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Abstract. Object-Relational and Object-Oriented DBMSS allow

users to invoke time-consuming (“expensive”) methods in their
queries. When queries containing these expensive methods are run

on data with duplicate values, time is wasted redundantly comput-

ing methods on the same value. This problem has been studied in

the context of programming languages, where “memoization” is the

standard solution. In the database literature, sorting has been pro-

posed to deal with this problem. We compare these approaches along

with a third solution, a variant of unary hybrid hashing which we call

Hybrid Cache. We demonstrate that Hybrid Cache always dom-

inates memorization, and significantly outperforms sorting in many

instances. This provides new insights into the tradeoff between hash-

ing and sorting for unary operations. Additionally, our Hybrid Cache

algorithm includes some new optimization for unary hybrid hash-

ing, which can be used for other applications such as grouping and

duplicate elimination. We conclude with a discussion of techniques

for caching multiple expensive methods in a single query, and raise

some new optimization problems in choosing caching techniques.

1 Introduction

Object-Relational and Object-Oriented Database Manage-

ment Systems allow users to register their own functions or

“methods”, and invoke these methods in declarative queries.

User-defined methods can be arbitrarily time-consuming, so

minimizing the amount of time spent in these methods is an

important factor in improving the efficiency of query process-

ing.

In previous work we have focused on query optimization

techniques to appropriately place time-consuming (“expen-

sive”) predicate methods in a query plan [HS93, He194]. How-

ever, query optimization is only part of the problem; query

execution techniques must also be enhanced to handle ex-

pensive methods, whether they appear in predicates (SQL’s

WHERE and HAVING clauses), or in other parts of a query

(e.g. the SELECT, GROUP BY, and ORDER BY clauses.) In

this paper we consider query execution techniques to mini-

mize the impact of expensive methods wherever they appear
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in a query. In particular, we examine execution techniques

that prevent a method from being computed more than once

per query on the same input value,

As an example of the problem, consider the following SQL

query, which displays a thumbnail sketch of photos used in

advertisements:

SELECT thumbnai 1 ( product_ image )

FROM advert i sements

WHERE product_name = ‘ Brownie’ ;

The product.hage field is a reference to a multi-megabyte

image object. The thumbnai 1 method reads in this object,

and produces a small version of the image. Reading and

processing the object can be quite time-consuming, and hence

thumbnail can be very expensive. Since a given product

may have many different advertisement layouts with the same

photo, thumbnai 1 may need to be computed many times on

the same image object. It would be wasteful to actually invoke

thwnbnai 1 on each reference to an image. Instead, we would

like to cache the result of thumbnai 1 the first time it is called

on a reference to an image, Then each subsequent time that

thurnlmai 1 is called on a reference to the image, we could

use the cached result instead of re-reading and re-processing

the image.

The problem of redundant method invocation can even arise

in queries where the method is invoked on a duplicate-free in-

put, such as the key of a relation. This is because optimization

techniques such as Predicate Migration [HS93] can postpone

expensive predicate methods until after joins are performed.

The join operation often produces duplicate copies of its input

values; this is even possible if there are no duplicate values

in either input. As a result, intelligent optimization of queries

with expensive predicates further motivates intelligent execu-

tion techniques for such queries.

This paper explores query execution techniques to do

method caching efficiently. We begin by considering algo-

rithms to do caching for a single expensive method over re-

lations of arbitrary size. We review two well-known caching

algorithms — memorization and sorting — and present a third

approach based on hybrid hashing, which we call Hybrid

Cache. Hybrid Cache includes some modifications to tradi-

tional unary hybrid hashing, which can be applied to grouping

and duplicate elimination as well as caching. We also discuss

the interaction between these modifications and hybrid hash

join techniques.

We implemented all three caching algorithms in the Illustra

Object-Relational DBMS [11194], and we present a perfor-
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mance study of our implementation. The study demonstrates

three main results:

1. The commonly proposed memorization technique is ex-

tremely inefficient for relations with many values, and its

performance is dominated by Hybrid Cache.

2, Hybrid Cache is the most efficient technique for caching

Boolean predicate methods.

3. There are tradeoffs between Hybrid Cache and sorting for

non-predicate methods.

In our analysis of the tradeoffs between Hybrid Cache and

sorting, we demonstrate that the cost of hashing is based on

the number of distinct values in the input relation, while the

cost of sorting is based on the number of tuples in the input

relation. This makes hashing more attractive than sorting in

many cases. However, we also find that the performance of

hashing is dependent on the size of the method output, while

the performance of sorting is not, which is why sorting can out-

perform hashing in some situations involving non-predicate

methods. Although the similarities between sorting and hash-

ing have been studied previously in some detail (particularly

for joins), the results presented here highlight tradeoffs that

had not been noted before,

We also present techniques to further accelerate queries

with multiple expensive methods. This leads to a number

of questions relating to the challenge of integrating method

caching with query optimization. Although this paper focuses

on query execution techniques only, we outline directions for

further research in query optimization for caches.

1.1 Related Work

A increasingly large body of work has addressed the prob-

lem of query optimization in the face of expensive predi-

cates ([CGK89], [YKY+91 ], [HS93], [He194], [KMPS94],

etc.), These papers are orthogonal to this one in that they

treat optimization issues, and assume that caching strategies

are either efficient or non-existent.

Kemper, Moerkotte, Peithner and Steinbrunn have pro-

posed “bypass” techniques for optimizing and executing dis-

junctive queries [KMPS94, SPMK95]. This work alleviates

some of the problems of redundant computation in disjunc-

tive queries, but does not present a solution to the problem

of redundant method invocation in general — for example,

it does not avoid duplicate method invocation for the simple

thunibnai 1 example above.

This paper focuses on techniques for caching and recover-

ing method results “on the fly” while computing a query. A

large body of orthogonal techniques proviclepersistent caches,

which store method results in relations so that they can be

reused across multiple queries over a period of time. Graefe

provides an annotated bibliography of these ideas in Sec-

tion 12.1 of his query processing survey [Gra93]. Persistent

caches are akin to materialized views [GM95] or function

indices [MS86, LS88] — from the point of view of a sin-

gle query, they represent precomputed methods, rather than

caches which are generated and used on the fly. Persistent

caches are used in a way that is analogous to techniques

for avoiding recomputation of common relational subexpres-

sions [Se188]. In order to generate a persistent cache, one

may have to compute a method over an input relation with

duplicate values; in this scenario, the techniques of this paper

can speed the generation of the persistent cache. Conversely,

if one already has a persistent cache available for a method,

one may be able to circumvent the techniques presented in

this paper. A mixture of techniques is possible as well: if one

has an incomplete persistent cache, it can be used alongside

the techniques of this paper. Our work is thus orthogonal to

the work on persistent caching and common subexpressions;

those approaches can coexist profitably with the techniques

presented here,

Correlated SQL subqueries can be considered as a form

of expensive method [HS93]. It has been demonstrated that

the magic sets rewriting can be used to speed up such sub-

queries [MFPR90, SPL96], even in non-recursive SQL. This

“magic decorrelation” avoids redundant computation by first

computing the (duplicate-free) set of all input values to a cor-

related subquery, then feeding all the distinct input values into

the subquery at once, and finally joining the result of all the

subquery computations to the outer query block. This tech-

nique also allows the input to be handled in a set-oriented

fashion, as opposed to the standard “tuple-at-a-time” invo-

cation of a correlated subquery. Note however, that unlike

subqueries, user-defined methods are necessmily invoked a

tuple at a time. As a result, magic rewriting is not as effec-

tive for expensive methods as the techniques presented in this

paper: the cost of forming the duplicate-free input set is equiv-

alent to the cost of building a method cache, and on top of

this cost magic rewriting requires an additional join and possi-

bly also an additional materialization of the “supplementary”

input [MFPR90]. For expensive subqueries, there are trade-

offs between magic and caching. Seshadri et al. propose new

techniques for cost-based optimization of magic [SHP+96],

which can be extended to the problem of choosing whether to

use magic or caching for subqueries in a query plan. Discus-

sion of using magic sets techniques for queries with multiple

expensive functions appears in Section 6.3.

2 Background: To Cache or Not to Cache?

Methods with duplicate-free inputs derive no benefit from

caching, and one should not pay for the overhead of caching in

such scenarios. In some cases a query optimizer can ascertain

that the input to a method in a plan is duplicate-free, and the

optimizer can avoid caching, e.g., when the input column(s) to

a method form a primary key for the input relation. But there

can also be scenarios that can go undetected by an optimizer,

in which an input happens to have zero or very few duplicates,

and the cost of caching outweighs its benefit.

We will see in this paper that an appropriately chosen

caching technique always has a cost that is at most a frac-

tion of an I/O per tuple. This is a small overhead to incur,

especially as compared to the risk of recomputing an expen-

sive method that may take the time of many I/Os. For this

reason we do not consider cache replacement heuristics com-

monly used in operating systems and buffer managers (e.g.,

LRU, clock, etc.) Instead, we always keep items in the cache

long enough to ensure that we never recompute a previously

cached value.

We will also see below that while an appropriately chosen

caching technique is always relatively cheap, a poorly chosen

caching technique can make caching extremely expensive.
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Figure 1: Memorization

So, to summarize, we recommend method caching in any

situation where one cannot guarantee a duplicate-free input,

but we also recommend that the technique used for caching

be chosen carefully based on the analyses in this paper, We

will return to these points in Section 7.

2.1 A Note on Method Semantics Over Time

One can cache functions indefinitely only if their results are in-

dependent of time. SQL3’S create f unct ion command

allows methods to be declared variant or not variant,

with variant as the default [1S094, 11194]. A variant

function is uncacheable, since it may return a different re-

sult on the same input at different times; a function that is

not variant may be cached indefinitely. Typical time-

independent data analysis and manipulation methods can be

registered as not variant in an SQL3 system, and hence

can be cached. One can refine these categories further, as

was proposed for POSTGRES, by defining classes of meth-

ods whose results are cacheable over natural periods, such as

the length of a transaction or a queryl [He192].

2.2 Environment for Performance Study

Our performance study was run on a development version of

Illustra, based on the publicly available version 2.4.1. Illustra

was run with 256 buffers, and settings to produce traces of

query plans and execution times. The machine used was a

Sun Sparcstation 10/51 with 2 processors and 64 megabytes

of RAM, running SunOS Release 4.1.3. One disk was used to

hold the databases, another for Illustra’s binaries, and a third

was used for paging. Due to restrictions from Illustra, the

performance times presented are relative rather than absolute:

the graphs are scaled so that the lowest data point has the value

1,0. This scaling of results does not affect the conclusions of

1Note that SQL su~queties fall in this category: their results are

cacheable for the length of a query and no longer, since subsequent

operations in the same transaction may update the database, and thus

affect the subquery’s result.

x Y z

x Yz

Figure 2: Sorting

the experiments, which are based on relative performance.

Graphs showing numbers of I/Os are not scaled.

3 IWO Traditional Techniques

This section presents two previously proposed techniques for

caching the results of expensive methods. Each of these al-

gorithms (as well as the hybrid hashing algorithm below)

can be used for expensive methods that appetw anywhere

in a query (SELECT, WHERE , HAVING, GROUP BY,

ORDER BY, etc). The algorithms each take a relation as

input and produce a relation as output, and therefore should

be thought of as nodes in a plan tree, much like Join or Sort.

3.1 Main-Memory Hashtables: Memorization

A well-known technique for caching the results of com-

putation is to build a hash table in memory. In

the programming language and logic programming liter-

ature, this technique is often referred to as memoiza-

tiorr [Mic68]. The algorithm is sketched in Figure 1.

For our advert isements example, this hashtable would

be keyed on a hash function of product-image values

(which might be object identifiers or tile names), and

would store (product. image, thumbnai. 1) pairs. Dur-

ing query processing, before computing thurrkmai 1 fOr a

given product-image, the hashtable would be checked for

the presence of that product.- image. If a match were

found, the resulting thumbnail would be taken from the

hashtable. Otherwise, the thumbnail would be computed,

and an entry would be made in the hashtable for the new

(product. i.mage, thumbnail) pair.

Memorization is easy to implement, and well-suited for

workloads with small numbers of values. Note that it can

work well even when many tuples are involved, since the pro-

cessing per tuple is fairly simple. Unfortunately, the technique

breaks down when faced with many values, since the main-

memory hash table quickly becomes very large, and the oper-

ating system is forced to page it to disk. Since hash accesses

by definition have low locality for distinct input values, the

operating system paging schemes manage the memory very

poorly. This is demonstrated dramatically in Section 5 below.
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Figure 3: The staging phase of Hybrid Cache.

3.2 Sorting: The System R Approach

In [HS93] it was pointed out that SQL subqueries are a form of

expensive method, The authors of the pioneering System R

optimization paper [SAC+ 79] proposed a scheme to avoid

redundant computation of correlated subqueries on identical

inputs; their idea is directly applicable to expensive methods

in general. They noted that

if the referenced relation is ordered on the referenced

column, the re-evaluation [of the subquery] can be

made conditional, depending on a test of whether or

not the current referenced value is the same as the one

in the previous candidate tuple. If they are the same,

the previous evaluation result can be used again. In

some cases, it might even pay to sort the referenced

relation on the referenced column in order to avoid

re-evaluating subqueries unnecessarily [SAC+79].

In essence, the System R solution is to sort the input relation

on the input columns (if it is not already so sorted), and then

maintain a cache of only the last input/output pair for the

method. This prevents redundant computation: after process-

ing tuples with value Zo, if a new value z 1 appears there is

no need to maintain the result of the method on Zo, since it is

guaranteed that no more Xos will appear. This is illustrated in

Figure 2.

4 Hybrid Cache

The third technique we consider is unary hybrid hashing.

Unary hybrid hashing has been used in the past to perform

grouping for aggregation or duplicate elimination [Bra84], but

to our knowledge this paper represents the first application of

the technique to the problem of caching. Unary hybrid hashing

is ‘based on the hybrid hash join algorithm [DKO+84]. We

introduce some minor modifications to unary hybrid hashing,

and since we are applying it to the problem of caching we call

our variant Hybrid Cache. We begin by outlining the basic

Hybrid Cache algorithm; additional modifications to standard

unary hybrid hashing are discussed further in Section 4.2.

The basic idea of Hybrid Cache is to do memorization, but

to manage the input stream so that the main-memory hash

T

@

table

haah(x)

current input tuple

+

4 aa abc

LJ
hash partitions

Figure 4: The rescanning stage of Hybrid Cache.

table never exceeds a maximum size. This is accomplished

by staging tuples with previously unseen input values to disk,

and rescanning them later.

The Hybrid Cache algorithm has three phases. In the first

or “growing” phase, tuples of the input relation are streamed

in from some source (a base relation, a relational expression,

etc.) As the tuples stream in, a main-memory hash table is

developed and utilized exactly as in memorization. However,

when the main memory hash table reaches a maximum size h

(to be discussed in the next section), the algorithm enters its

second phase, the “staging” phase. In this phase, each tuple of

the input relation is considered as it arrives. If a match is found

in the hash table, it is used just as in memorization. However,

if no match is found, the input tuple is hashed again — via a

different hash function than that used for the in-memory table
— to one of a number of partitions, and placed in a buffer

for that partition. The partition-hash function and number of

partitions are chosen so that each partition has approximately

the right number of values (not tuples !) to fill memory with

a memorization hashtable (again, this derivation is given in

the next section). When a partition’s buffer fills, the buffer is

written to the end of a contiguous area on disk allocated for

that partition. The staging phase of Hybrid Cache is illustrated

in Figure 3.

When the input relation is consumed in its entirety, the

main-memory hash table is deallocated and the algorithm en-

ters its third or “rescanning” phase. In this phase, the algo-

rithm repeatedly chooses a new partition on disk, scans in

the partition and handles the method invocations via naive

memorization. When the partition is consumed, the hashtable

is deallocated and a new partition is chosen. This process

repeats until no partitions remain on disk. This stage of the

algorithm is illustrated in Figure 4.

The Hybrid Cache algorithm is attractive for a number

of reasons. First, it works at least as well as memorization

for inputs of few values: all of the input can be handled in

the growing phase, and the last two phases are not required.

Second, like sorting it deals gracefully with inputs of many

values, without requiring paging. Third, the amount of main

memory needed for hashing is proportional to the number of

values in the input, while the amount of memory needed for

sorting is proportional to the number of tuples in the input.

Thus hashing can often handle more input tuples in memory
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II variable I meaning II
L, , u

flM total pages of memory available

iv #of hashtable entries per page

h #of pages to allocate to hashtable

during growing/staging

b #of pages to allocate to buffers

during growinglstaging

uu ] #of input values (estimated)
J

Table 1: Variables used in calculating memory allocation

during the growing and staging phases of Hybrid Cache

than sorting can, which makes hashing faster than sorting

for inputs with many duplicates. This is more apparent in

Section 5, in which we present a performance study comparing

the three techniques proposed so far.

Hybrid Cache provides one major advantage over tradi-

tional unary hybrid hash algorithms. In most hybrid hash

algorithms, the first hashtable in memory is populated with

all values which hash to partition O. If there is skew in the

parition-hash function, or if the number of values in the in-

put is incorrectly estimated, partition O may be too large for

memory. If this is the case, then the first hashtable will re-

quire paging. By contrast, in Hybrid Cache we grow the first

hashtable so that it exactly fits in memory, while all hash parti-

tions (including partition O) are sent to disk. This modification

guarantees that the first hashtable in memory will not grow

too large. We will see in Section 5 that the cost of paging can

be devastating; as a result, this minor modification to hybrid

hashing can have major performance benefits. This technique

can be directly applied to other applications of hybrid hashing

as well, including grouping and duplicate elimination.

4.1 Memory During Growing and Staging

Two questions remain from the above description of Hybrid

Cache:

1. How many partitions b should be allocated on disk?

2. How many pages of memory h can be used for the

hashtable during the growing and staging phases?

The answer to the second question is actually a corollary to the

answer to the first. During growing and staging, one page of

memory must be allocated as a buffer for each partition; hence

his the memory left over after this allocation, i.e. if there are

M total memory pages available, then h = M – b. This

section presents derivations to choose b and h appropriately,

so that they sum to M.

Given the (average) width of the input values and the output

of the method, we can compute N, the number of hashtable

entries that fit on a page. Ideally, each hash partition staged

‘to disk should have as many values as make a hashtable that

just fits in memory; i.e., MN values. During the growing and

staging phases, hN input values can be handled in the main-

memory hashtable. Given v input values total, there should

thus be
v–hiV

b=—

partitions on disk; each partitio~%l hold MN of the v – hN

values that are not placed in the main-memory hash table

during the growing phase. If we want to fill memory while

scanning the input, we let h + b = M. Then by using some

simple algebra, we can calculate h as a function of v:

v–hN
h= M–b=M– —-----=

M2N – V

MN N(M – 1)

To ensure that the buffers fit in memory, we require the con-

straint that b $ M, which leads us via some additional algebra

to the constraint that v/N < M2. That is, the number of pages

required to place all input values in a hashtable (with their out-

puts) must be less than the square of the size of memory. This

is a well-known constraint on hashing; a similar constraint

applies to sorting. These constraints can be overcome by

recursive application of either partitioning (for hashing) or

merging (for sorting) [DKO+ 84, Knu73]. Our implementa-

tion of Hybrid Cache in Illustraincludes recursive partitioning

to handle this situation.

The number of input values v can be estimated by us-

ing stored statistics [SAC+ 79] or via sampling [HOT88,

HNSS95]. Unfortunately this estimation is subject to error,

so we must consider how the algorithm will behave if esti-

mates are imperfect, If v is estimated too high, h will be

underestimated — i.e., memory will be underutilized during

the first two phases of Hybrid Cache by wasting memory on

an excess of buffers. If v is estimated too low, the partitions

on disk may contain too many values, and will require recur-

sive partitioning on rescan. But note that if we have an upper

bound on the number of input values (which is typical in most

database statistics), v and the hash function can be chosen to

ensure that repartitioning will never be required for relations

within the memory constraints, since the number of values

per partition can easily be capped. Thus the worst behavior of

Hybrid Cache is that it may under-utilize memory during the

first phase. Although this can cause unnecessary staging and

rescanning of some tuples, it does not cause paging, nor does

it require any tuple to be staged/rescanned more than once (as

is required by recursive partitioning).

4.2 The Memorization Wkdow: A Pathological Case

This section points out an additional optimization for unary

hashing, which arose from our comparison of memorization

and Hybrid Cache, Given the descriptions above of Hybrid

Cache and memorization, there is an unusual scenario in which

memorization is preferable to Hybrid Cache. We present a

modification to Hybrid Cache which makes it match the be-

havior of memorization in this scenario.

Consider the situation in which the input relation has ex-

actly enough values so that the memorization hashtable fills

but does not overflow physical memory (i.e. v = MN). In

this case, memorization performs no 1/0, and is very efficient.

Hybrid Cache is not as efficient in this scenario, since it must

use b pages of memory for output buffers. As a result, Hy-

brid Cache cannot fit the entire set of input values into its

hashtable during the growing phase, and some fraction of

the values must be sent to partitions on disk. If there are

many tuples with these values, Hybrid Cache can be notice-

ably slower than memorization. There is thus a small window

where memorization is preferable to Hybrid Cache.

The Hybrid Cache algorithm can be modified to correctly

handle this “memoization window”. In the growing phase we

allow Hybrid Cache to fill all of physical memory with the
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hashtable, rather than just filling h pages. When the hashtable

is M pages big and a new input value is seen, we isolate

b pages of the hashtable. For each input/output pair in this

portion of the hashtable, we use the hash function to compute

the partition on disk to which the input corresponds. Having

computed the appropriate partitions for all such pairs, we

sort the pairs by partition and then write the pairs to special

cache regions of their associated partitions on disk. We then

deallocate those b pages of the hashtable and begin the staging

phase, using those pages for output buffers. Later, during the

rescanning phase, we initialize the main-memory hashtable

for each partition with the contents of its cache region before

beginning to scan tuples from the partition.

In fact, this modification can provide performance benefits

even for inputs that do not fall in the memorization window.

Consider any input relation that requires staging to disk. Dur-

ing the growing phase, some input value i and its correspond-

ing output is stored in one of the last b pages of the hashtable.

Until the growing phase completes, any tuple with input value

i can be passed to the output without staging. This is in con-

trast to the unmodified version of Hybrid Cache, which would

have staged all tuples of input value i to disk. Note that this

optimization comes at a low execution overhead, namely writ-

ing b pages of memory to disk, and later reading them back. It

does requires a somewhat more complicated implementation,

however, and as a result we did not implement it in Illustra.

4.3 Hybrid Cache and Hybrid Hash Join

Hybrid Cache treats its input in much the same way that

hybrid hash join treats its “probing” relation. In fact, our

implementation of Hybrid Cache in Illustra reused much of

the existing hybrid hash join code for the probing relation. The

main-memory hashtable of Hybrid Cache is analogous to the

“building” relation in hybrid hash join, but note that Hybrid

Cache does not suffer from the “well-known” problems of

hybrid hash join:

1,

2.

In hybrid hash join, if some join value has duplicates in the

building relation, then all tuples containing this value must

be brought into main memory at once, possibly resulting

in paging. In Hybrid Cache, even if some input value has

duplicates it only requires one entry in the main-memory

hashtable. The distinction is that hash join requires mate-

rializing tuples from the building relation in main memory,

while Hybrid Cache material izes only distinct values.

Hybrid hash ioin is very sensitive to optimizer estimation

e~ors. If it underestimates the number of values in the

building relation, or chooses a poor hash function. the first

partition of the building relation is likely to be too large

and have to be paged, resulting in as much as a random 1/0

operation (seek and write) per tuple of the first partition of

the probing relation [NKT88]. By contrast, Hybrid Cache

never over-utilizes memory, since its first partition is dy-

namical] y grown to the appropriate size. Both algorithms

can under-utilize memory for the first partition if estimates

are incorrect, but this is less dangerous than over-utilizing

memory, which results in paging.

Hybrid hash join can be modified to have the first partition

of its building relation be grown dynamically, as we do for

Hybrid Cache. This addresses the second problem above, but

does not always solve the first problem, since duplicate tuples

in the building relation need to be inserted into the hashtable

even after memory has filled. Note however that duplicate-

free inputs are common for primary-key joins and semi-joins,

and hence the optimizations of Hybrid Cache may frequently

be useful in hybrid hash join. More general (though somewhat

complex) solutions to the problems of hybrid hash join have

been proposed by Nakayama, et al. [NKT88].

4.4 Sort vs. Hash Revisited

In analyzing hashing and sorting, Graefe presents the inter-

esting result that hash-based algorithms typically have “dual”

sorting algorithms that perform comparably [Gra93]. How-

ever, we observe in this section that one of his dualities is

based on an assumption that does not apply to the problem

of caching. This highlights an advantage of using Hybrid

Cache for caching, and also exposes an important distinction

between hashing and sorting that was not noted previously.

Graefe distinguishes between hashing and sorting by ob-

serving that hashing utilizes an amount of main memory pro-

portional to the number of tuples in the output, while sorting

utilizes an amount proportional to the number of tuples in the

input, which is likely to be larger. This is analogous to —

but significantly different from — our earlier observation that

hashing is value-based, while sorting is tuple-based. (Note

that in the cases of grouping and duplicate elimination, these

two analyses are identical, since the number of tuples in the

output is equal to the number of values in the input). Graefe’s

analysis of the situation leads him to a modification of sorting

via replacement selection [Knu73], which allows sort-based

grouping and duplicate elimination to utilize an amount of

memory closer to the number of tuples in its output rather

than that in its input.

However, note that the number of tuples in the input and

output are identical for caching: one output tuple is produced

for every input tuple. Graefe attempts to make sorting compet-

itive with hashing by getting the sort cost to be proportional to

the number of tuples of the output. In the case of caching, this

does not improve the performance of sort. Thus the operative

distinction between sorting and hybrid hashing is not based on

the number of input vs. output tuples; rather, the distinction is

that hashing is value-based, while sorting is tuple-based. As

a result, hashing is often preferable to sorting for the purpose

of caching, as we proceed to demonstrate.

5 Performance Study

We implemented memorization and Hybrid Cache in our ver-

sion of Illustra. Sorting code was already provided in the sys-

tem to support sort-merge join and SQL’s ORDER BY clause,

so to use sorting for method caching we simply added code

for a one-tuple cache over the sort node. We ran experiments

using a synthetic table T of 2 million tuples, each having 14

integer-valued fields (56 bytes of user data per tuple).

5.1 Experiment 1: Effects of Duplicates

Our first set of experiments explore the behavior of memo-

rization, sorting, and Hybrid Cache as the percentage of dupli-

cate values in the input is increased. We consider queries of

the form SELECT * FROM T WHERE xfalse (T. c) ;

where xfalse is an expensive method that always returns

FALSE. We use xfalse so that no tuples satisfy the selection
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Figure 5: Running time of Hybrid Cache and sorting.

predicate, and hence no time is spent propagating output, We

ran this query 7 times per algorithm, and each time varied

the column referenced by xf al se. The first column refer-

enced had no duplicate values (i.e. 2 million distinct values),

the second column had 10 copies of each value (i.e. 200,000

values), the third column had 100 copies per value (20,000

values), the fourth column had 1,000 copies per value (2,000

values), the fifth column had 10,OOOcopies per value (200 val-

ues), the sixth column 100,000 copies per value (20 values),

and the final column had 1,000,000 copies per value (2 val-

ues). The table was sorted randomly so that duplicate copies

were interspersed throughout each column. As in [He194],

the “expensive” method we used did not actually do any time-

consuming computation; however, its results were cached as if

it were truly expensive. Each algorithm that we tested caused

the method to be computed exactly once per value. Since the

time spent in the method is the same across all algorithms, we

do not include method computation time in the graphs below.

The results of the experiments are shown in Figure 5, which

presents the running time of the query minus the time spent in

xfalse. Figure 5 does not include a curve for memoization,

since its performance was unacceptable when the hashtable

did not fit in memory; operating system control over paging

results in thrashing. In the case of 1 copy per value, the

memorization technique ran for well over half a day, while the

other techniques each took under a half an hour.z From 100

duplicates onward, memoization and Hybrid Cache behaved

identically, since Hybrid Cache did not stage any tuples to

disk, and memoization did not cause paging. In subsequent

experiments we ignore memoization, since it is clearly not a

general-purpose technique, and can never out-perform Hybrid

Cache.

Figure 5 demonstrates that the performance of sorting is

not competitive with that of Hybrid Cache. The main reason

for this is illustrated in Figure 6, which shows the number of

temporary-file I/Os that sorting and hashing require to stage

and rescan tuples. This depicts what we expect from the

preceding discussion: the 1/0 behavior of sorting is a function

of the nurrtber of tuples in the input, while the 1/0 performance

of Hybrid Cache — a hash-based algorithm — is a function

2Actual~y, this performance result of memorization for the case

of 1 copy per tuple is a lower bound on the running time, since

the system eventually ran out of paging space and crashed. If our

machine had been configured with more paging space, the query

would have run for even longer before “completing”.
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Figure 6: Temp-file I/O for Hybrid Cache and sorting.

of the number of values in the input. The running time of

sorting does improve somewhat as the number of duplicates

is increased, but this is due to speedups in the sorting of

runs in memory. Even if the in-memory cost of sorting were

always minimized (as it is for the lM experiment), sorting

would be about as efficient as the worst-case performance of

Hybrid Cache (1 copy). As a result, even if sorting performed

optimally in memory, Hybrid Cache would be the algorithm

of choice for these experiments because of its 1/0 behavior.

Like memoization, Hybrid Cache is optimized for inputs of

few values, and like sorting it scales well to inputs with many

values.

5.2 Effects of Output Size

The previous experiment shows Hybrid Cache out-performing

sorting for an expensive predicate method. One important

property of predicate methods is that their outputs are of

Boolean type, and hence require only a few bits to represent.

What if the output of a method is large? In the remaining ex-

periments, we examine how this issue affects the performance

of sorting and Hybrid Cache.

Expensive methods can appear outside of predicates. For

example, they can be used in the SELECT, ORDER BY and

GROUP BY lists of SQL queries. In such scenarios, the

method outputs can be large. A typical example of such a

method is decompress, which takes as input a reference to

a large object, and produces as output an even larger object.

Note that the output of decompress is a value, not a refer-

ence. As a result, the output is materialized in memory, and

does not have an associated objector tuple identifier.

Our second set of experiments explores the performance of

Hybrid Cache and sorting for methods producing outputs of

various sizes. We consider queries of the form:

CREATE VIEW V AS

SELECT xbig (T. c) FROM T;

SELECT xbig FROM V WHERE false (big) ;

where false is an inexpensive method that always returns

FALSE, and xbig is an expensive method that returns an ob-

ject that is 2 Kbytes big. The column T. c is varied among

the differing numbers of copies, as in the previous set of ex-
periments. We use false to prevent any tuples from needing

to be passed to the output, and we disable Illustra’s standard

optimization of “flattening” the view into the outer query. As

a result, xbig needs to be produced for every tuple of T.

Figure 7 presents the performance of sorting and Hybrid

Cache for outputs of size 2 Kbytes. Unlike in our previous
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experiments, Hybrid Cache is no longer always superior to

sorting; in fact, sorting is effective until the number of dupli-

cates becomes quite high. Once again, the performance can

largely be explained in terms of the 1/0 to temporary files, as

shown in Figure 8. These graphs illustrate a second important

distinction between sorting and Hybrid Cache: the I/O behav-

ior of sorting is insensitive to the size of the output, but the

I/O behavior of Hybrid Cache degrades when the output size

is increased. This is because of the different ways that sorting

and Hybrid Cache manage main memory. As illustrated in

Figure 2, sorting with a one-tuple cache can utilize almost

all of main memory for its input tuples, leaving just a single

input/output value pair in memory. By contrast, Figures 3

and 4 illustrate that Hybrid Cache must share main memory

among both inputs and outputs of the method. As output size

is increased, Hybrid Cache can fit fewer and fewer ent~ies into

main memorv. This means that more and more mu-titions are. .
required to partition the input. One aspect of this problem

is that very few values are placed in the hashtable during the

growing phase, and as a result almost all tuples of the input

must be staged to disk and subsequently rescanned.

A more significant aspect of this problem is that as out-

put size is increased, the number of values per page (factor

N of section 4.1) becomes smaller. As a result, the number

of pages required for hashing more quickly approaches the

limit of the square of the size of memory. When this limit is

exceeded, recursive partitioning is required to avoid overflow-

ing memory, and this requires extra I/O for recursively staging

and rescanning the contents of partitions. This is illustrated

in Figure 8, which shows the temporary-file I/Os required to

stage and rescan tuples in both Hybrid Cache and sorting. In

the case of one copy per value, Hybrid Cache is forced to do

recursive partitioning, and must stage and restage tuples to

disk multiple times. As the number of duplicates increases,

Hybrid Cache no longer needs to do recursive partitioning,

and can pass more and more tuples to the output during the

growing phase, until at 10,000 copies per tuple every value

fits in the hashtable during the growing phase (i.e., Hybrid

Cache behaves just like memoization).

The curve for Hybrid Cache in Figure 8 is curious, in that

it levels off between 10 and 100 copies. This is explained by

examining the number of tuples passed to the output during

the growing phase of each query, as shown in Table 2. In

the case of 10 copies, the number of tuples passed to the

output (and hence never staged) represents just .55% of the

input relation, and in the case of 100 copies, the number of

tuples passed to the output represents only 5 .45% of the input

relation. In both cases, the fraction of the input that is not

staged to the output is negligible, which explains why the two

data points are approximately at the same height. However,

since this percentage grows by a factor of 10 as we move right

in Table 2, it quickly reaches 100% and prevents any input

tuples from being staged,

Another curious point is that while Hybrid Cache and sort-

ing do about the same number of temporary-file I/Os for 10

and 100 copies per value, sorting out-performs Hybrid Cache

in terms of elapsed time for these inputs (Figure 7). The

reason for this is that sorting requires fewer temporary files

on disk then Hybrid Cache, since the Hybrid Cache partition

size (MN) is small due to the large output size of the method

(which causes N to be small). The time difference between

Hybrid Cache and sorting is largely due to the cost incurred

by Hybrid Cache in maintaining all its temporary files. Illus-

tra allocates temporary files from the operating system, which

places a limit on the number of open tiles allowed per process,

As a result, when there are more temporay files than the oper-

ating system’s open-file limit, Illustra must close and re-open

tempormy files to keep the number of open files below the

limit. The difference in performance between Hybrid Cache

and sorting at 10 and 100 copies is due to this overhead of

closing and opening temporary files. Hybrid Cache could pos-

sibly be improved in this regard by having the DBMS manage

its temporary files without using the file system.

5.3 Summary of Experimental Results

Our experiments demonstrate that there are two basic fac-

tors that affect Hybrid Cache and Sorting: the percentage of

distinct input values, and the size of method outputs. Hy-

brid Cache handles duplicates well and large outputs poorly;

sorting handles duplicates poorly and large outputs well.

This tradeoff is illustrated in Figure 9. An input relation

is shown, along with a “virtual” column representing the re-

sult of the method computation. (For purposes of illustration,

the input is depicted as if it were sorted on the inputs to the

method.) The differently shaded areas represent the portions

of the input materialized together in main memory by sort-

ing and Hybrid Cache. Sorting materializes a large batch

of input tuples and only one row of the virtual output col-
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#of copies 1 10 100 1,000 10,000 and up

#of tuples 1,009 10,090 100,900 1,009,000 2,000,000

% of table 0.06% 0.55?I0 5.45% 54.59Z0 100%

Table 2: Number of tuples passed to the output during the growing stage of Hybrid Cache (2-Kbyte method outputs).
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Inputs
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Input?
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Duplicate

Inputs

Method Input

Columns Referenced Elsewhere Columns Method Output

❑ Materialized by Sorting

❑ Materialized by Hybrid Cache

Figure 9: Portions of the input relation materialized together

in memory.

umn. Hybrid Cache materializes only the distinct values of

input columns that are referenced by the method, along with

the corresponding output value for each row. The tradeoff

is depicted spatially in Figure 9: the performance of the two

algorithms varies with the size of the regions that they must

materialize at once in memory. Whichever algorithm uses

less memory at once can pass more tuples to the output with-

out staging, and is less likely to require recursive 1/0 routines

(partitioning or merging) to handle main-memory limitations.

One more factor in performance is illustrated in Figure 9,

but not in the experiments. Note that some columns of the

input relation may not be required by the method; they may

be needed for subsequent operators in a query plan. These

columns must be materialized in memory for sorting, but not

for hashing. This can be an additional advantage of hashing

over sorting, resulting again from the fact that one sorts on

tuples, but hashes only on input values.

As mentioned above, predicate methods have output values

that are very small. As a result, Hybrid Cache is a better

choice than sorting for expensive predicate methods. For

other expensive methods, such as those in SELECT, ORDER

BY, and GROUP BY lists, a choice between Hybrid Cache

and sorting should be made based on the size of the distinct

input values and method outputs, as compared to the expected

memory needed for complete input tuples with duplicate input

values. This decision can made fairly easily by using the usual

cost formulas for non-recursive sorting and hashing; see, for

instance, Graefe’s query processing survey [Gra93].

b Open Issues: Caching Multiple Methods

The previous sections present a detailed analysis and perfor-

mance study of caching the results of a single method. A

Q
thumbnail

Sort with

1-tuple Cache

9
Select SELECT thumbnail (product_ image )

FROM advert isements

WHERE ad_text similar ‘ . *optic. * ‘ ;

9
simiktr Hybrid Cache

adverti~ements

Figure 10: A query with 2 expensive methods.

Q
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SELECT name
FROM advertisements

WHERE pctage (quantize
(product_ image) , ‘ red’ ) > 50

9
ercentage Hybrid Cache

Q
quantize Sort with

1-tuple rache

advertisements

Figure 11: A query with nested expensive methods,

system that uses the appropriate choice of Hybrid Cache and

sorting for each expensive method is already well-tuned for

the sorts of queries possible in today’s extensible systems. In

this section we propose some additional techniques, which

can be used in high-performance systems to further stream-

line the execution of some queries with multiple expensive

methods. The techniques presented can all be beneficial, but

the optimization issue of choosing between them remains an

open problem beyond the scope of this paper. We present

the techniques here, and defer discussion of the optimization

problems to Section 7. We point out those techniques that can

be achieved via query or method rewriting, so that systems

without advanced optimization can be coerced at user level

into using these enhancements.

A query can contain multiple expensive methods, either in

separate expressions (e.g. in two different select list expres-

sions or predicates), or composed in a single expression, The

caching techniques in the previous section can be naturally

chained together to handle such scenarios. Methods in sep-

arate expressions may be handled naturally by a sequence of

Hybrid Cache and sort nodes, as illustrated in Figure 10. A

similar technique can be used for nested methods, as illus-

trated in Figure 11.
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6.1 Sharing One Cache Among Multiple Methods

An important optimization to note is that two methods with

the same input variables can be computed by the same cache

node, Hybrid Cache and sorting both work by organizing

their input tuples based on the input value to the method;

methods with identical input values can thus be computed

jointly. For example, the query of Figure 11 could be cached

with a single Hybrid Cache node storing (product-image,

pctage (quantize (product. image) , ‘ red’ ) ) p&.3

This optimization is always beneficial for multiple methods

with identical input variables.

Additional optimizations are possible when the input vari-

ables are similar but not identical, though some tradeoffs are

involved which require optimization. Consider sorting first.

Assume we have two methods $ and g, where the set of input

variables to ~ is If, and the set of input variables to g is Ig,

and If c Ig. In this case, both methods may be cached by

sorting the input tuples once on Ig, with the sort keys ordered

so that elements of If precede those of lg – If. For example,

if the input to ! was {product. i.mage}, and the input to

g was {ad.text, product_ image}, the sorting should be

done with on (product-image, ad-text) pairs. If If is not

a proper subset of lg but overlaps Ig significantly, we can still

compute both with a single sort. We sort the input relation

on If U Ig with the sort keys ordered to have If (1 Ig first.

The in-memory cache for sorting will need to hold more than

one input/output pair — in the worst case it will have to hold

as many pairs as there are distinct values of the input for the

same values of If fl Ig.

Hybrid Cache can be modified to perform a similar opti-

mization. Given two methods f and g with input variable

sets If and Ig respectively such that If and lg have a large

intersection, the input can be hashed on If (1 Ig, but the in-

puts stored in the main-memory hashtables include all of the

variables in If U Ig. This may result in hash collisions at

the main-memory hashtable, which can degrade CPU perfor-

mance if there are many distinct instantiation of Ig that have

the same values for If. This technique can be used whether

or not Ij is a subset of Ig.

Note that users can force two methods to be cached together

by writing a new method which combines the two original

methods into one. For nested methods (e.g., ~(g (z)) , this

simply entails writing a new method which is equivalent to

the composition of the old methods (e.g., ~g (z)); for multiple

methods that are not nested (~(a), g(y) ), the new method must

return a composite object containing the results of both of the

methods. This observation can be handy for users of systems

which do not implement cache-sharing,

6.2 Cache Ordering

When multiple expensive predicate methods appear in a query,

the query optimizer orders them appropriately based on their

relative costs and selectivities. However, when multiple ex-

pensive methods are nested in a single predicate, or when

mu~tip~e expensive methods appear in a SELECT list, ORDER

BY list or GROUP BY ]ist, no selection takes place and even

3~o~e ~ha~ f red f in the abOVe eXaII_It)]e k a constant! ‘ot a

variable, and hence the input variables to the two methods are the

same.

advanced optimization schemes will order the methods arbi-

trarily.

Yet there is often a choice of how to order cache nodes in a

query plan. For example, methods from different SELECT ]ist

expressions can be ordered arbitrmily amongst themselves, as

can methods that are at the same level of nesting in a nested

expression (e.g., g and h in the expression ~(g(x), h(y))).

A poor choice of ordering can be dangerous, even though

no selection is involved, since cache nodes pass the outputs

of their methods to the next operator in the pipeline. These

outputs can be quite large, and the next cache node in the

pipeline — whether it uses sorting or Hybrid Cache — may

need to stage some of these large outputs to disk. It is therefore

beneficial to order these cache nodes in increasing width of

their output tuples. As an additional optimization, if the output

of some cache node is very wide and multiple cache nodes

follow it in the output, these outputs can be staged to disk

once, referenced via pointers during the rest of the query plan,

and rescanned only when they are next required.

6.3 Benefits of Magic for Cache Chains

A further, somewhat complex optimization is possible when

a long chain of method caches appears in a query, and it is not

advisable to merge the chain into fewer caches. Recall that

the I/O cost of both sorting and Hybrid Cache results ffom

staging tuples to disk and then rescanning them. To minimize

this cost, we can first project the input to the caches so that

only the columns referenced by the methods are passed into

the caches; additionally, duplicates can be removed from this

projection. The chain of caches can then be used to compute

the methods for the distinct inputs, and the result of this chain

can be rejoined with the original input relation to regenerate

the projected columns and the correct number of duplicates.

This is depicted in Figure 12 for the query of Figure 10. This

technique is analogous to magic sets rewriting. The reason

magic sets is beneficial in this scenario and not in the case of

a single method (see Section 1.1) is that the cost of removing

duplicates and joining can be amortized over the savings in

staging and rescanning for multiple caches. A significant

number of caches are required to recoup the cost of duplicate

elimination and join, however, Choosing whether or not to

perform this optimization is something that can be determined

by a cost-based optimizer for magic [SHP+96].

7 Conclusions and Future Work

This paper studies the problem of avoiding redundant method

invocation during query processing. Three algorithms are

considered for caching method results: memorization, sorting,

and a variant of unary hybrid hashing which we call Hybrid

Cache. A performance study in Illustra demonstrates that

memorization is ineffective in general, while Hybrid Cache

dominates both of the other algorithms for expensive pred-

icate methods. Non-predicate expensive methods can have

arbitrary-sized outputs, and the study demonstrates that for

methods with large outputs sorting is often preferable to Hy-

brid Cache. The variations we develop on hybrid hashing

apply not only to caching, but also to other applications of

unary hybrid hashing such as grouping for aggregation and

duplicate elimination.
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Figure 12: An alternative plan for the query of Figure 11,

We recommend that both sorting and Hybrid Cache be im-

plemented in extensible Object-Relation and Object-Oriented

database systems. It is attractive to simply use sorting for all

expensive methods, since code for sorting is typically already

present in most systems. We discourage this decision, how-

ever, since sorting is out-performed by Hybrid Cache for the

common case of expensive predicates. If methods are always

extremely expensive, then the difference between sorting and

Hybrid Cache may often be overshadowed by method pro-

cessing costs, But for methods which are only moderately

expensive, appropriate use of Hybrid Cache will provide no-

ticeable improvements in performance for inputs with many

duplicates.

We also present a number of additional techniques for han-

dling multiple methods in a query, which are designed to

streamline the solution of chaining multiple Hybrid Cache

andlor sort nodes together. Implementing these techniques

is a second-order issue, since they are applicable only to

complex queries with multiple expensive methods. For a

high-performance extensible system, however, handling such

queries as efficiently as possible may prove to be very im-

portant. As a first step, it is relatively simple to identify that

multiple methods on the same input variables can be cached

by a single operator. Further optimization, especially those

involving magic sets, require significantly more work and are

much less generally applicable; as a result, they may only

be appropriate for high performance systems. If necessary,

database users can achieve these optimization in more basic

systems by rewriting their queries or methods.

Additional work is needed to clarify the relative importance

of the techniques for multiple methods, and to capture the

costs of caching appropriately in a query optimizer. A careful

treatment of optimization and caching will require solutions

to at least three new problems. First, the cost of caching needs

to be captured in the optimizer and integrated with the pred-

icate placement algorithm. The only previous optimization

work which captured the presence of caching assumed that

the cost of caching was negligible [He194]; this assumption

may be acceptable in most cases, but this has yet to be de-

termined. Second, the optimizer must be enhanced to choose

which caching algorithm to use (if any) for different method

inputs and outputs, taking into account issues of “interesting

orders” [SAC+79]. Third, the optimizer must consider cache

sharing, cache ordering, and magic sets techniques. As an

additional challenge, it would be interesting to integrate the

caching ideas in this paper with previous work on persistent

caches, function indices, and common subexpression identi-

fication.
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