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Abstract

Continuous space word embeddings
have received a great deal of atten-
tion in the natural language processing
and machine learning communities for
their ability to model term similarity
and other relationships. We study the
use of term relatedness in the context
of query expansion for ad hoc informa-
tion retrieval. We demonstrate that
word embeddings such as word2vec and
GloVe, when trained globally, under-
perform corpus and query specific em-
beddings for retrieval tasks. These re-
sults suggest that other tasks benefit-
ing from global embeddings may also
benefit from local embeddings.

1 Introduction

Continuous space embeddings such as
word2vec (Mikolov et al., 2013b) or GloVe
(Pennington et al., 2014a) project terms in
a vocabulary to a dense, lower dimensional
space. Recent results in the natural lan-
guage processing community demonstrate the
effectiveness of these methods for analogy
and word similarity tasks. In general, these
approaches provide global representations of
words; each word has a fixed representation,
regardless of any discourse context. While a
global representation provides some advan-
tages, language use can vary dramatically by
topic. For example, ambiguous terms can eas-
ily be disambiguated given local information
in immediately surrounding words (Harris,
1954; Yarowsky, 1993). The window-based
training of word2vec style algorithms exploits
this distributional property.

A global word embedding, even when

trained using local windows, risks captur-
ing only coarse representations of those top-
ics dominant in the corpus. While a par-
ticular embedding may be appropriate for a
specific word within a sentence-length con-
text globally, it may be entirely inappropri-
ate within a specific topic. Gale et al. re-
fer to this as the ‘one sense per discourse’
property (Gale et al., 1992). Previous work
by Yarowsky demonstrates that this property
can be successfully combined with informa-
tion from nearby terms for word sense dis-
ambiguation (Yarowsky, 1995). Our work ex-
tends this approach to word2vec-style training
in the context word similarity.

For many tasks that require topic-specific
linguistic analysis, we argue that topic-specific
representations should outperform global rep-
resentations. Indeed, it is difficult to imagine
a natural language processing task that would
not benefit from an understanding of the local
topical structure. Our work focuses on a query
expansion, an information retrieval task where
we can study different lexical similarity meth-
ods with an extrinsic evaluation metric (i.e.
retrieval metrics). Recent work has demon-
strated that similarity based on global word
embeddings can be used to outperform clas-
sic pseudo-relevance feedback techniques (Sor-
doni et al., 2014; al Masri et al., 2016).

We propose that embeddings be learned on
topically-constrained corpora, instead of large
topically-unconstrained corpora. In a retrieval
scenario, this amounts to retraining an em-
bedding on documents related to the topic of
the query. We present local embeddings which
capture the nuances of topic-specific language
better than global embeddings. There is
substantial evidence that global methods un-
derperform local methods for information re-



trieval tasks such as query expansion (Xu and
Croft, 1996), latent semantic analysis (Hull,
1994; Schütze et al., 1995; Singhal et al.,
1997), cluster-based retrieval (Tombros and
van Rijsbergen, 2001; Tombros et al., 2002;
Willett, 1985), and term clustering (Attar and
Fraenkel, 1977). We demonstrate that the
same holds true when using word embeddings
for text retrieval.

2 Motivation

For the purpose of motivating our approach,
we will restrict ourselves to word2vec although
other methods behave similarly (Levy and
Goldberg, 2014). These algorithms involve
discriminatively training a neural network to
predict a word given small set of context
words. More formally, given a target word w
and observed context c, the instance loss is de-
fined as,

`(w, c) = log σ(φ(w) · ψ(c))

+ η · Ew∼θC [log σ(−φ(w) · ψ(w))]

where φ : V → <k projects a term into a k-
dimensional embedding space, ψ : Vm → <k
projects a set of m terms into a k-dimensional
embedding space, and w is a randomly sam-
pled ‘negative’ context. The parameter η con-
trols the sampling of random negative terms.
These matrices are estimated over a set of con-
texts sampled from a large corpus and mini-
mize the expected loss,

Lc = Ew,c∼pc [`(w, c)] (1)

where pc is the distribution of word-context
pairs in the training corpus and can be esti-
mated from corpus statistics.

While using corpus statistics may make
sense absent any other information, oftentimes
we know that our analysis will be topically
constrained. For example, we might be analyz-
ing the ‘sports’ documents in a collection. The
language in this domain is more specialized
and the distribution over word-context pairs
is unlikely to be similar to pc(w, c). In fact,
prior work in information retrieval suggests
that documents on subtopics in a collection
have very different unigram distributions com-
pared to the whole corpus (Cronen-Townsend
et al., 2002). Let pt(w, c) be the probability
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Figure 1: Importance weights for terms occur-
ring in documents related to ‘argentina peg-
ging dollar’ relative to frequency in gigaword.

of observing a word-context pair conditioned
on the topic t. The expected loss under this
distribution is (Shimodaira, 2000),

Lt = Ew,c∼pc
[
pt(w, c)

pc(w, c)
`(w, c)

]
(2)

In general, if our corpus consists of sufficiently
diverse data (e.g. Wikipedia), the support of
pt(w, c) is much smaller than and contained
in that of pc(w, c). The loss, `, of a con-
text that occurs more frequently in the topic,
will be amplified by the importance weight
ω = pt(w,c)

pc(w,c)
. Because topics require special-

ized language, this is likely to occur; at the
same time, these contexts are likely to be un-
deremphasized in training a model according
to Equation 1.

In order to quantify this, we took a topic
from a TREC ad hoc retrieval collection (see
Section 5 for details) and computed the im-
portance weight for each term occurring in
the set of on-topic documents. The histogram
of weights ω is presented in Figure 1. While
larger probabilities are expected since the size
of a topic-constrained vocabulary is smaller,
there are a non-trivial number of terms with
much larger importance weights. If the loss,
`(w), of a word2vec embedding is worse for
these words with low pc(w), then we expect
these errors to be exacerbated for the topic.

Of course, these highly weighted terms may
have a low value for pt(w) but a very high
value relative to the corpus. We can adjust the
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Figure 2: Pointwise Kullback-Leibler diver-
gence for terms occurring in documents re-
lated to ‘argentina pegging dollar’ relative to
frequency in gigaword.

weights by considering the pointwise Kullback-
Leibler divergence for each word w,

Dw(pt‖pc) = pt(w) log
pt(w)

pc(w)
(3)

Words which have a much higher value of
pt(w) than pc(w) and have a high absolute
value of pt(w) will have high pointwise KL
divergence. Figure 2 shows the divergences
for the top 100 most frequent terms in pt(w).
The higher ranked terms (i.e. good query ex-
pansion candidates) tend to have much higher
probabilities than found in pc(w). If the loss
on those words is large, this may result in poor
embeddings for the most important words for
the topic.

A dramatic change in distribution between
the corpus and the topic has implications for
performance precisely because of the objective
used by word2vec (i.e. Equation 1). The train-
ing emphasizes word-context pairs occurring
with high frequency in the corpus. We will
demonstrate that, even with heuristic down-
sampling of frequent terms in word2vec, these
techniques result in inferior performance for
specific topics.

Thus far, we have sketched out why using
the corpus distribution for a specific topic may
result in undesirable outcomes. However, it is
even unclear that pt(w|c) = pc(w|c). In fact,
we suspect that pt(w|c) 6= pc(w|c) because of
the ‘one sense per discourse’ claim (Gale et
al., 1992). We can qualitatively observe the
difference in pc(w|c) and pt(w|c) by training

global local

cutting tax
squeeze deficit
reduce vote
slash budget

reduction reduction
spend house
lower bill
halve plan
soften spend
freeze billion

Figure 3: Terms similar to ‘cut’ for a word2vec
model trained on a general news corpus and
another trained only on documents related to
‘gasoline tax’.

two word2vec models: the first on the large,
generic Gigaword corpus and the second on a
topically-constrained subset of the gigaword.
We present the most similar terms to ‘cut’
using both a global embedding and a topic-
specific embedding in Figure 3. In this case,
the topic is ‘gasoline tax’. As we can see, the
‘tax cut’ sense of ‘cut’ is emphasized in the
topic-specific embedding.

3 Local Word Embeddings

The previous section described several reasons
why a global embedding may result in over-
general word embeddings. In order to perform
topic-specific training, we need a set of topic-
specific documents. In information retrieval
scenarios users rarely provide the system with
examples of topic-specific documents, instead
providing a small set of keywords.

Fortunately, we can use information re-
trieval techniques to generate a query-specific
set of topical documents. Specifically, we
adopt a language modeling approach to do so
(Croft and Lafferty, 2003). In this retrieval
model, each document is represented as a max-
imum likelihood language model estimated
from document term frequencies. Query lan-
guage models are estimated similarly, using
term frequency in the query. A document
score then, is the Kullback-Leibler divergence
between the query and document language



models,

D(pq‖pd) =
∑
w∈V

pq(w) log
pq(w)

pd(w)
(4)

Documents whose language models are more
similar to the query language model will have
a lower KL divergence score. For consistency
with prior work, we will refer to this as the
query likelihood score of a document.

The scores in Equation 4 can be passed
through a softmax function to derive a multi-
nomial over the entire corpus (Lavrenko and
Croft, 2001),

p(d) =
exp(−D(pq‖pd))∑
d′ exp(−D(pq‖pd′))

(5)

Recall in Section 2 that training a word2vec
model weights word-context pairs according
to the corpus frequency. Our query-based
multinomial, p(d), provides a weighting func-
tion capturing the documents relevant to this
topic. Although an estimation of the topic-
specific documents from a query will be im-
precise (i.e. some nonrelevant documents will
be scored highly), the language use tends to
be consistent with that found in the known
relevant documents.

We can train a local word embedding us-
ing an arbitrary optimization method by sam-
pling documents from p(d) instead of uni-
formly from the corpus. In this work, we use
word2vec, although any method that operates
on a sample of documents can be used.

4 Query Expansion with Word
Embeddings

When using language models for retrieval,
query expansion involves estimating an alter-
native to pq. Specifically, when each expansion
term is associated with a weight, we normalize
these weights to derive the expansion language
model, pq+ . This language model is then in-
terpolated with the original query model,

p1q(w) = λpq(w) + (1− λ)pq+(w) (6)

This interpolated language model can then
be used with Equation 4 to rank documents
(Abdul-Jaleel et al., 2004). We will refer to
this as the expanded query score of a docu-
ment.

Now we turn to using word embeddings for
query expansion. Let U be an |V| × k term
embedding matrix. If q is a |V| × 1 column
term vector for a query, then the expansion
term weights are UUTq. We then take the top
k terms, normalize their weights, and compute
pq+(w).

We consider the following alternatives for
U. The first approach is to use a global
model trained by sampling documents uni-
formly. The second approach, which we pro-
pose in this paper, is to use a local model
trained by sampling documents from p(d).

5 Methods

5.1 Data

To evaluate the different retrieval strategies
described in Section 3, we use the following
datasets. Two newswire datasets, trec12 and
robust, consist of the newswire documents and
associated queries from TREC ad hoc retrieval
evaluations. The trec12 corpus consists of Tip-
ster disks 1 and 2; and the robust corpus
consists of Tipster disks 4 and 5. Our third
dataset, web, consists of the ClueWeb 2009
Category B Web corpus. For the Web cor-
pus, we only retain documents with a Water-
loo spam rank above 70.1 We present corpus
statistics in Table 1.

We consider several publicly available global
embeddings. We use four GloVe embed-
dings of different dimensionality trained on the
union of Wikipedia and Gigaword documents.2

We use one publicly available word2vec em-
bedding trained on Google News documents.3

We also trained a global embedding for trec12
and robust using the entire corpus. Instead of
training a global embedding on the large web
collection, we use a GloVe embedding trained
on Common Crawl data.4

We train local embeddings with word2vec
using one of three retrieval sources. First, we
consider documents retrieved from the target
corpus of the query (i.e. trec12, robust, or
web). We also consider training a local embed-

1https://plg.uwaterloo.ca/~gvcormac/
clueweb09spam/

2http://nlp.stanford.edu/data/glove.6B.zip
3https://code.google.com/archive/p/

word2vec/
4http://nlp.stanford.edu/data/glove.840B.

300d.zip



docs words queries

trec12 469,949 438,338 150
robust 528,155 665,128 250
web 50,220,423 90,411,624 200
news 9,875,524 2,645,367 -
wiki 3,225,743 4,726,862 -

Table 1: Corpora used for retrieval and local
embedding training.

ding by performing a retrieval on large auxil-
iary corpora. We use the Gigaword corpus as
a large auxiliary news corpus. We hypothe-
size that retrieving from a larger news corpus
will provide substantially more local training
data than a target retrieval. We also use a
Wikipedia snapshot from December 2014. We
hypothesize that retrieving from a large, high
fidelity corpus will provide cleaner language
than that found in lower fidelity target do-
mains such as the web. Table 1 shows the
relative magnitude of these auxiliary corpora
compared to the target corpora.

All corpora in Table 1 were stopped using
the SMART stopword list5 and stemmed us-
ing the Krovetz algorithm (Krovetz, 1993).
We used the Indri implementation for indexing
and retrieval.6

5.2 Evaluation

We consider several standard retrieval eval-
uation metrics, including NDCG@10 and in-
terpolated precision at standard recall points
(Järvelin and Kekäläinen, 2002; van Rijsber-
gen, 1979). NDCG@10 provides insight into
performance specifically at higher ranks. An
interpolated precision recall graph describes
system performance throughout the entire
ranked list.

5.3 Training

All retrieval experiments were conducted
by performing 10-fold cross-validation across
queries. Specifically, we cross-validate
the number of expansion terms, k ∈
{5, 10, 25, 50, 100, 250, 500}, and interpolation
weight, λ ∈ [0, 1]. For local word2vec train-
ing, we cross-validate the learning rate α ∈
{10−1, 10−2, 10−3}.

5http://jmlr.csail.mit.edu/papers/volume5/
lewis04a/a11-smart-stop-list/english.stop

6http://www.lemurproject.org/indri/

All word2vec training used the publicly
available word2vec cbow implementation.7

When training the local models, we sampled
1000 documents from p(d) with replacement.
To compensate for the much smaller corpus
size, we ran word2vec training for 80 iter-
ations. Local word2vec models use a fixed
embedding dimension of 400 although other
choices did not significantly affect our results.
Unless otherwise noted, default parameter set-
tings were used.

In our experiments, expanded queries
rescore the top 1000 documents from an ini-
tial query likelihood retrieval. Previous results
have demonstrated that this approach results
in performance nearly identical with an ex-
panded retrieval at a much lower cost (Diaz,
2015). Because publicly available embeddings
may have tokenization inconsistent with our
target corpora, we restricted the vocabulary
of candidate expansion terms to those occur-
ring in the initial retrieval. If a candidate term
was not found in the vocabulary of the embed-
ding matrix, we searched for the candidate in
a stemmed version of the embedding vocabu-
lary. In the event that the candidate term was
still not found after this process, we removed
it from consideration.

6 Results

We present results for retrieval experiments
in Table 2. We find that embedding-based
query expansion outperforms our query like-
lihood baseline across all conditions. When
using the global embedding, the news corpora
benefit from the various embeddings in differ-
ent situations. Interestingly, for trec12, using
an embedding trained on the target corpus sig-
nificantly outperforms all other global embed-
dings, despite using substantially less data to
estimate the model. While this performance
may be due to the embedding having a tok-
enization consistent with the target corpus, it
may also come from the fact that the corpus
is more representative of the target documents
than other embeddings which rely on online
news or are mixed with non-news content. To
some extent this supports our desire to move
training closer to the target distribution.

Across all conditions, local embeddings sig-

7https://code.google.com/p/word2vec/



Table 2: Retrieval results comparing query expansion based on various global and local embed-
dings. Bolded numbers indicate the best expansion in that class of embeddings. Wilcoxon signed
rank test between bolded numbers indicates statistically significant improvements (p < 0.05) for
all collections.

global local
wiki+giga gnews target target giga wiki

QL 50 100 200 300 300 400 400 400 400

trec12 0.514 0.518 0.518 0.530 0.531 0.530 0.545 0.535 0.563* 0.523

robust 0.467 0.470 0.463 0.469 0.468 0.472 0.465 0.475 0.517* 0.476

web 0.216 0.227 0.229 0.230 0.232 0.218 0.216 0.234 0.236 0.258*
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Figure 4: Interpolated precision-recall curves for query likelihood, the best global embedding,
and the best local embedding from Table 2.

nificantly outperform global embeddings for
query expansion. For our two news collec-
tions, estimating the local model using a re-
trieval from the larger Gigaword corpus led to
substantial improvements. This effect is al-
most certainly due to the Gigaword corpus be-
ing similar in writing style to the target cor-
pus but, at the same time, providing signifi-
cantly more relevant content (Diaz and Met-
zler, 2006). As a result, the local embedding
is trained using a larger variety of topical ma-
terial than if it were to use a retrieval from the
smaller target corpus. An embedding trained
with a retrieval from Wikipedia tended to per-
form worse most likely because the language is
dissimilar from news content. Our web col-
lection, on the other hand, benefitted more
from embeddings trained using retrievals from
the general Wikipedia corpus. The Gigaword
corpus was less useful here because news-style
language is almost certainly not representative
of general web documents.

Figure 4 presents interpolated precision-
recall curves comparing the baseline, the best

global query expansion method, and the best
local query expansion method. Interestingly,
although global methods achieve strong per-
formance for NDCG@10, these improvements
over the baseline are not reflected in our
precision-recall curves. Local methods, on the
other hand, almost always strictly dominate
both the baseline and global expansion across
all recall levels.

The results support the hypothesis that lo-
cal embeddings provide better similarity mea-
sures than global embeddings for query expan-
sion. In order to understand why, we first com-
pare the performance differences between local
and global embeddings. Figure 2 suggests that
we should adopt a local embedding when the
local unigram language model deviates from
the corpus language model. To test this, we
computed the KL divergence between the lo-
cal unigram distribution,

∑
d p(w|d)p(d), and

the corpus unigram language model (Cronen-
Townsend et al., 2002). We hypothesize that,
when this value is high, the topic language
is different from the corpus language and the



Table 3: Kendall’s τ and Spearman’s ρ be-
tween improvement in NDCG@10 and lo-
cal KL divergence with the corpus language
model. The improvement is measured for the
best local embedding over the best global em-
bedding.

τ ρ

trec12 0.0585 0.0798
robust 0.0545 0.0792
web 0.0204 0.0283

global embedding will be inferior to the local
embedding. We tested the rank correlation be-
tween this KL divergence and the relative per-
formance of the local embedding with respect
to the global embedding. These correlations
are presented in Table 3. Unfortunately, we
find that the correlation is low, although it is
positive across collections.

We can also qualitatively analyze the differ-
ences in the behavior of the embeddings. If we
have access to the set of documents labeled rel-
evant to a query, then we can compute the fre-
quency of terms in this set and consider those
terms with high frequency (after stopping and
stemming) to be good query expansion can-
didates. We can then visualize where these
terms lie in the global and local embeddings.
In Figure 5, we present a two-dimensional pro-
jection (van der Maaten and Hinton, 2008)
of terms for the query ‘ocean remote sens-
ing’, with those good candidates highlighted.
Our projection includes the top 50 candidates
by frequency and a sample of terms occurring
in the query likelihood retrieval. We notice
that, in the global embedding, the good can-
didates are spread out amongst poorer candi-
dates. By contrast, the local embedding clus-
ters the candidates in general but also situates
them closely around the query. As a result, we
suspect that the similar terms extracted from
the local embedding are more likely to include
these good candidates.

7 Discussion

The success of local embeddings on this task
should alarm natural language processing re-
searchers using global embeddings as a rep-
resentational tool. For one, the approach of
learning from vast amounts of data is only ef-

global

local

Figure 5: Global versus local embedding of
highly relevant terms. Each point represents a
candidate expansion term. Red points have
high frequency in the relevant set of docu-
ments. White points have low or no frequency
in the relevant set of documents. The blue
point represents the query. Contours indicate
distance from the query.

fective if the data is appropriate for the task
at hand. And, when provided, much smaller
high-quality data can provide much better per-
formance. Beyond this, our results suggest
that the approach of estimating global repre-
sentations, while computationally convenient,
may overlook insights possible at query time,
or evaluation time in general. A similar local
embedding approach can be adopted for any
natural language processing task where topi-
cal locality is expected and can be estimated.
Although we used a query to re-weight the cor-
pus in our experiments, we could just as eas-
ily use alternative contextual information (e.g.
a sentence, paragraph, or document) in other
tasks.

Despite these strong results, we believe that



there are still some open questions in this
work. First, although local embeddings pro-
vide effectiveness gains, they can be quite in-
efficient compared to global embeddings. We
believe that there is opportunity to improve
the efficiency by considering offline computa-
tion of local embeddings at a coarser level than
queries but more specialized than the corpus.
If the retrieval algorithm is able to select the
appropriate embedding at query time, we can
avoid training the local embedding. Second,
although our supporting experiments (Table 3,
Figure 5) add some insight into our intuition,
the results are not strong enough to provide
a solid explanation. Further theoretical and
empirical analysis is necessary.

8 Related Work

Topical adaptation of models The short-
comings of learning a single global vector rep-
resentation, especially for polysemic words,
have been pointed out before (Reisinger and
Mooney, 2010b). The problem can be ad-
dressed by training a global model with multi-
ple vector embeddings per word (Reisinger and
Mooney, 2010a; Huang et al., 2012) or topic-
specific embeddings (Liu et al., 2015). The
number of senses for each word may be fixed
(Neelakantan et al., 2015), or determined us-
ing class labels (Trask et al., 2015). However,
to the best of our knowledge, this is the first
time that training topic-specific word embed-
dings has been explored.

Several methods exist in the language mod-
eling community for topic-dependent adapta-
tion of language models (Bellegarda, 2004).
These can lead to performance improvements
in tasks such as machine translation (Zhao et
al., 2004) and speech recognition (Nanjo and
Kawahara, 2004). Topic-specific data may be
gathered in advance, by identifying corpus of
topic-specific documents. It may also be gath-
ered during the discourse, using multiple hy-
potheses from N-best lists as a source of topic-
specific language. Then a topic-specific lan-
guage model is trained (or the global model is
adapted) online using the topic-specific train-
ing data. A topic-dependent model may be
combined with the global model using lin-
ear interpolation (Iyer and Ostendorf, 1999)
or other more sophisticated approaches (Fed-

erico, 1996; Kuhn and De Mori, 1990). Sim-
ilarly to the adaptation work, we use topic-
specific documents to train a topic-specific
model. In our case the documents come from
a first round of retrieval for the user’s cur-
rent query, and the word embedding model
is trained based on sentences from the topic-
specific document set. Unlike the past work,
we do not focus on interpolating the local and
global models, although this is a promising
area for future work. In the current study
we focus on a direct comparison between the
local-only and global-only approach, for im-
proving retrieval performance.

Word embeddings for IR Information
Retrieval has a long history of learning repre-
sentations of words that are low-dimensional
dense vectors. These approaches can be
broadly classified into two families based on
whether they are learnt based on a term-
document matrix or term co-occurence data.
Using the term-document matrix for embed-
ding leads to several well-studied approaches
such as LSA (Deerwester et al., 1990), PLSA
(Hofmann, 1999), and LDA (Blei et al.,
2003; Wei and Croft, 2006). The perfor-
mance of these models varies depending on the
task, for example they are known to perform
poorly for retrieval tasks unless combined with
lexical features (Atreya and Elkan, 2011a).
Term-cooccurence based embeddings, such as
word2vec (Mikolov et al., 2013b; Mikolov et
al., 2013a) and (Pennington et al., 2014b),
have recently been remarkably popular for
many natural language processing and logi-
cal reasoning tasks. However, there are rel-
atively less known successful applications of
these models in IR. Ganguly et. al. (Gan-
guly et al., 2015) used the word similarity in
the word2vec embedding space as a way to es-
timate term transformation probabilities in a
language modelling setting for retrieval. More
recently, Nalisnick et. al. (Nalisnick et al.,
2016) proposed to model document about-ness
by computing the similarity between all pairs
of query and document terms using dual em-
bedding spaces. Both these approaches es-
timate the semantic relatedness between two
terms as the cosine distance between them in
the embedding space(s). We adopt a similar
notion of term relatedness but focus on demon-



strating improved retrieval performance using
locally trained embeddings.

Local latent semantic analysis Despite
the mathematical appeal of latent seman-
tic analysis, several experiments suggest that
its empirical performance may be no better
than that of ranking using standard term vec-
tors (Deerwester et al., 1990; Dumais, 1995;
Atreya and Elkan, 2011b). In order to address
the coarseness of corpus-level latent seman-
tic analysis, Hull proposed restricting analysis
to the documents relevant to a query (Hull,
1994). This approach significantly improved
over corpus-level analysis for routing tasks, a
result that has been reproduced in consequent
research (Schütze et al., 1995; Singhal et al.,
1997). Our work can be seen as an extension
of these results to more recent techniques such
as word2vec.

9 Conclusion

We have demonstrated a simple and effective
method for performing query expansion with
word embeddings. Importantly, our results
highlight the value of locally-training word
embeddings in a query-specific manner. The
strength of these results suggests that other
research adopting global embedding vectors
should consider local embeddings as a poten-
tially superior representation. Instead of using
a “Sriracha sauce of deep learning,” as em-
bedding techniques like word2vec have been
called, we contend that the situation some-
times requires, say, that we make a béchamel
or a mole verde or a sambal—or otherwise
learn to cook.
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