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Abstract 

A new type of optimization, called predicate move-around, ia 
introduced. It is shown how this optimization ‘considerably 

improvea the efficiency of evaluating SQL queries that have 

query graphs with a large number of query blocks (which 

ie a typical situation when queries are defined in terms 

of multiple views and subqueries). Predicate move-around 

works by moving predicates across query blocks (in the query 

graph) that cannot be merged into one block. Predicate 

move-around is a generalization of and has many advantages 

over the traditional predicate pushdotin. One key advantage 

arises from the fact that predicate move-around precedes 
pushdown by pulling predicates up the query graph. As 

a result, predicates that appear in the query in one part 

of the graph can be moved around the graph and applied 
alao in other parts of graph. Moreover, predicate move- 

around optimization can move a wider class of predicates in a 

wider class of queries aa compared to the standard predicate 

pushdown techniques. In addition to the usual comparison 

and arithmetic predicates, other predicates that can be 

moved around are the EXISTS and HOT EXISTS clauses, the 

EXCEPT clause, and functional dependencies. The proposed 

optimization can also move predicates through aggregation. 

Moreover, the method can also infer new predicates when 

existing predicates are moved through aggregation or when 

certain functional dependencies are known to hold. Finally, 

the predicate move-around algorithm is easy to implement 
on top of existing query optimizers. 

1 Introduction 

Current benchmarks (e.g., TPC/D) have exposed a 
serious weakness of commercial database systems when 
it comes to query optimization. In some cases, several 
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person months have been spent to optimize queries by 
hand in order to achieve better performance. Further 
aggravating the problem is the growing complexity 
of queries; for example, decision-support queries have 
become very important in large organizations (e.g., the 
world’s large& private computer is dedicated to running 
decision-support queries for the retail giant WalMart). 

In complex applications, such as decision-support 
systems, a query usually depends on a large number 
of subqueries and views. Each of the subqueries 
and views forms a query block in the query graph. 
However, most cost-baaed plan optimizers can only 
handle one query block at a time. Therefore, it 
is valuable to merge subqueries and views into one 
query block. Unfortunately, this is a complicated 
and sometimes impossible task due to aggregates, the 
SQL semantics of duplicates, correlations, EXISTS, XOT 

EXISTS, EXCEPT, UXIOX, and IXTERSECTIOl!l. The work 
of [PHH92] has investigated this issue and provided 
some solutions for merging blocks of queries when the 
duplicate semantics can either be ignored or when all 
duplicates are eliminated. 

When query blocks cannot be merged, it is important 
to rewrite the query so that predicates can be applied as 
early as possible. Predicate pushdown [UllSS] is a com- 
mon and important optimization technique for pushing 
selection predicates down a query graph, in order to 
apply those selections as early az possible during eval- 
uation. However, it works only on hierarchical queries, 
which are nonrecursive queries without common subex- 
pressions. Another approach is the adaptation of the 
magic-set transformation for an early evaluation of s+ 
lection and join predicates in nonrecursive SQL queries 
with common subexpressions [MFPRgOa]. The magic- 
set transformation (see [UllSS] for details) pushes pred- 
icates according to the order of doing joins and intro 
duces auxiliary magic views. 

In this paper, we propose a generalization of the 
predicate-pushdown technique, called predicate move- 
around, that is capable of pushing predicates down, up 
and sideways in the query graph; predicates are moved 
up as an intermediate step before being pushed down. 
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As a result, predicates that appear in the query in one 
part of the graph can be moved around the graph and 
applied also in other parts of graph. Moreover, predi- 
cate move-around can be applied even if some blocks 
have aggregates and even if duplicates are retained 
in some blocks and eliminated in others. Our algo- 
rithm for predicate movearound is extensible in the 
sense that (1) a variety of predicates can be moved 
around; for example, comparison and inequality pred- 
icates, EXISTS and IOT EXISTS predicates, negated 
base relations (the EXCEPT clause), arithmetic predi- 
cates (e.g., X = Y + Z), the LIKE predicate, func- 
tional dependencies and more, and (2) Predicates can 
be moved through new operators like outer-join. The 
predicate move-around results in applying a larger num- 
ber of predicates to base and intermediate relations and 
doing so as early as possible; hence, the evaluation be- 
comes more efficient. Unlike the magic-set transforma- 
tion, predicate move-around does not need auxiliary r+ 
lations (such as the magic and supplementary relations) 
and does not depend upon the join order. Our move- 
around algorithm applies to nonrecursive SQL queries, 
including SQL queries with correlations. It can also be 
generalized to recursive SQL queries (as defined in the 
new proposed SQL3 standard [ISOQ3]), but doing so is 
beyond the scope of this paper. 

To summarize, following are the novel features of our 
algorithm: 

Moving predicates up, down and sideways in the 
query graph, across query blocks that cannot be 
merged. 

Moving predicates through aggregation; in the pro- 
cess, new predicates are deduced from aggregation. 

Using functional dependencies to deduce and move 
predicates. 

Moving EXISTS and NOT EXISTS predicates. The 
EXCEPT clause can also lead to a EOT EXISTS 

predicate that can then be moved. 

Removing redundant predicates. This is important, 
since redundant predicates can lead to incorrect se- 
lectivity estimates that may result in access paths 
and join methods that are far from optimal. Mor+ 
over, redundant predicates represent wasted compu- 
tation. 

Our algorithm can be incorporated easily on top of ex- 
isting query optimizers, since it consists of rewriting the 
original queries and views. For example, our algorithm 
would fit well in the Starburst optimizer [PHH92]. 

The paper is organized as follows. Section 2 illustrates 
the savings achieved by predicate move-around via 
a detailed example. Section 3 describes the SQL 
syntax and the query-tree representation on which the 

algorithm operates. The query tree is a straightforward 
pars&me representation of a query, close to what is 
used in several systems (e.g., [PHH92]). The predicate 
move-around algorithm is detailed in Section 4. We 
describe the general algorithm, and illustrate each step 
of the algorithm on the example of Section 2. We 
consider related work in Section 6, and conclude in 
Section 6. 

2 Illustrative Example 

We consider a detailed example that illustrates the 
benefits of the predicate move-around optimization. In 
particular, this example illustrates how predicates can 
be moved across query blocks, through aggregation and 
using knowledge about functional dependencies. 

This example is quite typical of the complexity of real 
world decision;aupport queries. Further, it illustrates 
the capabilities of our algorithm to deal with complex 
queries as compared to more traditional methods. 
The example uses the following base relations from a 
telephone database. 

calls(FromAC, FromTel, ToAC, ToTel, AccessCode, 
StartTime, Length) 

cuetoners(AC, Tel, OwnerName, Type, MemLevel) 
users(AC, Tel, UserName, AccessCode) 
secret(AC, Tel) 
pronotion(AC, SponsorName, StartingDate, EndingDate) 

The’ calls relation has a tuple for every call made. A 
telephone number is represented by the area code (AC) 
and the local telephone number (Tel). Foreign numbers 
are given the area code “011.” A call tuple contains 
the telephone number from which the call is placed, 
the number to which the call is placed, and the access 
code used to place the call (0 if an access code is not 
used). The starting time of the call, with a granularity 
of 1 minute, and the length of the call, again with 
1 minute granularity, are included. Due to the time 
granularity and multiple lines having the same phone 
number, duplicates are permitted in thii relation. In 
particular, there can be several calls of 1 minute each 
starting within the same 1 minute, and there can be 
multiple calls running concurrently between two given 
numbers. 

The customers relation gives information about the 
owner of each telephone number. The information 
about owners consists of the owner’s name, his account 
type (Government, Business, or Personal), and his 
membership level (Basic, Silver, or Gold). The key 
of the customers relation is (AC, Tel} and, so, the 
following functional dependency holds: 

{AC, Tel} -, {OwnerName, Type, MemLevel}. 

A telephone number can have one or more users that 
are listed in the users relation. Each user of a telephone 
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number may have an access code. One user may have 
multiple access codes, and one access code may be given 
to multiple people. There are no duplicates in the U8ar8 
relation. 

A few telephone numbers have been declared secret, 
as given by the secret relation. 

The promotion relation has, for each planned market- 
ing promotion, the name of the sponsoring organization, 
the area codes to which calls are being promoted, and 
the starting and ending dates of the promotion. Note 
that there may be several tuples with the same area 
code and same sponsor, but with diierent dates. 

Example 2.1 Consider the query Ql given in Figure 1. 
Note that this query is defined in terms of two views. 
The view f@ccounta, denoted as El, lists all foreign 
accounts (i.e., Area-Code= “011”) of type “Govt” that 
are not secret accounts. Thii view includes telephone 
numbers and names of users of those numbers. 

The second view ptCurtomer8 (i.e., potential cus- 
tomers), denoted as Fl, first selects calls longer than 
2 minutes and then finds, for each customer with a sil- 
ver level membership, the maximum length amongst all 
his calls to each area code other than the customer’s 
own area code. 

The query Ql is posed by a marketing agency looking 
for potential customers amongst foreign governments 
that make calls longer than 50 minutes to area codes 
in which some promotion is planned. The query lists 
the phone number of each relevant foreign government, 
the names of all users of that phone and the names 
of the sponsors of the relevant promotions. Note that 
duplicates are retained, since sponsors may have one or 
more promotions in one or more area codes. 

Since the view ptCuatomer8 does aggregation and the 
view fgAccount8 generates and eliminates duplicates 
(while Ql retains duplicates), neither the view El nor 
the view Fl can be merged into the query block of 
Ql. Consequently, an ordinary optimizer cannot deal 
effectively with the query Ql, since it is forced to 
optimize and evaluate each view separately and then 
optimize and evaluate the query. For example, note 
that the predicate MaxLen > 50 cannot be pushed 
from the definition of Ql into the definition of the view 
ptCustomer8 (since that predicate is over a field that 
is aggregated in ptCu8tomer8). Thus, when evaluating 
the view ptCurtomer8, we can only use the predicate 
Length > 2; later, when evaluating the query, we 
can use the predicate MaxLen > 50 to discard those 
ptcustomera tuples that do not satisfy this selection. 
Our optimization algorithm, in comparison, would do 
much better, since it is capable of the following. 

l Taking the predicate c.AC = “011” of the view 
fgAccouat8 and movingit into the view ptCo8tomers. 
As a result, the join predicate c.AC = t.FromAC is 
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replaced with t.FromAC = “011” and t.ToAC c> 
t.FromAC is replaced with t.ToAC <> “011”. 

Taking the predicate c.Type = “Govt” from the 
view fgAccoant8 and moving it into the view 
ptCUrtomrr8, where it is applied to the curtomerr 
relation. Note that determining soundness of this 
move requires that we reason with knowledge about 
functional dependencies. Specifically, in the query 
Ql, the views fgAccouat8 and ptCurtomer8 are 
joined on a key of the curtomerr relation and, 
therefore, the predicate c.Type = “Govt” can 
be moved from fgAccopnt8 into the definition of 
ptCUlltOwOt8. 

Taking the predicate 

DOT EXISTS (SELECT * FRDII secret s 
UHEEE a.AC = c.FromAC ADD 

s.Tel = c.FromTel) 

from the view fgAccoUUt8 and moving it into 
the View ptCU8tOmer8. This leads to a more 
efficient evaluation of the View ptCUrtomor8, since 
the customers relation can be restricted before 
taking the join with call8 and before the grouping 
operation. 

Taking the predicate c.MemLevel = “Silver” from 
the view ptCurtomer8 and moving it into the view 
fgkcount8. Again, functional dependencies are 
used for this move. 

Taking the predicate MaxLen > 50 from the query 
and inferring that t.Length > 50 can be introduced 
in the VEEIlg clause of ptCurtomer8. As a rfdt, 

the predicate t.Length > 2 can be eliminated from 
the definition of ptcurtomarr and the predicate 
ptc.MaxLen > 50 can be deleted from the query. 
Note that this optimization amounts to pushing a 
selection through aggregation, a novel feature of our 
algorithm. 

The optimized views and query are denoted in Figure 2 
as El,, Fl, and QlO. Section 4 explains the behavior 
of the predicate move-around algorithm on this example 
in detail. 0 

3 Preliminaries: SQL Notation and the 
Query-Tree Representation 

For simplicity of presentation of the move-around 
algorithm, we consider here a subset of SQL. Given an 
SQL query, we first tranzlate it into a Query tree (see 
Figure 5 for an example) and then apply the move- 
around algorithm to the query tree. In this section, 
we briefly describe the SQL syntax and explain how to 
build the query tree. 



(El): 

calls(FromAC, FromTel, ToAC, ToTel, AccessCode, StartTime, Length) 
customers(AC, Tel, OwnerName, Type, MemLevel) 
users(AC, Tel, UserName, AccessCode) 
secret(AC, Tel) 
promotion(AC, SponsorName, StartingDate, EndingDate) 

CBEATE VIEW fgAccounts(AC, Tel, UserName) AS 
SELECT DISTIBCT c.AC, c.Tel, u.UserName 
FROII customers c, users u 
WHERE c.AC = u.AC AID 

c.Tel = u.Tel AND 
c.Type = “Govt” AND 
c.AC = “011” AMD 
BOTEXISTS(SELECT*FROH secret s 

WHERE s.AC = c.AC AND s.Tel = c.Tel) 

(Fl): CREATE VIEW ptCustomsrs (AC, Tel, OwnerName, ToAC, MaxLen) AS 
SELECT c.AC, c.Tel, c.OwnerName, t.ToAC, HAX (t.Length) 
FROH customers c,calls t 
UBEBE t.Length > 2 AND 

t.FromAC <> t.ToAC AHD 
c.AC = t .FromAC AID 
c.Tel = t . FromTel AHD 
c.MemLevel = “Silver” 

/* <> is the SQL symbol for not equal */ 

GROUPBY c.AC, c.Tel, c.OwnerName, t.ToAC 

(91): SELECT ptc.AC, ptc.Tel, PgUserName, p.SponsorName 
FROM ptCustomers ptc, fgAccouuts fg, promotion p 
WHERE ptc.AC = fg.AC AYD 

ptc.Tel = fg.Tel AID 
ptc.MaxLen > 50 AllD 
p.AC = ptc.ToAC 

Figure 1: The original views for query Ql. 

3.1 SQL syntax 
An SQL query consists of a sequence of view definitions 
(or blocks). The following is a GROUPBY block. 

CREATEVIEW v(A1,...,A1)AS 
SELECT&,...,& 
FRonRe11 l-1, . ..) Rd, r, 
WHERE . . . 
GROUPBY G1,...,G, 
HAVIBG . . . 

Each Xi is either an attribute term (e.g., rj.B) or an 
aggregate term (e.g., MtXt(rj.B)); for simplicity, we 
assume that the Xi’s are distinct. If there are no 
GROUPBY and BAVIYG clauses, and no aggregate terms, 
then the above block is called a SELECT block; there 
are also UBION and IBTBRSECTIOH blocks. One of the 
blocks is the query block; it is similar to the above 
block, but without the CREATE-VIEW clause. In this 

paper, the search condition that appears in a WHERE 
or HAVING clause is assumed to be in the conjunctive 
normal form. Each conjunct in the search condition is 
called a predicate. We consider predicates that are built 
from comparisons (=, <, etc.), AND, OR, BOT, EXISTS, 
and BOT EXISTS. 

3.2 The Query Tree 

The nodes of a query tree correspond to blocks (the root 
corresponds to the query block). The children of a node 
n are the views (i.e., non-base relations) referenced in 
the block corresponding to node n; e.g., a node for a 
SELECT block has a child for every occurrence of a view 
in the FROM clause. 

Local and Exported Attributes: The local at- 
tributes of node n are those appearing in the operands 
of the corresponding block; the exported attributes axe 
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(El,): CREATE VIEW fgAccounts,(AC, Tel, UserName) AS 

SELECT DISTIBCT c.AC, c.Tel, u.UserName 
FROH customers c, users u 
WHERE c.AC = u.AC AHD 

c.Tel = u.Tel AHD 

c.Type = “Govt” AHD 

c.MemLevel = “Silver” AHD 

c.AC = “011” AID 

BOT EXISTS(SELECT*FROl! secret s 
WHERE s.AC = c.AC AID s.Tel = c.Tel) 

(Fl,): CREATE VIEW ptCustomers, (AC, Tel, OwnerName, ToAC, MaxLen) AS 
SELECT c.AC, c.Tel, c.OwnerName, t.ToAC, HAX (t.Length) 
FROII customers c, calls t 
WEEBE t-length > 50 AHD 

t.ToAC <> “011” AHD 

t.FromAC = “011” ABD 

c.Tel = t .FromTel AHB 
c.MemLevel = “Silver” AID 

c.Type = “Govt” AID 

c.AC = “011” AHD 

HOT EXISTS (SELECT * FRon secret 8 

WHERE s.AC = c.AC AID s.Tel = c.Tel) 
GROUPBY c.AC, c.Tel, c.OwnerName, t.ToAC 

(Ql,,): SELECT ptc.AC, ptc.Tel, fg.UserName, p.SponsorName 
FROH ptCustomers, ptc, fgAccounts, fg, promotion p 
WHERE ptc.AC = fg.AC AHD 

ptc.Tel = fg.Tel AHD 

p.AC = ptc.ToAC 

Figure 2: The optimized views for query 91, 

those appearing in the result of that block (i.e., the at- 
tributes of the defined view). 

Labels: In the query tree, each node n has an 
associated label, denoted L(n). The label contains 
predicates that are applicable to attributes of n. Due to 
functional dependencies, predicates appearing in labels 
may also contain functional terms; for example, if the 
attribute r.A functionally determines the attribute r.B, 
then the predicate f(r.A) = r.B is added to nodes 
having r.A and r.B as attributes. A predicate of a 

label L(n) is called local if all its attributes are local 
attributes of n; it is called cqotied if all its attributes 
are exported attributes of n. Next, we explain the four 
types of nodes in the query tree. 

SELECT Nodes 

When a view definition consists of a SELECT block’ 

CREATE VIEW V(&..., A,) AS 

IA SELECT DISIIICT block b treated exactly as a SELECT block. 

SELECT rk, .BI , . . . , rk, . BI 
FROH RI& ri, . . . , Rel,,, r,,, 
WHERE . . . 

we create a SELECT node n. For every Reli that is a 
view, node n has a child for the block of Rdi. The 
local attributes of n are all the attributes of the form 
ri.B, where B is an attribute of Ridi (1 5 i 5 m). 
The exported attributes are V.Al, . . . , V.Al. Note that 
the exported attributes are just aliases of the local 
attributes listed in the SELECY clause; that is, there 
is a one-to-one correspondence between the local and 
exported attributes (KAi corresponds to ri.Bi). 

GROUPBY Triplets and Nodes 

A view definition consisting of a GBOUPBY block is 
separated into three nodes (see Figure 3) in order 
to highlight the movement of predicates through the 
aggregation operators. The bottom node, nl, is a 
SELZCT node for the SELECT-FROH-WHERE part of the 
view definition (it may have children as described 
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earlier). The middle node, n2, is a GROUPBY node and 
it stands for the GROUPBY clause and the associated 
aggregations. The top node, ns, is a BAVIBG node and 
it stands for the predicate in the BAVIBG clause. 

CHEATE VIEU V (Al, . . . . Al) n3 BAVIHG II 

SELECT r.B, s.C, Hax(r.D) I 

FIlDMRr, S s 

WERE r.B 5 r.C 
n2 

s.C=r.A 

GRDUFBY r.A 

HAVIBG . . . 
nl 

Figure 3: A triplet for a GBOUPBY block. 

The set of local attributes in ni (denoted by L) is 
defined in the same way as it is defined for an ordinary 
SELECT node, and is also the set of exported attributes 
of ni. Let G denote the set of grouping attributes (i.e., 
the attributes in the GROUPBY clause), and let A denote 
the set of aggregate terms (e.g., Maz(r.Q)) used in the 
SELECT and BAVIBG clauses. The attributes of the set 
L U A are the local attributes of n2, whereas G U A 
is the set of exported attributes of n2 and the set of 
local attributes of ng. The exported attributes of ns 
are {V.Al,. . .,V.At}. 

A view definition may have aggregation in the 
SELECT clause even without having GBOUPBY and HAVING 
clauses. In this case, we still construct a triplet (as if 
there is an empty GROUPBY clause). Also note that if 
there is no HAVING clause, then we can omit the top 
node and let V.Al, . . . , V.Al be the exported attributes 
of n2. 

DBIOP and IBTBBSECTIOB Nodes 

If a view definition includes UBIOB (or IBTBBSECTIOB), 
we create a node n for this operation (see Figure 4). 
Node n has a SBLECT child for every SELECT block in 
the view definition (some children may be triplets for 
GBODPBY blocks). For the ith child, the local attributes 
are defined as usual and the exported attributes are 
G.Al,..., & .Ar , where & is a newly created name. The 
local attributes of the (UBIOB or IBTBBSECTIOB) node n 
are the exported attributes from all the children of n. 
The exported attributes of node n are V.Al, . . . , V.At. 
Note that there is a one-to-one correspondence between 
the exported attributes of n and the exported attributes 
of the ith child, that is, V.Ak c) K.Ak (1 5 k 5 I). 

DAG Queries 

In a DAG query, a view V may have several references 
in the same or different blocks. In this case, we create 
a distinct node for each occurrence of V. 

CREATE VIEW V (Al, . . . . Al) 

SELECT . . . 
FRDH . . * 
VHeRE . . . 

DWIOB 

iBiIOB 

SELECT . . . 

El . . . E] 
Figure 4: The node structure built for DBIOB and 
IBTPBSECTIOB. 

Example 3.1 Figure 5 shows the query tree for the 
query Ql of Example 2.1 (the labels in the nodes 
should be ignored for now). The view ptCustomers is 
represented on the left by a pair of SBLBCT and GROUPBY 
nodes. The GBOIJPBY block defining view ptCustomers 
does not have a HAVIHG clause; hence the top SBLECT 
node of the GROUPBY triplet has been omitted. The 
view fgAccounts is represented on the right by a single 
SELECT node. The query view itself is represented by 
a single SELECT node at the top. The arcs from the 
ptCustomers and tgAccou.nts nodes into the query 
node arise from the usage of the views in defining the 
query. 0 

Renaminga 

To move predicates around in the query tree, we utilize 
two kinds of renamings. An internal renaming for node 
n is a mapping from the local attributes of node n to the 
exported attributes of n or vice versa. Nodes created for 
SRLECT and GBOUPBY blocks have exactly one internal 
renaming in each direction. In the case of a UBIOB or 
an IPTBBBECTIOB node n, there is a pair of internal 
renamings (one in each direction) for each child c; this 
pair relates the exported attributes of n to the local 
attributes obtained from the child c. Internal renamings 
are used to infer exported predicates from predicates 
with local attributes and vice versa. 

An edernal renaming is simply a renaming from 
the exported attributes of a node n to local attributes 
referencing them in the parent of n. For example, the 
attribute fgACCOUnt8. AC is referenced as f g . AC in the 
root of ourexample query tree. External renamings 
are used in order to move predicates from a node to its 
parent and vice versa. 
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QUERY 

SELECT 
RtC.ToAC = p.AC 
ptti;MdxLen > 50 fg.AC = “011” 
ptc.AC = fg.AC NOT secret(fg.AC, fg.Td) 
ptc.Tel = fg.Tel fJ(fg.AC, fg.Tei) = “Govt” 

p-*2 
p- = f3@c.AC, ptc.Td, ptdhmerName, ptcToAC) 
fUptc.AC, ptc.Td) = “Silver” 

c.Type = "Govt' 
c.Ac = '011' 
NOT secret(c.AC, c.Tel) 

c.Type = f,l(c.AC, c.Tel) 
c.MemLmml = f-l(c.AC, c.Tel) 

Figure 5: The query tree for Example 2.1. The predicates in reman font are inserted during initialization. The 
predicates in bold font are added to the labels in the pullup phase. 

4 The Move-Around Algorithm 

We give an overview of the main steps of the predicate 
move-around algorithm followed by a detailed descrip- 
tion of each step. 

4.1 The Main Steps of the Algorithm 

1. Label initialization: Initial labels are created from 
the predicates in the WHERE and HAVIlDG clauses and 
from functional dependencies. 

2. Predicate pullup: The tree is traversed bottom up. 
At each node, we infer predicates on the exported 
attributes from predicates on the local attributes 
and pull up the inferred predicates into the parent 
node. 

3. Predicate pushdown: The tree is traversed top 
down. At each node, we infer predicates on the 
local attributes from predicates on the exported 
attributes and push down the inferred predicates 
into the children of that node. 

4. Label. minimization: A predicate can be removed 
from a node if it is already applied at a descendant 
of that node. 

5. (Optional:) Convert the query tree into SQL code 
(the plan optimizer may also work directly with the 
tree representation of the query). 

The algorithm is extensible in the sense that it can 
be extended to new types of predicates (e.g., LIKE), to 
new types of nodes (e.g., outer join), and to new rules 
for inferring predicates. Next, we explain each step in 
detail. 

4.2 Label Initialization 

SELECT Nodes: The initial label of a SELECT node 
consists of the predicates appearing in the WHERE clause. 
For example, in Figure 5, the first five predicates in the 
fgAccountr node come from the WHERE clause. Note 
that (NOT secret(c.AC, c.Tel)) is simply a shorthand 
for the KOT EXISTS subquery. 

GKOWBY lkiplete: In a node triplet for a GKOUPBY 
block (see Figure 3), the initial labels of the bottom and 
top nodes are the predicates from the WHERE and HAVIMG 
clauses, respectively. The initial label of the middle 
node includes predicates stating that the grouping 
attributes functionally determine the aggregated values. 
For example, in the view ptCurtomerr, the predicate 

Max(t.Length) =--fJ(c.AC, c.Tel, c.OwnerName, t.ToAC) 

appears in the GROUPBY node (see Figure 5). 

UKIOI and IKTKKSECTIOI nodes: The initial label of 
aUKIOKor an IKTKKSECTIOM node n is’empty. 
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Functional Dependencies: Suppose that the follow- 
ing functional dependency holds in a base relation R. 

fd:{A ,..., Ad+{81 ,..., BP} 

If a WHERE or a HAVING clause refers to R, then the 
predicates fj&(r.Al, . . . , r.Ak) = Bi (1 < i < p) are 
added to the label created for that clause (note that fdi 
is an index that depends on fd and-i). For example, the 
functional dependency 

(AC, Tel} + (OwnerName, Type, MemLevel} 

holds in the customer relation; hence, the predicate 

c.Type = f,l(c.AC, c.Tel) 

is added to the two SELECT leaves in Figure 5, since both 
reference the customer relation. 

Example 4.1 The initial labels for the query tree of 
Example 2.1 are shown in regular font in Figure 5. 0 

4.3 Predicate Pullup 

In the predicate-pullup phase, we traverse the tree bot- 
tom up, starting from the leaves. At each node, we infer 
predicates on the exported attributes from predicates on 
the local attributes. The inferred predicates are added 
to the labels of both the given node and its parent. The 
particular method for inferring additional predicates de- 
pends on the type of node under consideration and the 
types of predicates in the label of that node. 

4.3.1 Predicate pullup through SELECT nodes 

To pull up predicates through a SELECT node n, having 
a label L(n), we proceed as follows. 

l Add to L(n) new predicates that are implied by 
those already in L(n). For example, if both 
r1.A < rp.B and r2.B < r3.C are in L(n), then 
r1.A < r3.C is added to L(n). Ideally, we would 
like to compute the closure of L(n) under logical 
implications, since that would maximize the effect 
of moving predicates around. However, the move- 
around algorithm remains correct even if we are not 
able to compute the full closure.2 

l Infer predicates with exported attributes as follows. 
If (Y is in L(n), then add r(o) to L(n), where T is 
the internal renaming from the local attributes to 
the exported ones. For example, in the fgAccounts 
node of Figure 5, the predicate fgAccounts.AC = 
“011” on the exported attributes is inferred from 
the predicate c.AC = “011” on the local attributes. 

zNote that when predicates are coqiunctions of compsriro~ 
(u&g <, 5 and =) among comtantr and ordinary attributer 
(i.e., no aggregate terms), then the cl- can be computed in 
polynomial time WQ] . 

l If cy is an exported predicate of L(n), then add c(o) 
to the label of the parent of n, where u is the external 
renaming from the exported attributes of n to local 
attributes of its parent. 

4.3.2 Predicate pullup through GBOUPBY nodes 

In principle, it is enough to perform the three steps of 
the previous subsection at a GBOUPBY node. In practice, 
however, we need some rules for inferring predicates 
involving aggregate terms. Following is a (sound but 
not complete) set of such rules; these rules should be 
applied to the label, L(n), of a GBOUPBY node n (in all 
these rules, 5 can be replaced with <). 

1. If Min(B) is a local attribute of n, then add 
Min(B) 5 B to L(n) (in words, the minimumvalue 
of B is less than or equal to every value in column 
B). Furthermore, if (B 2 c) E L(n), where c is a 
constant, then add Min(B) 2 c to L(n) (in words, 
if c is less than or equal to every value in column 
B, then c is also less than or equal to the minimum 
value of B). 

2. If Maz(B) is an attribute of n, then add Max(B) 1 
B to L(n). Furthermore, if (B 5 c) E L(n), 
where c is a constant, then add Maz(B) 5 c to 
L(n). For example, consider the GBOGPBY node in 
Figure 5. First, we infer Max(t.Length) > t.Length. 
Since t.Length > 2 is pulled up from the child of 
the GROUPBY node, we infer Max(t.Length) > 2 (by 
transitivity). Now, MaxLen > 2 is inferred, since 
MaxLen is an exported attribute that is an alias 
of Max(t.Length). For clarity, only MaxLen > 2 
is shown in the figure. 

3. Consider the following three predicates: Max(B) 1 
Min(B), Awg(B) 2 Min(B) and Maz(B) > 
Aug(B). Each of these predicates is added to L(n) 
if its aggregate terms are attributes of n. 

4. If Aug(B) is an attribute of n and (B 5 c) E L(n), 
where c is a constant, then add Aug(B) 5 c to L(n). 
If (B 2 c) E L(n), then add (Aug(B) 1 c) to L(n). 

4.3.3 Predicate pullup through UBIOP and 
IBTEBSECTIOll nodes 

Consider a UBIOB (or IliTEBSECTIOI) node n, as shown 
in Figure 4. We infer new exported predicates of L(n) as 
follows. Suppose that node n has m children, denoted 
cl, . . . , c,,,, and let 4 be the conjunction of predicates 
pushed UP from ci. For 1 5 i 5 m, we apply to Di 
the internal renaming from the attributes in Di to the 
exported attributes of n, and denote the result as Di. If 
n is a UBIOB node, we add the CNF form of D1 V. . .V Dm 
to L(n); if n ia an IBTEBSECTIOB node, we add the 
predicates D1 , . . . , D,,, to L(n). As in a SELECT node, if 
a is an exported predicate in L(n), then add a(o) to the 
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label of the parent of n, where d is the external renaming 
from the exported attributes of n to local attributes of 
its parent. 

Example 4.2 In Figure 5, the labels generated by the 
pullup phase are shown in bold font. For clarity, the 
label of the GROUPBY node does not show the predicates 
pulled up from its child. Also, we do not show all the 
predicates in the closures of labels. 0 

4.4 Predicate Pushdown 

This phase of the algorithm is a generalization of 
predicate-pushdown techniques. The combination of 
pullup and pushdown effectively enables us to move 
predicates from one part of the tree to other parts. In 
this phase, we traverse the query tree top down, starting 
from the root. At each node, we infer new predicates 
on the local attributes from predicates on the exported 
attributes and push the inferred predicates down into 
the children nodes. As earlier, the pushdown process 
depends on the type of the node. 

4.4.1 Predicate pushdown through SELECT 
nodes 

In a SELECT node n, with label L(n), we do as follows. 

Infer new predicates over the local attributes as 
follows. For each predicate (Y in L(n), add r(o) 
to L(n) (if it is not already there), where 7 is a 
renaming from the exported attributes of n to the 
local ones. 

Add to L(n) new predicates that are logically 
implied by those already in L(n). 

For each child c of n, if cy is a predicate in L(n) that 
includes only constants and renaming8 of attributes 
in c, then add g(o) to L(c), where d is the external 
renaming from the local attributes of n to the 
exported attributes of c. 

Example 4.3 In our example, we push the predicate 
ptc.MaxLen > 50 from the root into the GROUPBY node, 
where it is mapped onto the predicate MAX (t.Length) > 
50 (see Figure 6; predicates added during the pushdown 
phase are shown in italic; for clarity, we do not show the 
full closure at each node.) 0 

4.4.2 Predicate pushdown through GROUPBY 
nodes 

The above three steps should also be performed at 
the GROUPBY nodes. However, we also need rules for 
inferring new predicates from predicates with aggregate 
terms. Following is a (sound but not complete) set of 
such rules; these rules should be applied to the label, 
L(n), of a GROUPBY node n (in all these rules, < can be 
replaced with <). 

Suppose that Maz(B) 2 c is in L(n), where c is 
a constant. In this case, we only need to look 
at tuples satisfying B 2 c in order to compute 
Ma%(B). However, if there are other aggregates to 
compute, we may also have to consider tuples that 
do not satisfy B 1 c. Therefore, if Maz(B) 1 c 
is in L(n), we add B > c to L(n) provided that 
Maz(B) is the on/y aggregate term in n. As an 
example, consider the GROUPBY node in Figure 6. 
The predicate MaxLen > 50 is pushed into this node 
from the root. By renaming into local attributes, 
we get Max(t.length) > 50. Since Max(t.length) 
is the only aggregate term in the GROUPBY node, 
we can infer the predicate t.length > 50. Note 
that by pushing t.length > 50 down, we discover 
that we only need tuples satisfying t.length > 50 
in the view ptCustomers, because the maximum of 
t.length should be greater than 50. 

If Min(B) 5 c is in L(n), where c is a constant, and 
Min(J3) is the on/y aggregate term in n, then we ~. 
can add B 5 c to L(n). 

When B 2 c cannot be inferred from Maz(B) 2 c, 
we can use Mm(B) 2 c directly in order to optimize the 
evaluation; however this extension is beyond the scope 
of this paper. 

4.4.3 Predicate pushdown through UlUO!i and 
IIiYERSECYIOl nodes 

Consider a UIUOII (or IIYERSECTIOB) node n, as shown 
in Figure 4, and let c be a child of n. If (Y is an exported 
predicate of L(n), then we add 7(o) to L(n) and to 
L(c), where r is the internal renaming from the exported 
attributes of n to the local attributes of n (which are 
also the external attributes of c). 

4.5 Label Minimization 

At the end of the topdown phase, new predicates 
appear in labels of nodes. As a result, we can apply 
predicates earlier than was possible in the original tree. 
There is the possibility, however, of applying predicates 
redundantly. In fact, even an evaluation of the original 
tree could result in redundant applications of predicates; 
this may happen, for example, when the original query 
is formulated using predefined views and the user is 
oblivious to the exact predicates that are used in those 
views (and, hence, he may redundantly repeat the same 
predicates in the query). In the move-around algorithm, 
redundancies are introduced in two ways. 

l As a result of renamings between attributes of nodes 
and the associated pullup (or pushdown), some 
predicate may appear in a’node and in the parent of 
that node (and, possibly, also in other ancestors of 
that node). There is no need, however, to apply a 
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QUERY 

I 
+~tc.ToAC = p.AC 

ptc.MaxLen za 50 f&AC = “011” 

.ptC.w = fg.m NOT ==WtWJ, f&W 
+DtC.'?Ol = fg.'hl ~l(fgAC, fg.Td) = “Govt” 

ptcMuLsrr>z 
p&.~uLm I fJ@tc.AC, ptc.Td, pfcolmerElu3le, ptcToAc) 
f’J(ptdC!, p&Tel) - “SUver” 

f 

+ T.FromAC = “011” 
.+c.~vel = 'Silver' 
i t.Length > 2 
i *r.ToAC<> “022” 
i*c.Tel = t.FraaTel 

!I 
c.Type = fj(c.AC, c.Tel) 
c.MemLevel = f-l(c.AC, c.Tel) f 

Figure 6: The query tree for Example 2.1 after the pushdown and minimization phases. The predicates in italic font 
are added during pushdown. Only predicates annotated with a star remain in labels after the minimization phase. 

predicate at a node if it has already been applied at 
a descendant of that node. 

l Redundancies are introduced at labels when adding 
predicates that are logically implied by existing ones. 

Removing redundancies is important for two reasons. 
First, it saves time, since fewer tests are applied during 
the evaluation of the query. Secondly, redundant 
predicates might mislead the plan optimizer due to 
incorrect selectivity estimates. 

Redundancies of the first kind are removed as follows. 
Suppose a is a local predicate of L(n) and that 6(7(o)) 
is the result of applying to a the internal renaming 
(to the exported attributes) followed by the *external 
renaming (to the attributes of n’s parent). Then 
a predicate p in the parent of n is redundant if B 
is logically implied by 6(7(a)). After removing 
redundancies in this way, we should also discard all 
predicates that have some exported attributes. 

Redundancies of the second kind are removed by the 
known technique of transitive reduction; we repeatedly 
remove a predicate from a label if it is implied by the 
rest of the predicates. We get a nonredundant label 

when no more predicates can be removed. 
Finally, we can completely remove labels of UIiIOl, 

IREllSBCTIOI and GROUPBY nodes. Moreover, predi- 
cates containing functional terms (that were generated 
from functional dependencies and aggregations) are also 
dropped from all nodes. In Figure 6, the predicates an- 
notated with a star remain after minimization and form 
the final labels in our example. 

4.6 Translating the Query Tree to SQL 

The query tree may be used directly for further rewrite 
and cost-based optimizations as well as evaluation of the 
query. In fact, the query tree is similar to the internal 
representations of queries used by some existing query 
processors. If desired, however, we can easily translate 
the query tree back into SQL as follows. SELECT, 
UNION and IRTERSECTIOH nodes, and GBOUPBY triplets 
are translated into the appropriate SQL statements; 
the UBBBB and HAVIMG clauses consist of the minimal 
labels of the corresponding nodes. In our example, 
the optimized SQL query and views of Figure 2 are the 
result of applying the above translation to the /query 
tree of Figure 6. 

105 



4.6.1 Translating DAG Queries 

When a query tree is created from a DAG query, several 
subtrees of the tree may correspond to the same view. 
These subtrees are identical at the beginning of the 
move-around algorithm, but may become different at 
the end of the algorithm. Consider two subtreea, 2’1 and 
T2, generated from the same view V. If, at the end of 
the algorithm, Tl and Ta are equivalent (i.e., they have 
logically equivalent labels in corresponding nodes), then 
it is sufficient to evaluate just one of Tl and T2. If Tl is 

contained in Ta, then the view for Ta may be computed 
from the view for Tl by applying an additional selection. 
If neither one is contained in the other, it may still be 
possible to compute one view from which the two views 
can be obtained by additional selections. 

4.7 Correctness of the Algorithm 

Theorem 4.1 Let Q be a query and Q’ be the rewritten 
query produced by the predicate moue-around algorithm. 
The queries Q and Q’ are equivalent, i.e., they produce 
the same answer for all databases. 0 

Proof: (Sketch:) The proof proceeds by induction 
on the steps of the algorithm. Let bu(n) and td(n) 
denote the labels of node n at the end of the pullup 
and pushdown phases, respectively. A bottom-up 
induction on the nodes in the query tree shows that 
any tuple computed at node n must satisfy bu(n). A 
top-down induction on the nodes of the query tree 
shows that in order to compute at node n all the 
tuplea that satisfy M(n), it suffices to consider at the 
children nl , . . . , n, of n only those tuples that satisfy 

td(nl), . . . , td(n,), respectively. Finally, we show that 
the label-minimization phaze removes only redundant 
predicates, i.e., predicates that are guaranteed to be 
applied at lower nodes during the evaluation of the 
query. 0 

For queries without aggregation, our algorithm pro 
duces an optimal query in the following sense. Any 
attempt to add a predicate to the label of some node 
either would not change the set of tuples generated at 
that node or, for some databases, a wrong result would 
be computed by the query tree. Consequently, predi- 
cates are applied as early as possible in the evaluation 
in the resulting query. 

5 Related Work 

Our work general&s predicatepushdown techniques 
(e.g., [UllSS]). The main contribution, compared to 
earlier work, is that we can handle aggregation and 
other constructs such as IOT Bl(ISTS ; our methods 
can also be extended to recursive queries. In addition, 
we move predicates both up and down the query tree, 
thereby enabling predicates from one side of the tree to 
be moved to applicable placea on the other side. 

A similar technique for propagating predicates in a 

query tree was first developed by [LS92] in order to de- 
tect and delete redundant Datalog rules. In [LMSS93], 
this technique was extended to detect sattiability of 
Datalog queries in the presence of negated base relations 
and order predicates. In this paper, we generalize the 
constraint-propagation techniques of [LS92, LMSS93] to 
SQL with aggregation operators and other types of con- 
straints (e.g., functional dependencies); in the full p& 
per, we also deal with other SQL constructs (e.g., sub- 
queries). Our optimization algorithm is essentially a 

rewriting of the query in an optimized form and, hence, 
is easily implemented on top of existing query opti- 
mizers. Finally, by using the termination condition 
from [LS92] (for terminating the construction of the 
query-tree), we can extend predicate movearound to 
recursive SQL queries. 

Srivastava and Ramakrishnan [SR92] describe a re- 
lated technique for pushing predicates in Datalog pro 
grams using fold/unfold transformations. Their tech- 
nique, however, is applicable only when views can be 
merged and, therefore, cannot be extended to deal with 
aggregation and relations containing duplicates. Sudar- 
shan & Ramakrishnan [SR91] describe a method for 
pushing down, through Datalog rules, predicates stem- 
ming from aggregate operations. Their method uses a 
set of rewrite rules and introduces aggregate selectors 

that should be procezsed directly by the query evalua- 
tor; hence, t lc e query evaluator needs to be extended. in 
order to use their method. In addition, their approach 
does not combine pushing of other types of predicates 
with aggregate selectors. 

Pirahesh et al. [PEE921 discuss the problem of 
merging query blocks. Doing so eliminates the need 
for predicate pushdown. However, that can not always 
be done (e.g., in the presence of aggregation). Our 
method can be used in conjunction with the techniques 
of [PHH92]. 

Our method complements magic sets [BMSU86, 
BR87] and GMST (MFPRgOb, MFPR99a]. The key 
differences from the magic-set approach are as follows. 
First, the magic-set transformation depends upon the 
join order; it can move predicatar up from a relation 
and then down into another relation that appears later 
in the join order. In contrast, predicate move-around 
does not depend upon the join ordering; predicates can 
be moved up from every relation and down into any 
other relation. Secondly, predicate move-around pushes 
predicates defined on single relations (also known as lo- 
cal predicates), while the magieset transformation can 
also push join predicates defined across relations (how- 
ever, it introduces auxiliary magic relations even when 
moving only local predicates). It is, therefore, much bet- 
ter to move local predicates using the predicate move 
around algorithm, since we can do so without determin- 
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ing the join order and, moreover, can move predicates in 
all directions, without creating an additional overhead 
of auxiliary predicates. Furthermore, doing predicate 
move-around improves the ability to determine the op 
timal join order. The magic-set transformation can be 
applied after predicate movearound in order to move 
join predicates in the direction of the join order. 

There has been a lot of work on optimising subqueries 
and eliminating correlations [Kim82, GW87, Day87, 
Mur92]. Our technique complements well with that 
work by providing a new powerful means of pushing 
predicates after correlations are removed. 

A predicate is said to be eqcnsiuc if the cost of 
applying the predicate is high. Placement of expensive 
predicates hss been studied by [HS93, Hel94J. The 
move-around algorithm, as presented above, assumes 
that predicates are inexpensive. However, expensive 
predicates can be handled by modifying the label- 
minimalbation phase. 

6 Conclusions 

We have described a very general technique for moving 
predicates around in a query, thus determining the ear- 
liest point when predicates can be applied. Our method 
can handle hierarchical and dag queries. The predicates 
moved around include arithmetic comparisons, negative 
predicates (IOT EXISTS and EXCEPT), functional depen- 
dencies and aggregation constraints. Furthermore, we 
can also handle the LIISE predicate of SQL [IS0931 (in 
a fashion similar to equality) and arithmetic constraints 
(e.g., X = Y + 2). When moving predicates, we can 
also consider the constraints that hold in database re- 
lations. For example, if it is known that the range of 
an attribute A of a relation R is between 0 and 10, we 
insert the predicates r.A 2 0 and r.A 5 10 in the label 
of any node that refers to R. 

In many cases, the result of the predicate move- 
around algorithm is optimal (in the sense that predi- 
cates are moved to all parts of the query in which they 
are applicable). In particular, optima&y is guaranteed 
for queries without aggregation. Achieving an optimal 
result for queries involving aggregation requires a bet- 
ter understanding of techniques for reasoning about ag- 
gregation constraints, which is a subject of current re 

search. The work of [SRSSS$ is a first step in that 
direction. The query-tree technique is a general algo- 
rithm and is easily extensible to new kinds of predicates 
and operators, including recursive SQL queries. 

Predicate move-around is a generalization of pred- 
icate pushdown techniques. When predicate move 
around detects optimizations that cannot be found by 
ordinary pushdown techniques, the additional savings 
may be arbitrarily large, depending upon the selectivity 
of the predicates being moved. Furthermore, such pav- 

ings are very likely to be diivered in complex queries, 

such as those encountered in decision-support applica- 
tions. A significant aspect of the improved performance 
of predicate move-around is the ability to deal with ag- 
gregation operators, which are a major cause. for poor 
performance of current optimisers. The move-around 
algorithm is easy to implement and can simply replace 
an existing pushdown module in a query optimizer. 
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