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ABSTRACT

Query languages for graph databases started to be inves-
tigated some 25 years ago. With much current data, such
as linked data on the Web and social network data, be-
ing graph-structured, there has been a recent resurgence
in interest in graph query languages. We provide a brief
survey of many of the graph query languages that have
been proposed, focussing on the core functionality pro-
vided in these languages. We also consider issues such
as expressive power and the computational complexity
of query evaluation.

1. INTRODUCTION

Graphs are widely used for representing data, with
the result that a number of query languages for

graphs have been proposed over the past few decades.

In the 1980s motivating applications came from ar-
eas such as hypertext systems [17, 63]. When semi-
structured data [2, 12] and object databases [34] be-
came prominent in the 1990s, these provided fruitful
areas for the study of graph models and query lan-
guages. In the last decade, the semantic web [9, 57]
and social networks [5, 24, 60, 61] have taken over
as key areas amenable to graph-based approaches.
Further application areas for graph querying include
transportation networks [11], semantic associations
as part of criminal investigations [62] (also called
link analysis), biological networks [46, 47, 48], pro-
gram analysis [50], workflow and data provenance
[6, 39].

Each of the above application areas has its own
requirements in terms of an appropriate graph data
model. In its simplest form a graph G is a pair
(V, E), where V is a finite set of nodes and E is
a finite set of edges connecting pairs of nodes. Of
course, edges can be directed or undirected, although
we will consider only the directed case here (which
is more general). In most applications it is also the
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case that edges are labelled in some way, sometimes
with sets of attribute-value pairs. Similarly, in gen-
eral nodes may be labelled with sets of attribute-
value pairs. However, we will mostly limit our dis-
cussion to graphs in which each node is identified by
a distinct label (identifier) and each directed edge
is labelled with a symbol drawn from some finite
alphabet ¥; hence E CV x ¥ x V.

Some application areas require graph structures
that are more elaborate than the simple model de-
scribed above. For example, hypergraphs have been
used to model hypertext [63], while the hypernode
model [58] allows for nodes that can themselves
comprise graphs. In contrast, the so-called blobs
of the Hy™ system [19] comprise sets of nodes and
share some similarities with the blobs of higraphs
[35]. In addition, a number of graph data models
require that each graph conforms to a schema. How-
ever, for the purposes of this paper, we will assume
only the simple model described above; for details
on more elaborate graph data models, we refer the
reader to the survey by Angles and Gutiérrez [7].

Figure 1 shows an example of a graph G con-
forming to our simple definition, inspired by an
example from NAGA [43, 64]. Node labels in G
denote names of authors, literary prizes and loca-
tions. Edge labels denote the hasWon relation-
ship between authors and prizes (abbreviated w),
the bornIn relationship between authors and places
(abbreviated b), the livesIn relationship between
authors and places (abbreviated i), and the located-
In relationship between places. Note that there can
be paths comprising locatedIn edges: for example,
Bacchus Marsh is a town locatedIn the state of Vic-

toria which is locatedIn the country Australia.

A typical query @ on graph G might ask to find
authors who have won both the Booker and Nobel
prizes—a simple conjunctive query (CQ) returning
a set of nodes as answer. Query ) might be ex-
pressed using the following syntax

ans(z) <« (x,hasWon, Nobel), (xz, hasWon, Booker)

where x is interpreted as a node variable, while
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Figure 1: A graph of authors, prizes they
have won, and places where they were born.

hasWon, Nobel and Booker are constants. This
syntax is reminiscent of Datalog, except that atoms
in the body do not have predicate names since only
a single graph is being queried; indeed, the atoms
are similar to the triple patterns used in SPARQL
[36], the W3C query language for RDF [44].

It is common in querying graphs that users may
want to find pairs (z,y) of nodes such that there is
a path from = to y whose sequence of edge labels
matches some pattern. One way of specifying such
a pattern is by using a regular expression defined
over the alphabet of edge labels [52]. Such a query is
called a regular path query (RPQ). So, using the ex-
ample of Figure 1, an RPQ using the regular expres-
sion citizenOf | ((bornIn | livesIn) - locatedIn*)
asks for pairs of author z and place y such that
x is a citizen of y or was born in or lives in y, or
where  was born in or lives in some place which
is connected to y by a sequence of any number of

locatedIn relationships.

CQs and RPQs can be combined to form con-
Junctive regular path queries (CRPQs). For exam-
ple, the following query @ adds the conjuncts from
the example CQ to those of the RPQ as follows:

ans(z, )
< (z,hasWon, Nobel), (z, hasWon, Booker)
(z, (citizenOf | ((bornIn | livesIn) - locatedIn™)),y)

CRPQs formed the basis of the languages G [21]
and GraphLog [17], although those languages used
a syntax of graph patterns. Figure 2 shows how the
CRPQ @ above would be expressed in GraphLog,
where there is an obvious mapping between the
edges in the graph pattern and the atoms in the
body of (). The thick edge in Figure 2 is called the
distinguished edge, representing edges which occur
in the answer of the query; hence, it corresponds to
the head of Q.

CRPQs were much studied with respect to query-
ing semistructured data in languages such as Lorel
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Figure 2: Query to find places related to
authors who have won both the Nobel and
Booker prizes.

[2], STRUQL [26] and UnQL [13], as well as in terms
of query containment [16, 28|, query rewriting [15]
and so on. CRPQs reappeared more recently in
NAGA [43], for example, in a form similar to that
in Figure 2. The ability to query paths using regu-
lar expressions, and hence provide the functionality
of CRPQs, has only very recently been introduced
in SPARQL 1.1 [36].

However, for a number of problems arising in
graph querying CRPQs are insufficiently powerful
[10]. These problems include comparing semantic
associations in RDF graphs [8], comparing biologi-
cal sequences [31], and so on. In such settings, we
want to be able to express relations among paths.
For example, the following query @ finds entities x
and y such that the same sequence of edge labels 7
connects x and y as connects Coetzee and y:

(z,y) « (Coetzee,my), (z,m y), 5" (r) (1)

Here, 7 is a path variable, and ¥* denotes any se-
quence of edge labels. @ is an example of an ex-
tended conjunctive regular path query (ECRPQ),
as proposed in [10].

We might also want to include paths themselves
in the output of a query. This has been proposed,
for example, as an extension to SPARQL [45], and
is also provided by ECRPQs; to return the paths
as part of the answer to query @) above, one simply
includes the path variable 7 in the head. Of course,
if there are cycles in the input graph, the answer to
a query may be infinite. In such cases a compact
representation of the set of answers to an ECRPQ
can be returned in the form of an automaton [10].
ECRPQs are described in more detail in Section 3.3.

Requirements arising from querying and analysing
social networks bring the need for further capabili-
ties to be provided by graph query languages [5, 24,
60, 61]. In particular, aggregation functions play an
essential role in network analysis, while the ability
to transform networks by creating new nodes based
on (aggregations of) sets of existing nodes is also
crucial. We discuss these requirements further, and
provide examples, in Sections 3.4 and 3.5.
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With the proliferation of data on the Web (e.g.,
in the form of linked data), it is less likely that users
will be familiar with the terms and structure used,
which in any case will also be more heterogeneous.
In such situations, queries that permit flexible [42,
51] or approximate matching [30, 40] of data may
be helpful. We consider this further in Section 3.6.

After a brief survey of many graph query lan-
guages in the next section, we focus on the core
functionality provided by such languages in Section
3. This section covers subgraph matching (Sec-
tion 3.1), finding nodes connected by paths (Sec-
tion 3.2), comparing and returning paths (Section
3.3), aggregation (Section 3.4), node creation (Sec-
tion 3.5), and approximate matching and ranking
(Section 3.6). Section 4 covers the expressive power
of languages and the computational complexity of
query evaluation. We conclude the paper in Sec-
tion 5. We do not cover a number of other topics
of interest such as query containment or query op-
timisation or evaluation in general.

2. A BRIEF SURVEY

In this section we give a brief overview of some of
the graph query languages developed over the past
25 years or so. In particular, we highlight the dif-
ferent syntax used by various languages, as well as
their proposed area of application. Section 3 dis-
cusses the functionality underlying these languages
in more detail, while the expressive power and com-
plexity of evaluating queries in some of the lan-
guages is presented in Section 4.

We have already mentioned the query languages
G [21] and GraphLog [17]. The data model used by
these languages is that of a labelled, directed graph.
In G, a query is a set of pairs of graphs, each pair
comprising a pattern graph and a summary graph.
This pair of graphs essentially represents a CRPQ),
with a set of such pairs being interpreted as dis-
junction. GraphLog replaced the summary graph
with a distinguished edge, as shown in Figure 2.
GraphLog also added edge inversion, negation and
aggregation functions (Section 3.4), while defining
a semantics different from that of G. The semantics
of G was defined in terms of matching simple paths
in the graph being queried (Section 3.2), whereas
the meaning of a GraphLog query was given by the
meaning of the stratified Datalog program to which
it was translated (examples are given in Sections 3.2
and 3.4).

Other early graph query languages include GRAM
[4] and GraphDB [32]. The data models of both
require the presence of a graph schema. Both pro-
vide regular expressions defined over alternating se-
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quences of node and edge types. GraphDB includes
object-oriented features such as classes for nodes
and edges, as well as paths. The intended area of
application for GRAM was Hypertext, while that
for GraphDB was spatial networks such as trans-
portation systems. As a result, GraphDB provides
built-in operators such as one for shortest path.

GOOQOD is another graph query language based on
an object-oriented model [33, 34]. GOOD’s query-
ing mechanism is via graph transformations: node
addition/deletion and edge addition/deletion. Also
provided is an abstraction mechanism to group ob-
jects by means of their properties, as well as meth-
ods for defining sequences of operations. GOOD
gave rise to a number of successor languages, such
as G-Log [56] and the update language GUL [38].

A number of query languages were developed to
query graphs represented in the Object Exchange
Model (OEM) [55] or one of its variants/derivatives.
OEM was developed to model semistructured data
which had no predefined schema and could be het-
erogeneous. The Lore (Lightweight Object Repos-
itory) graph data model and its associated query
language Lorel [2] distinguish two types of nodes:
complex objects and atomic objects (values) which
have no outgoing edges. A graph must have a num-
ber of named nodes (or entry points), and every
node must be reachable from a named node.

In common with many graph query languages,
Lorel uses a syntax based on OQL, allowing regular
expressions over edge labels. A distinctive feature
of Lorel is the availability of path variables.

Say we wish to formulate a Lorel query @ equiva-
lent to the ECRPQ shown in (1). In Lore, each node
has an oid rather than a label as in Figure 1, so au-
thors’ names, for example, would be represented by
separate atomic objects connected to author nodes
by an edge labelled name, say. We also assume that
Winners is a named entry point, with edges labelled
author to author nodes. Then @) can be written as

select X, Y

from Winners.author A, Winners.author X
AH#QPY, X.#QQ.Y

where A.name = ‘Coetzee’

and  path-of (P) = path-of (Q)

where # denotes a path of any length, so is equiv-
alent to the regular expression ¥* used earlier. QP
binds the path (of oids and labels) to variable P,
and path-of returns a sequence of edge labels.
STRUDEL is another system whose data model is
based on the OEM data model [26]. Its intented
area of application is the implementation of data-
intensive web sites, whose content and structure is
specified using the query language STRUQL. The
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language is compositional; the result of a query on
a site graph is another site graph. Once again, reg-
ular path expressions are used, but because there
is a need to create graphs corresponding to web
sites, new constructs are needed. These include the
link clause which creates a new graph from existing
graphs, using Skolem terms for new nodes.

UnQL is a functional query language for semistruc-
tured data based on structural recursion [13]. The
data model used somewhat different to that of OEM,
being value-based rather than object-based. UNQL
queries are translated to an internal algebra, Un-
CAL, which allows for optimisation. Once again,
regular path patterns are provided, but the func-
tional nature of UnQL means that graphs can be
constructed, using data constructors, rather than
only queried. UnQL’s data model includes special
symbols called markers, which are related to object
identifiers in models such as OEM, except that not
every node in a graph has to have a marker. Each
graph also has certain nodes designated as inputs
and certain nodes designated as outputs.

YAGO/NAGA combines database and informa-
tion retrieval techniques to provide a semantic search
engine for web derived knowledge [64]. The NAGA
data model is a directed, weighted multigraph in
which nodes represent entities, edges represent re-
lationships, and weights represent confidence of ex-
tracted facts. A query is a connected, directed
graph in which each edge is labelled with a regu-
lar expression over edge labels or a variable or the
connect keyword (similar to Figure 2). A query
using connect returns the paths connecting the cor-
responding nodes. Answers to queries are ranked in
terms of informativeness, confidence and compact-
ness (e.g., short paths rank higher than long paths).

Soc alSco e [5] aims to provide information dis-
covery and presentation from social content sites
such as Yahoo! Travel. To do this, it proposes a
uniform algebraic framework operating on the so-
cial content graph, a graph in which both nodes
and edges have attributes. The algebra provides
operations of node selection, edge selection, graph
union, intersection and difference, graph composi-
tion and semi-join, and aggregation functions for
node aggregation and edge aggregation.

Other query languages for social networks include
SoSQL [60], BiQL [24] and SNQL [61]. The two ba-
sic query structures in SoSQL are paths and groups
(sets of nodes). Paths can have predicates and ag-
gregate functions applied to them. Path predicates
can include path operators such as all or at most n,
specifying that all or at most n nodes or edges sat-
isfy a given predicate. Groups can also have aggre-
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gation operators applied to them. BiQL [24] uses an
SQL-like syntax to query and transform networks.
New networks are formed using a CREATE clause.
Aggregation functions can be used in the WHERE
clause to restrict results, as well as in the SELECT
clause to define new attribute values. SNQL [61]
uses a data model comprising actors, relationships
and attribute values (all represented as nodes), with
edges associating attribute values with actors or re-
lationships and associating actors with the relation-
ships in which they participate. The query language
is based on GraphlLog, adding Skolem functions in
order to create new nodes in the output. These new
nodes are based on grouping or aggregating nodes
or attribute values in the input (see Section 3.5).

3. QUERY LANGUAGE FUNCTIONAL-
ITY

In this section, we focus on the functionality pro-
vided by typical graph query languages. The follow-
ing subsections will consider functionality in terms
of the following broad categories: subgraph match-
ing, finding nodes connected by paths, comparing
and returning paths, aggregation, node creation,
and approximate matching and ranking. Of course,
many languages offer operations such as union (dis-
junction), composition and negation of queries, but
we will not cover these separately.

We start with some general notation and defini-
tions. Let G = (V,E) be a graph as defined in
Section 1. Given a query expression ) and a graph
G, the evaluation of @ on G is denoted Q(G).

Let us call the following question the query eval-
uation problem (QEP). Given a query expression @
and a graph G, is Q(G) non-empty? As usual, one
can consider the complexity of this problem by pos-
sibly fixing one of the two inputs. Combined com-
plexity corresponds to when both @ and G are part
of the input. Query complexity is when the input
is @, with G being fixed, while data complexity is
when the input is G, with @ being fixed. We often
consider data complexity to be the most relevant
measure since graphs are assumed to be large and
query expressions short.

3.1 Subgraph matching

In some sense, the simplest form of graph query
supported by all languages is one which finds sub-
graphs within a graph. This corresponds to a con-
Junctive query (CQ). Let us fix a countable set of
node variables (typically denoted by z,y,z,...). A

We will from now on not usually distinguish between
an expression in a query language and the query (func-
tion) it denotes, simply using the term “query” for both.
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congunctive query (CQ) Q over a finite alphabet ¥
is an expression of the form:

) < N\ @oany) (2

1<i<m

ans(z, . ..

such that m > 0, each x; and y; is a node variable
or constant (1 < i < m), each a; € X (1 <i < m),
and each z; is some x; or y; (1<i<n,1<j<m).
The atom ans(z1,. .., 2,) is the head of the query,
while the expression on the right of the arrow is its
body. The query @ is Boolean if its head is of the
form ans(), i.e. n = 0.

Let £ = (x1,...,Zm), § = (Y1,-.-,Ym) and zZ =
(#1,---,2n). The semantics of CQs @ of the form
(2) are defined as follows. Let o be a mapping from
Z, § to the set of nodes of a graph G = (V, E) which
is the identity on constants. We define a relation
(G,0) E @ which holds iff (o(x;),a;,0(y;)) € E,
for 1 <4 < m. Then Q(G) is the set of tuples o(z)
such that (G, 0,) E Q. If Q is Boolean, we let Q(G)
be true iff (G, o) = @ for some o.

Using the example graph G from Figure 1, the
following CQ finds authors born in South Africa
who have won both the Nobel and Booker prizes:

ans(z) < (x,hasWon, Nobel),
(x, hasWon, Booker),
(z,bornin, SouthAfrica)

Each CQ of the form shown in (2) is formulated
with respect to a single graph and returns a set of
bindings for each node variable mentioned in the
head of the query. However, in some application
areas, the database to be queried comprises a set of
graphs, and the answer to a query is the subset of
graphs in which a match is found (e.g., in biolog-
ical applications). Other languages allow single or
multiple graphs to be queried and return the set of
matching subgraphs [37, 43].

Although CQs are in some sense the simplest
form of graph queries, they have been the subject of
much study, particularly in terms of finding efficient
ways of evaluating them on large graphs. This is be-
cause the combined complexity of the QEP for CQs
is the same as the problem of subgraph ismorphism,
which is well-known to be NP-complete. Because of
this, Fan et al. have been investigating an alterna-
tive semantics for graph pattern matching based on
graph simulation [25].

3.2 Finding nodes connected by paths

Let G = (V, E) be a graph over alphabet %, with
Vo, U € V. A path p between nodes vy and v, in
G is a sequence vpagU1a1v2 - - * Uy —10m—1Um, Where
sz,vi€V(1§i§m),ai62(1§i<
m), and (v;,a;,vi11) € F (1 <14 < m). The label
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of such a path p, denoted by A(p), is the string
ag- - am—1 € 2*. The length of p is m. We also
define the empty path as (v,e,v) for each v € V;
the label of such a path is the empty string e.

Regular path queries Determining reachability
between nodes in a graph is a querying mechanism
found in most graph query languages. The class of
reqular path queries [15, 21, 49, 52] provides queries
which return all pairs of nodes in a graph connected
by a path conforming to some regular expression. A
regular path query (RPQ) @ is an expression of the
form

ans(z,y) < (z,r,9) (3)

where  and y are node variables, and r is a reg-
ular expression over X. Here we use | for alter-
nation (disjunction) and - for concatenation. We
also allow the shorthands of r* for (r-r*), r? for
(rle), and X for (ai]---|an). We may also use a~
to match an edge labelled a in the reverse direc-
tion, i.e., from head to tail rather than from tail
to head [16]. For example, the regular expression
citizenOf | ((bornIn | livesIn)-locatedIn*) is used
in the example query in Figure 2.

Let G be a graph, r be a regular expression, and
p be a path in G. Path p satisfies r if A(p) € L(r),
the language denoted by r. Given an RPQ @ of the
form given in (3), the answer of @ on G, denoted
Q(G), is the set of all pairs of nodes (z,y) in G such
there is a path from x to y which satisfies r.

The REGULAR PATH PROBLEM is, given a query
Q of the form given in (3), a graph G and a pair of
nodes x and y, is (z,y) € Q(G)? It is well known
that this problem can be solved efficiently [52]. One
algorithm is as follows: (i) construct a nondetermin-
istic finite automaton (NFA) M,., with initial state
so and final state sy, accepting L(r); (ii) consider
G as an NFA with initial state = and final state y;
(iii) form the product automaton M, x G of M,. and
G; and (iv) determine whether there is a path from
(s0,x) to (sf,y) in M, x G. Each step of this algo-
rithm can be performed in PTIME, so the REGULAR
PATH PROBLEM has PTIME combined complexity.

Alternatively, we can translate ) into a set of
Datalog rules. So if @ uses the regular expression
citizenOf | ((bornIn | livesIn) - locatedIn*) from
Figure 2, the translation might be as follows:

ans(z,y) +— citizenOf(x,y)

ans(x,y) +— assoc(z,y)

ans(x,y) +— assoc(z, z), partO f(z,y)
assoc(z,y) <+ bornIn(z,y)

assoc(x,y) <+ livesIn(z,y)

partOf(x,x) < locatedIn(z,x)

partOf(xz,y) <« locatedIn(z,z), partOf(z,y)
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As an alternative to the semantics defined above,
we might instead want to match only simple paths
in G that satisfy the regular expression r. A path
p is simple if no node is repeated on p. The REGU-
LAR SIMPLE PATH PROBLEM can then be stated as,
given a graph G, a pair of nodes z and y in G and
a regular expression 7, is there a simple path from
x to y satisfying r7 It turns out, however, that the
REGULAR SIMPLE PATH PROBLEM is NP-complete,
even for fixed regular expressions [52].

Conjunctive regular path queries Extend-
ing regular path queries by allowing conjunctions of
atoms yields the class of conjunctive regular path
queries [16, 28]. A conjunctive regular path query
(CRPQ) @ over ¥ is an expression of the form

ans(z1,...,2n) /\ (@i, 73, Yi) (4)

1<i<m

in which all variables are as for a CQ, except that
each r; is now a regular expression over . The
query of Figure 2 corresponds to a CRPQ.

Let Z, § and Z be defined as for CQs, and G =
(V,E) be a graph. The semantics of CRPQs Q
of the form (4) are defined analogously to that for
CQs, with ¢ being a mapping from Z,g to V. The
relation (G,o0) = @ holds iff, for 1 < i < m, there
exists a path p; in G from o(z;) to o(y;) such that
A(p:) € L(r;). Now Q(G) is defined as for CQs.

3.3 Comparing and returning paths

As suggested in Section 1, there are a number in
situations in which we may want to specify relations
between paths as well as to have the actual path(s)
connecting two nodes returned as query answers,
whether to find connections in linked data on the
web (DBPedia, Freebase), for analysis in social or
other networks, or to determine data provenance.

Providing both of these capabilities gives rise to
the class of eztended CRQPs (ECRPQs), introduced
in [10] from where most of the material in this sub-
section is derived. ECRPQs extend the class of CR-
PQs in two ways. Firstly, they allow free path vari-
ables in the heads of queries. Secondly, they permit
checking relations on sets of paths in the bodies of
queries, rather than simply conformance of individ-
ual paths to regular languages.

We first define the notion of regular relations over
Y, which are used in ECRPQs. Let L be a sym-
bol not in 3. We denote the extended alphabet
(XU{L}) by ;. Let § = (s1,...,8,) be an n-
tuple of strings over alphabet . We construct a
string [3] over alphabet (X )™, whose length is the
maximum of the s;’s, and whose i-th symbol is a tu-
ple (¢1,...,¢pn), where each ¢ is the i-th symbol of

SIGMOD Record, March 2012 (Vol. 41, No. 1)

Sk, if the length of sy, is at least ¢, or L otherwise. In
other words, we pad shorter strings with the sym-
bol L, and then view the n strings as one string
over the alphabet of n-tuples of letters. An n-ary
relation S on ¥* is regular if the set {[3] | § € S}
of strings over alphabet (3,)" is regular (i.e., ac-
cepted by an automaton over (X )", or given by a
regular expression over (X)™). We shall often use
the same letter for both a regular expression over
(X1)™ and the relation over ¥* it denotes, as doing
so will not lead to ambiguity.

In additional to the set of node variables defined
for CRPQs, we now also fix a countable set of path
variables (denoted by m,w, x,...). An extended con-
Junctive regular path query (ECRPQ) Q over ¥ is
an expression of the form:

ans(z,%) < N (@omw), \ Ri@), (5
1<i<m 1<j<t

such that

(i) m>0,t>0,

(ii) each R; is a regular expression that defines a
regular relation over X3,

(iil) Z = (x1,...,2m) and § = (Y1, ..., Ym) are tu-

ples of node variables,

(iv) # = (m,...,mn) is a tuple of distinct path

variables,
(v) {@1,...,0¢} are distinct tuples of path vari-

ables, such that each @; is a tuple of variables
from 7, of the same arity as R;

(vi) Zz is a tuple of node variables from z, g, and

(vil) x is a tuple of path variables from those in 7.

The semantics of ECRPQs is defined by a natu-
ral extension of the semantics of CRPQs. For an
ECRPQ Q of the form (5), a graph G = (V, E) and
mappings ¢ from node variables to V and p from
path variables to paths, we write (G, o, u) | Q if

e (m;) is a path in G from o(x;) to o(y;), for
1 <7< m, and

o foreachw; = (mj,,..., 7, ), the tuple of strings
consisting of labels of pu(mj,),...,u(m;,) be-
longs to the relation R;.

The answer of () on G is defined as

Q@) = {(0(2),p(X)) | (G,0,p) = Q}-

We now present some examples, taken from [10].
In a query language for RDF/S introduced in [8],
paths can be compared based on specific semantic
associations. Edges correspond to RDF properties
and paths to property sequences. A property a can
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be declared to be a subproperty of property b, which
we denote by a < b. Two property sequences u
and v are called p-isomorphic if and only if u =
UL,y ..., Uy and v = vy, ..., v,, for some n, and u; <
v; or v; < u; for every i < n [8]. Nodes = and y are
called p-isoAssociated iff x and y are the origins of
two p-isomorphic property sequences.

Finding p-isoAssociated nodes cannot be expressed
using a CRPQ, not least because doing so requires
checking that two paths are of equal length. How-
ever, pairs of p-isomorphic sequences can be ex-
pressed using the regular relation R given by the
expression (Umbe& (a<bvb<a)(a,b))*. An ECRPQ
returning pairs of nodes x and y that are p-iso-
Associated can then be written as follows:

ans(m,y) — (xaﬂ-la Zl)a (2%7727 22)7 R(7T177T2)

Path variables in an ECRP(Q can also be used to
return the actual paths found by the query, a mech-
anism found in the query languages proposed in [2,
8, 39, 45]. For instance, SPARQLeR [45] intro-
duces path variables and regular expressions into
the SPARQL query language, allowing paths to be
output. As an example, the SPARQLeR query that
returns every path between the RDF resources r
and s, provided the path includes the resource e,
can be expressed by the ECRPQ

ans(ﬂ'hﬂ?) — (T77T176)7(677235)

where m; and 7o are the actual paths matched.

Regular expressions with backreferencing (REBRs)
[3], as provided by egrep and Perl, for example, ex-
tend regular expressions by including expressions
of the form (r)%X, where r is a regular expres-
sion and X is a variable, which binds a string w €
L(r) to X. Subsequent uses of X in the expression
then match w. REBRs can denote non-regular lan-
guages [3]. Although ECRPQs can mimick some of
this functionality over paths in a graph, it was re-
cently shown that ECRPQs cannot express all RE-
BRs [29]. On the other hand, ECRPQs can match
patterns, such as a"b"c", where a,b,c € ¥ and
n € N, that cannot be denoted by REBRs, by using
an equal-length (el) predicate as follows:

((E"]rhzl), (21,71'2, 22), (22,71'3, y)7
a*(my), b*(ma), ¢*(m3),
el(my, m2), el(ma, m3),

where el(mr, ') is shorthand for (U, jex(a, b)) (7, 7).

ans(z,y) <+

3.4 Aggregation

Determining various properties of graphs requires
computation that goes beyond matching and path
finding. Such properties range from simple compu-
tations to determine the degrees of nodes to more
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a e e — @

Figure 3: GraphLog query to count the num-
ber of prizes for each author.

sp(min(sum(d))
O )
dist(_ )" (d)

Figure 4: GraphLog shortest path query

complex ones for computing the eccentricity of a
node, the distance between pairs of nodes, or the
diameter of a graph. To formulate queries which
return the values of such properties, we need aggre-
gation operators such as count, sum, min and max.

Aggregation was available in early graph query
languages such as GT [22] and GraphLog [20]. It is
also a feature of query languages for social networks,
such as [24, 60, 61]. GraphLog and SNQL [61] have
semantics that are based on Datalog with aggrega-
tion. For consistency with the rest of the paper,
we will use the language of CRPQs extended with
aggregation functions, denoted CRPQ®99, without
giving a formal definition.

In GraphLog [20], aggregate terms are allowed
in the label of a distinguished edge or distinguished
node. The simple query in Figure 3 counts, for each
author x, the number of prizes y they have won.
The equivalent CRPQ®99 is:

ans(z,count(y)) <« (x,hasWon,y)

In general, GraphLog and SNQL queries are trans-
lated into recursive Datalog programs, and com-
bining recursion with aggregation can lead to non-
termination. Hence, care is taken to ensure that the
recursive rules that are produced perform transi-
tive closure computations over closed semirings [18],
such as formed by the operators min and sum in
computing shortest paths, as illustrated below.

Finding the length of the shortest path between
each pair of nodes requires that we summarise val-
ues (i.e., distances) along a path (by summing them)
and then aggregate these summarised values (by
finding the minimum). This is what the GraphLog
query @ in Figure 4 does. The variable d in @ is
a collecting variable, sum is a summarising func-
tion, and min is used to aggregate the summarised
distances. Query evaluation is in PTIME if sum-
marisation and aggregation operators form a closed
semiring [18]. Query @ might be translated to the
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following Datalog program [20]:

— dist(z,y,l)

— dist(y,x,l)

— sp(x,z,8),dist(z,y,1),d=s+1
+— len(z,z,y,d)

len(x, z,x,0)
len(z,z,x,0)
len(x’ Z7 y’ d)
sp(z,y, min(d))

Predicate len(z, z,y, d) specifies that there is a path
of length d = s + [ from x to y via z, where the
length of the shortest path from x to z is s and the
distance from z to y is [.

As mentioned in Section 2, Soc alSco e [5] pro-
vides node aggregation and edge aggregation. The
result of aggregation can be represented as a new
attribute of a node or edge in the graph. With the
help of a user-defined function for defining similar-
ity between users, [5] shows how aggregate func-
tions can be used to express collaborative filtering
on travel recommendations.

3.5 Node creation

In languages such as GraphLog the answer to a
query is a graph, where the edges and their labels
can be new, but the nodes are drawn from those
of the graph being queried. However, in a number
of applications, there is a need for the output of a
query to contain nodes that were not part of the
input. This requirement appears in web site man-
agement (and hence in StruQL [26]) and in social
network analysis and transformation (and hence in
BiQL [24] and SNQL [61]), for example. More gen-
eral graph creation is also a feature of languages
that adopt a functional or algebraic approach such
as UnQL [13], GraphQL [37], and GOOD [34].

One approach to supporting node creation, fol-
lowed in a number of languages, is to adopt a mech-
anism equivalent to that of Skolem functions, first
used for semistructured data in the Mediator Spec-
ification Language MSL [54]. In a query language
supporting recursion, it is important to ensure that,
where possible, node creation and recursion do not
combine to yield non-termination.

Recall that BiQL [24] can create new graphs from
existing graphs. To do this new object identifiers
are needed. They define semantics of their basic
language in terms of a translation to Datalog, and
then extend this by means of a single Skolem func-
tion to represent new object identifiers.

As mentioned in Section 2, SNQL [61] also uses
Skolem functions to represent new nodes in the out-
put of a query. Assume that we have a network
representing people and the cities in which they
live. City names are represented as values of the
livesIn attribute associated with people. We want
to transform this network into one in which cities
become actors (rather than values), with name and
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population attributes. Although SNQL provides a
graph-based syntax, the following Datalog-like pro-
gram shows a simplification of how such a query
might be translated

ans(f(c),isa, city) +— temp(p,c)
ans(f(c),name, c) — temp(p,c)
ans(f(c), population, count(p)) <+ temp(p,c)

temp(p,c) <« (p,isa,person), (p,livesIn,c)

Here, f is a Skolem function and count is an ag-
gregate function. In general, more than one Skolem
function may be needed in an SNQL query.

3.6 Approximate matching and ranking

In many applications, users may not be famil-
iar with the graph structure being queried, its con-
straints or edge labels. As a result, they may for-
mulate queries which return no answers or fewer
answers than they expected. Early work to address
such problems when querying semistructured data
was done by Kanza and Sagiv [42], who proposed a
form of flexible querying based on a notion of home-
omorphism between a query and a graph.

In this section, we will consider a more general
notion of approximate matching of paths [30, 40],
where the results can be ranked in terms of their
“closeness” to the original query. Consider a regular
path query @ of the form given in (3), using regu-
lar expression r. Approximate matching is achieved
by applying edit operations to L(r). Possible edit
operations include insertion, deletion, substitution,
transposition and inversion of symbols. For sim-
plicity, we will only consider the first three of these
here.

Let z,y € ¥*. Applying an edit operation to
x yielding y can be modelled as a binary relation
~» over X* such that x ~» y holds iff there exist
u,v € ¥*, a,b € X, with a # b, such that one of the
following is satisfied:

x =uav, y=ubv (substitution)
x=uaw, y=uv (deletion)
x=wuv, y=ubv (insertion)

Let & stand for the composition of ~» with itself k
times. The edit distance d.(x,y) between = and y
is the minimum number k of edit operations such

that z & y.

Each operation may have a different cost. In gen-
eral, different instances of the same operation may
have different costs. For example, a user may be
prepared to substitute taxi by train at a cost of
one, but taxi by bus at a cost of two.

More generally, Grahne and Thomo study ap-
proximate matching of RPQs in [30], where they
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assume that approximations are specified by means
of a weighted regular transducer. Such a transducer
can be represented by a regular expression defined
over triples of the form (a, k,b), which specify that
a can be replaced by b with cost k.

A weighted transducer T = (St,%, 01, Sor, Fr)
comprises a finite set of states St, an input/output
alphabet X, a set of initial states Sp,., a set of final
states Frr, and a transition relation o7 C S X 3 X
N x ¥ x Sp. A transition (s, a, k,b,t) specifies that
if the transducer is in state s and reads symbol a,
it outputs symbol b at cost k and moves to state t.

As stated in Section 3.2, we can construct an NFA
M, from the regular expression 7 in query ) and
can consider graph G as an NFA as well. Now we
can form the product automaton M, x T x G (see
[30] for details). Then (a,b, k) € ansp(Q,G) iff
the shortest path from an initial state (_,_,a) to a
final state (-,-,b) in M, x T x G has cost k. As
noted in [30], if we are interested in nodes reachable
from a limited number of source nodes, we can use
Dijkstra’s shortest path algorithm to return answers
in increasing order of cost. Furthermore, we can
construct the product automaton incrementally.

The simpler setting in which approximation is
captured by edit operations, all with cost one, can
be captured by a transducer T with a single state s
and transitions from s to s labelled:

e (a,1,¢), for each a € X (deletion),
e (¢,1,a), for each a € ¥ (insertion), and
e (a,1,b), for a,b € ¥, a # b (substitution).

Alternatively, in [40] ideas from approximate string
matching [65] can be used to construct an approz-
imate NFA Mg from @, from which the product
of Mg and Mg can be traversed. Extending ap-
proximate matching from RPQs to CRPQs, as well
as adding an inversion edit operation for reversing
the traversal of a graph edge, was studied in [40,
59]. Both the approximate NFA and the product
automaton can be constructed incrementally, while
any rank-join algorithm can be used on the con-
juncts in order to return answers in increasing over-
all distance from the original CRPQ. This results in
an algorithm with PTIME combined complexity if
the conjuncts are acyclic and there is a fixed num-
ber of head variables [40].

4. EXPRESSIVE POWER AND COMPU-
TATIONAL COMPLEXITY

We now consider some results on the expressive

power of graph query languages and the complexity

of the QEP for such languages. For simplicity of no-
tation, let us denote the classes of queries express-
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ible by conjunctive queries, regular path queries,
conjunctive regular path queries and extended con-
junctive regular path queries by CQ, RPQ, CRPQ
and ECRPQ), respectively. Furthermore, let FO de-
note the class of queries expressible in first-order
logic (relational calculus or algebra). Then we have

CQ cFO
and
RPQ < CRPQ C ECRPQ.

For relating these latter classes with FO and with
Datalog, we need some further definitions.

The language of first-order logic with transitive
closure, denoted FO 4+ TC (introduced by Immer-
man in [41]) extends first-order logic with formulas
of the form TC(Az,§.¢(Z, 7)), where T are § are k-
tuples, and ¢(Z, §) is a formula in FO+TC denoting
a binary relation on k-tuples. Then TC(AZ, §.¢(Z, 3))
denotes the transitive closure of ¢.

A linear Datalog program is one in which each
rule has at most one recursive subgoal. A strati-
fied Datalog program is one in which use of negated
predicates is stratified. Let SL-DATALOG and GRAPH-
LOG denote the sets of queries expressible as strat-
ified linear Datalog programs and in the language
GraphLog (without aggregation), respectively. Then
we have the following result [18]:

FO + TC = GRAPHLOG = SL-DATALOG

Similar expressive power is exhibited by STRUQL
and UnQL. A theorem from [26] states that the clo-
sure of STRUQL under composition expresses pre-
cisely the Boolean queries expressible in FO + T'C,
while a theorem from [13] shows that all UnCAL
queries can be expressed in FO+TC (where UnCAL
is the algebra associated with UnQL). Now Immer-
man’s result tells us that all GraphLog, STRUQL
and UnQL queries can be computed in NLOGSPACE.
Adding aggregation operators to GraphLog in the
form of closed semirings leaves query evaluation in
NLOGSPACE, as long as the summarisation opera-
tors are in {min, max,+} and aggregation opera-
tors are in {min, max}. However, when summari-
sation can include x and aggregation includes +,
as needed to express the parts explosion query for
example, then query evaluation is in NC? [20]
Further study of the expressiveness of stratified
aggregation in Datalog was undertaken in [53]. They
show that (1) Datalog extended with stratified nega-
tion cannot express a query to count the number
of paths between every pair of nodes in an acyclic
graph, (2) Datalog extended with stratified nega-
tion and arithmetic on integers (the + operator) can
express all computable queries on ordered domains,
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and (3) Datalog extended with stratified negation
and generic function symbols can express all com-

putable queries (on ordered and unordered domains).

Recently, Fletcher et al. [27] considered the rel-
ative expressive power of navigational graph query
languages built from the operators identity, union,
composition, intersection, set difference, projection,
co-projection (values x such that there does not ex-
ist a y such that (z,y) is in the result of some ex-
pression), converse (i.e., inverse), transitive closure,
and the diversity relation (all pairs of unequal con-
stants in the active domain). They provide a com-
plete comparison in terms of expressive power, both
for path queries and Boolean queries.

The GOOD query language provides for greater
expressive power than the other languages consid-
ered above. In [33, 34], it is shown that GOOD
restricted to node addition/deletion and edge addi-
tion/deletion is relationally complete. Adding ab-
straction gives the expressive power of the nested
relational algebra, while the full language including
methods is Turing-complete.

The invention of values or object identifiers (oids)
also adds power, as shown in database query lan-
guages such as IQL [1] and ILOG [14]. By relying
on rules that use both recursion and oid invention,
it can be shown that such languages can express all
computable database queries [14]. However, when
recursion and invention are not allowed to interact,
queries can be evaluated in PTIME [1].

S. CONCLUSION

We have provided a survey of query languages
for graph databases, focussing on a number of im-
portant aspects of functionality. While many lan-
guage features/constructs have been the subject of
formal study, work remains to be done in terms of
an integrated and consistent framework in which
to study graph query languages. In particular, the
areas of approximate querying and graph transfor-
mations merit greater study.

The requirements of social network modelling and
analysis provide further opportunities to extend the
capabilities of graph languages. For example, many
aspects of social network analysis rely on some prob-
abilistic interpretation of graphs, so query languages
need to be adapted and studied accordingly. Work
in the area of expressive query languages for prob-
abilitic databases has recently been initiated [23].
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