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Abstract 

We consider the problem of query optimization in the 
presence of limitations on access patterns to the data (i.e., 
when one must provide values for one of the attributes of 
a relation in order to obtain triples). We show that in the 
presence of limited access patterns we must search a space 
of annotated query plans, where the annotations describe 
the inputs that must be given to the plan. We describe a 
theoretical and experimental analysis of the resulting search 
space and a novel query optimization algorithm that is 
designed to perform well under the different conditions that 
may arise. The algorithm searches the set of annotated 
query plans, pruning invalid and non-viable plans as early 
as possible in the search space, and it also uses a best-first 
search strategy in order to produce a first complete plan 
early in the search. We describe experiments to illustrate 
the performance of our algorithm. 

1 Introduction 

The goal of a query optimizer of a database system is to 
translate a declarative query expressed on a logical schema 
into an imperative query execution plan that accesses the 
physical storage of the data, and applies a sequence of 
relational operators. In building query execution plans, 
traditional relational query optimizers try to find the most 
efficient method for accessing the necessary data. When 
possible, a query optimizer will use auxiliary data structures 
such as an index on a file in order to efficiently retrieve 
a certain set of tuples in a relation. However, when such 
structures do not exist or are not useful for the given 
query, the alternative of scanning the entire relation always 
exists. The existence of the fall back option to perform 
a complete scan is an important assumption in traditional 
query optimization. 

Several recent query processing applications have the 
common characteristic that it is not always possible to 
perform complete scans on the data. Instead, the query 
optimization problem is complicated by the fact that there 
are only limited access patterns to the data. One such 
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application is optimization in the presence of foreign and 
table functions [l, 3, 151. In most cases, such functions 
require a set of given inputs in order to return a set of tuples. 

Our work is mainly motivated by query processing for 
data integration and for semi-structured data. A data 
integration system needs to access autonomous remote 
sources in order to answer a query. Even if the data 
integration system is able to model the contents of the 
remote sources as relations, the sources may provide only 
limited access patterns to the data that they serve. This 
may happen for two main reasons (1) the underlying data 
may actually be stored in a structured file or legacy system 
hence the interface to the data is naturally limited, and (2) 
even if the data is stored in a traditional database system, 
the source may provide only limited access capabilities for 
reasons of security or performance. 

The semi-structured data model of labeled directed 
graphs provides a flexible mechanism for integrating a larger 
class of data sources [4]. In this case, the graph provides 
a logical abstraction of the particular storage of the data. 
However, the actual storage of the graph poses natural 
limitations on the access patterns to the data. For example, 
it is often possible to allow following edges only in the 
forward direction, and the system may not allow to scan 
the entire set of objects in the graph or following edges 
backwards. 

In both cases, the access pattern limitations to the data 
can be modeled using binding patterns. A binding pattern 
specifies which attributes of a relation must be given values 
when accessing a set of tuples. For example, the binding 
pattern R(Ab, Bf) specifies that the only way of retrieving 
tuples of R(A, B) is by providing values for the attribute 
A. In fact, binding patterns can be viewed as a method for 
abstracting the storage of the data for the query optimizer. 

This paper considers the problem of query optimization 
in the presence of limitations on access patterns, described 
by binding patterns. Specifically, given a set of binding 
patterns describing the only ways of accessing tuples in a set 
of relations, and given a select-project-join query over these 
relations, our task is to efficiently find an optimal query 
execution plan for the query, if a plan exists. 

1.1 Motivating Example 

We begin by illustrating the problem with an example, 
drawn from an actual application of integration of scientific 
data. The goal of the application, conducted by the Marine 
Institute of Crete, is to study the levels of water pollution 
in the Mediterranean Sea. The application includes two 
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sources of data each containing the results of sets of 

experiments. The first source stores the results of some 
experiments concerning water circulation, and the second 
source reports the results of experiments concerning the level 
of pollution in the water. Integrating the data from the 
two sources enables the scientists to predict water pollution 
levels for a wide range of times and locations. The data 
resulting from the experiments is stored in the three sources 
with the following schemas: 

Source 1: Source 2: 

Experiml (key, date, depth) Experimz(key, date, depth) 
Location1 (key, location) Location2 (key, location) 
Result] (key, circulation) Result2(key,emission) 

Source 3: 

Coincides(location, location, similarity) 

In both of the sources the data is stored in a proprietary 
data store rather than a relational database. Accordingly, 
the possible operations on the data are limited. In 
source 1, it is possible to ask for the keys of all the 
experiments that have been done at a certain date (i.e., to 
select on a given date) or at a certain depth. Given an 
experiment key, it is :possible to retrieve its location from 
relation Locationl, which is a complex value encoding the 
geographical coordinates of a rectangle, or to retrieve the 
result of the experiment (from relation Resultl) which is a 
complex picture describing the speed and direction of the 
water circulation. In this source it is not possible to perform 
a selection on a location or on the circulation. The situation 
is similar for Source 2. 

In both sources, the location represents the geographical 
coordinates of a rectangle. However, the sharing of the 
sea surface in rectangles is not done in the same fashion 
across the two sources, i.e., the sources refer to different 
sets of rectangles. In order to facilitate the integration, 
the scientists use a third data source that answers queries 
about such rectangles. Given two input locations the source 
returns a number between 0 and 1 describing the similarity 
between the rectangles. 

The typical operation that scientists need to perform on 
this data is to answer queries of the form: “retrieve the water 
circulation and the pollution emission on the l/10/98 for 
locations matching with high degree of similarity (=0.9)“. 
The query can be written as the following conjunctive query: 

Query(wl,wz) : -Experiml(xl,yl,zl), Locationi(zi, tl), 

Resultl(xl,~l),Exper~mz(x2,yl,~l), 

Locationz(x2, tz), Resultz(x2, w2), 

Coinct.des(tl, t2, s), y1 = “l/10/98”, s = 0.9. 

Figure 1 describes two possible ways to evaluate this 
query, which are valid according to the limitations and one 
relational query execution plan which is not valid given the 
access limitations. 

The evaluation strategy followed by the plan l(a) uses 
the selection condition on date on both sources in order 
to retrieve the keys of the experiments performed on this 
date. Then, in each source, the keys are used to obtain 
the corresponding experiment locations. This operation 
is performed by a dependent join. The join (on the 
depth attribute) of those two temporary relations is sent 
to Source 3 which calculates the similarity degree for each 
pair of locations and selects those that satisfy the similarity 
predicate. Finally, the keys of the selected experiments are 

used again to retrieve the desired images (water circulation 
and pollution emission). 

A different plan to evaluate this query, depicted in 
figure l(b), is to start by retrieving from Source 1 the keys 
of the experiments performed on the “l/10/98”, toget.her 
with their corresponding depth. For each tuple in the result, 
the values of the depth and date could be used for the 
following complex computation (which is executed by the 
engine of the data integration system): using the depth, 
we can retrieve from the relation Experim2 the keys of 
the experiments performed in source 2 on this depth, then 
the result is filtered using the desired date; the key of the 
resulting experiments are sent to source 2 in order to retrieve 
their respective location, and then they are sent once more 
in order to retrieve the corresponding image. Finally, the 
location of the experiments of source 1 is retrieved, source 
3 is tested for the similarity and, in the last step, the image 
from source 1 is retrieved. 

Finally, we remark that the plan depicted in figure I(c) 
cannot be executed given the limitations to the data sources 
that are given. The reason is that it is impossible to retrieve 
all the tuples of the relation Location in either of the two 
sources. The problem we consider in this paper is finding 
the optimal plan among all feasible plans for a query, given 
the access pattern limitations to the data. 

1.2 Our Solution 

The solution we propose in this paper is based on extending 
System-R cost-based optimization to incorporate limitations 
on binding patterns. The key idea underlying our solution 
is that the optimizer searches through the space of partial 
annotated query plans, where the annotation of a subplan 
describes which variables of the query must be given as input 
to the subplan. We study the effect of adding annotations 
on the size of the resulting search space, and describe an 
efficient algorithm for searching the space. 

The idea of adding binding patterns as annotations to 
subqueries is not new. Such annotations were used in magic- 
set transformations [16, 141 and for exploring sideways 
information passing strategies. The focus of this paper is on 
incorporating such annotations into a cost-based optimizer. 

We make the following contributions. 

We show how the presence of binding pattern limitations 
affects several fundamental properties of the search space, 
such as the need to consider different binding-pattern 
annotations on query execution plans, the need to explore 
the space of bushy trees, and the specialized handling of 
placing selections. 

We provide an analytical and empirical study of the effect 
of adding annotations on the size of the search space. The 
study considers different shapes of queries, bushy vs. left- 
linear trees, plans with or without Cartesian products, and 
different numbers of binding patterns associated with each 
database relation. While the study shows that in some 
important cases the number of valid query execution plans 
is actually considerably smaller than the corresponding 
case without annotations, there are still important cases 
in which search spaces grows significantly compared to 
traditional System-R optimization. 

We describe a query optimization algorithm that is de- 
signed to perform efficiently under the properties exposed 
by our analysis. First, the algorithm considers only valid 
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Figure 1: Three different execution plans for the example. (a) and (b) are valid plans, while (c) is not,. 

execution plans, i.e., which adhere to the given binding 
pattern. The algorithm also prunes early on plans that 
are not viable, i.e., cannot be part of any valid execution 
plan. Second, the algorithm uses a best-first search strat- 
egy in order produce the first complete query execution 
plan relatively fast. In contrast, System-R bottom-up op- 
timization only produces a complete query towards the 
end of the optimization process. Such behavior would not 
be acceptable in cases in which the search space is sig- 
nificantly larger than in the traditional case. Finally, the 
algorithm uses a novel method to combine the join enu- 
meration and selection placement. 

We describe an experimental study of our algorithm. The 
experiments consider the performance of our algorithm 
under different conditions (varying query size, shape and 
number of available binding patterns). The experiments 
show how our algorithm obtains the first query execution 
plans much faster than a pure dynamic programming 
approach. Furthermore, when we consider the time to 
perform exhaustive search of the space of plans, we show 
that the extra cost associated with employing a best-first 
search algorithm compared to dynamic programming only 
causes linear slowdown w.r.t. the size of the search space. 
Hence, we argue that a best-first search strategy is more 
appropriate for the optimization problem we consider. 

The paper is organized as follows. Section 2 formally 
defines our problem. Section 3 describes the effects of 
binding patterns on various properties of the search space, 
and Section 4 describes an analysis of the size of the resulting 
search space. Section 5 describes our query optimization 
algorithm. Section 6 describes our implementation and 
Section 7 describes the results of our experiments. We end 
with a discussion and comparison to related work. 

2 Problem Definition 

In this section we formally define the problem setting we 
consider in this paper. 

Queries: We consider the class of select-project-join 
queries, also known as conjunctive queries. We use the 
following notation of conjunctive queries. A query q is 
denoted by: 

4(X) : -1(X1), . ,en(-G),C. 

The predicates el, . , e, 
x,x1,... 

denote database relations, and 
,x, are tuples of variables. The atoms el(Xl), . . , 

en(Xn) are the conjuncts (or subgoals) of the query, which 
together with C form the query’s body. The atom q(x) is 
the head of the query, and the variables in x are those that 
are selected in the result. We require the query to be safe, 
i.e., any variable that appears in the head must also appear 
in at least one of the x;‘s. C is a set of atoms of the form 
Xi = ci, where Xi appears in xl U U xn, and ci is a 
constant. The set of variables appearing in C are called the 
bound variables in the query, denoted by bound(q). 

Data access descriptions: With each database rela- 
tion we associate a set of binding patterns, describing the 
possible access patterns to the tuples in the relation. For- 
mally, a binding pattern for a relation R is a mapping from 
the arguments of R to the alphabet {b, f}. The meaning of 
a binding pattern bp for a relation R is that the attributes of 
R that bp maps to b must, be given values when accessing the 
tuples of R. The traditional scan of a relation corresponds 
to the case where all attributes are mapped to f. A relation 
may have multiple binding patterns describing the different 
possible ways to obtain tuples from the relation. For exam- 
ple, the binding patterns for the Example in Section 1.1 are 
the following. 

Source 1: Source 2: 
Experiml(teyf , dateb, depthf ) 
Experiml (keyf , datef , depthb) 
Experiml (keyf , dateb, depthb) 
L~cationl(key~,locationf 

I Resultl(keyb,circulation ) 

Source 3: 

Experimz(keyf ,dateb,depthf) 
Ezperimz(keyf , date f , depthb) 
Experimz(key f , dateb, depthb) 
Location2(keyb, location f ) 
Result2(keyb,emissionf) 

Coincides(locationD,locationD, similarityf) 

In addition, each binding pattern is also labeled with (1) 
the cost of accessing it once, and (2) the cardinality of the 
expected output per given input. 

Query execution plans: a query execution plan for a 
query q is a tree whose leaves are labeled with relations in the 
query and whose internal nodes are algebraic operators. We 
refer to the leaves of a query execution plan as atomic plans. 

In our discussion we consider plans with join and selection 
operators. In this paper we consider only selections of the 
form Xi = c;. To simplify our discussion we do not consider 
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plans with projection:;, and assume they are introduced at 
a later stage. 

We distinguish two kinds of join operators: regular 
joins and dependent joins. Both types of joins are binary 
operators and apply recursively on subtrees corresponding 
to query execution su‘b-plans. In the case of a regular join, 
the two input query execution sub-plans can be executed 
independently of each other, resulting in two tables that 
can be joined using any of the traditional join algorithms 
(e.g., hash-join, sort-merge join). In the second type of join, 
the right input subtree cannot be executed independently, 
because it requires bindings that are obtained from the 
result of the left subtree. 

Among the algorithms developed for the join operator, 
only the nest-loop join is applicable to dependent joins. The 
efficient implementation of dependent joins are considered 
in [2] in the context of optimization for foreign functions, 
as well as in the context of evaluation of path expressions 
in object-oriented databases. Furthermore, several caching 
techniques to optimize the implementation of dependent 
joins are discussed in the context of the Montage system [3]. 
An ellaborated implementation of dependent joins, that 
combines hashing and caching, has been proposed in [6]. 
Finally, we note that that dependent joins have received 
several other names in the literature (e.g., functional join, 
implicit join, filter join, theta semi-join, bind join). 

Annotated plans: As mentioned earlier, our algorithm 
is going to search the space of annotated query execution 
plans. The annotation describes which variables in the 
query must be given as input to the plan. Formally, each 
node n in a query execution plan tree is labeled by a pair 
(conj(n),adorn(n)), where conj(n) is the set of conjuncts 
of q that is covered by n, and the adornment adorn(n) 
describes which variables of q must be given, in order for 
the subtree n to be executable. 

An adornment is a mapping from the variables in q to the 
set { b,f,- }. The mean:ing of the adornment is the following: 
(a) if a variable is mapped to b, then its value is necessary 
for the execution of the subplan, (b) if a variable is mapped 
to --) then it does not appear in the sub-plan, and (c) if a 
variable X is mapped to f, then by executing that sub-plan, 
we obtain values for X. in our examples adorn(n) is shown as 
a subscript of conj(n), .and shows exactly the set of variables 
mapped to b. For example, [RI(xo, xl), Rz(a, m)]{I,} 
denotes the adornment that maps 20 to b, zi,~z to f, and 
the rest of the variables in the query to -. 

Clearly, annotations on the nodes in a query execution 
plan are not arbitrary. Given a set of data access 
descriptions to the databbase relations and a query execution 
plan, the annotations in the plan must satisfy the following 
conditions. If n is a leaf accessing a relation R, then n should 
specify which of the available access patterns to R should 
be used. The adornment of n is correct if it is obtained 
by extending one of the binding patterns associated with 
R by mapping each variable not appearing in n to -. If 
n is a selection node whose child is ni, and its selection 
variables are p, then the adornment of n is obtained from 
the adornment of ni by changing the mapping for the 
variables in y from f to b. If n is a join node whose 
children are ni (left) and nz (right), then the adornment of n 
satisfies the following constraints: (a) a variable in adorn(n) 
is mapped to _ only if it is mapped to _ in both adorn(ni) 
and adorn(w), (b) a variable is mapped to b in adorn(n) 

if it is mapped to b in adorn(nl) or if it is mapped to b 
in adorn(nz) and mapped to _ in adorn(ni), (c) the rest of 
the variables are bound to f. The set of variables wh.ose 
values are passed from the left subtree to the right one are 
those that are mapped to b in adorn(nz) and mapped. to 
f in adorn(n). If this set is non-empty, then the join i.s a 
dependent join, otherwise it is just a regular join. 

Cost Model Each of the query execution plans p has an 
associated cost, denoted by cost(p). Our optimizer includes 
a component which takes a query execution plan, and 
chooses a physical implementation for each of the relational 
operators. Therefore, the cost of a query execution plan 
is the cost of the best physical query execution plan 
implementing it. The cost of atomic query execution pl:ans 
are directly deduced from the cost associated with the data 
access descriptions, and the cost of the non-atomic query 
execution plans is an estimate based on the cost of the 
operator and the cost of the subplans. The particular cost 
function we use is orthogonal to the search strategy that our 
algorithm employs, though it can, in some cases, influence 
the effectiveness of our pruning methods. We make -the 
monotonicity assumption about our cost model: if the plan 
P’ is obtained from the plan P by replacing a subplan Pi 
of P by a cheaper and equivalent subplan Pz, then P’ is 
cheaper than P. This property is required in order to ensure 
that the algorithms will not miss the optimal plan in lthe 
presence of pruning. 

Problem Definition A query execution plan that 
covers all the conjuncts in the query and whose adornment 
maps precisely the bound variables in the query to b is called 
a complete query execution plan. The problem we address 
in this paper is: given a set of data access descriptions and a 
query q, our goal is to find a complete query execution pl.an 
for q whose cost is minimal. 

Before ending this section we introduce several terms that 
will be convenient in our discussion. Two query execution 
plans are considered equivalent if they are labeled with the 
same set of conjuncts from the query and have identi~~al 
adornments. A query execution plan is viable if it can be 
part of a complete query execution plan. An adornment bpi 
is said to be weaker than an adornment bpz, denoted by 
bpl < bpz if every variable that is mapped to b in bpl is also 
mapped to b in bpz, and the two adornments map the same 
set of variables to -. A query execution plan pl covers a 
query execution pz if they are labeled with the same set of 
conjuncts from the query, and the adornment of pl is weaker 
than the adornment of pz. 

Intuitively, two equivalent query execution plans solve 
the same subquery. Obviously, the equivalence relation 
partitions the set of query execution plans into classes. All 
the plans in the same equivalence class are labeled with the 
same set of conjuncts and the same adornments. In our 
discussion we refer to coverage and viability of classes of 
plans, with the following meanings. If a plan is viable, then 
all the plans in the same equivalence class are viable. If a 
plan pi covers a plan pz then any plan pi equivalent to pl 
will cover any plan pi equivalent to ~2. 

Example 2.1 Consider the following chain query whose 
bound variables are x0 and x4: 

Rl(~o,~cl),Rz(xl,xcz),R~(~2,~3),R4(~3,~4),~0 = a>~4 = ~2 

where each relation symbol R, has two adornments: bf and 
fb. Consider the following equivalence classes: 
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. The equivalence classes [RX (20, xi), Rz(zi, z~)]{~~l and 
[Rl(so,21),R2(21,~z)]~~~~ are valid and viable. 

l The equivalence class [Ri (20, zi), R3(22, x3), 

~4(~37~4)ltz,,zz) is valid but not viable, because a plan 
that includes only R2 cannot produce bindings for both 
required inputs xi and x2. 

l The equivalence class [RI (xc, xi)]f> is not valid. 

l The equivalence class [RI(xo, XI), Rz(z~, xz)]rzO~ covers 
the equivalence class [RI(xo,xI), R~(x~,x~)]~~~,~~~. 

3 Optimization with Binding 
Patterns 

In this section we show that some of the basic properties 
underlying System-R style optimization need to be reconsid- 
ered in the presence of binding-pattern limitations. In fact, 
we will compare not with System-R, but with the Garlic 
data integration system [5] which partially handles binding 
pattern limitations within the framework of System-R. We 
begin by arguing that it is essential to consider query exe- 
cution plans annotated by their input variables. This will 
be the key feature distinguishing our algorithm from that in 
Garlic. 

“Open” partial query execution plans: in order 
to compare our approach with that of Garlic, we distinguish 
two classes of partial query execution plans. An open partial 
query execution plan is a non-atomic plan which cannot be 
executed only with the constants available in the query. Of 
course, in order for an open subplan to be part of a complete 
plan, it must receive bindings from some other parts of the 
plan. A closed subplan is one that can be executed given 
the constants from the query. 

Garlic’s search strategy only considers closed partial 
query execution plans.’ We now argue that optimal plans 
may include open subplans, and therefore, it is important 
to consider them in the search. Subsequently we show that 
looking at this larger search space has several important 
ramifications to the properties of our search space. 

Example 3.1 Consider the following query 
[R(x,y),S(y,z),T(r,w)]rl andsuppose that theonly access 

patterns allowed to the relations R, S and T are: R(d, yf), 
S(yb, zf), and T(zb, wf). Garlic will find a single execution 
plan: (R(xf, yf)tidyS(yb, zr))d,T(zb wf) and will miss 
the second plan: R(xf, yf)dy (Siyb, ,h)dzT(zb, d)) be- 
cuase the subplan S(yb, zf)EdzT(z , wf) is open. 

The search strategy employed by Garlic, which is im- 
plemented using dynamic programming, has two important 
properties. First, it can be shown that if there exists a 
plan for answering the query, then Garlic will find one, 
even if it is not the optimal one. Second, if all dependent 
join operators are implemented in a limited fashion (with 
nested loops), then any complete plan with open subplans 
results in the same execution as some plan without open 
subplans: in the example above, the two query plans have 
equivalent executions under the nested loop implementa- 
tion of dependent joins. However, more efficient implemen- 
tations have been proposed [3, 61, for which this property 
no longer holds. For example consider an implementation 

‘For atomic plans plans on a single relation) Garlic considers 
one plan for every b ” via le binding pattern. 

usin 
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caching techniques where every time the expression 
(S(y , z’)&T(zb, wf)) is executed for a given value of y, 
the output tuples are cached (with the input y): then the 
two plans in the example above result in distinct executions. 
Thus, Garlic will miss a potentially more efficient plan, and 
this can be especially detrimental in the context of data in- 
tegration, where the cost of accessing each source is usually 
high. 

In what follows we describe several other important 
properties of the search space in the presence of binding 
pattern limitations. 

Refined equivalence classes: as an immediate conse- 
quence of the above discussion is that we need to refine our 
notion of equivalence classes during our join-order enumer- 
ation. System-R style optimizers keep the cheapest query 
execution plan for every equivalence class, where two plans 
belong to the same equivalence class if they cover the same 
set of base relations in the query. In our new context, it is 
necessary to annotate every plan also with the set of vari- 
ables that are required as inputs in addition to the set of 
base relations that are covered. From now on, the equiva- 
lence class of a plan is determined by the combination of the 
subquery solved by a plan and its required input variables. 

Valid and viable plans: an immediate consequence of 
the fact that we must consider refined equivalence classes is 
that the number of plans kept during the generation phase 
(i.e., one per equivalence class) grows significantly, hence 
leading to a more expensive search problem. Fortunately, 
two classes of plans can be pruned early in the search: plans 
belonging to invalid, or non-viable equivalence classes. In 
Section 4 we show that pruning these two classes of plans 
has a dramatic effect on the size of the search space, and 
in Section 5 we show that validity can be checked as part 
of the enumeration algorithm, and viability can be checked 
efficiently. 

Two additional properties of our search space are impor- 
tant to understand before we can design an appropriate al- 
gorithm: the need to explore bushy trees and the special 
treatment of selections. 

The need for bushy trees: as the following example 
shows, in the presence of limited access patterns, there are 
cases where the set of left-linear trees includes only plans 
with Cartesian products, while the set of bushy trees does 
contain a query execution.plan without Cartesian products. 
Hence, if we want to avoid plans with Cartesian products, 
we must search the space of bushy trees. 

Example 3.2 Consider the following query 

P(x, Y), R(Y, z), Sk ~1, T(w, z)l{}, and wwose that the 
only access patterns allowed to the relations P, R, S and T 
are: P(xf, yf), R(yb, zf) S(tf, WJ~) and T(wb, zf). It is easy 
to note that all the linear query execution plans will include 
a Cartesian product. However, the following bushy-tree does 
not include a Cartesian product: (P(xf, yf)dVR(yb, d)) W, 
(S(tf, wf)E&T(wb, d)) 

Recall that in the traditional setting, if the query graph 
is connected, then the space of left-linear trees necessarily 
includes a plan without Cartesian products. Hence, in that 
context, the query optimizer can limit its search to left-linear 
trees without having to use Cartesian products. 
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Placement of selections: in the context of System- 
R it is possible to decouple the decision on join ordering 
from the decision on placement of selections. The placement 
could either be made heuristically by pushing selections 
as far down as possible in the query tree, in a cost-based 
fashion in a separate phase [7], or mixing the decision on the 
join order with the decision on the placement of expensive 
predicates in a dyna.mic programming style optimization 
like in [3]. In our context, since we are considering query 
execution plans that are annotated by variables that must 
be given as inputs to the plan, the interaction between the 
placement of the selection and the join ordering is much 
more subtle. 

Example 3.3 Consider the query [R(z, y), S(y, z), T(z, UJ)]~) 
and suppose that the only access patterns allowed to the re- 
lations R, S and T are: R(zf, y’), S(yb, rf) S 
T(zf,wf). By comb:ining the pattern R(d, y I 

yf, zb) and 
) with the 

pattern S(yb,rf) via a dependent join operator, we obtain 
a plan pi for the equivalence class [R(z,y),S(y, z)]tl. By 

combining the pattern R(d) yf) with the pattern S(yf , .zb) 
via a join operator, we obtain a plan p2 for the equivalence 
class [R(z, y), S(y, z)].(,l. It is easy to see that the plan PI 

covers the plan pz, i.e., by applying a selection on the vari- 
able .z in the plan pl, we obtain a plan p3 which is equivalent 
to pz. Hence, a plan without any selections turns out to be 
equivalent to a plan with selection, and in our case, it may 
turn out that p3 is cheaper than pz. 

In standard System-R optimization the equivalence class 
[R(z, y), S(y, .z)]{~) would have not be considered at all since 
.z is not bound in the original query. In our setting, as shown 
previously, we have to keep one plan per set of conjuncts and 
set of bound variables (even if they are not bound in the 
original query). As a consequence, if we ignore selections, 
we will be in the situation where we do consider a plan 
for the class [R(z,y),S(y, .z)]{~), but the plan we think is 
optimal for this class (i.e., the one obtained from the join) 
may not be the real optimal one. 

In summary, in order to perform optimization in the 
presence of access pattern limitations, the optimizer must 
search the space of annotated query plans. The algorithm 
should avoid invalid plans and prune non-viable plans as 
early as possible. In order to avoid Cartesian products, 
the algorithm needs to consider bushy trees and not only 
left-deep trees. Furthermore, special care must be given to 
placing selections and to detect multiple query plans that 
result in identical executions. In the next section we analyze 
the size of the search space sanctioned by the conclusions of 
this section. 

4 The Size of the Search Space 

The size of the space that needs to be searched by a query 
optimizer employing dynamic programming is relatively well 
understood [8, 11, 191. In this section we study the effect 
on the size of the search space in the presence of access 
pattern limitations, and the associated need to search the 
space of annotated query execution plans. We present both 
an analytical and empirical study. The results of this study 
also justifies the choices we made in designing our query 
optimization algorithm described in Section 5. 
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4.1 Theoretical Study 

Our study examines the size of two measures: the number 
of valid complete query execution plans and the number 
of viable partial query execution plans considered by a 
dynamic-programming style optimizer. Of course, while the 
number of query execution plans is usually very large (and 
that of partial plans even larger), dynamic programming 
only considers a small fraction of the partial plans. For 
example, for the case of chain queries with n relations, 
the number of plans without Cartesian products is known 
to be (“‘n”-;“)$, while the number of bushy partial pl.ans 
without Cartesian products considered by the dynamic 

programming algorithm is known to be only * [g]. 
We note that even though we consider the number of 
plans explored by a dynamic programming optimizer, the 
results are of interest even if we were to employ a different 
paradigm, since dynamic programming is sometimes used 
as a yardstick for the others. For example, [12] show that a 
classical rule-based optimizer considers, in general, a strictly 
higher sized search space than dynamic programming, and 
present an improved rule-based optimization algorithm 
whose complexity matches that of dynamic programming. 

The results of our analysis are shown in Table 2. The table 
shows the maximal number of complete query execution 
plans and viable partial query execution plans generated by 
the dynamic programming algorithm for the cases in which 
all bushy trees are considered (columns 1 and 3) and for the 
case in which only left-linear trees are considered (columns 
2 and 4). The formulas include query execution plans that 
have Cartesian products. 

We focus our theoretical study on chain queries with 
binary relations: 

q : -R~(zo,a), Rz(m,n), , Rn(zn--l,zn),C 

and consider different combinations of access patterns and 
different sets of bound variables. Thus, in the first Iline 
of the table, all relations have access pattern, Ri(uf,vf), 

for i = 1, n, and bound(q) = 8. This line represents the 
classical case, with no access patterns and no selections, 
and is for comparison purposes (all entries are taken from 
the references). Note that since we are counting plans with 
Cartesian products, the numbers in the first row apply to 
any query shape, not just chain queries. In the second line 
all relations have the access pattern, Ri(ub,vf), i = l,n, 
and bound(q) = (~0). The third line analyses the transition 
from line 1 to line 2, by letting the number m of relations 
with binding pattern ff vary from 1 to n (the other n -. m 
relations have binding pattern bf). We assume here that RI 

is always among these m, i.e., we have the access pattern 
RI (zlf, vf): this guarantees that there always exists a query 
execution plan, although bound(q) = 8. In line four each 
of the relations has two binding patterns, Ri(ub,vf) and 

Ri (u f ,vb), and there are two bound variables: bound(q) = 

{zo,~,} (i.e., we can start either from the left or from .the 
right). Finally, in the last line each relation has both binding 
patterns bf and ff. 

Lines two and three illustrate an example where the 
complexity of join ordering decreases because of the limited 
access patterns. Line two represents an extreme case, with 
a single left-linear solution, (. . ((R1EdRz)EdR3). Ed’R,). 

There are several solutions with bushy trees, basically all 
ways to parenthesize this expression, but still less than in 
the classical case (line 1) where, in addition, one could 
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Figure 2: Bounds on the size of the search space for a dynamic-programming optimizer in the presence of binding patterns. 

take all permutations. The number of plans considered 
by the dynamic programming algorithm also decreases 
dramatically from line one to line two. We remark that 
the number of bushy trees considered here is the same 
as that considered in the classical case for plans without 
Cartesian products[8, 191. The next line refines the analysis 
by allowing a number m of relations R; to be ff, the rest 
being bf. Of course, the exact formulas in each entry depend 
on which m relation one chooses: the table only shows their 
maximum values, obtained precisely when the m are chosen 

. . 
eqmdistantly (i.e., RI, Ra+l, Jb-t.1 I . . .). It is interesting 
to observe that the form&s in &s line coincide with those 
in line 1 for m = n, and with those in line 2 for m = 1. 

Line four considers an interesting particular case when we 
can “start at both ends”. All left linear plans are obtained 
by shuffling a join from the left R1dRgtiR3.. tiRk with 
one from the right, R,~R,-I~R,-~. . . @lRk+l) (e.g. like 
in R1~Rzi;dR,~R,-l~&~Rn-2~. . .): there are 2” 
ways to do that. The complexity here is higher than in line 
two, but still far less than the case without limited access 
patterns. 

Finally, line five illustrates a case when the complexity 
increases because of the additional access patterns (both 
ff and bf). The increase however is still within the same 
general complexity: it increases from one exponential to a 
higher exponential, and not to, say, a double exponential. 
For example (comparing lines 1 and 5) the partial query 
execution plans considered by the dynamic programming 
algorithm increased from O(3”) to O(5.36”). 

The key conclusion we draw from the table is that for 
some query shapes the presence of limited access patterns 
significantly reduces the number of valid plans; since the 
dynamic programming algorithm will discard invalid plans, 
it will be able to explore a significantly smaller space in 
these cases. At the same time, in other cases, the complexity 
actually increases, but the increase stays within the general 
complexity of join ordering (i.e., exponential). 

4.2 Experimental study 

The analytical study provides only upper bounds on the size 
of the search space, in cases where mathematical analysis is 
possible. We now describe a series of experiments designed 
to measure the impact of the presence of binding patterns 
on the size of the search space for more general cases. 

We study the effects of several factors on the size of the 
space: size of the query, number of variables, shape of the 
query graph and the type and structure of binding patterns. 
In our study we consider three measures: (1) the number 
of complete query execution plans, (2) the number of viable 

partial query execution plans, and (3) the number of valid 
but possibly non-viable query execution plans. The real 
size of the search space is (l), but the complexity of our 
algorithm is not proportional to this number, but to (2). 
The complexity of our algorithm without the viability test 
would be proportional to (3). We measure those numbers 
for both left-linear trees, as well as for bushy trees. Finally, 
we measure the effect of considering plans with Cartesian 
products. 

To facilitate the experiments we implemented a random 
query generator which takes as input: (a) the number 
of relations, (b) the number of variables and (c) the 
desired shape of the query graph, and produces as output 
a conjunctive query with the required properties. We 
support 4 kinds of query shapes: chain queries, star queries, 
complete queries and randomly constructed. The first three 
types of queries are well known in the literature [ll]. The 
fourth type of query is randomly generated such that a 
few (about one-sixth) of the attributes participate in three- 
ways joins and one third participate in two-ways joins. 
Cardinalities of the relations are generated randomly from 
1000 to 10000 tuples. The selectivities were randomly chosen 
between 0.00001 to 1.0. 

Perturbations on the binding patterns: a simple 
analysis shows that the size of the search space can be 
affected by two contradictory factors: (1) when binding 
pattern limitations become more restrictive, the size of 
the space decreases, and (2) when new binding patterns 
are added, the size of the space increases. In order to 
analyze those two contradictory factors and their respective 
effect, we apply the following strategy. In both cases, 
we start from the simple case when all the relations have 
f f f. . . f access. We iteratively apply one of the following 
two transformations on this set of original input binding 
patterns: 

bind: take a binding pattern from the current set, 
transform one of the f’s into a b, and put it back to the 
current set. 

addBind: do as in bind but do not remove the original 
binding pattern. 

In the figures each point has been obtained from the 
results of 30 queries generated randomly with the same 
parameters. We show the average ratios between the number 
of plans after the transformations and the number of plans 
for the f f f f binding patterns. 

The effect of the bind transformation: in figure 3 
we show how the number of complete query execution plans 
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Figure 3: The evolution of the valid partial query execution plans and the complete query execution plans depending on. the 
number of bind transformations. 

and the number of partial viable query execution plans vary 
with the number of a:pplications of the bind transformation. 
The queries have 6 relations, 35 variables, and 12 variables 
are bound in the query. We show the results for bushy trees, 
with Cartesian products, and for the four types of queries 
shapes. We can observe that the size of the search space 
is decreasing very quickly for all types of queries, as soon 
as binding patterns are introduced. For example, after 15 
applications of the transformation, none of the queries have 
plans. The number of viable partial query execution plans 
is globally decreasing, even if sometimes, for star queries, it 
first slowly increases. 

We ran the same tests when varying the other parameters 
of interest. We observed that the number of complete 
query execution plans depends on the shape of the query 
(it decreases faster folr complete queries and much slower for 
star queries). On the other hand, the size of the query, the 
shape of the query execution plans (i.e., bushy vs. left-linear) 
and the consideration of plans with Cartesian products does 
not seem to have a st,rong effect on the relative average. 

The effect of the addBind transformation: in 
Figure 4 we show :how the number of complete query 
execution plan and the number of partial viable query 
execution plans vary with the number of applications of the 
addBind transformation (with the same parameters as in 
the previous case). The four types of queries manifested an 
exponential growth of the search space depending on the 
number of the addBind transformations. The number of 
viable partial query execution plans grows accordingly. 

The number of non-viable plans: one of the 
important claims of our paper is that applying a viability 
test is essential. Figure 5 shows how the total (including 
non-viable) number of partial plans that can be obtained 
by a generative algor:ithm grows when non-viable plans are 
also considered. As s!hown by the two bottom curves in the 
figure, the number of viable partial plans and the number 
of complete plans are rapidly decreasing. However, the top 
curve shows that the total number of partial plans increases 
before it decreases. Hence, this underscores the importance 
of checking viable plans. 

4.3 Discussion 

The main problem rabised by our analysis is that it is hard 
to predict how the size of the space will be affected: in some 

Figure 5: The number of partial plans increases with the 
number of bind transformations, but fewer plans are viable 
when we perform more bind transformations. 

cases, it may be smaller than the traditional case, while in 
others it can be significantly larger. Hence, in order for an 
optimization algorithm to be effective in all cases, it must 
be able to handle large search spaces. The main problem 
with System-R style optimization when the search space is 
large is that the first plan is produced only towards the end 
of the optimization. Hence, the approach that we pursue 
in the next section is to employ a best-first search strategy 
whose main advantage is to produce a first plan relatively 
quickly, and improve it as the optimization proceeds. 

5 Query optimization algorithm 

In this section we describe our query optimization algorithm 
in detail. We begin by describing the key principles 
underlying the algorithm, and then focus on some of its 
important aspects. 

5.1 Basic Principles 

Our algorithm chooses the optimal plan in the search slpace 
characterized by the following properties: (a) bushy trees, 
(b) plans that include Cartesian products, and (c) all the 
possible placement of selections. 

The algorithm is an extension of System-R style optimiza- 
tion, with the following principles: 

l At every point in the optimization, the algorithm main- 
tains a set of partial query execution plans, S. Each plan 
p E S is labeled with the equivalence class to which it, be- 
longs and its cost. The equivalence class is specified by 
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Figure 4: The evolution of the viable partial query execution plans and the complete query execution plans depending on 
the number of addBind transformations. 

the set of conjuncts covered by p and its adornment. 

Initially, the set S contains atomic plans, i.e., plans for 
accessing a single relation. For a relation l?, S contains 
an atomic query execution plan for every binding pattern 
describing an access pattern to the tuples of R. 

In the iterative step of the algorithm, we add new plans 
to S by combining existing plans in S using selection and 
join operations. We create one resulting plan for every 
adornment that satisfies the conditions on adornments 
described in Section 2, hence; creating only valid plans. 

At every point, S contains at most one plan for every 
equivalence class of query execution plans, which is the 
cheapest one found thus far. 

The choice of the partial query execution plans to 
be combined is based on a utility measure. This is 
significantly different from System-R, where equivalence 
classes are considered strictly in order of the number of 
conjuncts they cover. 

In the combination step we prune non-viable plans. 

In the following subsections we discuss the main points in 
which our algorithm differs from System-R: (1) our search 
strategy, (2) our treatment of the placement of selections, 
and (3) the detection of useless equivalence classes. The 
algorithm is shown in Figure 6. 

5.2 Best First Search 

System-R builds query execution plans by considering one 
equivalence class at a time. The equivalence classes are 
considered in increasing order of the number of conjuncts 
they cover. Therefore, the best query execution plan of a 
class and its cost are determined at one point and are not 
changed later. The disadvantage of this strategy is that the 
first complete query execution plan is obtained only at the 
last phase of the optimization. As the analysis in Section 4 
showed, such behavior will not be acceptable in our context. 

To address the problem of large search spaces, we 
employ a best-first search algorithm which interleaves the 
exploration of different equivalence classes. Specifically, we 
associate a utility measure with each partial execution plan. 
At each step of the search we choose the partial plan with the 
greatest utility measure, and try to combine it with plans 
that cover a disjoint set of conjuncts in the query. 

The advantage of the best-first search algorithm is that 
we can tune the utility function to produce a complete plan 

let S be the set of input binding patterns, 
extended to all variables in the query. 

if the query has no execution plan (validity test) 
then stop. 
while new plans can be created do 

choose pl E S maximizing the utility measure 
let S’ be the set of plans that can be combined with pl 

for each pz E S’ (in the order of their utility measure) do 
let p3 be a (dependent) join product of pl and pz 

if p3 is not viable, then ignore p3 

if 3~4 E S s,t. p4 covers ps and cost(&)) < cost(p3) 
then do p3 = a(p4) 
if 3~s E S s.t. p5 equiv. to p3 
then if cost(p3) > cost(p5) 

then ignore p3 
else in each p6 E S using p5 

replace p5 by p3 and recalc. cost of p5 
let S = SU (~3) 

if 3~7 E S s.t. p3 covers p7 and cost(&)) < cost(p7) 
then replace everywhere p7 by 0(p3), recalc. cost 

if S contains the equivalence class of the query 
then return the optimal plan from S 
else 

let S” be the set of plans in S covering the query 
for each pa E S” do 

generate all the possible placements for the selections 
not already included in ps 

choose the optimal among those plans 

Figure 6: Query optimization algorithm 

relatively fast. Its main disadvantage is the cost of the extra 
bookkeeping needed to track changes to the costs of plans. 
Specifically, since we do not consider each equivalence class 
in isolation, the cost of the best plan for an equivalence class 
(and the cost of plans using it) may decrease over time, and 
hence the extra bookkeeping. We show in Section 7 that the 
tradeoff between the two factors is in our favor. 

5.3 Placement of selections 

As shown in the Example 3.3, it is possible that a plan with 
selections may be in the same equivalence class as a plan 
that does not contain any selection. Hence, if we completely 
ignore selections during the generation phase, we could miss 
the optimal plan. The goal of our algorithm is to consider 
selections in the combination phase only to the extent that 
it is required in order not to miss optimal plans. 

The algorithm considers selections in the following fash- 
ion. Suppose we have created a new plan p which is the 
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cheapest one found so far for its equivalence class. Before 
proceeding, the algorithm checks if it is possible to obtain 
an equivalent plan to p by applying a selection to a plan 
that already exists in S. Specifically, we check if there ex- 
ists a plan p’ E S, such that p’ covers p (i.e., p is equivalent 
to a selection applied to p’), and the cost of applying the 
selection to p’ is less than the cost of p. In this case, the 
plan with a selection on p’ is added to S instead of p. 

Furthermore, the algorithm whether applying a selection 
on p enables to improve the best plan of another existing 
equivalent class. Specifically, the algorithm checks whether 
there exists p’ E S such that a selection on p is equivalent 
to p’, and the cost of the selection on p is less than the cost 
of p’. In this case, the algorithm replaces the plan p’ in S 
by the plan with a selection on p. 

The effect of the two steps described above is that the set 
of equivalence classes maintained by S can be characterized 
as follows: if a class P is in S, then it is there exists at 
least one query execution plan in P that uses only joins 
and no selections. 11x a sense, this property entails that 
the algorithm maintains a minimal number of equivalence 
classes, while still obtaining the optimal plan for the query. 

As a result of the above property, the equivalence class 
corresponding to the original query may not be in S at the 
end of the generation phase. In this case, it is easy to check 
that the optimal plan for the entire query can be obtained by 
introducing selections in the optimal plans of the equivalence 
classes covering the query. Hence, the algorithm applies a 
second phase, which exhaustively enumerates all the possible 
placement of selections, but only in the optimal plans of the 
equivalence classes covering the query. 

5.4 Detection of valid and viable 
equivalence classes 

As stated earlier, our algorithm considers only valid plans 
and viable query execution plans. The validity of the 
query execution plans resulting in the combination step 
is guaranteed by the way we combine plans and generate 
adornment,s for the resulting plan. 

An algorithm for testing the viability of a partial plan p 
while optimizing a query Q for can be obtained as follows. 
Let R be a fresh relation symbol. Construct a query Q’ by 
removing from Q all subgoals that appear in p, and replacing 
them with R(a), where x are Q’s variables in p. Associate 
a single binding pattern with R, namely the adornment of 
p. It is easy to verify that the plan p is viable if and only 
if Q’ has a query exec:ution plan. Checking whether a given 
query has a query extecution plan can be done by a simple 
greedy algorithm [lo]. 

6 Implementation 

We implemented our algorithm as well as a variant of the 
dynamic programming algorithm. In order to obtain a 
fair comparison, we extended the dynamic programming 
algorithm with a viability test. We use the same data 
structures (as described shortly) for the two algorithms, and 
we were careful to ensure that the optimizations made in the 
data structures to efficiently support best-first search do not 
bias the running times against dynamic programming. The 
implementation has been done in Java, using JDK 1.0. 

A crucial issue that was considered in the implementation 
is developing a data structure for storing the set of partial 
plans that have been constructed (denoted by S). An 
optimal such structure would need to efficiently support the 

following accesses to the set of plans: (a) for a plan p, jind 
all plans q in S, such that p and q have disjoint sets of 
conjuncts (i.e., the join candidates for p); (b) for a plan p, 
find an equivalent plan p’ in S; (c) for a plan p, find all the 
plans q that cover p qnd (d) for a plan p, find all the plans 
q that are covered by p. 

Given these requirements and the observed frequencies 
of the different accesses, we decided to adapt the following 
indexing structure for S. Plans are clustered by the set of 
conjuncts that compose them; note that the join candidates 
are the same for all the elements of a cluster. In order to 
avoid repetitive computation of the joinable clusters, the 
link between joinable clusters is established and materialized 
when the cluster is given its first member. In addition, the 
plans in each cluster are indexed by their adornments. It 
should be emphasized that since equivalent and covering 
plans belong to the same cluster, and the size of the clusters 
is relatively small, optimal performance was achieved by not 
adding structures for indexing equivalent and covering plans. 
Finally, in order to support cost recalculation due to best- 
first search, every plan contains a link to the plans using 
it. 

In our experiments we considered a relatively simple cost 
model. The cost is derived from the cost of the leaf data 
accesses and standard formulas for computing the cost of 
joins. Costs of selections are assumed to be negligible, even 
though they affect the cardinality of the results. As long 
as the cost model respects the monotonicity property, the 
choice of the model is irrelevant to the results we show in 
the experiments. 

A best-first search algorithm is based on a utility function 
for choosing the next plan to expand. In our experiments 
we considered several measures, including (1) the number of 
conjuncts covered by a plan (2) cost of the plans, (3) number 
of free variables, and several combinations of the ‘l-3. 
Considering only measure (1) resulted in better performance 
(e.g., up to a factor of 4) in terms of total time and time to 
first solution, even though the quality of the plans produced 
early on were not as good as in several of the more complex 
measures. Considering complex utility measures produces 
better plans early on in the search but the overhead of the 
search is significant. Careful tuning of the utility measure 
is a subject of ongoing research. Results presented further 
use a simple depth-first search. 

7 Experiments 

Experiments were run on a SUN 4 SPARC, under Solaris, 
using JDK with 1OOMb of memory. Clearly, the use of 
JAVA affects absolute running times of both algorithms. 
Every point in the graphs is obtained by averaging over 20 
queries generated randomly with the same parameters. All 
the experiments are done with queries including 10 relations 
and 50 variables. The following two sections quantify the 
gain in terms of finding the first solution and the price for 
total optimization time. 

7.1 Time to First Solutions 

Figure 7 (left) shows the time taken to obtain the first 
solution for our algorithm and the dynamic programming 
one, while increasing the size of the search space. We observe 
that the time to first solution for our algorithm is almost 
constant as the size of the search space increases, while 
dynamic programming degrades considerably. 
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Figure 7: The left graph shows the influence of the addBind transformation on the absolute time taken to find the first 
solution The graph on the right shows the ratio between the time to first solution and the time for exhaustive search, in the 
presence of the bind transformation, 

Figure 8: The graphs show the time for exhaustive search in the case of varying the number of bind transformations (left) 
and varying the-number of addBind transformations (right). 

Figure 7 (right) shows the ratio between the time to first 
solution and the total optimization time for both algorithms, 
when the size of the search space decreases. We observe that 
the ratio for our algorithm is relatively constant, while it 
grows for dynamic programming. Finally, it is important 
to emphasize that our algorithm produces solutions in a 
relatively steady pace. Hence, we are more likely to obtain 
a good solution even before dynamic programming produces 
its first. 

7.2 Time for Exhaustive Search 

Figure 8 compares the running times for exhaustive search 
for the two algorithms, as we vary the number of bind 
transformations (left) and as we vary the number of addBind 
transformations (right). We observe that in both cases 
dynamic programming has a better running time. In the 
case of bind transformations (when the size of the search 
space decreases) our algorithm takes more than double time 
than dynamic programming in the worst case. As the 
number of bind transformation increases, and hence the size 
of the space decreases, the differences between the running 
times are negligible. In the case of addBind transformations, 
the running time of both algorithms grows exponentially 
(note that the Y axis is on a logarithmic scale). Even though 
our algorithm performs worse, the general growth tendency 
is the same as for dynamic programming. 

In conclusion, we have shown that our algorithm pro- 
duces first answers considerably faster than dynamic pro- 
gramming. In cases when the search space is relatively 
small, the additional price paid by our algorithm is not sig- 
nificant. Finally, we argue that in the cases where we do 
much worse than dynamic programming are anyway cases 
in which dynamic programming is not a viable strategy and 
a non-exhaustive search algorithm is needed. 

8 Discussion and Related Work 

We described a query optimization algorithm which extends 
System-R style optimization to accommodate limited access 
patterns to the data. Our algorithm has several important 
features that are necessitated by the results of our analysis of 
the properties of the search space arising in the presence of 
limited access patterns, and a theoretical and experimental 
study of the size of the space. In particular, our algorithm 
searches the space of annotated query plans, and prunes 
as early as possible in the search plans that are invalid 
or are not viable. Furthermore, to perform well when 
the search space is large, the algorithm employs a best- 
first search strategy to produce a complete plan early in 
the optimization process. The algorithm also handles the 
placement of selections in a way that is tailored to this new 
context. 

A natural question to ask is whether one of the other 
query optimization paradigms such as the transformational 
or randomized approach would be more appropriate. For 
example, in a transformation-based approach [16] the 
optimizer would start with some initial complete plan, and 
apply transformations to it in order to find an optimal plan. 
However, this approach requires a set of transformation 
rules that take one valid plan into another. In our context, 
the classical transformation rules such as associativity and 
commutativity of joins do not have this property, and 
therefore applying this approach is quite a bit more subtle. 
The situation is even worse for a randomized approach, 
because we cannot be guaranteed to cover only valid plans. 
Finally, the analysis of the search problem that we provided 
in this paper can facilitate future attempts to apply different 
search paradigms. 

In most cases, the key reason for the existence of limited 
access patterns is the mismatch between the logical and 
physical views of the data. In our work, binding patterns 
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were used to describe such mismatches. Tsatalos et al. [17] 
describe GMAPs whi’ch are also a mechanism for describing 
different storage patterns of the data. Using GMAPs, 
one can describe storage structures in which the stored 
data is a result of projections, selections and joins on 
the logical schema of the data, e.g. secondary indexes, 
path indexes and field replication. GMAPs and binding 
patterns characterize disjoint sets of mismatches between 
the logical and physical views of the data. To combine the 
two families of mismatches, we need to extend the algorithm 
of in [17] in several ways. First, as we did here, we need 
to consider annotated query execution plans. Note that 
in [17] the execution plans manipulate GMAPs (which can 
be thought of as materialized views) rather than database 
relations. Second, tlhe join enumeration algorithm needs 
to consider plans of larger size. It follows from [13] that 
in the combined context of binding patterns and GMAPs, 
the query execution plan may require more joins than the 
number of relations in the query, and hence a relation 
mentioned once in the query may appear in more than one 
leaf in the query execution plan. 

As we noted the problem of limited access to stored 
data also arises in the context of data integration. Hence, 
the problem of building query execution plans when only 
limited access patter.ns are available has been considered 
in work on data integration [lo, 13, 91. However, in that 
work they addressed the question of whether there exists 
some ordering of accesses to the data sources such that 
an answer to the query can be obtained. The question of 
finding an optimal order was not considered. A related 
issue is query optimization when the capabilities of the 
data sources are varying. Haas et al. [5] consider query 
optimization in the context of the Garlic system, where each 
data source may have different capabilities for performing 
joins internally. Vssalos and Papakonstantinou describe a 
powerful language for describing source capabilities [18]. 

The cost-based query optimization problem in the pres- 

ence of binding patterns has been considered in [21]. The 

authors propose two heuristic-based algorithms, a greedy 
(inflationary) one, and a cluster-based algorithm. More- 
over, they show that for the specific cost model they con- 
sider, the optimal plan is in the space of left-deep plans, 

and they show that t:he proposed algorithms have interest- 
ing properties (optimal or n-competitive for few conjuncts). 
In contrast, our algorithm is guaranteed to find the optimal 
plan, and is independent of the cost model. 

Rather than dynamically find a query execution plan for 
an arbitrary given query, the work in [20] tries to statically 

compute the family of answerable queries, given a set of 
binding patterns. The authors consider a more ellaborate 
set of adornments, but do not address the problem of finding 
an optimal plan for the answerable queries. 

This work is part of a bigger effort to build a query 
optimizer for contexts in which there is a mismatch between 
the logical and physical views of the data. As we already 
mentioned, one future direction is building an optimizer 
that can support both GMAPs and binding patterns. A 
second direction is to extend our optimizer to explore query 
execution plans that are directed acyclic graphs rather than 
trees. It has already been noted that such plans are useful 
even in the traditional optimization context, but this is even 
more so in the presence of limitations on access patterns. 
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