
Query Interactions in Database Workloads

Mumtaz Ahmad
University of Waterloo

Ashraf Aboulnaga
University of Waterloo

Shivnath Babu
Duke University

ABSTRACT
Database workloads consist of mixes of queries that run con-
currently and interact with each other. In this paper, we
demonstrate that query interactions can have a significant
impact on database system performance. Hence, we argue
that it is important to take these interactions into account
when characterizing workloads, designing test cases, or de-
veloping performance tuning algorithms for database sys-
tems. To capture and model query interactions, we propose
using an experimental approach that is based on sampling
the space of possible interactions and fitting statistical mod-
els to the sampled data. We discuss using such an approach
for database testing and tuning, and we present some op-
portunities and research challenges.

1. INTRODUCTION
Characterizing a database workload requires understand-

ing the impact of this workload on all aspects of the sys-
tem. Such workload characterization is required, for exam-
ple, when designing workloads and test cases to test database
system features or performance, when tuning a database sys-
tem in deployment, or when analyzing the performance of
a production system. To this end, many benchmark work-
loads exist that consist of queries and transactions that try
to stress different aspects of the database system [15].

The typical workload in a database system consists of
mixes of queries of different types running concurrently and
interacting with each other. The interaction among queries
can have a significant impact on their performance, and this
impact can be positive or negative. For example, a query
Q1 can bring data into the buffer pool that is then used by
a concurrently running query Q2. Alternatively, Q1 and Q2

could interfere with each other on hardware resources such
as CPU or memory, or on internal database system resources
such as latches or locks. In this paper, we demonstrate the
impact of query interactions and discuss their implications
on database testing and performance tuning.

To illustrate the need for reasoning about query inter-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBTest’09, June 29, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

actions, consider the TPC-H benchmark, which is widely
used to test decision support systems. Studying the per-
formance characteristics of individual TPC-H query types
gives us insights into database system performance, but it
is not enough to answer questions such as the following: If
we run 5 concurrent TPC-H queries, namely, 2 instances of
Q1 with 3 instances of Q13, then what would be the per-
formance of the system? How would a single instance of
Q1 behave compared to the case of running 5 concurrent
instances of Q1? Looking at Q1 alone or Q13 alone does
not allow us to accurately answer these questions. We need
to incorporate interactions among concurrent queries into
our understanding of workload characteristics and database
system performance.

Figure 1: Workload completion time for different
arrival orders.

As an example of the effect of query interactions on perfor-
mance, consider the two workloads shown in Figure 1. Both
these workloads consist of exactly the same 60 instances of
TPC-H queries running on a 10GB database on DB2 (details
of our experimental setup are presented in the next section).
The database physical design and the tuning parameters of
DB2 are exactly the same for both workloads. The only
difference between the two workloads is the arrival order
of the queries, which results in different query mixes being
executed by the system. This simple change results in the
completion time changing from 3.3 hours to 5.4 hours. In
Workload 1, queries that compete for resources get executed
concurrently, resulting in negative interactions. In Work-
load 2, queries that help each other get executed together,
resulting in positive interactions. The 2.1 hour difference
in performance is completely attributable to different query

Query Type Q1 Q7 Q9 Q13 Q18 Q21
Run Time tj (sec) 10.07 5.76 9.66 6.12 7.12 7.3

Table 1: Run time, tj, of different TPC-H query types on a 1GB database.

Query Type Q1 Q7 Q9 Q13 Q18 Q21
Run Time tj (sec) 294.61 102.06 578.61 101.27 554.56 570.37

Table 2: Run time, tj, of different TPC-H query types on a 10GB database.

interactions in the different runs. We show later that query
interactions affect not only end-to-end workload completion
time but also resource consumption. Therefore, we argue
that it is important to consider query interactions when
answering questions about different aspects of a database
system such as testing, tuning, capacity planning, and per-
formance prediction.

Surprisingly, very little work in the database literature
deals with studying query interactions in the general sense.
There are specific research works like work on multi-query
optimization (e.g., [12]), and work on sharing scans in the
buffer pool (e.g., [10]). Some works deal with transaction
mixes but define a transaction mix as the set of transac-
tions observed during a monitoring interval, without consid-
ering the concurrent execution of these transactions and the
interactions that this concurrent execution induces. Such
interaction-oblivious mix models have been used for perfor-
mance prediction, capacity planning, and anomaly detec-
tion [14, 18]. In this paper we show that the interactions
ignored by these works can have a significant impact on
performance.

Our model of a database workload is that it consists of
a sequence of query mixes. Some previous work models a
workload as a sequence of queries, but ignores the effect of
concurrent query execution [1]. To study the effect of query
interactions on an entire workload, we start by studying
the query interactions within individual query mixes. We
assume that the query types that appear in the mixes are
known a-priori. A query mix consists of a number of differ-
ent instances of each query type, where different instances
of a query type may have different parameter values. It
is relatively simple to determine the query types a-priori
if the query workload is generated by a fixed set of appli-
cations (e.g., report generation applications in a business
intelligence setting). Having a fixed set of applications is a
common mode of operation for many database systems, so
the discussion in this paper is widely applicable. However,
there are cases where a query workload is purely ad-hoc. In
these cases, an extra step is required to classify the ad-hoc
queries into a fixed set of query types. This extra step is be-
yond the scope of this paper and is an interesting direction
for future work.

In this paper, we present some results from an experi-
mental study of the impact of query interactions on perfor-
mance and resource consumption. We present examples of
interactions and their effect in Section 2, and we discuss the
implications of these interactions in Section 3.

2. EXAMPLES OF QUERY INTERACTION
To illustrate the effect of query interactions in different

query mixes on run time and resource consumption, we con-
ducted an experimental study using queries from the TPC-H
benchmark with two database sizes, 1GB and 10GB. The

database system we use is DB2 version 8.1, and we ran
our experiments on machines with dual 3.4GHz Intel Xeon
CPUs and 4.0GB of RAM running Windows Server 2003.
The buffer pool size of the database was set to 400MB for
the 1GB database, and 2.4GB for the 10GB database. We
used the DB2 Design Advisor to recommend a set of indexes
for our workload, and we ran the DB2 Configuration Advisor
to ensure that the configuration parameters are well tuned.

Let Q1, Q2, . . . , Q22 be the 22 TPC-H query types. We
use query mixes consisting of different numbers of instances
of different TPC-H query types, where the instances have
different parameter values as required by the TPC-H speci-
fication (the queries are generated using the TPC-H QGEN
program). Table 1 shows the run time of the 6 longest run-
ning TPC-H queries on a 1GB database when they run alone
in the system, which we denote by tj . Table 2 shows the run
time of these queries on a 10GB database. Each run time
represents the average run time of 10 instances of the par-
ticular query type. There is little variance in run time for a
specific query type since TPC-H uses uniform distributions
for data and query parameters. We also experimented with
skewed (Zipfian) data distributions and observed significant
effects of query interactions in this setting. Our approach to
dealing with skewed data distributions is to sub-divide each
query type into sub-types according to the range of param-
eter values to minimize the variance in run time within a
query type. We omit a detailed discussion of skewed distri-
butions from this paper.

The multi-programming level (MPL) of the database is
M . The MPL represents the number of queries that execute
concurrently in the system at any time. A set of queries
that execute concurrently in the system is referred to as a
query mix. Query mix mi can be represented as a vector
〈Ni1, Ni2, . . . , NiT 〉, where Nij is the number of instances of

query type Qj in mi, and
∑T

j=1 Nij = M . We denote the
average run time of queries of type Qj in mix mi by Aij .

We start with a simple example demonstrating the impact
of interactions in a query mix on the completion time of a
given query type in this mix. Table 3 shows three mixes
consisting of the 6 long-running query types on the 10GB
database. The high variability in Aij illustrates the effect
of query interactions. Consider the average run time of Q1

and Q7 in the first two mixes. Both mixes have M = 5,
and both have one instance each of Q1 and Q7, but there is
an increase in Aij in m2 for all query types. In particular,
the run time of Q7 is more than twice its time in m1. One
may be tempted to think that this is just because of the
characteristics of Q13 which was introduced in m2. The
next mix m3 shows that this is not true. In this mix, both
Q1 and Q7 actually improve their performance from m2,
even when we increase the number of instances of Q13. The
effect of query interactions in a 1GB database can be seen
in Table 4. Consider the average run time of Q21 in the

Q1 Q7 Q9 Q13 Q18 Q21
Mix Nij Aij Nij Aij Nij Aij Nij Aij Nij Aij Nij Aij

m1 1 1093.14 1 578.36 3 1190.15 0 0.0 0 0.0 0 0.0
m2 1 1794.97 1 1261.39 2 2638.62 1 432.12 0 0.0 0 0.0
m3 1 1186.74 1 663.97 0 0.0 3 311.53 0 0.0 0 0.0

Table 3: Aij for different query types in query mixes on a 10GB database.

Q1 Q7 Q9 Q13 Q18 Q21
Mix Nij Aij Nij Aij Nij Aij Nij Aij Nij Aij Nij Aij

m4 8 114.4 2 45.76 1 193.16 4 71.12 4 111.87 1 55.38
m5 2 109.88 6 88.13 3 191.48 5 61.23 3 114.21 1 159.95

Table 4: Aij for different query types in query mixes on a 1GB database.

Q1 Q7 Q9 Q13 Q18 Q21
Mix Nij Aij Nij Aij Nij Aij Nij Aij Nij Aij Nij Aij

m6 1 1897.4 2 72.7 5 2919.3 0 0.0 2 1904.1 0 0.0
m7 4 538.0 0 0.0 0 0.0 0 0.0 1 539.3 0 0.0
m7a 4 537.98 0 0.0 0 0.0 0 0.0 1 541.39 0 0.0
m7b 4 542.94 0 0.0 0 0.0 0 0.0 1 538.26 0 0.0

Table 5: Aij for different query types in query mixes on a 10GB database.

two mixes m4 and m5. Both these mixes have M = 20, yet
Aij for Q21 in m5 is almost three times that for m4. The
performance of these mixes and all other mixes used in this
paper is repeatable and consistent across different runs of
the experiment.

Next, we present interesting cases of “positive interac-
tions.” Table 5 shows some query mixes for this setting.
Mix m6 in this table presents an example of positive inter-
action for Q7. The average run time of Q7 in this mix, Aij ,
is 72.7 seconds, while the run time of Q7 when it is run alone
in the system is 102.06 seconds (Table 2). Thus, Q7 benefits
from being run in this mix, taking less time on average than
if it were run alone. Mix m7 presents another example of
positive interaction, this time for Q18. The average run time
of Q18 in this mix is 539.3 seconds, compared to a run time
of 554.56 seconds when it is run alone. Thus, Q18 benefits
from being run with 4 instances of Q1. Mixes m7a and m7b

show repeated runs of mix m7 with different instances of
the same query types. The results for all variants of m7 are
similar, illustrating the repeatability of our results. The
above examples show that query interactions can be negative
(where Aij > tj) or positive (where Aij < tj). Interestingly,
mix m6 exhibits both positive and negative interactions: Q7

benefits from running in this mix, but the performance of
the other three query types is severely degraded.

Next, we demonstrate that query interactions can be fairly
complex, with small changes in the query mix sometimes
having a huge impact on performance that may be very dif-
ficult to predict. In Table 6, we focus on three-way inter-
actions for mixes with one instance of Q21 on the 10GB
database. In all examples we have M = 5. The comple-
tion time first increases with the introduction of an instance
of Q9, then it decreases and increases alternatively as we
keep increasing the number of instance of Q9 and decreas-
ing the number of instances of Q13. The same behavior for
three-way interaction can be seen on the 1GB database in
Figure 2. Here we fix Nij = 3 for Q21 and vary the num-
ber of instances of Q7 and Q9 such that M is always fixed
to be 30. Once again we can see that Aij for Q21 varies
significantly with no easily predictable pattern.

Figure 2: Three-way interaction: effect on Q21 of
different mixes.

mix Q9 (Nij) Q13 (Nij) Q21 (Nij) Q21 (Aij)
m8 0 4 1 4188.20
m9 1 3 1 5463.80
m10 2 2 1 3476.1
m11 4 1 1 3581.7
m12 4 0 1 2782.4

Table 6: Aij for Q21.

These examples demonstrate that we cannot accurately
predict the performance of queries unless we are able to
model the effect of other queries running concurrently with
them in the query mix. Focusing on individual query types
and ignoring interactions can lead to inaccurate conclusions
about performance. Thus, it is important to develop mix-
based characterization of query workloads to better under-
stand the performance of database systems.

Next, we present experiments measuring resource con-
sumption in different query mixes. Here again we will see
that traditional approaches that profile the resource con-
sumption of individual queries and workloads while ignoring
interactions may not be useful. When queries run concur-
rently, resource utilization and performance bottlenecks can

mix Q13 (Nij) Q9 (Nij) Q13 (Aij) Q9 (Aij) CPU Utilization Sec / Disk Transfer
m13 0 5 0 919 24.11 0.0253
m14 1 4 356 1547.16 27.43 0.025
m15 2 3 422.59 2079.72 19.68 0.0228
m16 3 2 388.74 2508.33 4.97 0.0098
m17 4 1 289.1 3762.55 53.145 0.026
m18 5 0 224.42 0 86.055 0.01655

Table 7: Resource consumption for different mixes of Q13 and Q9 on a 10GB database.

mix Q13 (Nij) Q21 (Nij) Q13 (Aij) Q21 (Aij) CPU Utilization Sec / Disk Transfer
m19 0 5 0 1300.735 5.785 0.0072
m20 1 4 372.05 2196.81 9.3 0.0114
m21 2 3 436.62 2283.41 14.38 0.0128
m22 3 2 322.71 2576.06 30.68 0.0177
m23 4 1 206.88 4188.2 59.36 0.0215
m24 5 0 224.42 0 86.055 0.01655

Table 8: Resource consumption for different mixes of Q13 and Q21 on a 10GB database.

change considerably from one mix to another. Tables 7 and 8
show the resource consumption of different mixes with two-
way query interaction and M = 5 on the 10GB database.
The tables report average CPU utilization (in %) and aver-
age seconds per disk transfer for the different mixes. Seconds
per disk transfer is a direct measure of disk response time
including the queueing time (so it captures the effect of vary-
ing load). In both tables we run Q13 with one other query
type and observe the resource consumption of the mixes.
As expected, resource consumption varies as we vary the
query mix. However, what is interesting is that even when
we have only two query types, just replacing an instance
of one query type with an instance of the other can signifi-
cantly change resource consumption, further demonstrating
the significance of query interactions. Consider mixes m13 to
m18 which all consist of instances of query types Q13 and Q9.
In m16, the CPU utilization and disk transfer time are sig-
nificantly lower than m15 and m17. The CPU utilization for
m18 is considerably higher than m17. All these changes are
the result of changing just one query instance from one mix
to the next. The pattern of resource consumption is complex
and rapidly changing due to the nature of query interactions.
In many cases the bottleneck resource is neither CPU nor
disk, but some other resource not being monitored such as
locks, memory, database or operating system latches, etc.
It is clear from these tables that considering query mixes
is important for answering questions not only about query
run time but also about resource consumption. Another
interesting observation from these tables is that there is lit-
tle correlation between resource consumption and query run
time. This is further illustrated by Figures 3 and 4. The
figures plot CPU utilization and seconds per disk transfer
in different query mixes (on the 10GB database) against
the average completion time of Q9 in these mixes. There is
no clear correlation between mix resource consumption and
query completion time.

3. IMPLICATIONS OF QUERY INTERAC-
TION

After presenting examples of query interactions and demon-
strating the significant impact that they have on perfor-
mance and resource consumption, we now ask the question:
How do these interactions affect database testing and tun-
ing? In this section, we present some implications of query

Figure 3: CPU utilization vs. Q9 completion time.

Figure 4: Disk performance vs. Q9 completion time.

interactions on database testing, and some challenges that
arise due to these interactions.
Sampling and Test Case Design: An important conse-
quence of query interactions is that the design of test cases
and workloads for testing and evaluating database systems
should take these interactions into account. For example,
consider the two workloads in Figure 1. These workloads
use the same queries, and the only difference between them
is in query interactions. If database testing is not interac-
tion aware, two test runs may use these queries in the two
orders shown in Figure 1, resulting in a 2.1 hour difference
in run time that is not due to any feature of the database
system being tested, but rather due to query interactions.

To make database testing and tuning interaction aware,

we need to view the problem of designing test cases and
test workloads as a problem of sampling from the space of
possible query interactions. An important challenge is how
to design the test workloads to maximize coverage of the
space of possible query interactions while minimizing the
sampling budget. Principled sampling approaches such as
Latin Hypercube Sampling (LHS) [8] can help address this
challenge, and it is important for database testers to employ
such approaches and design interaction-aware test cases.

In addition to the “active sampling” approach proposed
above, it may be possible to obtain useful information about
query interactions through “passive sampling” from the work-
loads in a production system. If we (passively) monitor
the execution of production workloads, we could determine
which query mixes were actually encountered in these work-
loads, how long each mix ran, what effect each mix had on
resource consumption, etc. This passive sampling cannot
guarantee the same comprehensive coverage of the space of
possible query mixes as active sampling, since it is restricted
to mixes that have actually been observed and does not pro-
vide information about potential mixes that have not been
seen yet. However, passive sampling can provide a database
tester, DBA, or automatic tuning tool with a compact and
useful characterization of the workload on the system.

Performance Modeling: Sampling the space of possible
query interactions is a first step towards understanding the
effect of these interactions on performance. To build perfor-
mance models that reflect the effect of query interactions, we
advocate the use of “black-box” modeling techniques that fit
statistical models to the observed sample data.

It may be possible to build “white-box” performance mod-
els that capture the effect of query interactions, but as the
systems and the query workloads become more complex,
it becomes increasingly difficult to build such models from
the ground up. Query interactions can happen at many
different levels and their effect on performance can be sub-
tle, so an interaction-aware white-box model would need to
consider hardware resources (CPU, memory disks, and disk
controllers), database internals (query plan, access meth-
ods, buffer pools, working memory, locks, latches), operating
system internals (scheduling, latches, queuing delays), and
possibly other factors. All these factors would need to be
monitored and would need to be reflected in the model. To
avoid having such complex (and likely brittle) models with
high monitoring requirements, we advocate moving to an ex-
perimental modeling approach. Note that such an approach
has long been used in the Internet Measurement community
(e.g., [4]) as a way to model the performance of a very com-
plex system. Work that uses a black box modeling approach
are also starting to appear in the database literature [7].

To use experimental modeling techniques, we need to fit
a statistical model to the observed performance in our sam-
ples. Our goal is to obtain a set of functions of the form

y = f(x1, x2, . . . , xn)

where y is the performance characteristic that we are mod-
eling for a specific mix (e.g., CPU utilization, average com-
pletion time of a specific query type, etc.), xi is the number
of queries of type i in the mix (for the purpose of modeling,
a mix is defined by a vector of xi’s), and f(.) is a function
representing the statistical model. The form of f(.) depends
on the type of model that we are using (the model structure).
There are many well-known model structures, such as linear

Figure 5: Accuracy of modeling.

regression, regression trees, locally weighted linear regres-
sion [17], Gaussian processes [13], and others. All of these
model structures can be fit to the observed sample data (the
model training data) using well-known techniques. Choice
of the model structure impacts model accuracy, but if the
training data is representative, then a good model can be
typically found easily. In our work, we have found linear re-
gression and Gaussian processes to be good model structures
that are accurate for a broad spectrum of query mixes.

To illustrate the practicality and accuracy of our pro-
posed approach, we present an example of its applicability
to predicting query completion times in different mixes. For
this example, we use LHS to collect 24 sample query mixes
on the 10GB database, and we use the Weka data mining
toolkit [16] to build models for the completion time of the
different query types in different mixes. Figure 5 shows the
average completion time of Q21 in three different mixes on
this database. The figure shows the actual measured com-
pletion time, and the predicted completion time using two
model structures in Weka: linear regression and the more ad-
vanced Gaussian processes [13]. From the figure we can see
that, as we saw before, the average completion time of Q21

varies significantly from mix to mix. The figure also shows
that linear regression can predict the completion time with
some accuracy, and that Gaussian processes are more accu-
rate than linear regression. Thus, we can see that (1) the
sampling and experimental modeling approach works even
with a small number of samples, (2) simple models such as
linear regression can be reasonably accurate, and (3) with
careful choice of more advanced modeling techniques we can
achieve very high accuracy. We have observed similar accu-
racy results in other experiments. In one experiment, we
measured the accuracy of the model on a test workload of
20 random mixes. We found the mean relative error to be
31% for linear regression and 20% for Gaussian processes.

Accurate performance models are a very useful tool for
characterizing and understanding query interactions. For
example, they can inform a tester or DBA about parts of
the space of possible interactions that place a high load on
resources. These models can also indicate which queries
interact negatively with each other and which interact pos-
itively. Thus, they can serve as a basis for focusing testing
and tuning efforts.

Interaction-aware Tuning: Understanding query inter-
actions through sampling and performance modeling can be
used to improve the solutions to many administration and
performance tuning problems in database systems. For ex-

ample, in our prior work we have developed an interaction-
aware query scheduler for long-running queries that was able
to improve performance by up to 4x [2]. The scheduler
schedules batches of long running queries in a report gen-
eration setting. It relies on sampling the space of possible
mixes and fitting linear regression models to predict query
completion times in different mixes. The models are used
in a linear programming formulation of the scheduling prob-
lem, and the solution of the linear program is the basis of
the interaction-aware schedule.

Since query interaction has such a significant effect on run
time, it would be useful to develop interaction-aware tech-
niques for predicting the completion time of complex query
workloads, or the progress of workloads or specific queries.
It may also be beneficial to incorporate interaction aware-
ness into other database system components such as query
optimizers or physical design advisors. All of these possibil-
ities represent interesting avenues for future research.

The notion of a database workload as a mix of queries
has been taken into account by prior work in database sys-
tem tuning as discussed in Section 1. While such works are
definitely relevant, in this paper we show that query interac-
tions can have complex and subtle effects, and we advocate
an end-to-end view of query interactions and using experi-
mental modeling to capture their effects.

Interactions in Other Contexts: While the focus of this
paper is on interaction awareness in traditional database
systems, we point out that interactions can arise in other
database contexts, and it should be possible to extend our
approach of sampling and experimental modeling to these
contexts. For example, a particularly interesting area for
extension is parallel dataflow execution frameworks such as
Map-Reduce [6] or Dryad [9]. In a typical usage scenario for
these frameworks (and for systems that build on top of them
such as Pig [11] or SCOPE [5]), there is a set of related, long-
running, resource-intensive tasks that execute concurrently
(e.g., Map-Reduce tasks). We believe that it may be very
useful to develop scheduling and tuning algorithms that take
into account the interactions between these tasks. For us,
this is still an open area of exploration.

Leveraging Computing Clouds for Experimentation:
Our approach to modeling query interactions requires run-
ning experiments to sample the space of possible query in-
teractions. An important question when adopting this ap-
proach is where to run these sampling experiments? The
production system may not be available for extensive ex-
perimentation, and there may not be an available test sys-
tem. Testing and tuning always requires experimentation,
so whether the approach is interaction-aware or not, some
capacity for experimentation has to be provided. The emer-
gence of computing clouds such as Amazon’s EC2 [3] makes
experimentation much easier by providing virtually unlim-
ited computing capacity for running experiments. So if the
experiments required to sample the space of possible inter-
actions cannot be run on the production or a test system,
it should be possible to implement a full sampling and test-
ing infrastructure that can easily be run on Amazon’s EC2.
This is especially relevant if the production system is itself
running on Amazon’s EC2.

4. CONCLUSIONS
In this paper, we show that query interactions have a

significant effect on database system performance. Thus,
it is important to take these interactions into account in
database testing and tuning. We advocate using an experi-
mental sampling and modeling approach for capturing query
interactions, and we discuss some potential benefits of inter-
action awareness. The paper outlines several opportunities
and research directions for database testing and tuning.

5. REFERENCES
[1] S. Agrawal, E. Chu, and V. R. Narasayya. Automatic

physical design tuning: Workload as a sequence. In
SIGMOD, 2006.

[2] M. Ahmad, A. Aboulnaga, S. Babu, and K. Munagala.
Modeling and exploiting query interactions in
database systems. In CIKM, 2008.

[3] Amazon Elastic Computing Cloud.
http://aws.amazon.com/ec2/.

[4] N. Brownlee and K. C. Claffy. Internet measurement.
IEEE Internet Computing, 8(5), 2004.

[5] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. SCOPE: Easy and
efficient parallel processing of massive data sets. In
VLDB, 2008.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[7] A. Ganapathi, H. Kuno, U. Dayal, J. Wiener, A. Fox,
M. Jordan, and D. Patterson. Predicting multiple
metrics for queries: Better decisions enabled by
machine learning. In ICDE, 2009.

[8] C. R. Hicks and K. V. Turner. Fundamental Concepts
in the Design of Experiments. Oxford University
Press, 1999.

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed data-parallel programs from
sequential building blocks. In EuroSys, 2007.

[10] K. O’Gorman, A. E. Abbadi, and D. Agrawal.
Multiple query optimization in middleware using
query teamwork. Software - Practice and Experience,
35(4), 2005.

[11] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for
data processing. In SIGMOD, 2008.

[12] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe.
Efficient and extensible algorithms for multi query
optimization. In SIGMOD, 2008.

[13] T. J. Santner, B. J. Williams, and W. Notz. The
Design and Analysis of Computer Experiments.
Springer, first edition, July 2003.

[14] C. Stewart, T. Kelly, and A. Zhang. Exploiting
nonstationarity for performance prediction. In
EuroSys, 2007.

[15] Transaction processing performance council (TPC).
http://www.tpc.org/.

[16] Weka 3: Data mining software in Java.
http://www.cs.waikato.ac.nz/ml/weka/.

[17] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann, second edition, June 2005.

[18] Q. Zhang, L. Cherkasova, and E. Smirni. A
regression-based analytic model for dynamic resource
provisioning of multi-tier applications. In ICAC, 2007.

