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Wireless Sensor Networks (WSNs) are increasingly involved in many applications. However, communication overhead and
energy efficiency of sensor nodes are the major concerns in WSNs. In addition, the broadcast communication mode of WSNs
makes the network vulnerable to privacy disclosure when the sensor nodes are subject to malicious behaviours. Based on the
abovementioned issues, we present a Queries Privacy Preserving mechanism for Data Aggregation (QPPDA) which may reduce
energy consumption by allowing multiple queries to be aggregated into a single packet and preserve data privacy effectively by
employing a privacy homomorphic encryption scheme. ,e performance evaluations obtained from the theoretical analysis and
the experimental simulation show that our mechanism can reduce the communication overhead of the network and protect the
private data from being compromised.

1. Introduction

As a novel and modern technique, Wireless Sensor Net-
works (WSNs) have been introduced into a variety of sce-
narios such as medical applications [1], smart homes [2, 3]
autonomous vehicles [4], traffic administration [5] and
military battlefields [6]. A WSN is composed of hundreds or
thousands of tiny resource-constrained sensor nodes which
are generally deployed in an unattended even hostile area.
,ese nodes are difficult to be replaced or recharged. ,is
prevents WSNs from being applied into more critical ap-
plications, especially in scenarios where the long lifetime and
the high quality services are needed. It is important that
traffic and computation overhead should be kept as low as
possible to extend the lifetime of WSNs. ,e Data Aggre-
gation (DA) [7–13] technique is one of the most effective
ways for the network to save energy and improve efficiency.
It can reduce the quantity of information transmission
through aggregating the data from different nodes, de-
creasing redundancy, and achieving the goal of prolonging
the lifetime of the network. Unfortunately, DA is vulnerable

to some attacks. Taking the aggregation node as an instance,
it is an intermediate tier between sensor nodes and Base
Station (BS).,emain roles of aggregation nodes are to store
the sensing data and reply the queries received from BS. If
most of the aggregation nodes have been compromised
successfully, the data of whole network may be revealed and
tampered with easily. ,is may result in serious threat or
economic loss, even the damage to the safety of state
property. ,erefore, the Security Data Aggregation (SDA)
plays an important role in the critical application of WSNs.

Privacy Preserving (PP) has attracted much attention in
many fields, such as smart grid [14], Internet of ,ings
[15, 16], edge computing [17], social network [18] and other
application scenarios [19–21]. PP can also protect the pri-
vacy of sensing data when DA is adopted in a WSN, and
some interesting schemes have been proposed in recent
years [22–25]. However, these solutions cannot guarantee
the data integrity. Although the schemes discussed in
[26–28] exploited the issue of data integrity, they may cause
the leakage of concealed data due to the decryption at the
aggregation nodes. A proposed scheme in [29] attempted to
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bridge the gap between PP and data integrity through in-
tegrating an encryption algorithm with an MAC authenti-
cation mechanism, but it has the risk of putting a heavy
computation burden on sensor nodes.

In general, BS has two ways to collect information in a
WSN. One is that BS sends a query and the nodes reply
accordingly. ,e other is that the nodes periodically report
information to the BS. We focus on the former one in this
paper for the reason that the latter one consumes more
resources in transmission replies which is inconsistent with
our intention of saving energy. ,e data query has been
widely exploited in the current studies. For example, the
maximum/minimum query was used to monitor a patient
and identify the maximum or minimum value of an indi-
cator which could be regarded as a symbol to determine
whether the patient is in a good state or not [30]. Up to now,
the single query with PP, such as range query [31], verifiable
top-k query [32], and location query [33], has been well
addressed. However, the single query method cannot meet
the requirements of application when it is introduced into a
large-scale network.,erefore, how to enrich the function of
query becomes an urgent research challenge. As one of the
reasonable solutions, the multiple queries mechanism has
been proposed in which many queries can be executed si-
multaneously [34]. However, the multiple query mechanism
with PP is an emerging direction, and many valuable issues
need to be solved in the future.

To address the abovementioned issues, we propose a
Queries Privacy Preserving mechanism for Data Aggrega-
tion (QPPDA) in this paper.,e goal of our work is to bridge
the gap between PP and energy consumption, and the
following techniques are adopted. Firstly, the multiple
queries are aggregated into a single packet in order to reduce
energy consumption. ,en, a homomorphic encryption
scheme is carried out, and the confidentiality of private data
is ensured. Next, the data for different queries in a single
aggregated packet can be distinguished from each other in
the decryption of the aggregated data at BS. Compared with
the single query, QPPDA may greatly decrease the com-
munication and computation overhead. ,e main contri-
butions of this paper are as follows.

(i) Improvement of Gridding Technology. ,e high
computation complexity of cell limits the application
of the grid technique. We break this restriction
through improving the relative location algorithm in
grid topology. As a result, the computation com-
plexity is decreased, and the relative location provides
an efficient way to maintain a dynamic WSN.

(ii) Effective Privacy Preserving. Privacy is easily
destroyed by an attacker for a WSN usually
deployed in an unattended even hostile environ-
ment. ,e elliptic curve encryption combined with
the homomorphic algorithm is adopted to effec-
tively protect the private data from being
compromised.

(iii) Efficient Reply. Sending multiple replies individually
leads to the wastage of network resources. ,rough
aggregating themultiple queries into a single packet,

the performances of WSN are promoted in terms of
energy consumption and lifetime.

,e rest of the paper is organized as follows. Section 2
introduces related work. Section 3 discusses the topology
construction of the network. Section 4 elaborates our scheme
in detail. Section 5 evaluates the performance of QPPDA.
We conclude this paper in Section 6.

2. Related Work

2.1. Grid Topology. ,e connectivity is one of the key issues
in WSNs, and many valuable solutions have been proposed
to deal with this challenge. A grid-based SDA scheme was
proposed in [35]. ,e whole network was divided into some
nonoverlapping virtual cells which were small enough to
ensure that the radio coverage of a node can cover its
surrounding cells, namely, each node in a cell can directly
communicate with the nodes in the neighbouring cells. In
[36], the nodes were divided into groups according to their
geographic locations with only one node reserved in each
group which can connect to the backbone network. In this
way, the proposed scheme in [36] not only ensures the
connectivity of nodes, but also speeds up the convergence
rate of the network. Although the connectivity of the net-
work is guaranteed, the grid topology causes a higher
computational complexity than tree or cluster topology.

2.2. Privacy Preserving. As to PP, some cryptographic
schemes have been adopted to carry out the hop-by-hop
encryption [37]. He et al. presented an Integrity-protecting
Private Data Aggregation scheme (IPDA) [38], which is an
improvement on the Cluster-based Private Data Aggrega-
tion (CPDA) [22]. Both IPDA and CPDA achieve privacy
preserving through the technique of data slicing and as-
sembling which ensures integrity by constructing two dis-
jointed aggregation trees. However, the disjointed
aggregation trees are computation- and communication-
consuming and inapplicable to resource-constrained WSNs.
As far as the hop-by-hop scheme is concerned, data privacy
cannot be guaranteed because the ciphertext must be
decrypted in the intermediate nodes when DA technique is
applied. ,erefore, the end-to-end scheme is a desirable
choice in a network with DA. In [30, 31], the nodes directly
sent the encrypted data to the BS without the decryption
operation involved in the intermediate nodes. Castelluccia
et al. [39] proposed a simple and provable secure additive
homomorphic stream which permitted the efficient aggre-
gation of encrypted data. Girao et al. [40] discussed a
mechanism which can conceal the sensing data and the
aggregation data in an end-to-end manner. ,ough
these schemes are efficient in preserving data privacy of DA,
they cannot prevent the private data from being eaves-
dropped by their neighbours. Compared with [40], the
Integrity Protecting Hierarchical Concealed Data Aggre-
gation (IPHCDA) for WSNs ensured that no private data
of a sensor node were released to any other nodes under
the support of asymmetric cryptography [41]. It employed
the elliptic curve-based Privacy Homomorphic (PH) and
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allowed the concealed aggregation data to be encrypted with
different keys. ,e scheme includes the following steps.

Step 1: generate key pairs according to the point on the
elliptic curve (pu, pr).

Step 2: encrypt m using c � gm + hr, where + is the
addition operation of elliptic curve points, r is a ran-
dom number, and gm and hr are the scalar multipli-
cation of elliptic curve points.

Step 3: perform the DA. Two ciphertexts (c1 � g
m1 +

hr1 , c2 � g
m2 + hr2) are fused to a single ciphertext

c′ � c1 + c2 � gm1+m2 + hr1+r2 .

Step 4: decrypt a ciphertext using the private key pr at
BS.

2.3. Query Privacy Preserving. ,e contributions presented
in [42–44] investigated the privacy schemes of single query
when attackers attempted to tamper with or eavesdrop on
the private information of nodes. Papadopoulos et al.
proposed a privacy-preserving scheme of range query [42]
based on the bucketing technique [45], in which the domain
of data values was divided into multiple buckets, and the
time was divided into slots as well. In each time slot, data
items collected by a sensor node were classified into different
buckets with different IDs. If BS wants to perform a range
query, it does not send the range directly. Instead, the bucket
with various IDs that covers the required range is sent to the
storage nodes. However, the bucket partitioning technique
cannot prevent a compromised storage node from carrying
out malicious activities in a WSN. Faced with this challenge,
the proposed scheme in [46] discussed the privacy of query
by encoding the sensing data. However, it needs high
computation overhead and communication cost. To the best
of our knowledge, rare contribution is found in investigating
the privacy preserving of multiple queries with DA.

Different from the abovementioned approaches,
QPPDA has the advantages of decreasing the resource
consumption and protecting the private data from being
compromised simultaneously.

3. Network Model

3.1. Sensor Networks and Data Aggregation Model. A sensor
network is modelled to a grid which is divided into many
cells with each one containing a number of sensor nodes.
,ere are three types of nodes in a network: BS, Aggregation
Node (AN), and Member Node (MN). It is assumed that BS
is trusted and has unlimited energy, computing resource,
and storage capacity. MN collects the sensing data and sends
them to AN. And AN is responsible for forwarding the query
sent by BS and aggregating the data of MNs. ,e network
size isN which means that there areN nodes in a WSN.,e
sensor nodes are organized into a grid structure as shown in
Figure 1. Notice that we adopt the three-dimensional model
rather than other two dimensional models in most of the
related works with grid topology. ,is model may expand
the application scenario of QPPDA, and it can be used in
many complex natural environments.

Let D � d1, d2, . . . , dN{ } be raw data gathered at MNs.
,e set of sensing data, D, can be transmitted to BS hop-by-
hop. However, transmitting all the raw data to BS may result
in a huge burden on the bandwidth and high energy con-
sumption. ,erefore, DA is a favorite technique to decrease
the occupancy of resources.

A data aggregation function is defined as
y(t) � f(d1(t), d2(t), . . . , dN(t)) at time t, where f repre-
sents the aggregation function which may be addition, av-
erage, min, max, and count.We focus on addition aggregation
functions in ourmodelf(t) � ∑Ni�1 di(t). It should be noticed
that the addition aggregation function is not too restrictive
because many other functions such as average and count
which can be deduced from the addition function.

3.2.4reatModel. When queries are initialized, BS broadcasts
them to the whole network. ,e nodes which meet the re-
quirements of the queries send their reply data to AN, and the
data are sensitive to the malicious activates if the security
mechanism is absent. We adopt the well-known “honest but
curious” threat model [47], in which the adversaries attempt to
break the privacy but faithfully follow the protocol specification
during the process of DA.Meanwhile, adversaries can overhear
the original data of sensors through eavesdropping on the
wireless link. In addition, a few nodes may collude with each
other to violate the data privacy of the overall network.

4. Privacy Data Aggregation Protocol

We present a privacy data aggregation protocol called
Queries Privacy Protection for Data Aggregation (QPPDA)
which involves three phases: the grid division, the key
generation, and the query processing. Firstly, a network is

AN

MN

BS

Figure 1: Grid network model.
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divided into adjacent virtual cells, and the nodes within
neighbouring cells can directly communicate with each
other. Secondly, the corresponding key for each type of
query is generated in order to guarantee the data privacy.
Finally, the nodes aggregate multiple replies into a single
packet which is transmitted to BS hop-by-hop.

4.1. Grid Division. ,e grid division phase is responsible for
the construction of the network structure. In theGeographical
Adaptive Fidelity (GAF) algorithm, a network area was di-
vided into grid topology which consisted of many contiguous
cells according to the geographic information and the radio
coverage of nodes [46]. In order to make GAF suitable for the
WSNs in practice, some improvements of GAF were pro-
posed, and a relative position was adopted to obtain the grid
information [48]. However, some valuable issues, such as data
privacy and accuracy, are left for future study.

We define all the cells that have a common edge as the
neighboring cells. In the division process, it should be de-
termined that all the nodes of a cell can directly commu-
nicate with the nodes in the neighboring cells. ,us,
equation (1) needs to be satisfied.

r2 +(2r)2 +(2r)2 ≤R2⟶ 9r2 ≤R2⟶ r≤ 1
3
R, (1)

where r denotes the side length of the cell and R is the
communication radius of the node.

,e relationship between r and R can be shown as
Figure 2. We take the following steps to divide a grid into
adjacent cells. Firstly, BS broadcasts its location,
Lbs(xbs, ybs, zbs), and the side length r of each cell to all the
nodes in a WSN. Node i(xi, yi, zi) can calculate the coor-
dinate of cell Gi(g(xi), g(yi), g(zi)) and determine which
cell node i belongs to using the following equation:

g xi( ) � xi − xbs( )
r

⌈ ⌉,

g yi( ) � yi − ybs( )
r

⌈ ⌉,

g zi( ) � zi − zbs( )
r

⌈ ⌉.



(2)

Now, we use a simple example to explain why we use the
top integral instead of the bottom integral when the cell
coordinate is determined in equation (2). Assume that the
coordinate of node i is (9, 11, 10) and that of BS is (0, 0, 0),
respectively. ,e side length r is 4, as shown in Figure 3. We
firstly calculate the cell where node i stays using the top
integral according to equation (2) g(x) � (9 − 0)/4 � 3,
g(y) � (11 − 0)/4 � 3, g(z) � (10 − 0)/4 � 3. ,erefore,
node i is inside Gi(3, 3, 3). On the contrary, we can obtain Gi
is (2, 2, 2) using the bottom integral. It can be seen from
Figure 3 that Gi(3, 3, 3) is the desired one.

,e pseudocode of the grid division is listed in Algo-
rithm 1. N nodes compute their coordinates from Line 1 to

Line 10, and the computation complexity of grid division is
O(N).

After the grid is divided into cells, some sensor nodes
(ANs) in different cells are selected and organized into an
aggregation tree rooted at BS. In a cell, the member nodes
send the data to AN, and AN sends the aggregation results to
BS hop-by-hop along the aggregation tree. Figure 4 dem-
onstrates the aggregation tree and the data aggregation in a
cell, respectively.

4.2. Key Generation. We introduce the homomorphic en-
cryption scheme based on the elliptic curve [14] into
QPPDA, which can protect private data from being revealed.
,e encryption method assigns different keys to the con-
cealed data acquired from different nodes, and BS can
correctly distinguish them in the aggregation process [41].

Assume that k types of query are supported by a network.
,erefore, k public and private key pairs are required. We
take the following steps to generate the key pairs.

Given a parameter τ, we define an algorithm Ψ(τ) to
output a tuple (q1, q2, . . . , qk+1, E), where E is a set of elliptic
curve points that form a cyclic group. ,e order of E is n
where n � q1 × q2 × · · · × qk+1. Ψ(τ) works as follows.

z

y

x

r

r

r

R

Figure 2: ,e relation between (r) and (R).

(0, 0, 0)

(9, 11, 10)

x

y

z

Figure 3: ,e illustration of the cell coordinate.
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(i) Generate k + 1 random τ-bit primes
(q1, q2, . . . , qk+1, E) and set n � q1 × q2 × · · · × qk+1

(ii) Generate a set of elliptic curve points E

(iii) Output the security elements ()

,e points (α1, α2, . . . , αk+1, β) are randomly
chosen, and the order of these points are n. ,en, we
calculate c as

c � α
∏k

r�1
qr .

k+1
(3)

,e order of c is qk+1. Next, k public keys are computed
for k queries according to the following equation:

hj � βδj ,

δ � ∏k+1
r�1,r≠ j

qr,

j � 1, 2, . . . , k,

(4)

where the order of hj is qj. Finally, we establish the public
key set Puk � n, E, h1, h2, . . . , hk, β, c{ } and the private key set
Prk � q1, q2, . . . , qk+1{ }. ,erefore, the jth key pair, (Puj, Prj)
is generated for the jth query.

,e key generation is illustrated in Algorithm 2 where
Lines 4 to 6 obtain a tuple by the elliptic curve algorithm, and
Lines 7 to 15 display the process of producing keys.N nodes
execute the elliptic curve algorithm to generate key pairs for
k queries with the complexity of O(N2).

4.3.QueryProcessing. After the aggregator receives a request of
query from BS, it broadcasts Q � (type � p, epoch � t, time �
T) to node i(i � 1, 2, . . . , N), where p and t represent the types
of queries and the query epoch, respectively. T denotes the time
that AN spends on replying to BS. Four steps should be taken to
process the query: the data collection, the data encryption, the
data aggregation, and the data decryption.

4.3.1. Data Collection. After receiving the queries, the nodes
collect the sensing data di ∈ 0, 1, . . . , D{ } where D is the
maximum value of di according to the query types.

4.3.2. Data Encryption. ,e nodes encrypt data using the
public key and the encryption process is as follows.

Step 1: a node chooses a random number r from
0, 1, . . . , N − 1{ }.

Step 2: node i selects a key according to the type of
query. If the type of query is x, that is p � x, the public
key is Puk � Pux � (n, E, g, hx), where hx � u

qj+1 .

Step 3: Node i computes the ciphertext
Cxi � f(di) � (g

di + h
rx
x ).

4.3.3. Data Aggregation. Let dx denote the reply message of
the xth query. Consequently, k ciphertexts in node i
(aggregator) are aggregated into a ciphertext of Ci′ using the
following equation:

Ci′ � f ∑k
x�1
dx( ) � ∑k

x�1
gdx + h

rx
x � g∑k

x�1
dx + h

∑k

x�1
rx

x . (5)

AN

MN

BS

Figure 4: ,e aggregation tree and the data aggregation in a cell.

Input: ,e side length of cell, r; ,e communication radius, R; ,e position of BS, Lbs(xbs, ybs, zbs); ,e position of a node,
i(xi, yi, zi).
Output: the nodes belong to the cells, G � G1, G2, . . . , GN{ }.

(1) Begin
(2) BS broadcasts Lbs
(3) For (i � 1; i≤N; i + +)
(4) If node i receives Lbs then
(5) Calculate Gi(g(xi), g(yi), g(zi)) according to equation (2)

(6)
g(x) � ⌈( xi − xbs)/r⌉,
g(y) � ⌈( yi − ybs)/r⌉,
g(z) � ⌈( zi − zbs)/r⌉.


(7) Obtain the position G(g(xi), g(yi), g(zi));
(8) End If
(9) End For
(10) Return Cell information of all nodes, G � G1, G2, . . . , GN{ }.
(11) End

ALGORITHM 1: ,e grid division.
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4.3.4. Data Decryption. During the decryption, BS is able to
decrypt the data of each query separately from the aggre-
gated ciphertext Ci′. To decrypt a ciphertext Cxi , BS needs to
obtain the plaintext from equation (6) using the private key
qx.

dx � loggqx C
x
i( )qx . (6)

,e pseudocode of query processing is shown in Al-
gorithm 3. Lines 1 to 10 describe the data collection, the data
encryption, and the data aggregation in detail. Lines 11 to 16
delineate the process of separating the decryption data at BS
with the complexity of O(N).

5. Performance Analysis and Simulation
Experiment

We evaluated the performance of QPPDA in terms of
privacy preservation, communication efficiency, and com-
putation overhead through theoretical analysis and simu-
lation experiment. QPPDA was implemented using
MATLAB. AWSNwith 600 nodes was considered, and these
nodes were randomly deployed in a 400m∗ 400m area. ,e
transmission range of the sensor node was 50m.

5.1. Privacy-Preservation Analysis. We analyze the privacy
preservation performance of QPPDA when a node is
compromised by physical attack. If an adversary compro-
mises an AN, it can perform an unauthorized aggregation
and send false aggregation results to BS. However, due to the
asymmetry of public key, an adversary cannot gain any
additional information related to the data aggregation.
Hence, the compromised node may affect the data integrity
but not the data confidentiality in QPPDA.

,rough the analysis, we can conclude that the privacy
can be revealed because of the leakage of keys. Assume that
povk and povr are the probabilities of the key and the random

number which are broken, respectively. ,erefore, the
probability of information leakage is p � (povk × povr)

k.
Figure 5 demonstrates the privacy performance of different
types of the queries. We may find that the exposure prob-
ability of privacy is less than 0.45% even if the reveal
probability of key is 0.4. Besides, the more frequently the
queries are sent, the better the data confidentiality will be.
,is proves that QPPDA can effectively preserve the data
privacy.

5.2. Energy Consumption. In our experiments, we consid-
ered the efficiency of communication and computation and
adopted the typical data query schemes, the single query [42]
and the Slice-Mix-AggRegaTe (SMART) [22], as the
benchmarks to verify the energy consumption of QPPDA.

5.2.1. Communication Overhead. Communication overhead
is mainly derived from data transmission, e.g., a node
transmits its sensing data to AN or BS in a WSN. For node i,
the length of data is lci bits and the average number of hops
between any two nodes is L. ,us, the communication
overhead of a cell with k queries can be computed as

CTK �∑N
i�1

lci L. (7)

,e overhead of a single query comes from sending the
encrypted data and HMACs.,e HAMCs of node i is lhi bits
and the data is lci bits. ,en, the overhead of a cell with k
single queries are formalized as

CTs �∑N
i�1

3lci − 1( )lhi + lci[ ]Lk. (8)

In SMART, each node divides its sensing data into three
slices, two of which are sent to the neighboring nodes and

Input: security parameter, τ; query types, k.
Output: key sets (Puk, Prk).

(1) Begin
(2) Generate a tuple (·)
(3) Find k + 1 random τ-bit primes q1, q2, . . . , qk+1{ }
(4) Let n � q1 × q2 × · · · × qk+1
(5) Find a set of elliptic curve points E
(6) Generate a tuple (q1, q2, . . . , qk+1, E)
(7) For node (i � 1; i<� N; i + +)
(8) Choose points (α1, α2, . . . , αk+1, β) from E
(9) c � αk+1∏k

r�1 qr
(10) For query (j � 1; j<� k; j + +)
(11) hj � βδj , δ � ∏k+1

r�1,r≠jqr, j � 1, 2, . . . , k
(12) pkj ∈ Puk � n, E, h1, h2, . . . , hk, β, c{ }
(13) prj ∈ Prk � q1, q2, . . . , qk+1{ }
(14) End For
(15) End For
(16) Return (Puk, Prk).
(17) End

ALGORITHM 2: ,e key generation.
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one is preserved by itself. Assume that a node receives n
slices from other nodes. ,erefore, the overhead with k
queries can be described as

CTsmart �∑N
i�1

2

3
+
n

3
( )lciLK. (9)

Figure 6 shows the communication consumption of
QPPDA, Single query, and SMART, where SMART-n de-
notes that a node receives n slices. A conclusion can be
drawn from Figure 6 that the communication overhead of
QPPDA is much less than that of SMART-n or Single query.
QPPDA is one of the most efficient schemes in decreasing
the communication overhead.

5.2.2. Computation Cost. Single query converts the query
scope to a prefix format before the data are transmitted. ,e
number of binary prefix is nearly (2lci − 2), and there are
exactly (lci + 1) prefixes. ,erefore, the node needs to

perform about (2lci − 2)∗ (lci + 1) comparisons, and the
computation complexity of query is O(w2Nk) in the worst
case.,e computation overhead of QPPDA comes from data
encryption, and its computation complexity is O(lciN

2)

according to Algorithm 2. Data mixing is the prime com-
putational consumption in SMART, which is O(N). Con-
sequently, it is observed that the computation consumption
of single query is higher than that of QPPDA and SMART
when the number of nodes is fixed in a WSN according to
Figure 7. It should be noticed that the computation overhead
of SMART is less than that of QPPDA when one slice
mechanism (SMART-1) is adopted. However, one slice
SMARTmay result in a lower security level compared with
QPPDA. ,erefore, our scheme is a better tradeoff between
security and computation complexity.

5.3.AggregationAccuracy. ,e accuracy is defined as the ratio
between the collected summation by the data aggregation and
the real summation of all individual sensor nodes in [22].
Figure 8 illustrates the accuracy of QPPDA, Single query, and
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Input: query Q � (type � p, epoch � t, time � T).
Output: decrypted data of each query x, dx.

(1) Begin
(2) For node (i � 1; i≤N; i + +)
(3) If (p �� x) �en
(4) Collect the data di ∈ 0, 1 . . . ,M{ };
(5) Choose a random number r from 0, 1, . . . , N − 1{ };
(6) Select a key Pux � (n, E, g, hx);
(7) Encrypt the data, Cxi � f(d) � (g

d + h
rx
x );

(8) Aggregate the data, Ci′ � f(∑kx�1 dx) � g∑k

x�1
dx + h

∑k

x�1
rx

x ;
(9) End If
(10) End For
(11) For (i � 1; i≤ x; i + +) at BS
(12) Decrypt the data, dx � loggqx(C

x
i )
qx ;

(13) End If
(14) Return d1, d2, . . . , dx{ }
(15) End

ALGORITHM 3: ,e query processing.
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SMARTwith respect to different query times in our simulation.
From Figure 8, we can observe that the accuracy of QPPDA
improves as the times of query increase. Two reasons con-
tribute to this which have already been analyzed in [8]: (i) with
a longer time interval, the data messages to be sent within this
duration will have less chance to collide; (ii) with a longer time
interval, the data messages will have a better chance of being
delivered before the deadline.

Besides, we can observe that QPPDA has a better accuracy
than single query and SMART. It has been demonstrated that
the communication overhead of QPPDA is reduced signifi-
cantly, and the amount of transmission of QPPDA is much less
than that of single query and SMARTin Section 5.2.1.,erefore,
the chance of collision and packet loss are also decreased, which
leads to an improvement in aggregation accuracy.

6. Conclusion

,e energy consumption and data privacy are two important
concerns in WSNs. ,e limited energy of sensor nodes may

shorten the lifetime of network, and the nodes are often
deployed in dangerous areas where the data privacy may be
more likely to be destroyed easier than in the cable network.
Faced with these challenges, we present a query privacy
protection mechanism for data aggregation which can re-
duce energy consumption and preserve the data privacy as
well. Experimental results show that our scheme can
guarantee the data privacy, decrease the system overhead,
and improve the accuracy of data aggregation. For the future
work, we will focus on other aggregation functions, such as
mean, max, and counter except the additive aggregation.,e
privacy of QPPDA is closely related to the number of keys,
and it is a challenging work to promote the security of
QPPDA without the complex key distribution so as to save
energy and decrease the requirement of storage. In addition,
tree or cluster topology will be discussed in our subsequent
study in order to expand the application scenarios of our
scheme.
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