
Query Optimization for Parallel Execution

Sumit Ganguly* TVaqar Hasan Ravi Krishnamurthy

Hewlett-Packard Laboratories

1501, Page Mill Road, Palo Alto, CA 94305

email: lastname~hpl .hp. com

Abstract

The decreasing cost of computing makes it economically

viable to reduce the response time of decision support

queries by using parallel execution to exploit inexpen-

sive resources. This goal poses the following query op-

timization problem: Mzntmzze response ttme subject to

constraints on throughput, which we motivate as the dual

of the traditional DBMS problem, We address this novel

problem in the context of Select-Project-Join queries by

extending the execution space, cost model and search al-

gorithm that are widely used in commercial DBItlSs. We

incorporate the sources and deterrents of parallelism in

the traditional execution space. We show that a cost

model can predict response time while accounting for the

new aspects due to parallelism, We observe that the

response time optimization metric violates a fundamen-

tal assumption in the dynamic programming algorithm

that is the linchpin in the optimizers of most commer-

cial DBMSS. We extend dynamic programming and show

how optimization metrics which correctly predict response

time may be designed.

1 Introduction

The Papyrus project[CHK+91] at HP Labs is investigat-

ing ways of integrating highly-tuned, customized data

managers while preserving their requirements for perfor-

mance. One source of high performance is parallel execu-

tion of queries. While, in its generality, the project seeks

to parzdlelize queries containing arbitrary data manipula-

tion operators, in this paper we focus on the problem of

●Author’s permenant eddress is Dept. of Comp. Sciences, The

University of Texaa, Austin, TX 78712, sumit@cs.utexas. edu

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantaga, the ACM copvright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 ACM SIGMOD - 6/92/CA, USA

Q 1992 ACM 0-89791 -522 -4192 /000510009$1 .50

optimizing Select-Project-Join (SPJ) queries for parallel

execution.

The need to reduce response time is evident in decision

support applications in which human beings pose complex

queries and demand interactive responses. For example. a

system for stock portfolio managers is capable of running

a non-trivial query at the click of a button and graphing

the results by many categories of stocks. This is not an

isolated example but typifies the tasks in decision making

processes. Achieving a reasonable response time has been

an important roadblock for these applications,

The decreasing cost of computing makes it economically

viable to throw inexpensive resources to achieve the reduc-

tion in response times by exploiting parallel query execu-

tion. For example hash partitioned sort-nlerge[SDS9] may

be used to reduce response time at the expense of extra

work done in comparison to vanilla sort-merge. \f’bile ex-

tra work may be traded for reduced response time, it is

unacceptable to minimize response time at any expense,

Todays’ commercial database systems aim at maxinliz-

ing throughput while imposing some limlts on response

time. For example, the TPC-A benchmark [Gra91] re-

quires that 9070 of the queries have a response time of at

most 2 seconds. However, this requirement is typically as-

sured, not by incorporating the requirement mto the opti-

mizer, but by setting system parameters such as the m~l-

imum degree of multi-programming and the frequency of

group commit. Assuring response times for other classes

of queries will require the optimizer itself to be rnoddled

The traditional database problem is to maximize

throughput subject to constraints on response time, lf’e

claim that decision support applications pose the dual op-

timization problem of minimizing response time subject

to constraints on throughput.

Optimizing queries for parallel execution is considered

an open problem[DG90]. Previous work on minimization

of response time in [A HY83] and XPRS[HS91] made re-

stricting assumptions regarding the parallel machine ar-

chitecture that, restrict the applicability of the proposed

solutions The Gamma project [DGS+90, SD89, Sch90]

studied many execution strategies hut did not address the

probleni of query optimization.

AIIJ solution to this optimization problem should build

on the decade of experience with commercial optimizers.

9

Taking cue from [SAC+ 79] we describe our solution to

the parallel query optimization problem along the follow-

ing three dimensions: an executton space which defines

the syntactic representation of all relevant aspects of an

actual execution; a cost model which predicts the cost of

an execution plan; a search algortthm which is used to

obtain the minimum cost plan.

The solution described in this paper is applicable to

a gamut of parallel machine architectures. Differences

across architectures appear as variations in the precise

details of the cost model and in the factors considered

important in the design of the search metric.

We have extended the traditional execution space to

model the sources (such as running different joins in par-

allel or parallelizing one join) and deterrents of parallel

execution (such as data dependence and resource con-

tention). Thus the trade-offs that should be examined

by the optimizer have been represented.

We have shown that it is possible to design a cost model

that can estimate the above trade-offs in predicting re-

sponse times. For example, depending on the dataflow

dependencies and resource contentions, the response time

estimate of a pipelined execution ranges from that of

an independent parallel execution to an estimate that is

worse than that of a sequential execution. This degener-

ate pipelined execution reflects the penalty for executing

operations in a pipelined fashion when there is no avail-

able parallelism. Thus, we establish the feasibility of a

cost model to be judicious.

We show that response time violates a fundamental

property, namely principle of optimality, required by the

commercially accepted search algorithm[SAC+ 79]. While

the traditional dynamic programming approach used a to-

tal order on work, our extension uses a partial order on

a metric that predicts response time. Further we provide

an analysis that demonstrates the practicality of this ap-

proach.

In summary, we address the problems in designing ex-

ecution space, cost model, and search algorithm so as to

establish the feasibility of a general but practical opti-

mization algorithm for minimizing response time subject

to constraints on extra work.

Section 2 presents a precise description of the optimiza-

tion metric and Section 3 presents an overview of tradi-

tional optimizers. In Section 4, we discuss how the execu-

tion space models the sources and deterrents of parallelism

and Section 5 presents our cost model Section 6 deals with

search algorithms and we conclude in Section 7.

2 Parallel Query Optimization : Opti-

mization Metric

The general problem of query optimization may be stated

as: Given a query q, a space of execution plans, E, and

a cost function cost(p) that assigns a numeric cost to an

execution plan p E E, find the minimum cost execution

plan that computes q.

We formulate the cost of a query as its response time

but place a bound on the amount of “extra” work that

can be traded for reducing response time. The bound

on extra work is determined by parameters that allow a

system administrator control over the work and response-

time tradeoff. Our formulation of the query optimization

problem is quite novel and we believe, necessary.

Suppose the work and response time costs of the

optimal-work plan for query q are W’O and T. (respec-

tively) and for an arbitrary execution plan p are WD and

TP. We will consider two ways of limiting the extra “work:

● Limit on throughput degradation: The system ad-

ministrator may specify the factor, k, by which the

maximum throughput of the system may be allowed

to degrade. The cost of p is TP if Wp < k * W. and

infinite otherwise.

Cost-benefit ratio: The system administrator may

specify a limit, k, on the ratio of the decrease in re-

sponse time to additional work required. The cost of

p is TP if ~P~~O < k and infinite otherwise.

This limit on extra work is incorporated in the search

algorithm akin to incorporation of branch and bound tech-

niques.

3 Traditional Optimizer Revisited

Commercial DBMSS are built for optimal throughput and

therefore the optimization metric is work (total resource

consumption). Optimizers in these systerm have adopted

the framework of the System R optirnizer[SA(’+ 79], The

design of such optimizers may be decomposed mto three

components: Execution Space, Cost Model and Search

Algorithm.

Execution Space: Query executions are syntactically

represented as annotated jozn trees (also called plans).

These are bznary trees in which each internal node is a

join operation and each leaf node is a base relation An-

notations of the form Iabel=value on nodes permit the

important factors of an execution to be modeled. An ex-

ample annotation for a join node is joz’n-meth od=nesfed-

loops. Other examples of labels are access path, crest e

index, and eliminate duplicates

The semantics of such trees is intuitive for left-deep

trees. We place the semantic constraint that each tuple of

any subtree of a jozn tree M computed exactly once. This

eliminates some bushy trees that represent the “same”

execution as left-deep trees.

Given a query, all trees that compute the query (in-

dependent of database state) are considered legal p/ans

for the query. Optimizers are designed to only search a

finite subset of this infinite space of legal plans. This sut)-

set, termed the search space, can be syntactically char-

acterized. For example the search space in System R

10

is left-deep join trees with the annotations described in

[SAC+79],

Cost Model: The cost model assigns an integer cost

to a plan based on some set of assumptions about the sta-

tistical distribution of data and the abstract machine that

executes plans. A cost function, cost(pian) + descriptor,

is recursmely defined in terms of the descriptors of the left

and right subtrees of the plan. The descriptor contains in-

formation such as relation size, interesting orderings, and

index availability. The cost function is recursive not only

for simplicity but so that it may be used in search algo-

rithms based on dynamic programming.

Search Algorithm: This is the algorithm used to

search the search space for the plan with minimum cost.

A System R style dynamic programming algorithm is re-

viewed in Section 6.1.1.

4 A Model for Parallel Execution

In this section we delineate important aspects of paral-

lel execution and then present a macro expansion of the

traditional annotated join tree to get a new tree called

operator tree wherein these new aspects are modeled.

4.1 Aspects of Parallel Execution

In addition to modeling important aspects of sequential

execution, a model for parallel execution needs to account

for the sources and deterrents of parallelism.

There are essentially two sources of parallelism (1)

Inter-operator parallelism which includes both the data

independent parallel execution of a pair of operators (typ-

ically subtrees) and data dependent, (i. e., pipelined) par-

allel execution of a pair of operators. 2) Intra-operator

parallelism which refers to the parallelization of a single

operation (e. g., sort), that we term cloning.

Two main deterrents of such parallelism are: 1) Data

Dependencies between operators which arise due to the

logical relationship between the operators (e.g., the probe

of a hash join cannot begin until the build is completed).

2) Resource Contention arising out of several operators

running in parallel and competing for the same resource.

4.2 The Operator Tree

In order to accurately model aspects of parallel execu-

tion we refine the execution model of join trees to a finer

granularity, Each annotated join tree is expanded to a

unique operator tree by macr~expanding each join node

into an operator subtree in a manner described below.

Intuitively, the operator tree has nodes which are atomic

in the sense that the run-time scheduler cannot subdivide

this operation further except for the partitioning the input

for cloning. Note that our intention here is only to pro-

vide some exemplary aspects of the operator tree model

based on which we can discuss the cost model. Therefore

it is not complete.

The node sort-rnerge(R1, R2)’ is macro expanded

with explicit sorting and merging. For example, if

rnerge(sort (Scan(R1)), sort (Scan (R2))) is the operator

tree then the data dependency of the sort operation and

the merge operation as well as the independent parallel

execution of the two sort operations are explicitly repre-

sented here. Note that if R2 is already sorted then only

one sort operation needs to be stated in the operator tree.

Similarly, the node hash-join(R1, R2) can be expanded

with explicit reference to the building and then probing of

the hash table (e.g., probe(Scan(R1), bui/d(Scan(R2)))).

The nested-loops join is expanded with explicit refer-

ence to the inflections of this join method such as create-

index, duplicate elimination etc. (e.g., pure-nested-

loops(Scan(R1), create-indez(Scan(R2)))). Note that a

pure-nested-loops operator represents an execution of a

nested loops without any inflections.

As before, further details of the execution are given as

annotations, some of which are given below.

1.

2.

3

The composdton method annotation for a (child, par-

ent) pair has two possibilities, pzpehn ed or materi-

alized. It can be set to pipelined if the child can

produce partial output, and the parent can consume

partial output; otherwise, it is annotated as material-

ized. Note that this annotation, denoting the method

for (child, parent) pair, is associated with the child

node which is uniquely defined in an operator tree.

The cloning annotation is intended to model intra-

operator parallelism. This value is a pair (set of re-

sources, the partitioning attribute), representing par-

allel execution using the attribute partitioned data

over the resources. Suppose that a sort-merge node

is annotated as being cloned on processes 1.2, .5, 7 on

the join attribute A. This would represent a hash

partitioned sort-merge as described in [S Dt19],

The data redzsirzbutzou between a (chdd,parent) pair,

annotated at the child node, has two possibilities

true or falsez. This is set to true if it is found nec-

essary to redistribute the output of the child node

based on the subsequent cloned operations ; other-

wise false.

Example 1 Consider the following join tree nested-

/oops(sort-merge(R1, R2), R3)) with the following oper-

ator tree for parallel execution:

nested-/oops(merge (sort l(scan(R1)), sort2(sca~J(R2))),

scan(li?s))

1Note that strictly speaking, the operation is ~otn and the jo]n-

method annotation is sort-merge. For brevity, we use this notation
whenever there is no ambiguity.

2Note that a more expressive annotation would be needed for

practical application. As this is sufficient for tlus paper, we present

the simplest case.

11

The annotations for this operator tree are given below:

Node cloning comp. method redistr.

scan(lll) ({1,2,3,4 },A1) pipelined no

scan(l?~) ({1,2 },A2) pipelined yes

scan(R3) ({1,2,3,4 },A3) pipelined no

sort 1 ({1,2,3,4 },A4) materialized no

sort 2 ({1,2,3,4 },A5) materialized no

merge ({1,2,3,4 },A6) pipelined no

n.loops ({1,2,3,4 },A7) - -

■

5 The Cost Model

We present a cost model primarily to show that the trade-

offs — amongst the aspects of parallel execution as it af-

fects the response time — can be represented. We esti-

mate the response time for independent parallel execution

(IPE), dependent parallel execution(DPE), parallel execu-

tion of cloned operation (CPE) as well as sequential ex-

ecution (SE) such that the deterrents affect the response

time. In particular, the following desiderata for the cost

model is put forth:

1.

2.

3.

Response time of an IPE degrades to that of a SE

depending on the level of resource contention.

Response time of a DPE is in the range from that

of IPE to a response time worse than that for SE

depending on the dataflow dependencies and resource

contentions.

Response time of a CPE is similar to IPE of the

clones.

Note that the DPE may degenerate to an execution that

is worse that SE because there is a penalty for execut-

ing operations in a pipelined fashion when there is no

available parallelism, especially if prohibited by resource

contention. This is because, the system necessarily sets

up the pipeline and compromises the run time execution

of DPE whereas no such penalty occurs for a SE.

The cost model presented below is purely an example

that is capable of trading-off the sources and deterrents

x- per this desiderata. Consequently, this is not intended

to be a prescriptive cost model for any parallel execution,

and therefore we make simplifying assumptions so long as

the above goal of exemplification is not compromised.

We first present the cost model assuming no cIoning, or

redistribution. Then we will extend it to accommodate

these annotations as well. Saris these annotations, the

only annotation of interest is the composition method and

its effect on parallelism, In short, the execution can be

viewed as a traditional execution with parallel access to

disks,

The response time (RT) 1s the metric for the cost model,

We assume the usual reformation in the cost descriptor

with the cost estimate in the descriptor representing the

response time. In order to account for data dependencies

in an operator tree P, especially for pipelined operations,

the cost descriptor must have two parts.

1.

2.

Ftrst tuple descriptor, which is a descriptor for those

subtrees of P that must be finished before the first

tuple of P is output to any subsequent operation.

More precisely, given S1 the set of subtrees in P, the

minimal subset S2 of S1 that must be finished before

the first tuple of S1 is output. This is the set of all

subtrees of S1 that have materialized annotation at

the root of the subtree. S2 is called the materzahzed

front of S1. In Example 1 S2 is the set of subtrees

rooted at sortl and sort2. We refer to the restdual

query of S1, that is done after the first tuple is com-

puted, as S1 @ S2.

Last tuple descriptor, which is a descriptor for the

complete execution of P.

The cost portion of the first (last) tuple descriptor is ini-

tially represented as an integer t~ (resp tl) denoting the

estimated time when the first (resp. last) tuple of the plan

is output. We refer to this as the ttme descriptor and is

typically denoted by t = (tf,tl).This wdl be generalized

to include the resource usage in the latter subsection and

thus the term resource descrvpior and this is typically de-

noted Z Besides these, we assume the usual statistical

information needed for cost estimation, even t bough we

have not explicitly expressed it in the formahsm

We present the cost model in two steps. First, we de-

scribe the estimation of response time assuming no re-

source contention. Therefore, we discuss the est relation

of the time descriptor for any query. Then we incorporate

the contention on resources into the estimate of the re-

source descriptor which in turn affects the response time

5.1 Estimating Resource Cent ention Free RT

We present an extension to the cost model for traditional

DBMS, accounting for data dependencies, intra and int,er-

operator parallelism assuming there is no resource con-

tention. We introduce three binary operators on time

and describe the scenario whose cost each operator is ex-

pected to model. We assume that, tl and t2 represent the

completion times of two sets of operators, say S1 and ,S2.

1.

2.

3.

tl [1 t2 estimates the response time of IPE of S1 and

s2. Without resource contention, this is max(t 1, t 2).

t 1; t 2 estimates the response time of SE of S1 followed

by S2. Hence, this is tl + t2.

t 1 @ t 2 estimates the response time for the residual

query S1 e S2, where S2 is assumed to be the ma-

terialized front of S1 using a DPE of S2 piped to

(5’1 e S2)

This value of G operation depends on the difference be-

tween t1 and t2 and the respective contribution of S1

12

and S2 towards the critical path determining the response

time. For now we approximate this to be tl – t2, but in

the next section when we take the resource usage into

account to get a more accurate estimate.

Using these operators we derive the formulae for the two

composition methods, namely pipelined and materialized

execution as follows:

Given a pipeline with the producer and consumer

time descriptors as p = (p~, pi) and c = (c~, cZ) re-

spectively, the operator p I c is the descriptor (t~, tl)

for the pipeline given by:

t.f = (P.f; c.f) t~ = (P.f; c.f; ((P~ e P.f) II(cZ 0 C~)))

The tf is computed under the assumption that the

first tuple is computed at the earliest possible time.

The remainder of producer operations run in paral-

lel with the remainder of the consumer operations as

reflected in the formula for tl.

The materialized execution of a subtree whose time

descriptor t = (tf, tl)is computed using the operation

sync(t) that sets t~ to tl,i.e., sync(t~, ti)= (tJ, tl)).

The cost of an operator tree is computed recursively us-

ing the above formulae. In the base case, the descriptors

of the leaves of the tree as well as the join methods are

derived in the traditional manner, wherein the response

time is the total work required for that operation. Then

recursively, given the descriptors L, R and root for the

left/right operands and the root node respectively, the

descriptor for the tree may be computed as follows: The

materialized frontier of L may run in parallel with the ma-

terialized frontier of R to give a time descriptor of tl =

(Lf [1 Rj, L~ [j Rj), then the residual query of L may run

in a pipelined parallel fashion with the residual query of R

to give a descriptor of t2 = tl; (O, LI OLj) I (O, Rle Rj),

and the result of this pipeline is piped to the root node

to give t = t.2I root. This operator is denoted as

tree (L, R, root). If the root node has only one subtree,

then the formula is simply, Llroot. Note that the above

formula is also applicable for subtrees that are material-

ized as well.

Example 2 We continue with Example 1 and estimate

the response time, The time descriptor (tf, tl) for each

operation in the tree is estimated using traditional ap-

proach. For example, creat,ing an index might incur a t~-

component that must be done before using the scan. The

following table shows, for hypothetical time descriptors of

these operation, the computation of the estimate.

Oper. (t f, tl) formula value

scan RI (O, 1) (o, 1)

scan R2 (O, 3) (0, 3)

scan R3 (O, 2) (o, 2)

sort 1 (5,5) sy?zc((o, 1)/(5,5)) (6, 6)

sort2 (lo, 10) syrtc((o,3)/(lo, lo)) (13, 13)

merge (0,2) tree((6,6), (13,13),(0,2)) (13.15)

n.loops (0,2) tree((13, 15), (0,2),(0,2)) (13, 15)

Now let us relax the assumption that disallowed

cloning, and redistribution. The ability to clone a join

or a select is captured by changing the time descriptor

(t f, tl) by an amount k, the degree of cloning. For ex-

ample, one simple approach is to take the time descriptor

to be (tf/k, tl/k). Needless to say that a more ambitious

formulae would take into account the overhead associated

with the cloning. The redistribution of data involve net-

work and CPU overhead wherein the network is pipelined

to the recipient CPU. Currently, the transfer of data from

a producer to a consumer (i. e., between any two opera-

tion) has been assumed to be of zero cost. In general, this

is not true as suggested by the redistribution cost. This

transfer cost needs to quantify the inter-process overhead,

communication overhead as well as the potential paral-

lelism available in this transfer. This can be incorporated

into the above formulae using the time descriptor for the

transfer as well as estimating the response time using the

above formulae. In short, the above cost model can be

extended to handle other annotations as well.

In summary we have presented a cost model that trades-

off the sources and deterrents of parallelism in estinlat-

ing the response time of a query plan. In this, the

overlapped/extra-work that is accrued/incurred by var-

ious operations are modeled and the response time is ap-

propriately estimated. All this was done assuming that

there was no resource contention. This is relaxed in the

next section.

5.2 Modeling Resource Contention

We first present a resource usage model, using which we

then present the cost calculus.

5.2.1 Resource Usage Model

Resource usage by a task is modeled by two parameters:

t and w, where t is the time after which the resource is

freed and w, the work measured as the effective time for

which the resource is utilized. For example, suppose that

a CPU was used for 10 seconds with an effective work

of 5 sees. This means the CP~T was busy only 50$1 of

the time. However, in this abstraction, we cannot predict

exactly when the busy periods were.

In fact, we make a untformtty assumption for this (i, w)

abstraction of resource usage. The usage of the resource

is uniform over the time period t3. Further we assume

that the resources are preemptable in the sense that they

can be time shared. Resources like CPU, disk, network

are preempt able whereas memory is not4. The following

property follows from these assumptions.

Property of stretching: If a plan has a resource

usage of (t,w) then it can be made (i. e, using au

3As a consequence of this, we lose some ability to model bot

spots.

4Assuming that time sharing memory by more than one process

using virtual memory is prohibitively expensive

13

appropriate scheduling strategy) to have a re-

source usage of (rnt, w) for any positive number

m>l.

Let us assume that resources rl,rn are used by a

certain set of operations (plan). For each of these re-

sources, the usage is modeled by a pair (ti, w,). Since we

assume that the property of stretching applies, we assume

that all the tis may be assumed to be the same and equal

to t. Thus t denotes the response time of the plan and

the total work done by the plan is given by ~~= ~ w,. This

pair (t, ti), where the components of the vector denotes

the work done on that resource, is called a resource vec-

tor. It is usually denoted by F. Analogous to the time

descriptor, we defi~e -resource descriptor to be a pair of

resource vectors (r-f, rl), where r~ represents the resource

vector until the first tuple is output and r~ represents the

resource vector until the last tuple is output.

We use this resource descriptor to estimate the effect of

resource contention on the response time.

5.2.2 Cost Calculus

We now extend the calculus of [1 , ; , @ on integers de-

noting time to resource vectors. In the following let

71 = (tl, V7’1) and F2 = (tz, W-2) be two arbitrary resource

vectors for a set of operations S1 and S2. The scenarios

indicated for the applicability of each of the operators is

the same as discussed earlier. The operations + and –

on vectors denote the usual co-ordinate wise addition and

subtraction.

The operation PI; r; is defined as r; + r; and PI @ r;

is F1 – r;, Note that this accurately estimates the sub-

traction of the materialized front. Therefore, we use the

usual vector minus operator instead of the 0 operator in

the formulae, 71 I\ F2 is defined as (t, Z) for each resource

i where t = maz(tl ,t2, rnax, (w~ + w~)), for each resource

i and G= w-l +W”2.

These operations are then used to define tree and the

pipeline operator \ as before, where these take resource

descriptors as arguments, rather than time descriptors.

The operation of I is slightly altered to take resource con-

tention of the interleaved operations into account so that

the resulting estimate is worse than SE if there is high

resource contention.

Let p = (p~,p~) and c = (c~,p~) represent the resource

descriptors for the producer and consumer of a pipeline

respectively. Then, accordin} to the previous formulation,

the descriptor for p I c = (rf, ;Z) , where

The parallel composition in ~ is penalized by a (scalar)

factor 6(k) to account for the synchronization overhead of

pipelining’. Thus ~ = p~; cl; 6~k) x ((~–p~) [1 (~–c~)).

The factor r5(k) is obtained as follows: Let (t’, ti) de-.,
note the resource vector for S1 [I S2. If t’ is close to

t 1 + t 2 then it means that the parallel pipelining incurs

resource contention. On the other hand, if this t’is close

to maz(tl, t2) then there is less resource contention. 6(k)

is defined as parametrized linear interpolation of t’be-

tween rnax(tl, t2) and tl + t’2; i.e.

f5(k) = 1 +k x (t’–rrzaz(tl, t2))/(tl +t2– maz(tl, t2)).

In the above formula, k is an adjustable parameter. The

linear interpolation may be replaced by other more accu-

rate non linear estimates.

In summary, we have estimated the response time for

IPE, DPE and CPE executions wherein the sources and

deterrents of parallelism are taken into account.

6 Search

In this section we discuss how, given a query, the search

space may be efficiently searched to obtain a query plan

with optimal response time.

Starting with a System R style dynamic programming

(DP) algorithm, we look at the impact of using response

time as the optimization metric. The use of DP requires

the problem to satisfy the principle of optimality[Be157].

We show that response time violates this prin ciple. Fur-

ther there is no cost metric which correctly predicts re-

sponse time while satisfying the properties required by

DP. We extend DP to solve the problem and discuss how

pruning metrics which correctly predict response time

may be designed. We show our extended algorithm to

have a practical complexity.

We show how limits on the amount of “extra” work

may be incorporated and in fact exploited to increase the

efficiency of search.

The reader is referred to [GHK92] for proofs of theorems

and the extensions of algorithms to the search space of

bushy trees.

6.1 Failure of DP

6.1.1 DP Revisited

Figure 1 shows a System R style DP algorithm which

searches for an optimal-work plan in the space of left-deep

join trees.

Some details of the algorithm are abstracted. The

accessF’ian(R) routine produces the best plan for the re-

lation R; joinPlan(p’, R) extends the join plan p’ into

another plan p in which the result of p’ is joined with the

relation R in the best possible way. The bindings avail-

able from p’ may be exploited in joining with R. The

predicate, <WO,~, is supplied by the cost mode15.

The algorithm proceeds by considering increasingly

larger subsets of the set of all relations. Plans for a set

of cardinality i are constructed as extensions of the best

plan for a set of cardinality i -1. This is possible since

the nature of the optimization problem is such that an

optimal plan for a set of relations is an extension of an

optimal plan for some subset of the set. This property,

5Given two plans p] and pz, we define pl <0 pz and CY(pl) <

@(P2) to be eq~valent notations. Examples of the G() function are
worko and the response time function, RT(),

14

Input: An SPJ query q on relations RI,.. ., &

Output: A query plan POPt for q with optimal work.

1. fori:=ltonclo

2. optPlan({~}) := accessP/an(Ri)

3. fori:=2 ton do{

4. forall S<{ Rl,..., Rn}t.t. l/S[/= i do{

5. bestPlan := dummy plan with infinite cost

6. for all Rj, Sj s.t S= {Rj}u Sj do {

7. p := joinPian(optPlan(S3), Rj)

8. if p <Work bestPlan

9. bestPlan := p

10. }

11. optPlan(S) := bestPlan

12. }

13. }

14. POP, := optP/an({Rl, . . . ,R&})

Figure 1: DP Algorithm for Left-Deep Join Trees

which is often called the princtple of optamality, is ex-

ploited by the algorithm. Optimal plans for subsets are

stored in the opt P/ano array and are reused rather than

recomputed .

6.1.2 Fundamental Assumptions in DP

The proof of correctness for the DP algorithm of Figure 1

requires the following assumptions about the cost metric:

● Prtnctple of optimahty: If two plans differ only in a

subplan then the plan with the better subplan is also the

better plan. In particular, for left-deep trees we need the

following: if pl and pz are two plans for the same sub-

query, then

as available bindings and is independent of the physical

plan. More formally, suppose PI is a plan for subquery q]

and joinwork(ql, R) is the work cost of the best way of

joining any relation R with the result of subquery q].

Definition (Physical Transparency): A cost model

is said to exhibit physical transparency iff the following

equation holds: work(joinF’ian(pl, R)) = work(pl) +

joinwork(ql, R)

Theorem 1 The cost metric for work, <Wok,

(1) is a total order and

(2) satisfies the principle of opttmahty under the physical

transparency assumption.

A cost model that exhibits physical transparent y is not

reasonable if the execution space includes sort-merge join.

It is now possible that the physical ordering of tuples pro-

duced by a plan may save work for a subsequent sort-

merge join. Suppose plans pl and p2 for subquery q are

such that pl <Work p2 but p2 produces tuples in the order

needed by a sort-merge join with relation R. It is pos-

sible to have joinP/an(p2, R) < joinP/an(pl, R) if the

interesting order produced by p2 saves a sort pass in the

sort-merge join algorithm. Thus the principle of optimal-

ity is violated.

Optimizers, such as in System R, retain some plans for

subqueries with different ‘(interesting orders” in the hope

that they will prove useful by cutting down the cost of

some join at a later stage. This hertrisizc solution to the

violation of the principle of optimality is generally ac-

cepted to be sufficient in practice.

6.1.3 DP and Response Time

One important question is whether it is possible to use the

response time metric, RT(p), as the cost metric in DP.

Does response time satisfy the principle of optimality?

P] <c~st P2 a (Vi)~oinPian(pl, R) <...t ~oinpian(p2, Ri) The not very surprising answer is that it depends on the

. Total Order Plans can be totally ordered based on the

cost metric.

(vPlP2)not(Pl sm., P2) = (P2 <cost PI)

The cost metric, work, is an integer and therefore pro-

vides a total order. Whether it satisfies the principle of

optimality depends on the choice of the cost model (which

in turn depends on the chosen execution space).

For example, consider an execution space that allows

nested loops and hash joins as join methods and index

scan and relation scan as access methods. In any reason-

able cost model for this execution space6 the cost of the

best way of joining a subquery with an additional relation

will be dependent only on the subquery and not on the

choice of the plan for the sub query. The cost of the join

depends only on the logical aspects of the subquery such

6The reader is reminded that cost models are built by human

beings. Given the quirks of human nature we can only appeal to

“reasonableness” when saying that a property

follows from the choice of the execution space.

of the cost model

choice of the cost model. But we believe that any reason-

able cost model for response time will violate the principle

of optimality quite violently. The intuitive reason is that

data dependencies and resource contention between parts

of a plan are crucial factors for response time and any

cost model that takes them into account will violate the

principle of optimality. The following example shows how

resource contention leads to a violation of the principle of

optimalit y.

Example 3 Consider a database consisting of the tables

CTR(course, time, room) and Cl(course, instructor).

Suppose CTR has two indexes, a clustered index

lc~(course, time) (stored on disk 1) and an uncluttered

index lc~(course, room) (stored on disk 2) and CI has

one index Ic (course) (stored on disk 1).

The query rCOUr,e(CTR DCI Cl) may be computed

purely by scanning indexes. We consider two nested-

loops join plans of the form7 IV-L(p, indexScan(IC))

7For brevity, we use NL to stand for nested-loops in these

expressions.

15

where p is either p] = indezScan(lc~) or pz =

indezScarz(IC~). Suppose the resource vector (consid-

ering diskl and disk2 to be the only significant resources)

for pl is ((20, 20), (0, O)); for pz is ((O, O), (25, 25)) and for

IVL(*, indezScan(Ic)) (the join without counting p) is

((40, 40), (O, O)). Since nested-loops is pipelined, we apply

the calculus on resource vectors to obtain the resource us-

age of NL(pl, indezScan(Ic)) to be ((60, 60), (O, O)) and

that for lVL(p2, indexScan(IC)) to be ((40,40), (25, 25)).

Applying the definition of response time, RT(pl) = 20

and RT(p2) = 25. However,

RT(IVL(P1, irzdezScan(lC)) = 60 and

RT(JVL(PZ, indexScan(lC)) = 40

showing that response time violates the principle of op-

t imalit y. ■

The violation of the principle of optimality due to inter-

esting orderings did pose a problem in the optimization

for work. The same principle is violated due to resource

content ion when optimizing for response time. We expect

the problem to be more difficult for response time due to

an explosion in the number of causal factors. Resource

contention is likely to happen between any two parts of

a plan. The resource usage of a plan varies depending

on what resources are used for sorting or partitioning in-

termediate results in addition to variables such as access

methods, join methods and join ordering.

A natural question to ask next is whether it is possible

to deszgn a new metric that correctly predicts response

time and satisfies the two properties that we require. Such

a metric could then be used for pruning in DP. We will

refer to such a metric as a prunzng metrac.

Definition (Correct Prediction): A pruning metric a

will be said to correctly predict response time iff

PI 5. P2 * PI 5RT P2

Theorem 2 There does not exist any pruning metric that

correctly predtcts response ttme, provtdes a total order and

satusjies the princzple of optima lity.

The implication of this theorem is that it is not possible

to use DP for optimizing response time without relaxing

our requirements. We must develop variants of DP based

on giving up one of the two fundamental assumptions that

we noted. Giving Up the principle of optimality essentially

amounts to giving up the ability to prune the search space

at all and leads us to brute force algorithms for exhaustive

search. Therefore the less devastating alternative is the

relaxation of requiring a total order.

We show this to be a practical direction by showing

e a generalization of DP that is capable of utilizing a

partial order and provides acceptable performance (Sec-

tion 6.2)

o how pruning metrics which correctly predict response

time, provide a partial order and satisfy the principle of

optimality may be designed (Section 6.3).

Input: An SPJ query q on relations RI, &

Output: A query plan PoPt for q with optimal cost.

1. fori:=l tondo

2. optP/ans({R~}) := accessPians(R~)

3. fori:=2 ton do{

4. for all S~ {Rl,...,l?n} s.t. [1.$’[1= i do {

5. bestPlans := @

6. forall Rj)Sj s.t S={ Rj}USj do {

L1. for all p E optPlans(Sj) do {

L2. new := joinPlan(p, R])

for all pd E bestPlans s.t new <a, pd

delete pd from bestPlans

insert new into best Plans

L3. if ~pbe~~e~ 6 bestPlans s.t Pbettv Sal new {

L4.

L5.

L6.

L7. }

L8. }

10. }

11. optPlans(S) := bestPlans

12. }

13. }

14. P.Pt := bestCost(optPJans({Rl, R~}))

Figure 2: Partial Order DP for Left-Deep Join Trees

6.2 Generalization of DP for Partial Orders

We may define a less-than relation which provides

a partial order in l-dimensions as follows: Defini-

tion (i-Dimensional Less Than): Given two points.

(dj, d;) and (d?, d~)in i-dimensional space. <1 is

defined as:

d2)iffd} <d~fori=l. ..l(d; ,...)s) (d?>?>... /

The next section shows that–it is possible to design a

pruning metric, a, such that a(pian) is an l-dimensional

vectors. Such pruning metrics will, by design. correctl}

predict response time as well as satisfy the principle of

optimalit y.

Figure 2 shows the generalization of DP to use a partial

order, The important difference from Figure 1 is high-

lighted: the actions in the innermost loop(lines 7,8.9 in

Figure 1) are replaced by new actions (lines L 1 through

L8 in Figure 2).

The general idea is that instead of one optimal plan for

each subset of relations, we keep a set of incomparable but

optimal plans. These incomparable plans form a unique

cover-set for all possible plans.

Plans for a set S of cardinality i are constructed as

extensions of plans in the cover-sets for subsets of S of

card inality i – 1. The cover-set of these plans is computed

and retained as the set of optimal plans for S. By the

principle of optimality it follows that a cover-set computed

in this manner is indeed the cover-set of all possible plans

for S.

8Given two plans PI and PZ, we define PI <.l P2 and CY(P1) <I

CX(P2) to be equivalent notations.

16

The final result of the algorithm is obtained by choosing

from the set of plans for {Rl, ~} with the best cost.

The time and space complexity of the search for optimal

plans depends on the size of the set of best plans for each

set of relations. Let us assume that this size is k. The

time and space complexity of the algorithm may then be

shown to be kn2n–1 and k(, ~l) respectively. Whether

this is an acceptable complexity depends on the value of

k.

Definition (Cover Set): A cover-set C for a set of

points P with respect to a relation <P is a subset of P

such that all points in C are incomparable and every point

p’ in P is “covered by” some point c’ in C (i.e. c’ <P p’).

Theorem 3 The expected size of the cover-set (with re-

spect to <1) ofm randomly chosen points in l-dimensional

space ZS at most 2~(1 – (1 - ~)m) provtded the pro babihty

dwtrvbution M independent along each dzmension.

The theorem essentially says that 21 is an upper bound

for k. The assumption of independence of dimensions is

likely to be optimistic for most pruning metrics. Therefore

21 is an upper bound under an optimistic assumption.

In summary,

small then DP

performance.

6.3 Pruning

niques

if the number of dimensions, 1, is kept

with partial orders provides acceptable

Metrics and Approximation Tech-

One way of fixing the situation shown in Example 3 is

to use the resource vector itself as the pruning metric.

The resource vector rv(p), of a plan p, is a l-dimensional

vector. Therefore resource vectors may be partially or-

dered using the <1 relation, Obviously, a resource vector

correctly predicts response time.

The general idea in designing a pruning metric is to try

to make the antecedent in the definition of the principle

of optimality false for the cases in which the consequent

is false.

For example tuple ordering may be incorporated as an

additional dimensions in the pruning metric. This re-

quires a <~,~,,,~g relation over orderings. If an ordering

is represented as a sequence of column numbers then the

<Orderln~ relation may be taken to be “subsequence of”.

Data dependence and data partitioning may be incorpo-

rated in a manner similar to ordering.

However, in order to keep the cost of search acceptable,

we must be careful not to have too many dimensions in

the pruning metric. If two resources closely track each

other, they should be aggregated and modeled as a single

resource. For example the RAID system in XPRS[HS91]

should be considered to be a single resource since data is

hash partitioned on all disks with the intention of keep-

ing each disk equally busy. If a resource is expected to

rarely be the bottleneck, it should be ignored. For exam-

ple resource contention at the disk controller is rarely a

problem in a well designed system.

~1
rute force

or left-deeD ~! ~! 1. ,
P for ~! n2 n-1

([;1) 1

I
for left-deep n!

nz?l-lzl 2’([:,)

brute force
2(n–1))1 2 n-l))’

‘(n-l)! 1 /n-l)! 1

for bushy

DP
Z(n–l))!

1 (n-l)!

Zb(sn-y+l 2b2n

for bushy +n +1)

(z(n– l))’
p.o. DP

(n-l)!
2’2b(3n-2n+l 2’2b2n

for bushy +n+l)

Table 1: Comparison of Search Algorithms

6.4 Discussion

Bushy trees offer more scope for independent parallelism

since two subtrees may be executed in parallel. The reader

is referred to [GH~92] for the DP algorithms extended to

the space of bushy trees.

Search over bushy trees is much more costly than over

left-deep trees. The complexity of DP increases for two

reasons. Firstly and more significantly the space of plans

is much larger. Second and less obviously we are now

forced to keep plans for all possible bindings of a subquery.

This multiplies the complexity by a factor of 2* (in the

worst case) where b is the number of columns in the output

of the subquery.

Table 1 summarizes the time and space complexity of

several algorithms. We observe that using the search

space of bushy trees instead of left-deep trees takes the

time complexity of search from 0(2n) to 0(3”). l~sing

a partial order over 1 dimensions instead of a total order

multiplies the time complexity by 2~.

Work bounds may be easily incorporated in the search

algorithm and in fact cut down the search space.

For example, the limit on throughput degradation may

be implemented by first running a work-optimizer (such

as Figure 1) to obtain, IV., the optimal work-cost of a

query. The chosen pruning metric for the response-time

algorithm is simply extended by the work limit giving a

more stringent partial order. A similar approach may be

taken for incorporating the cost-benefit ratio.

7 Conclusions

In this paper, we have proposed a novel formulation of the

query optimization problem: Mznimtze response ttmc sub-

17

ject to constraints on throughput, which was motivated as

the dual of the traditional DBMS problem. We addressed

this novel problem in the context of Select-Project-Join

queries by extending the execution space, cost model

and search algorithm that are widely used in commercial

DBMSS. We incorporated the sources and deterrents of

parallelism in the traditional execution space. We showed

that a cost model can predict response time while account-

ing for the new aspects due to parallelism. We observed

that the response time optimization metric violates a fun-

damental assumption in dynamic programming algorithm

that is the linchpin in the optimizers of most commercial

DBMSS. We extended dynamic programming and showed

how optimization metrics which correctly predict response

time may be designed.

It is a widely held belief that a comprehensive parallel-

query optimizer is not available today [D G90]. While we

have addressed some of the critical aspects of this prob-

lem, there are many open questions. We discuss some of

them below.

While we model the sources and deterrents of paral-

lehsm in our execution space there are several runtime as-

pects such as scheduling that are candidates for inclusion.

In general, investigating what aspects of the runtime exe-

cution should be decided at compile time is an interesting

question.

We have addressed the usage of resources that are

preemptable (i.e time-sliceable). Incorporating non-

preemptable resources such as memory is an open ques-

tion. Further, our cost model has not quantified the over-

heads due to pipelining and cloning, This would be nec-

essary in any practical system.

Having observed the drawbacks of the traditional dy-

namic programming approach, we have presented criteria

for designing appropriate pruning metrics. Evaluation of

pruning metric alternatives is necessary. We have dis-

cussed the search algorithm in the context of left-deep

trees. Use of bushy trees is widely believed to provide

higher degrees of parallelism. We observe that, even for

ten relations, this increases the size of the search space

by three orders of magnitude. Consequently use of non-

exhaustive search algorithms may be imperative.

Acknowledgements: We thank Marie-Anne Neimat

for her advice, encouragement and support from the early

stages of this research. We are grateful to Donovan

Schneider for sharing his G aroma experience. Thanks are

also due to Tim Connors, Curtis Kolovson, Kevin Wilkin-

son and all other members of the Database Technology

Department. We also thank Don Batory, Stefano Ceri,

Avi Silberschatz, and Gio Wiederhold for providing use-

ful feedback.

References

[AHY83]

[Be157]

[CHK+91]

[DG90]

[DGS+90]

[GHK92]

[Gra91]

[HS91]

[PMC+90]

[SAC+ 79]

[Sch90]

[SD89]

P.M.G. Apers, A.R. Hevner, and S.B.

Yao. Optimization Algorithms for Distributed

Queries. IEEE Transaction on Software En-

gineering, 9(1), 1983.

R.E. Bellman. Dynarntc Programming.

Princeton University Press, 1957.

T. Connors, W. Hasan, C. Kolovson, M.-A.

Neimat, D. Schneider, and K. Wilkinson. The

Papyrus integrated data server. In Proceed-

ings oj the lhrst International Conference on

Parallel and Distributed Information Systems,

December 1991.

D. J. DeWitt and J. Gray. Parallel Database

Systems: The Future of Database Processing

or a Passing Fad? A CM- SIGMOD Record,

19(4):104-112, December 1990.

D.J. DeWitt, S. Ghandeharizadeh, D. Schnei-

der, A. Bricker, H .-1. Hsiao, and R. Ras-

mussen. The Gamma database , machine
project. IEEE Transactions on A nozoledge

and Data Engtneerzng, 2(l), March 1990.

S. Ganguly, W. Hasan, and R. Krishna-

murthy. Query Optimization for Parallel Ex-

ecution. Technical report, HP Laboratories:

1992. HPL-DTD-92-3.

J. Gray. The Benchmark Handbook for

Database and Transaction Processing Sys-

tems. Morgan Kaufrnann Pubhshers, Inc.,

1991.

W. Hong and M. Stonebraker. Optimization

of parallel query execution plans in xprs. In

Proceedings of the Fzrst Intern atzonal Confer-

ence on Parallel and Dtstrtbuted Information

Systems, December 1991.

H Pirahesh, C. Mohan, J. Cheung, T.S, Liu,

and P. Selinger. Parallelism in Relational Data

Base Systems: Architectural Issues and De-

sign Approaches. Technical report, IBN1 Re-

search Division, September 1990. IBM Re-

search Report RJ 7724.

P. Selinger, M, M. Astrahan, D. D. Cham-

berlain, R. A. Lorie, and T. G. Price. Ac-

cess Path Selection in a Relational Database
Management System.]n Proceedings of A C.!l-

SIGMOD International Conference on J~an-

agement of Data, 1979.

D. A. Schneider. Complex Query Processing

in Multiprocessor Database Machtnes, PhD

thesis, University of Wisconsin—Madison,

September 1990. Computer Sciences Techni-

cal Report 965.

D. A. Schneider and D. J. DeWitt. A per-

formance devaluation of four parallel join al-

gorithms m a shared-nothing multiprocessor

environment. In ACM SIGMOD, Portland,

Oregon, June 1989,

18

