic models
called stochastic context-free grammars (SCFGs). SCFGs
readily capture both primary sequence and (non–pseudo-
knotted) RNA secondary structure conservation [13,14]. Just
as hidden Markov models (HMMs) are useful for many
different linear sequence modeling applications, including
gene finding, multiple alignment, motif finding, and sim-
ilarity search [14], SCFGs are a generally useful paradigm for
probabilistic RNA sequence/structure analysis, with applica-
tions including secondary structure prediction and gene
finding. A particular SCFG architecture called covariance
models (CMs) was developed specifically for the RNA
similarity search problem [15]. CMs are profile SCFGs,

analogous to the use of profile HMMs in sequence analysis
[15,16]. The Rfam database of RNA families [17] is based on
CM software (Infernal [inference of RNA alignment]; http://
infernal.janelia.org) in much the same way that the Pfam
database of protein families is based on profile HMM
software (HMMER; http://hmmer.janelia.org) [18,19].
The most serious problem with using CMs has been their

computational complexity. Applying standard SCFG dynamic
programming (DP) alignment algorithms to the particular
case of CMs results in algorithms that require O(N3) memory
and O(LN3) time for a query of length N residues (or
consensus alignment columns) and a target database se-
quence of length L. The memory complexity problem has
essentially been solved, by extending divide-and-conquer DP
methods (the Hirshberg or Myers/Miller algorithm) to the
case of CMs [16], but the time complexity problem still stands.
Weinberg and Ruzzo [20–22] have described several filter-

ing methods for accelerating CM searches. The original idea
(‘‘rigorous filters’’) was to score a target sequence first by a
linear sequence comparison method, using a profile HMM
specially constructed from the query CM such that the profile
score was provably an upper bound on the CM score; the
subset of hits above threshold would then be passed for
rescoring with the more expensive CM alignment algorithm
[21]. Subsequently a ‘‘maximum likelihood heuristic’’ filter

Editor: Gary Stormo, Washington University, United States of America

Received December 1, 2006; Accepted February 6, 2007; Published March 30,
2007

A previous version of this article appeared as an Early Online Release on February 7,
2007 (doi:10.1371/journal.pcbi.0030056.eor).

Copyright: � 2007 Nawrocki and Eddy. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Abbreviations: CM, covariance model; CYK, Cocke–Younger–Kasami; DP, dynamic
programming; HMM, hidden Markov model; HSP, high-scoring pair; MER, minimum
error rate; QDB, query-dependent banding; SCFG, stochastic context-free grammar

* To whom correspondence should be addressed. E-mail: eddys@janelia.hhmi.org

PLoS Computational Biology | www.ploscompbiol.org March 2007 | Volume 3 | Issue 3 | e560540



profile was developed that gives up the guarantee of
recovering the same hits as the unfiltered search but offers
greater speedups [22]. For most current Rfam models,
Weinberg–Ruzzo filters give about a 100-fold speedup relative
to a full CM-based search at little or no cost to sensitivity and
specificity. However, because these filters depend on primary
sequence conservation alone, they can be relatively ineffec-
tive for RNA families that exhibit poor sequence conserva-
tion—unfortunately, precisely the RNAs that benefit the most
from SCFG-based search methods. Indeed, in this respect, we
are concerned that the overall performance of rigorous filters
on the current Rfam database may be somewhat misleading.
Rfam currently uses a crude Blast-based filtering method to
accelerate the CM searches used in curating the database.
This step introduces a bias toward high primary sequence
similarity in current Rfam alignments. As Rfam improves and
incorporates more diverse structural homologs, the effective-
ness of sequence-based filters will decrease. To address this
worry, Weinberg and Ruzzo [20] have also described addi-
tional heuristics (‘‘sub-CMs’’ and the ‘‘store-pair’’ technique)
that should capture more secondary structure information in
the filtering process. Bafna and coworkers [23] have described
further improvements to sequence filtering methods. Cur-
rently, the Infernal codebase includes Weinberg’s Cþþ
implementation of rigorous filters but not, as yet, the ML
heuristic, sub-CM, or store-pair methods. All these methods
are important, but it also remains important to us to identify
yet more methods for accelerating CMs.

Here, we describe a method for accelerating CM searches
using a banded DP strategy. In banded DP, one uses a fast
method to identify a band through the DP matrix where the
optimal alignment is likely to lie and then calculates
computationally expensive DP recursions only within that
band. In most cases, including our approach, banded DP is a
heuristic that sacrifices guaranteed alignment optimality.
Banding is a standard approach in many areas of sequence
analysis. Gapped Blast uses banded DP to convert ungapped
high-scoring pairs (HSPs) to full gapped alignments [12].
LAGAN and Multi-LAGAN (http://lagan.stanford.edu) use
banded DP (referred to as limited-area DP) to stitch together
alignments between anchored sequences when aligning long

genomic sequences [24]. Banding has also been applied to
profile SCFGs by Michael Brown in his RNACAD program by
using information from a profile HMM alignment to define
bands for the expensive SCFG alignment [25]. The key to
developing a banded DP strategy is in deciding how the bands
are identified. Usually, including all the examples just
mentioned, banded DP involves performing some sort of
rapid approximate sequence alignment between the query
and the target.
In contrast, the method we describe here, called query-

dependent banding (QDB), takes advantage of specific
properties of CMs in order to predefine bands that are
independent of any target sequence. QDB depends on the
consensus secondary structure of the query, so it is
complementary to acceleration methods such as the Wein-
berg–Ruzzo filters that rely on sequence but not structure.

Results

Briefly, the key idea is the following. Each base pair and
each single-stranded residue in the query RNA is represented
in a CM by a state. States are arranged in a treelike structure
that mirrors the secondary structure of the RNA, along with
additional states to model insertions and deletions. The
standard CM DP alignment algorithm works by calculating
the probability that a substructure of the query rooted at
state v aligns to a subsequence i. . . j in the target sequence.
The calculation is recursive, starting at the leaves of the CM
(ends of hairpin loops) and subsequences of length 0, and
working upward in larger substructures of the CM, and
outward in longer and longer subsequences.
To guarantee optimality, at each v, the DP algorithm must

score all possible i. . . j subsequences in the target sequence.
However, most of these subsequences are obviously too long
or short, when one considers the size of the query
substructure under state v. For example, when state v models
the closing base pair of a consensus four-base loop, only i. . . j
subsequences of length six are likely to occur in any optimal
alignment to state v; that is, (j� 5,j) being the base pair and (j
� 4. . . j� 1) being the four bases of the hairpin loop. Likewise,
the optimal subsequence aligned to the next consensus base
pair in that stem is almost certainly of length eight.
Because insertions and deletions may occur in the target

sequence, no subsequence length is known with certainty, but
because the CM is a probabilistic model, a probability
distribution for subsequence lengths under each state
(including the probability of insertions and deletions) can
be analytically derived from the query CM. These distribu-
tions can be used to determine a band of subsequence lengths
that captures all but a negligible amount of the probability
mass. A CM DP algorithm can then look not at all
subsequences i,j for each state v but only those i within a
band of minimum and maximum distance relative to each j.
To formalize this idea, we start with a description of CMs,

followed by the QDB algorithms for calculating the subse-
quence length distributions, using these length distributions
to determine bands, and using the bands in a banded CM DP
alignment algorithm. Calculation of the bands is sensitive to
transition parameter estimation, so we describe Infernal’s
new implementation of informative Dirichlet priors for CM
parameter estimation. Finally, we present results from a
benchmark that suggest the sensitivity and specificity of a
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Author Summary

Database similarity searching is the sine qua non of computational
molecular biology. Well-known and powerful methods exist for
primary sequence searches, such as Blast and profile hidden Markov
models. However, for RNA analysis, biologists rely not only on
primary sequence but also on conserved RNA secondary structure to
manually align and compare RNAs, and most computational tools
for identifying RNA structural homologs remain too slow for large-
scale use. We describe a new algorithm for accelerating one of the
most general and powerful classes of methods for RNA sequence
and structure analysis, so-called profile SCFG (stochastic context-free
grammar) RNA similarity search methods. We describe this
approach, called query-dependent banding, in the context of this
and other improvements in a practical implementation, the freely
available Infernal software package, the basis of the Rfam RNA
family database for genome annotation. Infernal is now a faster,
more sensitive, and more specific software tool for identifying
homologs of structural RNAs.
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QDB-accelerated search are negligibly different from those of
a nonbanded search.

Covariance Models
CMs are a convention for mapping an RNA secondary

structure into a treelike, directed graph of SCFG states and
state transitions (or, equivalently, SCFG nonterminals and
production rules). The CM is organized by a binary tree of
nodes representing base pairs and single-stranded residues in
the query’s structure. Each node contains a number of states,
where one state represents the consensus alignment to the
query, and the others represent insertions and deletions
relative to the query. Figure 1 shows an example of
converting a consensus structure to the guide tree of nodes
and part of the expansion of those guide tree nodes into the
CM’s state graph. Here, we will only concentrate on the
aspects of CMs necessary to understand QDB, and a subset of
our usual notation. For full details on CM construction, see
[16,26].

A guide tree consists of eight types of nodes. MATP nodes
represent consensus base pairs. MATL and MATR nodes
represent consensus single-stranded residues (emitted to the
left or right with respect to a stem). BIF nodes represent
bifurcations in the secondary structure of the family, to deal
with multiple stem-loops. A ROOT node represents the start

of the model. BEGL and BEGR nodes represent the
beginnings of a branch on the left and right side of a
bifurcation, respectively. END nodes end each branch.
The CM is composed of seven different types of states, each

with a corresponding form of production rule, with notation
defined as follows:

State Description Production DL
v DR

v Emission Transition
P Pair emitting P ! aYb 1 1 ev(a,b) tv(Y)
L Left emitting L ! aY 1 0 ev(a) tv(Y)
R Right emitting R ! Ya 0 1 ev(a) tv(Y)
B Bifurcation B ! SS 0 0 1 1
D Delete D ! Y 0 0 1 tv(Y)
S Start S ! Y 0 0 1 tv(Y)
E End E ! e 0 0 1 1

That is, for instance, if state v is a pair state, it produces
(aligns to and scores) two correlated residues, a and b, and
moves to some new state, Y. The probability that it produces a
residue pair a,b is given by an emission probability ev(a,b). The
probability that it moves to a particular state Y is given by a
transition probability tv(Y). The set of possible states Y that v
may transit to is limited to the states in the next (lower) node
in the guide tree (and insert states in the current node); the
set of possible children states Y is called Cv, for ‘‘children of
v.’’ The indicators DL

v and DR
v are used to simplify notation in

Figure 1. An Example RNA Family and Corresponding CM

(A) A toy multiple alignment of three RNA sequences, with 28 total columns, 24 of which will be modeled as consensus positions. The [structure] line
annotates the consensus secondary structure: angle brackets mark base pairs, colons mark consensus single-stranded positions, and periods mark
‘‘insert’’ columns that will not be considered part of the consensus model because more than half the sequences in these columns contain gaps.
(B) The structure of one sequence from (A), the same structure with positions numbered according to alignment columns, and the guide tree of nodes
corresponding to that structure, with alignment column indices assigned to nodes (for example, node 5, a MATP match-pair node, will model the
consensus base pair between columns 4 and 14).
(C) The state topology of three selected nodes of the CM, for two MATP nodes and one consensus ‘‘leftwise’’ single residue bulge node (MATL, ‘‘match-
left’’). The consensus pair and singlet states (two MPs and one ML) are white, and the insertion/deletion states are gray. State transitions are indicated
by arrows.
doi:10.1371/journal.pcbi.0030056.g001
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CM DP algorithms. They are the number of residues emitted
to the left and right of state v, respectively. Bifurcation rules
are special, in that they always transition to two particular
start (S) states, at the root of subtrees in the guide tree, with
probability 1.0.

These state types essentially define a ‘‘normal form’’ for
SCFG models of RNA, akin to SCFGs in Chomsky normal
form where all productions are in one of two forms, Y! a or
Y ! YY. We describe CM algorithms (including QDB) in
terms of this normal form. CMs define a specific way that
nodes in the guide tree are expanded into states and how
those states are connected within each node and to states in
the next node in the guide tree. For example, a MATP node
that deals with a consensus base pair contains six states called
MATP_MP (a P state for matching the base pair),
MATP_ML and MATP_MR (an L and an R state for
matching only the leftmost or rightmost base and deleting
the right or left one, respectively), MATP_D (a D state for
deleting the base pair), and MATP_IL and MATP_IR (L and
R states with self-transitions, for inserting one or more
residues to the left and/or right, respectively, before going to
the next node).

Thus, a CM is a generative probabilistic model of
homologous RNAs. A sequence is emitted starting at the
root, moving downward from state to state according to state
transition probabilities, emitting residues and residue pairs
according to emission probabilities, and bifurcating into
substructures at bifurcation states. An important property of
a CM is the states can be numbered from 0 . . . M � 1 (from
root to leaves) such that for any state v, the states y that it can
transit to must have indices y � v. There are no cycles in a
CM, other than self-transitions on insert states. This is the
property that enables the recursive calculations that both CM
DP alignment algorithms and QDB rely on.

Without any change in the above description, CMs apply to
either global or local alignment, and to either pairwise
alignment to single RNA queries or profile alignment to a
consensus query structure of a multiple RNA sequence
alignment. CMs for single RNA queries are derived identically
to profiles of a consensus structure, differing only in the
parameterization method [27]. Local structural alignment to
substructures and truncated structures (as opposed to
requiring a global alignment to the whole RNA structural
model) is achieved by adding state transitions from the
ROOT that permit entering the model at any internal
consensus state with some probability, and state transitions
from any internal consensus state to an END with some
probability [26,27].

QDB Algorithm
Observe that for any state v, we could enumerate all

possible paths down the model from v to the END(s). Each
path has a certain probability (the product of the transition
probabilities used by the path), and it will emit a certain
number d of residues (two per P state, one per L or R state in
the path). The sum of these path probabilities for each d
defines a probability distribution cv(d), the probability that
the CM subgraph rooted at v will generate a subsequence of
length d. Given a finite limit Z on maximum subsequence
length (defined later), we can calculate cv(d) by an efficient
recursive algorithm, working from the leaves of the CM
toward the root and from smallest subsequences to largest:

for v ¼M � 1 down to 0:
v ¼ end state (E):
cv(0) ¼ 1
cv(d) ¼ 0 for d ¼ 1 to Z

v ¼ bifurcation (B):
cvðdÞ ¼

Pd
n¼0 cyðnÞ � czðd � nÞ for d ¼ 0 to Z

else (v ¼ S,P,L,R):
cvðdÞ ¼ 0 for d ¼ 0 to ðDL

vþDR
v �1Þ

cvðdÞ ¼
P

y2Cv
cyðd�ðDL

vþDR
v ÞÞ � tvðyÞ for d¼ ðD

L
v þDR

v Þ to Z

For example, if we are calculating cv(d) where v is a pair
state, we know that v must emit a pair of residues and then
transit to a new state y (one of its possible transitions Cv), and
then a subgraph rooted at y will have to account for the rest
of the subsequence of length d � 2. Therefore, cv(d) must be
the sum, over all possible states y in Cv, of the transition
probability tv(y) times the probability that the subtree rooted
at y generates a subsequence of length d� 2, which is cv(d� 2),
guaranteed to have already been calculated by the recursion.
For the B state (bifurcation) calculation, indices y and z
indicate the left and right S (start) state that bifurcation state
v must connect to.
A band dmin(v). . .dmax(v) of subsequence lengths that will

be allowed for each state v is then defined as follows. A
parameter b defines the threshold for the negligible
probability mass that we are willing to allow outside the
band. (The default value of b is set to 10�7, as described
later.) We define dmin(v) and dmax(v) such that the
cumulative left and right tails of cv(d) contain less than a
probability b

2:

XdminðvÞ�1

d¼0
cvðdÞ,

b
2
;

XZ

d¼dmaxðvÞþ1
cvðdÞ,

b
2
:

Larger values of b produce tighter bands and faster
alignments, but at a cost of increased risk of missing the
optimal alignment. b is the only free parameter that must be
specified to QDB.
Because CMs have emitting self-loops (i.e., insert states),

there is no finite limit on subsequence lengths. However, we
must impose a finite limit Z to obtain a finite calculation. Z
can be chosen to be sufficiently large that it does not affect
dmax(v) for any state v. On a digital computer with floating
point precision e (the largest value for which 1 þ e ¼ 1), it
suffices to guarantee that, for all v:

X‘

d¼Zþ1
cvðdÞ

XZ

d 9¼dmaxðvÞþ1
cvðd9Þ

� e

Empirically, we observe that the tails of the cv(d) densities
decrease approximately geometrically. We can estimate the
mass remaining in the unseen tail by fitting a geometric tail to
the observed density cv(d). Our implementation starts with a
reasonable guess at Z and verifies that the above condition is
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true for each v, assuming these geometrically decreasing tails;
if it is not, Z is increased and bands are recalculated until it is.

A QDB calculation needs to be performed only once per
query CM to set the bands. Overall, a QDB calculation
requires H(MZ) in time and space, or, equivalently, because
both M and Z scale roughly linearly with the length L in
residues of the query RNA, H(L2). The time and space
requirement is negligible compared with the requirements of
a typical CM search.

Banded Cocke–Younger–Kasami Database Search
Algorithm for CMs

A standard algorithm for obtaining the maximum like-
lihood alignment (parse tree) of an SCFG to a target sequence
is the Cocke–Younger–Kasami (CYK) DP algorithm [28�30].
Formally, CYK applies to SCFGs reduced to Chomsky normal
form, and it aligns to the complete sequence. The CM
database search algorithm is a CYK variant, specialized for

the ‘‘normal form’’ of our seven types of RNA production
rules and for scanning long genomic sequences for high-
scoring subsequences (hits) [14].
The CM search algorithm recursively calculates av(j,d), the

log probability of the most likely CM parse subtree rooted at
state v that generates (aligns to) the length d subsequence
xj�dþ1. . . xj that ends at position j of target sequence x [14,15].
This calculation initializes at the smallest subgraphs (E states)
and shortest subsequences (d ¼ 0) and iterates upward and
outward to progressively larger subtrees and longer sub-
sequences up to a preset window size W. The outermost loop
iterates over the end position j on the target sequence,
enabling an efficient scan across a long target like a
chromosome sequence. Banding is achieved simply by limit-
ing all loops over possible subsequence lengths d to the
bounds dmin(v). . .dmax(v) derived in the band calculation
algorithm, rather than all possible lengths 0. . .W. The banded
version of the algorithm is as follows:

Initialization (impose bands): for j ¼ 0 to L, v ¼M � 1 down to 0:
for d ¼ 0 to (dmin(v) � 1), av(j,d)¼�‘;
for d ¼min((dmax(v) þ 1), (j þ 1)) to W av(j,d) ¼�‘;

Initialization at d ¼ 0: for j¼ 0 to L, v ¼M � 1 down to 0:
v ¼ end state (E): av(j,0) ¼ 0
v ¼ bifurcation (B): av(j,0) ¼ ay(j,0) þ az(j,0);
v ¼ delete or start (D,S): avðj; 0Þ ¼ maxy2Cv ½ayðj; 0Þ þ log tvðyÞ�;
else (v ¼ P, L, R): av(j,0) ¼�‘.

Recursion: for j¼ 1 to L, d ¼max(1,dmin(v)) to min(dmax(v),j),v ¼M �1 down to 0
v ¼ end state (E): av(j,d)¼�‘;
v ¼ bifurcation (B): kmin ¼max(dmin(z),(d � dmax(y))),

kmax ¼min(dmax(z),(d � dmin(y))),
av(j,d)¼maxkmin � k � kmax [ay(j� k,d � k) þ az(j,k)];

v ¼ delete or start (D,S): av(j,d) ¼maxy2Cv
[ay(j,d) þ log tv(y)];

else (v¼P,L,R): av(j,d)¼maxy2Cv
[ay(j�DR

v ,d� (DL
v þDR

v ))þ log tv(y)]þ log ev(xi,xj).

For example, if we are calculating av(j,d) and v is a pair state
(P), v will generate the base pair xj�dþ1,xj and transit to a new
state y (one of its possible transitions Cv), which then will have
to account for the smaller subsequence xj�dþ2. . . xj�1. The log
probability for a particular choice of next state y is the sum of
three terms: an emission term log ev (xj�dþ1,xj), a transition
term log tv(y), and an already calculated solution for the
smaller optimal parse tree rooted at y, ay(j – 1,d – 2). The value
assigned to av(j,d) is the maximum over all possible choices of
child states y that v can transit to.

The W parameter defines the maximum size of a potential
hit to a model. Previous Infernal implementations required
an ad hoc guess at a reasonable W. The band calculation
algorithm delivers a probabilistically derived W for database
search in dmax(0), the upper bound on the length of the
entire sequence (the sequence generated from the root state
of the CM).

In our implementation, this algorithim is encoded in a
more memory-efficient form that allocates space for only two
sequence positions in j (current and previous) for most states
rather than for all j ¼ 0. . .L, using essentially the same
techniques described for CYK search in [14]. We have
omitted the necessary details here for clarity. QDB does
not reduce the asymptotic computational complexity of the
CM search algorithm. Both the banded algorithm and the

original algorithm are O(MWþ BW2) memory and O(L(MWþ
BW2)) time, for a model of M states containing B bifurcation
states, window size W of residues, and target database length
L. M, B, and W all scale with the query RNA length N, so
roughly speaking, worst-case asymptotic time complexity is
O(LN3).

Informative Dirichlet Priors
The subsequence length distributions calculated by QDB

depend on the CM’s transition probabilities. Transition
probability parameter estimation is therefore crucial for
obtaining predicted subsequence length bands that reflect
real subsequence lengths in homologous RNA targets.
Transition parameters in Infernal are mean posterior
estimates, combining (ad hoc weighted) observed counts
from an input RNA alignment with a Dirichlet prior [26].
Previous to this work, Infernal used an uninformative
uniform Dirichlet transition prior, equivalent to the use of
Laplace ‘‘plus-1’’ pseudo-counts. However, we found that
transition parameters derived under a uniform prior
inaccurately predict target subsequence lengths, as shown in
an example in Figure 2. The problem is exacerbated when
there are few sequences in the query alignment, when the
choice of prior has more impact on mean posterior
estimation. To alleviate this problem, we estimated informa-
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tive single component Dirichlet prior densities for CM
transition parameters, as follows.

The training data for transition priors consisted of the 381
seed alignments in the Rfam database, version 6.1 [17]. For
each alignment, we built CM structures by Infernal’s default
procedure and collected weighted counts of observed
transitions in the implied parse trees of the training
sequences. Considering all possible combinations of pairs of
adjacent node types, there are 73 possible distinct types of
transition probability distributions in CMs. To reduce this
parameter space, we tied these 73 distributions into 36
groups by assuming that certain distributions were effectively
equivalent. Thirty-six Dirichlet densities were then estimated
from these pooled counts by maximum likelihood as
described in [31], with the exception that we optimize by
conjugate gradient descent [32] rather than by expectation–
maximization (EM). The results, including the Dirichlet
parameters, are given in Table 1. Using these priors for
transition probability parameter estimation results in an
improvement in the utility of QDB calculations, often
yielding tighter, yet accurate subsequence length distribu-
tions, as illustrated by anecdotal example in Figure 2.

We also estimated informative mixture Dirichlet density
priors for emission probabilities. Emission probabilities have
no effect on QDB, but informative emission priors should
improve sensitivity and specificity of CM searches, as they do
for profile HMMs [31,33]. We collected filtered counts of

aligned single-stranded residues and base pairs from anno-
tated ribosomal RNA alignments from four alignments in the
2002 version of the European Ribosomal RNA Database
[34,35]: large subunit rRNA (LSU), bacterial/archaeal/plastid
small subunit rRNA (SSU-bap), eukaryotic SSU rRNA (SSU-
euk), and mitochondrial SSU rRNA (SSU-mito). These align-
ments were filtered, removing sequences in which either less
than 40% of the base-paired positions are present or more
than 5% of the nucleotides are ambiguous, and removing
selected sequences based on single-linkage clustering such
that no two sequences in a filtered alignment were greater
than 80% identical (in order to remove closely related
sequences). Summary statistics for the filtered alignments and
collected counts in the training data set are given in Table 2.
These data were used to estimate a nine-component Dirichlet
mixture prior for base pairs and an eight-component
Dirichlet mixture prior for single-stranded residues. The
base pair prior is given in Table 3, and the singlet residue
prior is given in Table 4.
The reason to use two different data sets to estimate

transition versus emission priors is the following. Rfam
provides many different structural RNA alignments but of
uneven quality and varying depth (number of sequences). The
European rRNA database provides a small number of
different RNA alignments but of high quality and great
depth. A transition prior training set should be maximally
diverse, so as not to bias any transition types toward any

Figure 2. Effect of Transition Priors on Band Calculation

Predicted and actual target lengths are shown for three CMs built from alignments of five transfer RNA, 5S rRNA, and RNaseP sequences, which are
about 75, 120, and 380 residues long, respectively. Solid vertical lines are histogram bars of the actual lengths of the query sequences in each
alignment, corresponding with the right vertical axis labels. Dashed and dotted curves show QDB calculations for c0(d) for the root state of each model,
for uninformative versus informative Dirichlet priors, respectively. Dashed and dotted vertical lines show the band bounds [dmin(0) (left) and dmax(0)
(right)] derived from the c0(d) distributions using b ¼ 10�7. The uninformative plus-1 prior results in consistent underprediction of target sequence
lengths, with a broad distribution. The new informative priors produce tighter distributions that are centered on the actual subsequence lengths. We
observe the same result for all other states (unpublished data).
doi:10.1371/journal.pcbi.0030056.g002
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Table 1. Dirichlet Priors for Transitions

Distri-

bution

Number

Tied

to

Distri-

bution

Counts

Group

Counts

Node

State

Next

Node

Dirichlet a Parameters

jaj t at

jaj t at

jaj t at

jaj t at

jaj t at

jaj t at

jaj

1 6 11 MATP_MP BIF 0.5509 IL 0.1229 IR 0.0001 B 0.8770 — — — — — —

2 7,023 7,119 MATP_MP MATP 7.2986 IL 0.0023 IR 0.0024 MP 0.9816 ML 0.0056 MR 0.0046 D 0.0035

3 1,600 1,830 MATP_MP MATL 1.5914 IL 0.0179 IR 0.0155 ML 0.9200 D 0.0466 — — — —

4 145 195 MATP_MP MATR 1.9038 IL 0.0173 IR 0.0073 MR 0.8903 D 0.0852 — — — —

5 1 2 11 MATP_MP END 0.5509 IL 0.1229 IR 0.0001 E 0.8770 — — — — — —

6a 1 2 MATP_ML BIF 3.0000 IL 0.3333 IR 0.3333 B 0.3333 — — — — — —

7 577 577 MATP_ML MATP 0.6941 IL 0.0131 IR 0.0103 MP 0.4032 ML 0.4983 MR 0.0115 D 0.0636

8 133 133 MATP_ML MATL 0.9316 IL 0.0739 IR 0.0651 ML 0.7038 D 0.1571 — — — —

9 15 15 MATP_ML MATR 0.3272 IL 0.1884 IR 0.0432 MR 0.4082 D 0.3602 — — — —

10a 6 1 2 MATP_ML END 3.0000 IL 0.3333 IR 0.3333 E 0.3333 — — — — — —

11a 1 2 MATP_MR BIF 3.0000 IL 0.3333 IR 0.3333 B 0.3333 — — — — — —

12 531 531 MATP_MR MATP 0.7987 IL 0.0079 IR 0.0190 MP 0.3241 ML 0.0193 MR 0.5631 D 0.0666

13 151 151 MATP_MR MATL 0.6933 IL 0.0357 IR 0.0699 ML 0.3066 D 0.5879 — — — —

14 15 15 MATP_MR MATR 0.3574 IL 0.0582 IR 0.0002 MR 0.7629 D 0.1787 — — — —

15a 11 1 2 MATP_MR END 3.0000 IL 0.3333 IR 0.3333 E 0.3333 — — — — — —

16a 0 2 MATP_D BIF 3.0000 IL 0.3333 IR 0.3333 B 0.3333 — — — — — —

17 575 575 MATP_D MATP 0.5450 IL 0.0019 IR 0.0047 MP 0.0857 ML 0.0534 MR 0.0528 D 0.8015

18 149 149 MATP_D MATL 0.5831 IL 0.0421 IR 0.0526 ML 0.2080 D 0.6973 — — — —

19 14 14 MATP_D MATR 0.1164 IL 0.0001 IR 0.0001 MR 0.2439 D 0.7559 — — — —

20a 16 2 2 MATP_D END 3.0000 IL 0.3333 IR 0.3333 E 0.3333 — — — — — —

21 2 4 MATP_IL BIF 1.4397 IL 0.6553 IR 0.0445 B 0.3002 — — — — — —

22 121 126 MATP_IL MATP 0.9402 IL 0.1673 IR 0.1394 MP 0.5904 ML 0.0443 MR 0.0259 D 0.0327

23 114 119 MATP_IL MATL 0.8046 IL 0.3108 IR 0.1936 ML 0.4610 D 0.0346 — — — —

24 14 15 MATP_IL MATR 1.0926 IL 0.1419 IR 0.0501 MR 0.6538 D 0.1541 — — — —

25 21 2 4 MATP_IL END 1.4397 IL 0.6553 IR 0.0445 E 0.3002 — — — — — —

26 1 31 MATP_IR BIF 0.9361 IR 0.2827 B 0.7173 — — — — — — — —

27 145 227 MATP_IR MATP 1.5494 IR 0.1884 MP 0.7090 ML 0.0165 MR 0.0588 D 0.0273 — —

28 129 701 MATP_IR MATL 1.6332 IR 0.3681 ML 0.5752 D 0.0566 — — — — — —

29 8 160 MATP_IR MATR 1.2428 IR 0.2633 MR 0.6809 D 0.0558 — — — — — —

30 26 0 31 MATP_IR END 0.9361 IR 0.2827 E 0.7173 — — — — — — — —

31 108 1,130 MATL_ML BIF 1.2298 IL 0.0078 B 0.9922 — — — — — — — —

32 420 1,319 MATL_ML MATP 2.4162 IL 0.0132 MP 0.9520 ML 0.0150 MR 0.0129 D 0.0070 — —

33 19,013 19,371 MATL_ML MATL 1.8632 IL 0.0082 ML 0.9711 D 0.0207 — — — — — —

34 859 6,692 MATL_ML MATR 72.1283 IL 0.0058 MR 0.9755 D 0.0187 — — — — — —

35 31 801 1,130 MATL_ML END 1.2298 IL 0.0078 E 0.9922 — — — — — — — —

36 28 172 MATL_D BIF 6.8008 IL 0.0029 B 0.9971 — — — — — — — —

37 103 103 MATL_D MATP 0.7288 IL 0.0321 MP 0.5730 ML 0.0536 MR 0.1654 D 0.1758 — —

38 3,152 3,152 MATL_D MATL 0.4101 IL 0.0138 ML 0.3105 D 0.6756 — — — — — —

39 154 154 MATL_D MATR 0.6736 IL 0.0203 MR 0.6014 D 0.3782 — — — — — —

40 36 144 172 MATL_D END 6.8008 IL 0.0029 E 0.9971 — — — — — — — —

41 26 13 31 MATL_IL BIF 0.9361 IL 0.2827 B 0.7173 — — — — — — — —

42 27 35 227 MATL_IL MATP 1.5494 IL 0.1884 MP 0.7090 ML 0.0588 MR 0.0165 D 0.0273 — —

43 28 549 701 MATL_IL MATL 1.6332 IL 0.3681 ML 0.5752 D 0.0566 — — — — — —

44 29 45 160 MATL_IL MATR 1.2428 IL 0.2633 MR 0.6809 D 0.0558 — — — — — —

45 26 0 31 MATL_IL END 0.9361 IL 0.2827 E 0.7173 — — — — — — — —

46 31 206 1,130 MATR_MR BIF 1.2298 IR 0.0078 B 0.9922 — — — — — — — —

47 32 848 1,319 MATR_MR MATP 2.4162 IR 0.0132 MP 0.9520 ML 0.0150 MR 0.0129 D 0.0070 — —

48 34 5,833 6,692 MATR_MR MATR 2.1283 IR 0.0058 MR 0.9755 D 0.0187 — — — — — —

49 39 39 MATR_D BIF 0.4664 IR 0.0463 B 0.9537 — — — — — — — —

50 176 176 MATR_D MATP 0.8689 IR 0.0245 MP 0.6126 ML 0.1269 MR 0.0471 D 0.1890 — —

51 771 771 MATR_D MATR 0.4869 IR 0.0119 MR 0.3373 D 0.6507 — — — — — —

52 26 15 31 MATR_IR BIF 0.9361 IR 0.2827 B 0.7173 — — — — — — — —

53 27 39 227 MATR_IR MATP 1.5494 IR 0.1884 MP 0.7090 ML 0.0165 MR 0.0588 D 0.0273 — —

54 29 107 160 MATR_IR MATR 1.2428 IR 0.2633 MR 0.6809 D 0.0558 — — — — — —

55 338 338 BEGL_S MATP 5.0422 MP 0.9579 ML 0.0121 MR 0.0183 D 0.0117 — — — —

56 31 15 1,130 BEGR_S BIF 1.2298 IL 0.0078 B 0.9922 — — — — — — — —

57 32 51 1,319 BEGR_S MATP 2.4162 IL 0.0132 MP 0.9520 ML 0.0150 MR 0.0129 D 0.0070 — —

58 33 358 19,371 BEGR_S MATL 1.8632 IL 0.0082 ML 0.9711 D 0.0207 — — — — — —

59 26 2 31 BEGR_IL BIF 0.9361 IL 0.2827 B 0.7173 — — — — — — — —

60 27 3 227 BEGR_IL MATP 1.5494 IL 0.1884 MP 0.7090 ML 0.0588 MR 0.0165 D 0.0273 — —

61 28 19 701 BEGR_IL MATL 1.6332 IL 0.3681 ML 0.5752 D 0.0566 — — — — — —

62 1 3 11 ROOT_S BIF 0.5509 IL 0.1229 IR 0.0001 B 0.8770 — — — — — —

63 2 96 7,119 ROOT_S MATP 7.2986 IL 0.0023 IR 0.0024 MP 0.9816 ML 0.0056 MR 0.0046 D 0.0035

64 3 230 1,830 ROOT_S MATL 1.5914 IL 0.0179 IR 0.0155 ML 0.9200 D 0.0466 — — — —

65 4 50 195 ROOT_S MATR 1.9038 IL 0.0173 IR 0.0073 MR 0.8903 D 0.0852 — — — —
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particular RNA structure, so we used the 381 different Rfam
alignments for transitions. Emission prior estimation, in
contrast, improves with alignment depth and accuracy but
does not require broad structural diversity per se, so we used
rRNA data for emissions.

Inspection of the Dirichlet a parameters shows sensible
trends. In the transition priors, transitions between main
(consensus) states are now favored (higher a values) relative to
insertions and deletions. In the base pair emission mixture
prior, all components favor Watson–Crick and G-U pairs,
with different components preferring different proportions
of pairs in a particular covarying aligned column (for
instance, component 1 likes all four Watson–Crick pairs,
component 2 describes covarying conservation of CG,UA,UG
pairs, and component 3 specifically likes conserved CG pairs),
and the mean a parameters prefer GC/CG pairs over AU/UA
pairs. In the singlet emission mixture prior, some compo-
nents are capturing strongly conserved residues (component
1 favors conserved U’s, for example) while other components
favor more variation (components 4 and 5, for example), and
the marginal a parameters show a strong A bias, reflecting the
known bias for adenine in single-stranded positions of
structural RNAs (especially ribosomal RNAs).

There is redundancy between some components (notably 5
and 8 in the base pair mixture and 2, 3 and 8 in the singlet
mixture). This is typical for statistical mixture estimation,
which (unlike, say, principal components analysis) does not
guarantee independence between components. The decision
to use nine pair and eight singlet components was empirical,
as these priors performed better than priors with fewer
components on the benchmark we describe below (unpub-
lished data).
Note that all singlet positions are modeled with one singlet

mixture prior distribution, and all base pairs are modeled
with one base pair mixture prior. These priors do not
distinguish between singlet residues in different types of
loops, for example, or between a stem-closing base pair versus
other base pairs. In the future, it may prove advantageous to
adopt more complex priors to capture effects of structural
context on base pair and singlet residue preference.
In another step to increase sensitivity and specificity of the

program, we adopted the ‘‘entropy weighting’’ technique
described for profile HMMs [36] for estimating the total
effective sequence number for an input query alignment.
This is an ad hoc method for reducing the information
content per position of a model, which helps a model that has

Table 1. Continued.

Distri-

bution

Number

Tied to Distribution

Counts

Group

Counts

Node

State

Next

Node

Dirichlet a Parameters

jaj t a
jaj t a

jaj t a
jaj t a

jaj t a
jaj t a

jaj

66 21 0 4 ROOT_IL BIF 1.4397 IL 0.6553 IR 0.0445 B 0.3002 — — — — — —

67 22 5 126 ROOT_IL MATP 0.9402 IL 0.1673 IR 0.1394 MP 0.5904 ML 0.0443 MR 0.0259 D 0.0327

68 23 5 119 ROOT_IL MATL 0.8046 IL 0.3108 IR 0.1936 ML 0.4610 D 0.0346 — — — —

69 24 1 15 ROOT_IL MATR 1.0926 IL 0.1419 IR 0.0501 MR 0.6538 D 0.1541 — — — —

70 26 0 31 ROOT_IR BIF 0.9361 IR 0.2827 B 0.7173 — — — — — — — —

71 27 5 227 ROOT_IR MATP 1.5494 IR 0.1884 MP 0.7090 ML 0.0165 MR 0.0588 D 0.0273 — —

72 28 4 701 ROOT_IR MATL 1.6332 IR 0.3681 ML 0.5752 D 0.0566 — — — — — —

73 29 0 160 ROOT_IR MATR 1.2428 IR 0.2633 MR 0.6809 D 0.0558 — — — — — —

Distribution Number, index for the 73 different types of transition distributions in CMs.
Tied to, if an index is shown in this column, this distribution was estimated in a group (pooling observed counts) with the indicated distribution.
Distribution Counts, total counts observed for this distribution in the training data, before pooling into groups.
Group Counts, total counts for a group of one or more pooled distributions; this is the size of the training data sets for 36 different single-component Dirichlet priors.
Node State, unique CM state type the transition is from.
Next Node, the node type that the transitions are going to. The codes for node types and state types in a CM are more fully explained in [16].
aSix distributions that had very few observed counts even after tying into groups, and for which we assigned a uniform plus-1 Laplace prior.
doi:10.1371/journal.pcbi.0030056.t001

Table 2. Summary Statistics for the Data Set Used for Emission Prior Estimation

Alignment Number of

Sequences

Number of

Filtered

Sequences

Number of

Alignment

Columns

Number of

Consensus

Base Pairs

Number of

Consensus

SS Columns

Base

Pair

Counts

SS Counts

LSU 1,551 139 7,270 601 1,532 65,229 180,558

SSU bap 12,773 254 2,653 421 680 97,834 153,565

SSU euk 7,151 207 4,558 407 959 72,521 174,260

SSU mito 1,039 107 3,791 216 524 19,803 56,510

SS, single-stranded.
doi:10.1371/journal.pcbi.0030056.t002
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been trained on closely related sequences to recognize
distantly related homologs [37]. In entropy weighting, one
reduces the total effective sequence number (which would
normally be the actual number of sequences in the input
alignment), thereby increasing the influence of the Dirichlet
priors, flattening the transition and emission distributions,
and reducing the overall information content. We approx-
imate a model’s entropy as the mean entropy per consensus
residue, as follows. Let C be the set of all MATP_MP states
emitting consensus base pairs (a,b), and let D be the set of all
MATL_ML and MATR_MR states emitting consensus
singlets (a); the entropy is then calculated as:

�
X

v2C

X

a;b

evða; bÞlog evða; bÞ �
X

v2D

X

a

evðaÞlog evðaÞ

2jCj þ jDj

For each input multiple alignment, the effective sequence
number is set (by bracketing and binary search) so as to
obtain a specified target entropy. The target entropy for
Infernal is a free parameter, which we optimized on the
benchmark described below to identify our default value of
1.46 bits.

Benchmarking
To assess the effect of QDB, informative priors, and

entropy weighting on the speed, sensitivity, and specificity
of RNA similarity searches, we designed a benchmark based
on the Rfam database [17]. The benchmark was designed so
that we would test many RNA query/target pairs, with each
query consisting of a given RNA sequence alignment, and
each target consisting of a distantly related RNA homolog
buried in a context of a random genome-like background
sequence.

Table 3. Parameters of the Nine-Component Dirichlet Mixture Emission Prior for Base Pairs

Component i 1 2 3 4 5 6 7 8 9

qi 0.0305 0.0703 0.1185 0.1810 0.1888 0.1576 0.0417 0.0959 0.1156

jaj 14.3744 2.9920 26.2757 0.5342 4.2716 13.3232 33.8619 22.2258 33.1991

ab Mean a aab

jaj

AA 0.0063 0.0398 0.0390 0.0011 0.0017 0.0005 0.0062 0.0064 0.0058 0.0002

AC 0.0092 0.0421 0.0176 0.0009 0.0152 0.0018 0.0125 0.0115 0.0051 0.0046

AG 0.0052 0.0381 0.0226 0.0046 0.0034 0.0008 0.0032 0.0040 0.0053 0.0001

AU 0.1663 0.1092 0.0864 0.0194 0.2138 0.1464 0.2563 0.7360 0.1295 0.0404

CA 0.0086 0.0412 0.0510 0.0054 0.0027 0.0044 0.0018 0.0030 0.0138 0.0002

CC 0.0038 0.0327 0.0115 0.0030 0.0001 0.0003 0.0036 0.0039 0.0035 0.0041

CG 0.2412 0.1007 0.1392 0.8310 0.1359 0.3211 0.0889 0.0340 0.2870 0.0147

CU 0.0066 0.0418 0.0172 0.0027 0.0104 0.0019 0.0045 0.0076 0.0052 0.0003

GA 0.0061 0.0362 0.0266 0.0002 0.0074 0.0002 0.0058 0.0045 0.0042 0.0021

GC 0.2547 0.1299 0.0544 0.0206 0.1786 0.1613 0.4079 0.0945 0.1155 0.8858

GG 0.0063 0.0327 0.0142 0.0045 0.0091 0.0005 0.0072 0.0023 0.0044 0.0030

GU 0.0567 0.0811 0.0412 0.0049 0.1355 0.0451 0.0668 0.0303 0.0356 0.0218

UA 0.1571 0.1063 0.3085 0.0672 0.1856 0.2293 0.0902 0.0363 0.3108 0.0151

UC 0.0063 0.0477 0.0263 0.0006 0.0048 0.0002 0.0056 0.0042 0.0060 0.0038

UG 0.0543 0.0746 0.1054 0.0317 0.0807 0.0814 0.0299 0.0120 0.0551 0.0032

UU 0.0114 0.0459 0.0389 0.0022 0.0151 0.0048 0.0098 0.0095 0.0133 0.0008

qi, mixture coefficient for component i.
Normalized a values .0.10 are in boldfaced type (0.10 was arbitrarily chosen to highlight higher values).
doi:10.1371/journal.pcbi.0030056.t003

Table 4. Parameters of the Eight-Component Dirichlet Mixture Emission Prior for Singlets

Component i 1 2 3 4 5 6 7 8

qi 0.0851 0.0159 0.1020 0.4160 0.0745 0.0554 0.1184 0.1327

jaj 15.4467 154.464 180.286 5.4562 0.2199 16.4089 13.4592 19.9059

a Mean a aa

jaj

A 0.3951 0.0373 0.9961 0.9787 0.3109 0.3383 0.0375 0.0864 0.8247

C 0.1635 0.0490 0.0015 0.0052 0.2067 0.1782 0.8916 0.0303 0.0493

G 0.2041 0.0220 0.0023 0.0072 0.1751 0.2905 0.0182 0.8313 0.0569

U 0.2372 0.8917 0.0000 0.0090 0.3073 0.1930 0.0527 0.0519 0.0691

qi, mixture coefficient for component i.
Normalized a values .0.10 are in boldfaced type (0.10 was arbitrarily chosen to highlight higher values).
doi:10.1371/journal.pcbi.0030056.t004
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Table 5. Rfam Benchmark Families with Timing and MER Statistics

Rfam

7.0 ID

Family Name Number of Query

Sequences

Number of

Test

Sequences

Average

Length

of Query

W Nonbanded QDB

(b ¼ 10�7)

QDB

(b ¼ 10�7)

Time Time Speeded

Up

MER FP FN MER

Threshold

RF00177 SSU_rRNA_5 145 21 593 690 96.97 7.61 12.74 0 0 0 9.90

RF00024 Telomerase-vert 20 11 436 505 52.99 4.44 11.94 0 0 0 11.30

RF00011 RNaseP_bact_b 30 1 366 441 33.44 3.72 8.98 0 0 0 11.31

RF00018 CsrB 8 1 351 403 28.76 2.27 12.68 0 0 0 12.98

RF00040 rne5 6 1 338 368 19.69 2.60 7.57 0 0 0 11.79

RF00023 tmRNA 19 40 334 463 24.58 2.47 9.95 11 0 11 11.20

RF00010 RNaseP_bact_a 233 1 332 514 33.82 3.29 10.27 0 0 0 12.61

RF00009 RNaseP_nuc 26 21 320 530 27.89 7.11 3.93 19 0 19 11.67

RF00017 SRP_euk_arch 28 21 303 328 14.78 2.70 5.48 6 0 6 10.40

RF00028 Intron_gpI 5 24 300 381 17.55 3.59 4.88 19 2 17 10.70

RF00373 RNaseP_arch 20 13 290 337 15.06 3.12 4.82 0 0 0 12.23

RF00030 RNase_MRP 18 3 284 394 19.75 3.12 6.34 3 0 3 12.46

RF00101 SraC_RyeA 6 1 250 278 9.50 1.54 6.19 0 0 0 11.88

RF00230 T-box 10 35 244 298 8.23 1.80 4.58 1 0 1 12.34

RF00448 IRES_EBNA 7 1 213 238 7.25 1.26 5.76 1 0 1 11.99

RF00012 U3 6 5 212 240 7.17 1.61 4.46 2 0 2 13.02

RF00174 Cobalamin 87 66 203 326 9.49 2.85 3.32 0 0 0 11.28

RF00004 U2 76 1 184 215 5.95 1.12 5.29 0 0 0 10.01

RF00234 glmS 8 3 181 303 7.98 1.83 4.36 0 0 0 11.22

RF00168 Lysine 33 17 180 223 5.71 1.45 3.94 0 0 0 15.98

RF00380 ykoK 35 3 168 192 4.33 1.23 3.52 0 0 0 13.10

RF00003 U1 46 6 159 184 4.14 0.89 4.63 0 0 0 11.24

RF00025 Telomerase-cil 10 2 157 188 3.89 1.00 3.88 2 0 2 13.97

RF00002 5_8S_rRNA 62 1 151 183 3.44 0.97 3.55 0 0 0 11.28

RF00379 ydaO-yuaA 31 4 147 227 4.38 1.63 2.69 0 0 0 12.25

RF00067 U15 9 3 146 178 2.71 0.98 2.76 0 0 0 11.11

RF00029 Intron_gpII 7 11 141 276 4.75 1.32 3.59 1 0 1 11.08

RF00015 U4 25 1 141 187 3.66 1.04 3.53 1 0 1 13.46

RF00096 U8 5 1 135 177 2.98 0.93 3.20 0 0 0 11.56

RF00080 yybP-ykoY 20 33 129 173 3.05 1.13 2.69 1 0 1 10.78

RF00114 S15 10 1 117 138 1.78 0.60 2.99 0 0 0 13.12

RF00020 U5 29 3 115 139 2.06 0.74 2.80 0 0 0 13.64

RF00059 THI 228 8 109 222 3.34 1.46 2.29 0 0 0 13.66

RF00504 gcvT 109 5 102 199 2.37 1.40 1.70 0 0 0 13.40

RF00167 Purine 33 4 99 119 1.49 0.57 2.62 0 0 0 13.02

RF00169 SRP_bact 46 15 96 120 1.47 0.65 2.26 0 0 0 11.58

RF00055 snoZ37 5 1 94 117 1.14 0.53 2.16 1 0 1 13.96

RF00019 Y 15 1 94 128 1.42 0.73 1.94 1 0 1 14.25

RF00033 MicF 8 1 93 114 1.28 0.51 2.50 0 0 0 13.18

RF00213 snoR38 7 3 88 147 1.36 0.70 1.94 0 0 0 16.07

RF00054 U25 5 1 87 107 0.96 0.46 2.09 1 0 1 16.66

RF00206 U54 12 1 81 115 0.94 0.53 1.76 1 0 1 15.80

RF00104 mir-10 9 2 73 94 0.85 0.52 1.64 2 0 2 16.13

RF00005 tRNA 1080 19 73 127 1.35 0.48 2.81 5 1 4 12.62

RF00170 msr 5 3 70 112 0.86 0.45 1.92 3 0 3 13.49

RF00163 Hammerhead_1 65 1 68 233 1.60 0.90 1.77 0 0 0 15.82

RF00031 SECIS 11 24 64 87 0.69 0.42 1.63 13 2 11 14.58

RF00165 Corona_pk3 10 1 63 80 0.55 0.31 1.78 1 0 1 14.72

RF00066 U7 28 2 62 85 0.59 0.34 1.73 0 0 0 14.23

RF00008 Hammerhead_3 82 1 55 101 0.71 0.44 1.61 0 0 0 14.71

RF00037 IRE 36 1 28 45 0.17 0.12 1.39 1 0 1 17.64

MER statistics summed across all families 96 5 91 N/A

Summary MER statistics (using one threshold for all families) 114 3 111 16.38

Average timing statistics 10.02 1.64 4.21

Total timing statistics 510.86 83.48 6.12

W, window length, maximum size of a hit per family, calculated as dmax(0). Running times for standard (nonbanded) and QDB (b¼ 10�7) searches are given for each family, in CPU-hours
per Mb. FP, false positive, FN, false negative. MER, minimum error rate FP þ FN at threshold. MER threshold, bit score for a given family at which the sum of FP and FN is minimized.
Summary MER statistics, derived from a single score threshold in a ranked list of all hits across all families.
All statistics are for Infernal version 0.72 in local alignment mode.
doi:10.1371/journal.pcbi.0030056.t005
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We started with seed alignments from Rfam version 7.0. In
each alignment, sequences shorter than 70% of the median
length were removed. We clustered the sequences in each
family by single-linkage clustering by percent identity (as
calculated from the given Rfam alignment) and then split the
clusters such that the training set and test sequences satisfied
three conditions: (1) no training/test sequence pair is more
than 60% identical; (2) no test sequence pair is greater than
70% identical; and (3) at least five sequences are in the
training set. Fifty-one families satisfy these criteria (listed in
Table 5), giving us 51 different query alignments (containing
5 to 1,080 sequences each) and 450 total test sequences (from
1 to 66 per query). We embedded the test sequences in a 1-Mb
‘‘pseudo-genome’’ consisting of twenty 50-kb ‘‘chromo-
somes,’’ generated as independent, identically distributed
(iid) random sequences with uniform base frequencies. The
450 test sequences were embedded into this sequence by
replacement, by randomly choosing a chromosome, orienta-
tion, and start position, and disallowing overlaps between test
sequences. The total length of the 450 test sequences is
101,855 nucleotides, leaving 898,145 nucleotides of random
background sequence.

The benchmark proceeds by first building a CM for each
query alignment and then searching the pseudo-genome with
each CM in local alignment mode. All hits above a threshold
of 8.0 in raw bit score for each of the 51 queries were sorted
by score into 51 ranked family-specific lists, as well as one
ranked master list of all 51 sets of scores. Each hit is classified
into one of three categories: ‘‘positive,’’ ‘‘ignore,’’ or
‘‘negative.’’ A ‘‘positive’’ is a hit that significantly overlaps
with a true test sequence from the same family as the query.
An ‘‘ignore’’ is a hit that significantly overlaps with a test
sequence from a different family, where ‘‘significantly over-
lap’’ means that the length of overlap between two sequences
(either two hits, or one hit and one test sequence embedded
in the pseudo-genome) is more than 50% of the length of the
shorter sequence. (Although it would be desirable to measure
the false-positive rate on nonhomologous structural RNAs,
we cannot be sure that any given pair of Rfam families is truly
nonhomologous. Like most sequence family databases, Rfam

is clustered computationally, and more sensitive methods will
reveal previously unsuspected relationships that should not
be benchmarked as ‘‘false positives.’’) A ‘‘negative’’ is a hit
that is not a positive or an ignore. For any two negatives that
significantly overlap, only the one with the better score is
counted.
The minimum error rate (MER) (‘‘equivalence score’’) [38]

was used as a measure of benchmark performance. The MER
score is defined as the minimum sum of the false positives
(negative hits above the threshold) and false negatives (true
test sequences that have no positive hit above the threshold),
at all possible choices of score threshold. The MER score is a
combined measure of sensitivity and specificity, where a
lower MER score is better. We calculate two kinds of MER
scores. For a family-specific MER score, we choose a different
optimal threshold in each of the 51 ranked lists, and for a
summary MER score, we choose a single optimal threshold in
the master list of all hits. The summary MER score is the more
relevant measure of our current performance, because it
demands a single query-independent bit score threshold for
significance. A family-specific MER score reflects the per-
formance that could be achieved if Infernal provided E-values
(currently, it reports only raw bit scores).
For comparison, BlastN was also benchmarked on these data

using a family-pairwise search (FPS) procedure [39]. For each
query alignment, each training sequence is used as a query
sequence to search the pseudo-genome, all hits with an E-value
of less than 1.0 were sorted by increasing E-value, and the
lowest E-value positive hit to a given test sequence is counted.
Using this benchmark, we addressed several questions

about QDB’s performance.
What is the best setting of the single QDB free parameter,

b, which specifies how much probability mass to sacrifice?
Figure 3 shows the average speedup per family and summary
MER score as a function of varying b. There is no clear choice.
The choice of b is a tradeoff of accuracy for speed. We chose a
default of b¼10�7 as a reasonable value that obtains a modest
speedup with minimal loss of accuracy.
How well does QDB accelerate CM searches? Figure 4

shows the time required for searching the 1-Mb benchmark

Figure 3. Effect of Varying the b Parameter on Sensitivity, Specificity, and Speedup

doi:10.1371/journal.pcbi.0030056.g003
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target sequence with each of the 51 models, as a function of
the average query RNA length. QDB reduces the average-case
running time complexity of the CM search algorithm from
LN2.36 to LN1.32. Observed accelerations relative to the
standard algorithm range from 1.4-fold (for the IRE, iron
response element) to 12.7-fold (for the 59 domain of SSU
rRNA), with an average speedup per family of 4.2-fold. In
total search time for the benchmark (sum of all 51 searches),
the acceleration is 6-fold, because large queries have
disproportionate effect on the total time.

How much does QDB impact sensitivity and specificity?
Optimal alignments are not guaranteed to lie within QDB’s
high-probability bands. This is expected to compromise
sensitivity. The hope is that QDB’s bands are sufficiently
wide and accurate that the loss is negligible. Figure 5 shows
ROC plots (sensitivity versus false-positive rate) on the
benchmark for the new version of Infernal (version 0.72) in
standard versus QDB mode. These plots are nearly super-
posed, showing that the loss in accuracy is small at the default
QDB setting of b ¼ 10�7.

Figure 4. CPU Time Required by CM Searches with and without QDB

The time required for searching the 1-Mb target pseudo-genome with each of the 51 benchmark models is shown as a point, plotted on a log–log
graph as a function of the average length of the RNA sequences in the query alignment; open circles are without QDB, and filled circles are with QDB
(with the default b¼ 10�7). Lines represent fits to a power law (aNb), showing that for a fixed L¼ 1-Mb target database size, the standard CYK algorithm
empirically scales as N2.36, and the QDB algorithm scales as N1.32. The apparent intersection of the linear fitted lines is deceptive. At small query lengths,
run time is dominated by factors other than the CM alignment computation, such as i/o. QDB searches are always faster than nonbanded searches even
for synthetic tiny queries of fewer than ten nucleotides (unpublished data).
doi:10.1371/journal.pcbi.0030056.g004

Figure 5. ROC Curves for the Benchmark

Plots are shown for the new Infernal 0.72 with and without QDB, for the old Infernal 0.55, and for family-pairwise searches (FPS) with BlastN.
doi:10.1371/journal.pcbi.0030056.g005
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How much do our changes in parameterization (the
addition of informative Dirichlet priors and entropy weight-
ing) improve sensitivity and specificity? Figure 5 shows that
the new Infernal 0.72 is a large improvement over the
previous Infernal version 0.55, independent of QDB. (On
average, in this benchmark, Infernal 0.55 is no better than a
family-pairwise search with BlastN.) Table 6 breaks this result
down in more detail, showing summary and family-specific
MER scores for a variety of combinations of prior, entropy
weighting, and QDB. These results show that both informa-
tive priors and entropy weighting individually contributed
large improvements in sensitivity and specificity.

Discussion

CM searches take a long time, and this is the most limiting
factor in using the Infernal software to identify RNA
similarities. Prior to this work, Infernal 0.55 required 508
CPU-hours to search 51 models against just 1 Mb of sequence
in our benchmarks (Table 5). Using QDB with b banding
cutoffs that do not appreciably compromise sensitivity and
specificity, Infernal 0.72 offers a 6-fold speedup, performing
the benchmark in 85 hours. Our eventual goal is to enable
routine genome annotation of structural RNAs: to be able to
search thousands of RNA models against complete genome
sequences. A search of all 503 Rfam 7.0 models against the 3-
GB human genome with Infernal 0.72 in QDB mode would
take on the order of 300 CPU-years (down from 1,800 CPU
years with Infernal 0.55). We need to be able to do it in, at the
most, a few days, so we still need to increase CM search speed
by five orders of magnitude. Thus, the QDB algorithm is a
partial but certainly not complete solution to the problem.
However, QDB combines synergistically with other acceler-
ation techniques. Parallelization, on large clusters (although
prohibitively expensive for all but a few centers), could give
us further acceleration of three orders of magnitude.
Software improvement (code optimization) will also contrib-
ute but probably only about 2-fold. Hardware improvements
will contribute about 2-fold per year or so as long as Moore’s
law continues. Finally, QDB is complementary to the filtering
methods recently described by Weinberg and Ruzzo [20�22].
We view QDB as part of a growing suite of approaches that we
can combine to accelerate Infernal.

Is it really worth burning all this CPU time in the first
place? Do CM searches identify structural RNA homologies
that other methods miss? Obviously we think so, but one
would like to see convincing results. For large, diverse RNA
families like transfer RNA, where a CM can be trained on
more than 1,000 well-aligned sequences with a well-conserved
consensus secondary structure, CM approaches have been
quite powerful. The state of the art in large-scale transfer
RNA gene identification remains the CM-based program
tRNAscan-SE [1], and CMs were also used, for example, to
discover the divergent tRNA for pyrrolysine, the ‘‘22nd
amino acid’’ [40]. But Figure 5 shows that on average, in more
than 51 more or less ‘‘typical’’ RNA families of various sizes
and alignment quality, Infernal 0.55 was actually no better
than doing a family-pairwise search with BlastN. Until
recently, we have spent relatively little effort on how Infernal
parameterizes its models and relatively more on reducing its
computational requirements [16], so previous versions of
Infernal have performed best where naive parameterization
works best: on very large, high-quality alignments of
hundreds of sequences, which are atypical of many interest-
ing homology search problems.
In this work, partly because the level of acceleration

achieved by QDB is sensitive to transition parameterization,
we have brought Infernal parameterization close to the state
of the art in profile HMMs, by introducing mixture Dirichlet
priors [31] and entropy weighting [36]. This resulted in a large
improvement in the sensitivity and specificity of searches, as
judged by our benchmark (Figure 5). The difference between
Infernal and family-pairwise BlastN now appears pronounced
for average-case behavior, not just best-case behavior.
However, while we trust our benchmarking to tell us we have
greatly improved Infernal relative to previous versions of
itself, our benchmarking does not allow us to draw firm
conclusions about our performance relative to other soft-
ware. For that, we prefer to see independent benchmarks.
Benchmarks by tool developers are notoriously biased, and
however honest we may try to be, some biases are essentially
unavoidable. For one thing, establishing an internal bench-
mark for ongoing code development creates an insidious
form of training on the test set, because we accept code
changes that improve benchmark performance. In particular,
we set the entropy weighting target of 1.46 bits and the

Table 6. Rfam Benchmark MER Summary Statistics

Program Prior Entropy (Bits) b Summary MER Family-Specific MER

BlastN — — — 216 188

Infernal 0.55 Plus-1 — — 232 180

Infernal 0.72 Plus-1 — — 215 187

Infernal 0.72 Plus-1 1.46 — 208 191

Infernal 0.72 Informative — — 177 158

Infernal 0.72 Informative 1.46 — 105 90

Infernal 0.72 Informative 1.46 10�7 114 96

Programs, BlastN: WU-BLASTN-2.0MP -kap -W¼ 7; for Infernal version 0.55, window length values (W) were preset as calculated in version 0.72 with plus-1 priors.
Prior, Plus-1 if uninformative Laplace plus-1 priors were used; Informative if new Dirichlet priors were used.
Entropy, target model entropy in bits for entropy weighting; — if entropy weighting was not used.
b, tail probability loss for banded calculation used; — if search was nonbanded.
Summary MER, MER across 51 benchmark families.
Family-Specific MER, MER for each family, summed over all 51 families.
doi:10.1371/journal.pcbi.0030056.t006
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numbers of mixture prior components by optimizing against
our benchmark. Further, our benchmark does not use a
realistic model for the background sequence of the ‘‘pseudo-
genome,’’ because we construct the background as a
homogeneous independent, identically distributed (iid) se-
quence, and this poorly reflects the heterogeneous and
repetitive nature of genomic sequence. This benchmark
should be sufficient for an internal comparison of versions
0.55 and 0.72 of Infernal, because we have not altered how
Infernal deals with heterogeneous compositional bias. But we
cannot safely draw conclusions from our simple benchmark
about the relative performance of Infernal and Blast on real
searches, for example, because Blast may (and in fact does)
treat sequence heterogeneity better than Infernal does. In
this regard, currently we are aware of only one independent
benchmark BRaliBase III [41]. BRaliBase III consists of many
different query alignments of five or 20 RNA sequences,
drawn from three different RNA families (U5, 5S rRNA, and
transfer RNA). These authors’ results broadly confirm our
internal observations: while Infernal 0.55 showed mediocre
performance compared with BlastN and several other tools, a
recent version of Infernal stood out as a superior method for
RNA similarity search.

Nonetheless, although Infernal 0.72 shows large improve-
ments in speed, sensitivity, and specificity over previous
versions, there are numerous areas where we need to improve
further.

A significant gap in our current implementation is that
Infernal reports only raw bit scores and does not yet report
expectation values (E-values). CM local alignment scores
empirically follow a Gumbel (extreme value) distribution [27],
just as local sequence alignment scores do [42], so there are
no technical hurdles in implementing E-values. This will be
an immediate focus for the next version of Infernal. E-value
calculations not only have the effect of reporting statistical
significance (more meaningful to a user than a raw bit score)
but also normalize each family’s score distribution into a
more consistent overall rank order, because different query
models exhibit different null distributions (particularly in the
location parameter of the Gumbel distribution). We therefore
expect E-values to contribute a large increase in performance
whenever a single family-independent threshold is set. Table
6 roughly illustrates the expected gain, by showing the large
difference between summary MER scores and family-specific
MER scores.

Parameterization of both CMs and profile HMMs remains
problematic, because these methods continue to assume that
training sequences are statistically independent, when in fact
they are related (often strongly so) by phylogeny. Methods
like sequence weighting and entropy weighting do help, but

they are ad hoc hacks: unsatisfying and unlikely to be optimal.
Even mixture Dirichlet priors, although they appear to be
mathematically sophisticated, fundamentally assume that
observed counts are drawn as independent multinomial
samples, and therefore the use of Dirichlet priors is
fundamentally flawed. Probabilistic phylogenetic inference
methodology needs to be integrated with profile search
methods. This is an area of active research [43�45] in which
important challenges remain, particularly in the treatment of
insertions and deletions.
Finally, QDB is not the only algorithmic acceleration

method we can envision. Michael Brown described a
complementary banding method to accelerate his SCFG-
based RNACAD ribosomal RNA alignment software [25], in
which he uses profile HMM-based sequence alignment to the
target to determine bands where the more rigorous SCFG-
based alignment should fall (because some regions of the
alignment are well-determined based solely on sequence
alignment). The gapped Blast algorithm (seed word hits,
ungapped hit extension, and banded DP) can conceivably be
extended from two-dimensional sequence alignment to
three-dimensional CM DP lattices. Developing such algo-
rithms, and incorporating them into a widely useful, freely
available codebase, are priorities for us.

Materials and Methods

The version and options used for Blast in our benchmark are
WU-BLASTN-2.0MP -kap -W¼ 7. For Infernal, versions 0.55 and 0.72
were used as indicated. The complete Infernal software package,
including documentation and the Rfam-based benchmark described
here, may be downloaded from http://infernal.janelia.org. It is
developed on GNU/Linux operating systems but should be portable
to any POSIX-compliant operating system, including Mac OS/X. It is
freely licensed under the GNU General Public License.

The ANSI C code we used for estimating maximum likelihood
mixture Dirichlet priors depends on a copyrighted and nonredis-
tributable implementation of the conjugate gradient descent algo-
rithm from Numerical Recipes in C [32]. Our code, less the Numerical
Recipes routine, is freely available upon request.
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