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1. INTRODUCTION 

SDD-1 is a distributed database system developed by the Computer Corporation 
of America [23]. SDD-1 permits a relational database to be distributed among 
the sites of a computer network, yet accessed as if it were stored at a single site. 
Users interact with SDD-1 by submitting queries coded in a high-level procedural 
language called Datalanguage [20]. Figures 1 and 2 illustrate an SDD-1 database 
and a Datalanguage query. This paper is concerned with efficient execution of 
such queries. Other aspects of SDD-1 are discussed in [5, 6, 14, 231. 

Our objective is to process queries with a minimum quantity of intersite data 
transfer. That is, we assume network bandwidth to be the system bottleneck and 
seek to minimize use of this resource; all other resources are assumed to be free.’ 
This assumption is appropriate in SDD-1 because the network is the slowest 
system component by two orders of magnitude.2 This assumption has been 

Database D 

S(s#, name, location) yw, p#, GY) P(P#, name, type) 
1, Acme, MA 1, 1, 20 1, LSI, micro 

2, Best, MA 1, 2, 50 2, Pll, mini 

3, Mid, NY 3, 3, 50 3, 360, main 

4, Nadir, CA 4, 1, 10 4, CRI, huge 

4, 5, 75 5, 8080, micro 

S describes suppliers. 
P describes parts. 

Y tells which suppliers supply which parts and in what quantity. 

Assume that S, Y, and P are sorted at sites 1,2, and 3, respectively. 

Fig. 1. Example database. 

Description of quey 

List the supplier name, part name, and quantity supplied for all parts supplied by a 

Massachusetts supplier. Also, print how many of these are minis. 

Query Q 
Begin 

Count := 0; 

For S 

If S.location = “MA” then for Y 

If S.s# = Y.s# then for P 

If Y.p# = P.p# then begin 

Print S.name, P.name, Y.qty; 

If P.type = “mini” then Count := Count + 1; end;;; 

Print “Number of minis is”, Count ; 
End. 

Fig. 2. Example datalanguage query. Datalanguage used in this example is defined 

in the appendix. 

’ In practice, database processing within sites is considered as a secondary objective. For expository 

clarity, we shall not treat this issue. 
’ Sites in SDD-1 are mainframe computers (PDP-lOs), while the network is a packet-switched long- 

distance network (Arpanet). Sustainable bandwidth on the network is at most 10 kbits per second 
(see [24-261). 
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Envelope E 

Retrieve (S.s#, S.name, Nocation) where qualification 

Retrieve (Y.s#, Y.p#, Y.qty) where qualification 

Retrieve (P.p#, P.name, P.type) where qualification 

qualification: Slocation = “MA” A S.s# = Y.s# A Y.p# = P.p# 

Fig. 3. Envelope for query of Figure 2. Envelopes are 

defied in Section 2. Intuitively, an envelope specifies a 

subset of each relation in the database. We express enve- 
lopes in a relational calculus similar to QUEL [15]. 

The result of envelope E is to retrieve any superset of the data specified by E. For 

example, 

S(s#, name, location) Y(s#, P#, @Y) P(p#, name, type) 

1, Acme, MA 1, 1, 20 1, LSI, micro 

2, Best, MA 1, 2, 50 2, Pll, mini 

3, 360, main 

4, CRI, huge 

5, 8080, micro 

The specific superset retrieved is determined by efficiency considerations. 

The retrieved relations are also transmitted to a single site, for example, site 3. 

Fig. 4. Processing envelope of Figure 3. 

adopted by other researchers [7,8,13, 16,17, 33,341, although naturally it is not 
appropriate in every system [lo, 19, 271. Section 5 discusses the impact of this 
assumption on our approach. 

Our algorithm has three main steps. Step 1 maps a Datalanguage query Q into 
a relational calculus form (an envelope) that specifies a superset of the database 

needed to answer Q (see Figure 3). Step 1 depends on details of Datalanguage 
and is of general interest only insofar as Datalanguage resembles other procedural 
query languages. This step is described in [ll]. 

Step 2 evaluates the envelope. This step retrieves a superset of the database 
specified by the envelope, assembling the result at a single site S, (see Figure 4). 

(The specific superset retrieved and the “assembly site” S, are determined by 
efficiency considerations.) Step 2 is accomplished by translating the envelope into 
a program P containing relational operations (a reducer), followed by commands 

to move the results of P to S, (see Figure 5). The goal is to construct a reducer P 
and select a site S, such that the cost of computing P and moving the results to 
S, is minimum over aLl reducers and sites. This optimization problem constitutes 

the core of the SDD-1 query processing algorithm and is the focus of this paper. 
Step 3 executes Q at S, using the data assembled by Step 2. Since Step 3 only 

involves local query processing, it will not be discussed further. Steps l-3 are 
outlined in Figure 6. 

The paper has five sections. Section 2 defines envelopes and the operations 
used to process envelopes. Section 3 presents techniques for estimating the cost 
and effect of a reducer composed of these operations. Section 4 presents a 
heuristic algorithm that compiles envelopes into efficient (though not necessarily 
optimal) reducers. Section 5 discusses related work and suggests directions for 
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Program P 

1. S := S[location = “MA”] ; restrict S to MA suppliers 
2. Y := Y(s# = s#]S ; this operation is semijoin 

-it computes the set of Y 

tuples that corresponds to 

MA suppliers. 
end 

Figure 4 shows the result of applying P to the database of Figure 1. 

Fig. 5. Program for envelope of Figure 3. 

Q (Datalanguage query) 

pT--+ 
1 1 

0 (Distributed database) 

E (Relational envelope) 

and select assemblv site 

Distributed execution 
of reducer 

S, (Assembly site) 

\ -// 

t-l D ’ (Superset of database 
I 

needed to compute Q(D)) 

Step 3 4 

Fig. 6. Main steps of query processing algorithm. 
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(a) Relational Data Objects 

Term Definition 

Domain A set of values 
Attribute An alternate name for a domain 
Relation schema A description of a relation, consisting of a relation name and 

list of attributes 
Relation A subset of the Cartesian product of the domains of the 

attributes of the corresponding relation schema 
Tuple An element (or row) of a relation 
Database A set of relations 
attr(R) Attributes of relation R 

(b) Relational Algebraic Operations 
Restriction: R[A = k] = (r E R ] r.A = k} 

where r.A is the value of the A-domain in tuple r 
Also R[A = B] = (r E R ] r.A = r.B) 
Projection: R[AI, AZ, . . . , An] 

= ((r.Ar, r.Az,. . . , r.A,) ] r E R) 
Join: R[A=B]S=((r,s)]rER,sES,andr.A=s.B) 
Semijoin: R(A = B]S = (RCA = BIS) [attr(R)] 

= {r]rERAr.AEs[B]) 

Fig. 7. Relational terminology. 

future research. We assume reader familiarity with relational databases at the 
level of [9]. A review of relational terminology appears in Figure 7. 

2. QUERY PROCESSING STRATEGY 

2.1 Envelopes 

The attributes of relation R are denoted attr(R). Relation RI is a subrelation of 
relation Ri, if attr(RI) _C attr(Ri) and Rf c Ri[attr(Ri)]. Let D = {RI, . . . , R,} 
andD’= {R;,... , Rh} be databases. D’ is a subdcztabase of D, denoted D’ 5 D, 
if Rf is a subrelation of Ri for i = 1, . . . , n. An envelope is a relational calculus 

expression that maps a database into a subdatabase. We express envelopes in a 
language similar to QUEL [15]. 

An envelope E consists of a qualification q and target lists tl, . . . , t,. The 

term q is a Boolean formula with clauses of the form Ri. A = Rj .B or Ri. A = k.3 
The terms Ri . A and Rj . B are called indexed variables. Each ti is a set of variables 
indexed by Ri: that is, ti is of the form {Ri. Ail, . . . , Ri. Ail}. Envelope E maps 
database D into subdatabase D’ defined by the following collection of QUEL 
queries. 

Retrieve into R; (tr ) where q. 

. 

. 
Retrieve into Rb(t,) where q. 

We limit the form of envelopes in two additional ways. One, qualifications are 

3 Note that we avoid tuple variables. These can be accommodated by (conceptually) duplicating a 
relation, thereby having two relation names ranging over the same relation. 
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Join graph for envelope of figure 1. 

- 607 

0 P.type 

assumed to be pure conjunctions; disjunction is handled by placing the qualifi- 
cation in disjunctive normal form and treating each conjunct separately. Two, if 
Ri. A is a term of q, then 6 must contain Ri. A. 

E is an envelope for Datalanguage query Q if for all databases D, Q(E(D)) = 
Q(D). I t iti 1 n u ve y, an envelope for Q “envelopes” or delimits the portions of the 
database needed to answer Q. In general, there are many envelopes for a given Q; 
a good envelope is one that tightly delimits the data needed by Q. Finding good 
envelopes is an optimization problem that depends on details of Datalanguage, 
and our approach to this problem is described in [ll]. 

A graph representation of qualifications (a join graph) is useful. The nodes of 
a join graph represent indexed variables and constants, and the edges represent 
clauses. A join graph contains the edge {Ri. A, Rj .B} (respectively, {Ri. A, k} ) iff 
the qualification contains Ri .A = Rj .B (respectively, Ri. A = k) (see Figure 8). 
The connected components of a join graph characterize the clauses implied by 
the qualification: Let N and N’ be nodes of the join graph for q; q implies N = N’ 
iff N and N’ are in the same connected component. (Proofs appear in [2,3]. Note 
that if N and N’ represent distinct constants, q is unsatisfiable.) 

2.2 Reducers 

A reduction of database D with respect to E is any D’ such that E(D) 5 D’ 5 D. 
A reducer for E is a sequential program4 P of relational operations such that for 

4 A reducer is executed as a parallel program, however (see [23]). 
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Given 

S(s#, name, location) yw, Pd @Y) WP#, name, type) 

1, Acme, MA 1, 1, 20 1, LSI, micro 

2, Best, MA 1, 2, 50 2, Pll, mini 

3, 3, 50 3, 360, main 

4, 1, 10 4, CRI, huge 

4, 5, 75 5, 8080, micro 

l Y(s# = s#]S = Y( s#, p#, qty) = (Y tuples that correspond to a MA supplier) 

1, 1, 20 
1, 2, 50 

l P(p# = p#]Y = P( p#, name, type) = {parts that are supplied by some MA 
supplier} 

1, LSI, micro 

2, Pll, mini 

l S(s# = s#]Y = S(s#, name, location) = {MA suppliers who supply any 

1, Acme, MA thing) 

*All of these semijoins are profitable. However, Y(p# = p#]P would not be 

profitable. 

Fig. 9. Semijoin. 

all databases D, P(D) is a reduction of D with respect to E. Given E and D, our 
optimization task is to construct a reducer P and select a site S, such that the 

cost of computing P(D) and moving the results to S, is minimum over all reducers 
and sites. A reduction operation for E is an operation that is permitted in a 
reducer for E. A reduction operation reduces the size of D by eliminating data 
not specified by E(D). The benefit of a reduction operation is the amount of data 
it eliminates; the cost is the amount of intersite data transfer required to compute 
the operation. 

Restrictions and projections have zero cost and nonnegative benefit, and so 
every restriction and projection permitted by E should be included in every 
reducer for E. The projections permitted by E are Ri[ti], for i = 1, . . . , n. The 
restrictions permitted by E can be determined from its join graph: E permits 
Ri[A = B] (respectively, Ri[A = k]) iff q implies Ri.A = Ri.B (respectively, 
Ri. A = k) iff Ri. A and Ri. B (respectively, k) are connected in the join graph. 

To reduce the database further, data from two or more relations must be 

combined. The obvious operation for this purpose isjoin. However, our algorithm 
uses an operation called semijoin, which we deem to be superior. A semijoin is 
“half of a join”; the semijoin of relation Ri by relation Rj on clause Ri. A = Rj. B, 
denoted Ri(A = B]Rj, equals the join of Ri and Rj on that clause projected back 
onto attr(Ri) (see Figure 9). (Notice that semijoin, unlike join, is asymmetric; 

that is, Ri( A = B]Rj # Rj( B = AIRi. The former reduces Ri, while the latter 
reduces Rj .) As with restrictions, the semijoins permitted by E can be determined 
from its join graph: E permits Ri( A = B]Rj and Rj (B = A]Ri iff Ri. A and Rj . B 

are connected in the join graph. 
We prefer semijoins to joins for three reasons. First, Ri( A = B]Rj c Ri, and so 

semijoins monotonically reduce the size of the database. By contrast, joins can 
increase the size of the database; in the worst case, 1 Ri[A = B]Rj 1 = ) Ri 1 * ] Rj I. 
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l Let D be the database 

%(A, B) MB, C) MA, C) MC, D, E, F, G, H, 1) 
0 1 1 1 1 1 0000000 

1 0 0 0 0 0 1 1 1 1 1 1 1 

site 1 site 2 site 3 site 4 

l Let E be the envelope 
q: R,.A = &.A A R1.B = R2.B A R2.C = R3.C A R3.C = R.C 

t, = attr(RJ for i = 1, . . . ,4. 

l Using semijoins, the optimal evaluation of E(D) is to move RI, Rz, and Ra to site 

4-that is, no semijoins should be used. This requires the transmission of 12 data 

items. 

l Using joins, the optimal evaluation is 

RIP := R$B = B]RI at site 2-cost = 4 

RI= := RnJA = A A C = C] at site 2-cost = 4 

Note that RIZS = ( ) 

% := Rs[C = C]Rn3 at site 4-cost = 0. 

Total cost = 8. 

Fig. 10. Bad case for semijoins. This example is adapted from [2]. 

Second, semijoins can be computed with less intersite data transfer than joins. 
To compute Ri(A = B]Rj, we need only transmit a projection of a relation (viz., 
Rj[B]), whereas to compute Ri[A = B]Rj we must transmit an entire relation. Of 
course, the semijoin may also have less effect than the join, since Ri(A = B]Rj 

only reduces Ri, whereas Ri[A = B]Rj simultaneously reduces Ri and Rj. However, 
the third advantage of semijoins is that the “reductive effect” of any single join 
can be attained by two semijoins, usually at lower cost, as follows. 

Let Rij = RJA = B]Rj. The reductive effect of this join is its effect on Ri and 
Rj, namely, Ru[attr(Ri)] and Rij[attr(Rj)]. By definition of projection, 

Rd[attr(Ri)] = {ri ] 3 (ri, rj) E Rij} 
= {ri E Ri] (3 rj E Rj)(ri.A = rj.B)}, by definition of join 

= Ri(A = B]Rj, by definition of semijoin. 

Similarly, Rij[attr(Rj)] = Rj( B = AIR. Thus the reductive effect of Ri[A = B]Rj 
is attained by two semijoins as claimed. 

Now let us compare the cost of the join versus the two semijoins. To compute 
Ri[A = B]Rj, one of the relations, Rj say, must be transmitted to the other’s site. 
This has cost 1 Rj I* width(Rj), where width(Rj) equals the number of bits in each 

tuple of Rj. TO compute the semijoins, we transmit Rj [B] to Ri and Ri[A] to Rj, 
for a cost of I Rj [B] I *width(B) + I Ri[A] I *width(A). But Ri[A] c Rj[B] after 
Ri(A = B]Rj is executed, and so if we execute the semijoins in sequence, the cost 
is less than or equal to I Rj[B] ) * (width(A) + width(B)). This quantity is less 
than or equal to I Rj \ * width(Rj) under the reasonable assumption that width(A) 
+ width(B) I width(Rj). Given this assumption, the cost of the semijoins is less 
than or equal the cost of the join, as claimed. 

Our arguments in support of semijoins are heuristic and there are cases in 
which joins outperform semijoins. Figure 10 illustrates such a case. An optimal 
query processing algorithm would almost certainly include both joins and semi- 
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Let D = (Ss#, name, location), Yb#, P#, qty), 
(1, Acme, MA 1, 1, 10 
2, Best, MA 1, 2, 20 

PW, name, type)) 
1, LSI, micro 
2, Pll, mini 

lk, Mid, NY lk, 370, 
lOk, Nadir, CA lk, lk, 50 lOk, 470, 

(a) Attributty domains dom(S.s#) = dom(Y.s#) = {idA’s from 1 to 10k) 
dom(S.name) = dom(P.name) 

= (names of length < 10) 
dom(S.location) = {states of U.S.} 

v (provinces of Canada) 
etc. 

main 
main 

(b) Auxiliary domains X1 = (strings of length < 10) 
XP = (integers from 1 to IOk} 

(c) Subset hierarchies 

dom(S.name) = dom(P.name) dom(S.location) dom(P.type) 
dom(S.s#) = dom(Y.s#) dom(Y.qty) 

= dom(Y.p# = dom(P.p#) 

Fig. 11. Domains. 

joins. The graceful integration of these tactics is an open problem, however, and 
our algorithm only uses semijoins. 

3. COST AND BENEFIT ESTIMATION 

To compile an envelope into an efficient reducer, we need to estimate the cost 
and benefit of reduction operations. This section presents an estimation procedure 
based on a statistical model of the database. We only consider the estimation 
problem for semijoins; estimation techniques for restrictions and projections are 
described by [28]. 

Our statistical model is an approximation of a set theoretic model of the 
database and is described in Section 3.1. Section 3.2 presents a technique for 

estimating the effect of set operations. Section 3.3 extends this technique to 
estimate the effect of a sequence of semijoins. 

3.1 Database Model 

Let D = {RI, . . . . R,} be a database. Associated with each attribute of each 
relation, for example, Ri. A, is a finite domain of values, dom(Ri. A). Ri[A] is 
constrained to be a subset of dom(Ri. A) (see Figure lla). The model also contains 
auxiliary domains (see Figure llb). The set of all domains is partitioned into 

domain hierarchies, each of which contains a maximum domain X,,, and all 
domains X such that X _C X,,, (see Figure 11~). Domains Xi and Xj are joinable 
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domains 

c(domain) 
w(domain) 

XI X2 dom(S.s#) dom(S.location) 
dom(Y.s#) 
dom(P.p#) 
dom(Y.i#) 

26’” 10k 10k 59 
10 2 2 2 

attributes 
c(attribute) I 

relations 
c(relation) 

S.s# 
10k 

S 
1Ok 

S.location P.p# Y.s# Y.p# * * * 
50 10k lk lk 

Y P 
lOOk 1Ok 

Fig. 12. Statistical model of database of Figure 12. 

if they are members of the same domain hierarchy. If a qualification contains 
Ri.A = Rj.B, then dom(Ri.A) and dom(Rj.B) must be joinable. 

We approximate D by the following statistics, called a database profile. 

I (1) For each domain X 

I 

(i) c(A) = the estimated cardinality of X, 
(ii) w(A) = the “width” of X, that is, the number of bits, words, and so forth, 

used to represent an arbitrary element of X. 

(2) For each relation Ri, c(Ri) = the estimated cardinality of Ri. 
(3) For each relation Ri and each A E attr(Ri), c(Ri.A) = the estimated cardi- 

nality of Ri[A]. 

Parameters l(i) and l(ii) are fixed a priori by the database administrator, while 
the other parameters are updated by the system to reflect changes in the 
database. To reduce overhead, these parameters are updated off-line on a periodic 
basis. 

The statistical model indicates the domain hierarchies by specifying which 
domains are subsets of which other domains. The model also includes the 
following assumptions. 

(1) If Xi c Xj, then Xi is a randomly selected subset of Xj; operationally this 
means that the probability of x E Xi is identical for all x E Xj . 

(2) For each relation Ri and A E attr(Ri) 

(i) RJA] is a randomly selected subset of dom(Ri.A). 
(ii) Tuples of Ri are uniform2y distributed over values of Ri[A]; this means 

that the probability of ri. A = a is identical for all ri E Ri and a E Ri[A]. 

(3) For each Ri and distinct A, B E attr(Rti), Ri[A] and Ri[B] are independent, 
meaning that the probability of ri. A = a is unaffected by the value of ri.B. 

These assumptions are quite strong and this statistical model is a crude 
approximation. However, it is difficult to devise better models without knowledge 
of the processes placing data in the database. Figure 12 illustrates our model. 
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l Let U = X2 from Figure 11 
l Let X be the following sequence of operations 

Y, = select (U, 1) ; YI might represent S[s#] 
Yz = select (LJ, l/10) ; YZ might represent Y[s#] 
Y3 = select (Y1, l/50) ; YZ might represent the effect on S[s#] of 

S[location = “MA”] 
Y4 = Yz n Y3 ; Yd might represent the effect on Y[s#] of 

Y(s# = s#]S. 
Yg=Y3r3Y, ; YE, might represent the effect on S[s#] of 

S(s# = s#]Y 

l G(Z) = 

Fig. 13. Graph representations of set operations. 

3.2 Effect of Set Operations 

Consider the following problem. We are given a universe U of objects and two 
operations for constructing subsets of U-random selection (defined below) and 

set intersection. The problem is to estimate the cardinality of any set that can be 
constructed by a sequence of these operations. Let X be such a set. The selectivity 
of X is the probability that an arbitrary x E U is also an element of X. The 
expected 1 X 1 is just its selectivity times 1 U I, and so to estimate I X I it is sufficient 
to estimate its selectivity. 

Let X c U and x E U. We use X(x) as an abbreviation for “x E X,” and 
Prob(X(x)) denotes the probability of X(x) (i.e., the selectivity of X). Similarly, 
if S = {X,, . . . . X,} is a family of subsets of U, S(x) is an abbreviation for 

At, Xi(x), and Prob(S(x)) denotes the joint probability of x being an element of 
every Xi E S. 

We now define the random selection operation. Let, X L U and 0 I cr 5 1; 
select(X, (u) constructs a set X’ c X in which Prob(X’(x)) = a*Prob(X(x)) for all 
x E u. 

Let Z be a sequence of selection and intersection operations. We can represent. 
Z as an edge labeled DAG, G(Z), whose edges represent operations and whose 
nodes represent sets constructed by those operations (see Figure 13). Formally, 
G(Z) = (V(Zj, E(Z), label), where 

(1) V(Z) = (U} U S, where S is the family of sets constructed by Z; 
(2) E(Z) contains the following edges: 

(i) (X, X’) with label (Y if X’ = select(X, a); 
(ii) (X, X’) and (Y, X’) with label 1 if X’ = X rl Y. 

G(X) provides an efficient. means of calculating Prob(S(x)) for arbitrary families 
of sets constructed by Z. 
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l LetS= {U,Y,, . . , Y,) . Lemma 1 states that Prob(S(x)) equals the product of all 
edge labels that precede S in G(Z). 

l Selectivity of U = 1 

YI = 1 

Yz = l/10 

Y3 = l/50 

Y4 = l/500 

Y5 = l/500 

l Note that YS = Y3 n Y, = Ya n (Yz n Y3) = YZ n YI = Yq, so it is not coincidental 

that Yg and Y, have identical selectivities. 

Fig. 14. Calculating selectivities for Figure 13. 

LEMMA 1. Let Z be any sequence of selections and intersections operating 
initially on U, let S c V(Z), and let E(S) = {E E E(Z) 1 E precedes some node 
XES}.ThenforallxE U 

Prob(S(x)) = fl label(E). 
EEELS) 

PROOF. See the appendix. Cl 

The lemma is illustrated in Figure 14. 
The main result of this section follows a corollary. 

PROPOSITION 1. Let B be a sequence of selection and intersection operations 
operating initially on U, and define G(Z) as above. (i) If X’ = select (X, a) is an 
operation of Z, then the selectivity of X’ equals a times the selectivity of X. (ii) 
If X’ = X n Y is an operation of 2, then the selectivity of X’ equals the product 
over all edges E that precede X or Y in G(Z) of label(E). 

3.3 Effect of Semijoins 

A sequence of semijoins is analyzed as several sequences of set operations, one 
per domain hierarchy. Let & be the sequence for hierarchy Hk. The universe for 
IZ:k is the maximum domain of Hk, X,,,. I%‘:k is initialized to contain the following 

selections. 

(1) X = select(X,,,, a), where (Y = c(X)/c(X,,) for each X E Hk. 
(2) R[A] = select(dom(Ri.A), a) where a! = c(Ri.A)/c(dom(Ri.A)) for each 

relation and attribute such that dom(Ri.A) E Hk. 

The effect of a semijoin, Ri( A = B]Rj is analyzed in three steps. 

(1) The semijoin maps RJA] into Ri[A] n Rj[B]. Suppose dom(Ri.A) E Hk. To 
estimate the new cardinality of Ri[A], we append RJA] = Ri[A] n Rj[B] to & 
and use Proposition 1 to estimate the new selectivity of RJA]. c(Ri.A) is updated 
to the new selectivity times c(Xmax). 

(2) The semijoin eliminates some tuples from Ri. Since tuples of Ri are assumed 
to be uniformly distributed over values of Ri[A], the estimated new cardinality of 
Ri is (new value of c(Ri.A))*(old value of c(R))/(old value of c(Ri.A)). 

(3) The elimination of tuples from Ri causes some values to be deleted from 
RJA’], for all A’ E attr(Ri) - {A}. This effect can be analyzed as a hit ratio 
problem: Let t be the old value of c(Ri); these t tuples are assumed to be uniformly 
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l Consider R(A, B) and buppose 1 R 1 = 6 and 1 R[B] 1 = 3 

l We can partition R into 3 blocks based on B values. 

- , bl - , bl - t b2 

El 

- t b2 - , b3 - , b3 
l If we select one tuple of R we will, of course, hit one block. 

l If we select two tuples, we will probably hit two blocks, but we might only hit one. 

l If we select three tuples, we might hit three blocks, but it is more likely that we 

will only hit two. 

And so forth. 

Fig. 15. Hit ratio problem. 

distributed over b = c(Ri.A’) “blocks,” where each block contains all tuples with 
the same A’ value (see Figure 15). The question is: “How many blocks do we 
expect to hit if we randomly select n = c(Ri) tuples?” An efficient formula that 

answers this question is given by Yao [32]: 

the expected number of blocks = 

Yh b, t) = b * ,!! ‘“,“,~i’~~’ , where d = 1 - l/b. 

In practice, it is reasonable to approximate Y by 

i 

for n < +b 
P(n, b, t) = iin + b), for+btn<2b 

b, for 2b < n. 

Y and y are graphed in Figure 16. 
Thus we update c(Ri.A’) to P(new value of c(R;), old value of c(Ri.A’), old 

value of c(Ri)). 
In addition, we append Ri[A’] := select(Ri[A’], a) to the sequence for the 

domain hierarchy that contains dom(I&.A’), where (Y = (new value of c(Ri.A’))/ 
(old value of c(Ri.A’)). This selection is not used in estimating the effect of the 
current semijoin, but is needed to estimate the effects of later ones. 

3.4 Cost and Benefit of Semijoins 

The cost of Ri (A = B]Rj is defined to be the amount of intersite data transfer 
required to compute it. This equals 

l 

0, if Ri and Rj are stored at the same site 
c(Rj.B)*w(dom(Rj.B)), otherwise. 

The benefit of Ri (A = B]Rj is the amount of data eliminated from the database. 
This equals ((c(Ri) before the semijoin) - (c(Ri) after the semijoin))*(the width 
of Ri) = ((c(Ri) before) - (c(Ri) after))* &Eattr(q) w(dom(Ri.A)). 
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Hit Ration 
l Given t tuples distributed over b blocks. 

l How many blocks will we hit if we select n tuples? 

b 

10K 

1K 

1OK 

Fig. 16. Yao function. 

4. OPTIMIZATION ALGORITHM 

This section presents our optimization algorithm. The input is an envelope E and 
database profile D. The algorithm compiles E into a reducer P, which is estimated 
to be profitable in any database modeled by D. In addition, the algorithm selects 
an assembly site S, and appends to P commands to move the reduced database 

to s,. 
Section 4.1 presents our “basic” algorithm, and Section 4.2 describes two 

enhancements to the basic algorithm. Section 4.3 illustrates the operation of the 
algorithm on an example. 

4.1 Basic Algorithm 

The basic algorithm is an iterative hill-climbing procedure. The algorithm ini- 
tializes P to contain all local operations permitted by E. (Local operations are 
restrictions, projections, and semijoins whose operands are stored at one site.) 
The main loop of the algorithm tests whether any nonlocal semijoins permitted 
by E are profitable. If so, the algorithm selects the most profitable nonlocal 
semijoin and appends it to P. The algorithms iterates until all profitable semijoins 

have been exhausted. At this point P is a profitable reducer for E. The algorithm 
then selects a site S. and appends commands to move the reduced database to 
S,. S, is selected so as to minimize the quantity of data moved. 
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Reducer Flowgraph 

1. S[locaiion = “MA”] 

2. Y<s# = s#]s 

3. P<p# = p#]Y 

S Y P 1 
2 3 

u 2 

3 

l The first node in each column represents the initial state of the relation. 

l Edge (1) represents operation (1). 

l Each semijoin is represented by two edges, one vertical and one diagonal. 

l Diagonal edges represent data flow between relations, while vertical edges represent successive 
reductions of a single relation. 

Fig. 17. Flowgraphs for reducers. 

The basic algorithm is listed as follows. 

ALGORITHM OPT 
Input: envelope E and profile D. 

Output: reducer P augmented by commands to move reduced database to S.. 

1. InitiaZization 
1.1 P := sequence of sll local operations permitted by E 
1.2 Estimate the cost and benefit of all nonlocal semijoins permitted by E 
2. Main Loop 
2.1 Do while some nonlocal semijoin permitted by E has benefit > cost 
2.2 Let sj be the most profitable nonlocal semijoin permitted by E 
2.3 Append sj to P 
2.4 Estimate the effect of sj and update costs and benefits accordingly 
2.5 end 
3. Termination 
3.1 For each site S, let size(S) = the sum of c(F$)*w(l+) over all relations Ri referenced 

by E and stored at S 
3.2 Select S, to be the site with maximum size 
3.3 Append to P commands to move data from all other sites to S, 
end 

4.2 Enhancements 

Algorithm OPT is an example of a greedy optimization algorithm, it always seeks 
to maximize immediate gain, it never looks ahead, and never backs up. As a 
result, the reducers generated by OPT are, in general, suboptimal. This section 
presents two techniques for improving OPT. These enhancements help compen- 
sate for OPT’s greed by considering the indirect effects of semijoins. 

These enhancements are most easily described in terms of data flowgraphs 

[18]. Let P be a reducer. Its flowgraph G(P) is a directed graph whose nodes 
represent the intermediate results of P and whose edges represent the operations 
of P (see Figure 17). By convention we draw flowgraphs in columns, each of which 
contains nodes that represent reductions of one relation. With this convention, 
the edges of the flowgraph are partitioned into vertical edges and diagonal edges. 
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a) Reducer Flowgraph 

1. P<p# = p#]Y 

2. Y<s# = s#]S 

3. Y<p# = p#]P 

b) Improved Reducer 

2. Y<S# = s#]S 

1. P<p# = P#]Y 

3. Y<p#= p#lP 

S Y P 

2 
2 

0 

b 
1 

1 

3 
3 

0 

Flowgraph 

Fig. 18. Enhancements. 

Each semijoin is represented by one vertical and one diagonal edge. Intuitively, 

the diagonal edge “carries the cost” of the semijoin; for example, the cost of 
R (A = B]Rj equals the size of Rj[B] (assuming Ri and Rj are at different sites), 
and the diagonal edge represents this data flow. 

The first enhancement permutes the order of semijoins in P to decrease the 

cost of some semijoins without increasing the cost of any others. Consider Figure 
18a. Semijoin 1 (P(p# = p#]Y) uses Y to reduce relation P, and semijoin 2 
(Y(s# = s#]S) reduces Y. Since semijoin 2 reduces Y, the cost of semijoin 1 can 
be decreased by delaying it until semijoin 2 executes (see Figure 18b). This 
permutation also increases the effect of semijoin 1, since semijoin 2 increases the 
selectivity of Y[s#], and so the cost of each subsequent semijoin is decreased as 
well. Thus this permutation is guaranteed to lower the cost and increase the 
benefit of the reducer. 

This transformation can be visualized as reducing the cost of a semijoin by 
delaying its diagonal edge. For example, in Figure 18, we have reduced the cost 
of semijoin 1 by delaying its diagonal edge until semijoin 2 has been executed. 
More generally, let P be any reducer, let (Nj, Ni) be any diagonal edge in G(P), 
and let NS be any node that follows Nj in the same column. The replacement of 

(Nj, Ni) by (N& Ni) monotonically decreases the cost of P, provided the resulting 
graph remains acyclic. (If the resulting graph is cyclic, it no longer represents a 
sequential program.) 
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Let P be the output of OPT. We apply the above transformation to the 
semijoins of P considered in decreasing cost order. Thus we delay the most 

expensive semijoins in P to take advantage of reductions achieved by other 
semijoins. 

Our second enhancement prunes semijoins from P that are rendered unprofit- 
able by the choice of assembly site El.. Consider Figure 18a and suppose Y’s site 
is selected to be S,. This choice renders semijoin 3 (Y (p# = p#]P) useless, and 

this semijoin should be discarded. With respect to semijoin 2 (Y (s# = s#]S), the 
situation is less clear-cut. Although there is no direct benefit in reducing the size 
of Y, semijoin 2 is indirectly beneficial via semijoin 1 (P(p# = p#]Y). In fact, 

semijoin 2 both decreases the cost and increases the benefit of semijoin 1. 
In general, let P be the output of Algorithm OPT, that is, P is a reducer 

augmented by commands to move the reduced database to S,. For each relation 
Ri stored at S,, and for each semijoin in P of the form R(A = B]Rj we compare 

the cost of P to the cost of P without the semijoin. If the latter cost is lower, the 

semijoin is pruned from P. 

4.3 Example 

In this section we simulate the optimization procedure on the following envelope 
and profile. 

Database S(s#, name, location), Y(s#, p#), P(p#, name, type) 
Profile X1 = dom(S.s#) = dom(Y.s#) ; c(XJ = 100,000 

X2 = dom(P.p#) = dom(Y.p#) ; c(X,) = 100,000 
X1 = dom(S.location) ; c(X,) = 50 
X4 = dom(P.type) ; c(X)=5 

All domains have widths of 1. 

S b#, name, location) 
est. cardinality: 10000 (10000, na, 50) 

est. card.: loLo I%o, %b) 
P (P#, name, type) 

est. card.: 10000 (10000, na, 5) 

Each relation is stored at a separate site. 

Envelope 

Retrieve into S(s#, name, location) where qual 
Retrieve into Y(s#, p#) where qua1 
Retrieve into P(p#, name, type) where qua1 
qual: S. location = “MA” A P-type = “micro” 

A S.s# = Y.s# A Y.p# = P.p# 

4.3.1 Initialization. The local operations permitted by the envelope are 

S[location = “MA”] 
P[type = ‘micro’] 

The estimated effect of these operations is to reduce the size of S by a factor 

of 50 and P by a factor of 5 (see Figure 19a). 
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Flowgraphs are augmented here to show the estimated cardinality of relations and “important” projec- 
tions. Numbers in the S (resp. P) column indicate c(S) and c(S.s#) (resp. c(P) and c(P.p#)). Entries in the Y 
column have the form CM 

w.sw, W.P#) 

Reducer Flowgraph 

S Y P 

a) S[location = ‘MK] 
P[type = ‘micro’] 

b) Y<s# = s#]s 

c) P<p#=p#jY 

d) Y<p# = p#]P 

e) S<s# = s#lY 

f) Move S to Y’s site 
Move P to Y’s site 

10k 1OOk 10k 

ta 
2k 

Fig. 19. Example reducer. 

4.3.2 Main Loop. The estimated cost and benefit of each permitted semijoin is 
listed as follows. 

Semijoin cost Effect Benefit 
1. S(s# = s#]Y 1000 c(S.s#) = c(S) = 20 180*3 
2. P(p# = p#]Y 1000 c(P.p#) = c(P) = 200 1800*3 
3. Y(s# = s#]S 200 c(Y.s#) = 20 c(Y) = 2k c(Y.p#) = lk 98k*2 
4. Y(p#=p#]P 2000 c(Y.p#) = 200 c(Y) = 20k c(S.s#) = lk 80k*2 

Semijoin 3 is most profitable and would be selected. The estimated effect of 
this semijoin is summarized in Figure 19b. Costs and benefits of semijoins are 

updated as follows. 

Sernijoin cost Effect Benefit 

1. S(s# = s#]Y 20 c(S.s#) = c(S) = 20 180*3 
2. P(p#=p#]Y 1000 c(P.p#) = c(P) = 200 1800*3 
3. Y(s# = s#]S 200 none none 
4. Y(p# = p#]P 2000 c(Y.p#) = 200 c(Y) = 400 c(Y.s#) = 20 1600*2 

The most profitable semijoin is 2 and the estimated effect is summarized in 
Figure 19c. Costs and benefits are updated as follows. 

Semijoin cost Effect Benefit 
S(s# = s#]Y 

;: P(p#=p#]Y 1; 
c(S.s#) = c(S) = 20 180*3 

none none 
3. Y(s# = s#]S 200 none none 
4. Y(p# = p#]P 200 c(Y.p#) = 200 c(Y) = 400 c(Y.s#) = 20 1600*2 

Semijoin 4 is most profitable and has the effect shown in Figure 19d. Costs and 
benefits are updated once again. 
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Reducer Flowgraph 

a) S[location = ‘MA’] 
P[type = ‘micro’] 

b) Y<s#= s#]S 

c) P<p# = p#]Y 

e) S<s# = s#]Y 

9 Move S to Y’s site 
Move P to Y’s site 

Fig. 20. Improved reducer for Figure 19. 

Semijoin cost Effect Benefit 

1. S( s# = s#]Y 20 c(S.s#) = c(S) = 20 MO*3 
2. P(p# = p#]Y 200 none none 
3. Y(s#=s#]S 200 none none 
4. Y(p# = p#]P 200 none none 

The only profitable semijoin is the first one. Its effect is indicated in Figure 

lge. No further semijoins are profitable, and so the main loop terminates. 

4.3.3 Termination. Y is estimated to be the largest relation in the reduced 
database, and so Y’s site is selected as S,. The final program produced by 
Algorithm OPT constitutes Figure 19a-f. The estimated cost of this program is 

1420 (for semijoins-see Figure 19b-e) 
+ 660 (for assembly-see Figure 19f) 

2080 (total) 

4.3.4 Enhancements. The first enhancement in Section 4.2 does not apply to 
this example, but the second enhancement does. In particular, semijoin 4 
(Y (p# = p#]P; see Figure 19d) should be pruned from the reducer. The resulting 
program has cost 1880 and appears in Figure 20. 

5. DISCUSSION 

We have presented an algorithm for processing queries in a distributed database. 
In this section we discuss the relationships between our algorithm and other work 
in this area; we also suggest topics for future research. 

The first comprehensive algorithm for distributed query processing algorithms 
was developed by Wong [30]. Wong’s algorithm translates a query Q into a 
sequence of two tactics: (1) moue a subrelation from one site to another; and (2) 
process data at one site using relational operations. The algorithm is a recursive 
optimization procedure. It begins by selecting a site S, and then constructing the 
following initial solution. 

(1) Move all relations referenced by Q to S,. 
(2) Process Q at S, as aJocal query, using the relations moved in step 1. 
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The initial solution is improved by recursively replacing individual “move” 
commands by lower cost sequences of “move” and “process” commands. The 
algorithms terminates when no “move” command can be replaced by a lower 

cost sequence. This algorithm produces increasingly efficient sequences of com- 
mands, although its hill-climbing discipline is too weak to guarantee optimality. 

Wong’s algorithm was implemented in SDD-1 and early experience indicated 

problems with the algorithm’s a priori selection of S, [22]. To mitigate this 
problem, Rothnie developed a branch-and-bound technique that permits parallel 

consideration of several assembly sites. 
Our algorithm is a further refinement of Wong’s algorithm, in which the 

concepts of semijoin and reducer are used to abstract the main optimization 
problem. These concepts simplify the algorithm and provide a framework for 

future research. These concepts also improve the effectiveness of the algorithm 

by (1) avoiding the need for a priori selection of assembly site, (2) suggesting 
enhancements to the basic algorithm, and (3) supporting mathematically sound 
cost estimation techniques. 

Other distributed query processing algorithms are described by [7,8, 10, 13, 16, 

17, 19, 271. Hevner and Yao [16, 171 consider a class of relational queries (simple 
queries) that have the form 

Retrieve RI(A), where R1.A = R2.A A R2.A = RJ.A A -. . A Rnml.A = R,.A. 

Observe that this query is computing RIIA] n R2[A] f~ - - . fl R,[A], and semijoins 
are powerful enough to solve such queries. Hevner and Yao present an efficient 
algorithm that constructs an optimal sequence of semijoins for solving a given 

simple query.5 They also extend their algorithm to produce efficient (not neces- 
sarily optimal) reducers for relational queries that are approximately as general 
as envelopes. 

Chiu [7] considers queries (chain queries) of the form 

Retrieve RI(A1), 

where RI.A1 = R2.AI A R2.Az = R3.Az A . . . A Rn-I.A,-I = R,.A,-I. 

(Chain queries are so named because their join graphs are chains.) Semijoins are 
powerful enough to solve chain queries, and Chiu presents an efficient dynamic 
programming algorithm that constructs an optimal sequence of semijoins for 
solving a given chain query. Chiu and Ho [B] generalize Chiu’s approach and 
develop a methodology for producing optimal semijoin programs for queries (tree 
queries) whose join graphs are trees. 

Distributed query processing algorithms that use joins instead of semijoins are 
proposed by [lo, 271. An algorithm that uses joins and semijoins is described by 
[19]; this algorithms, however, only considers “star” networks. 

Finally, we observe that semijoins have been recommended in disguised forms 
in nondistributed query processing contexts. Several associative memory database 
machines provide hardware semijoin instructions in lieu of join. Examples include 
CAFS [l], CASSM [29], and RAP [21].6 To apply our algorithm to these 

machines, it is only necessary to modify our cost estimation techniques. Semijoin 

’ Semijoin is called “join-project” in [17]. 
s Semijoin is called “join using bit array” in CAFS, “match” in CASSM, and “implicit join” in RAP. 
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is also fundamental to the INGRES query processing algorithm [31], where it is 
called “detachment.” Theoretical research on semijoins includes [2-4, 12,33,34]. 

The conceptual simplicity of our optimization algorithm suggests areas requir- 
ing additional research. 

1. A major problem is the hill-climbing discipline of Algorithm OPT. The 
algorithm selects semijoins that maximize immediate gain, ignoring the fact that 
the execution of one semijoin often decreases the cost and increases the benefit 
of other semijoins. A principal topic for future research is to develop efficient 
optimization algorithms that exploit this fact. The work of [7,8,16,17] represents 
preliminary steps in this direction. 

2. The programs constructed by our optimization procedure consist of a 
reduction phase followed by a final processing phase. The reduction phase 
executes all cost-effective semijoins permitted by the query in a distributed 
fashion, while the final processing phase executes all joins needed to solve the 
query in a centralized fashion. However, it is sometimes better to execute joins in 
a distributed fashion also, and the execution of some joins may render additional 
semijoins profitable. This suggests an alternate query processing strategy with 
the following structure. 

Do while the query is not solved 

;;, execute all profitable semijoins 
execute one or more joins 

end 

Evidently the critical new optimization problem is to select the joins that are 
processed on each iteration. 

3. All query processing algorithms developed to date are “open-loop” and 
cannot respond to errors in cost estimation. To close the loop, we must be able to 
halt execution of a reducer in midstream and construct a new reducer that utilizes 
(a) the partial results already computed and (b) the cost information obtained by 
the partial computation. 

4. Fundamental to our approach is the assumption that intersite data transfer 
is the dominant cost of distributed query processing. Our basic strategy of 
reducing the database before processing the query makes sense because of this 
assumption. In systems where this assumption does not hold, our techniques may 
still apply, provided it is cheaper to compute reductions than to solve queries. 

APPENDIX. PROOF OF LEMMA 1 

The proof is by induction on the length of X. 

Basis Step. ] Z ] = 0. In this case, G(Z) is the singleton graph containing U 
and the result is immediate. 

Induction Step. Assume the lemma holds when ] Z ] < L; prove that it still 
holds when ] Z I = L. 

Let Z’ comprise the first L-l operations of Z, and let X’ be the Lth set 
constructed by Z. G(Z) is a subgraph of G(Z). G(Z) contains exactly one node 
that is not in G(Z)-namely, the node representing X’- and either one or two 
edges not in G( Z’)-namely, the edges corresponding to the Lth operation of Z. 
These nodes and edges cannot precede any node or edge in G(Z’) by construction. 
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Let S’ be any subset of the nodes of Z’. By induction hypothesis 

Prob(S’(x)) = l-I label(E) 
E that precede S’ in G(Z) 

= l-I label(E), by argument above. 
E that precede S’ in G(Z) 

Thus the lemma holds for all sets of nodes that do not include X’. Let S = S’ U 

{xl}. There are two cases depending on whether the Lth operation is a selection 
or an intersection. 

Case 1. X’ = select (X, a). By definition of S(x), 

Prob(S(x)) = Prob(S’(x) A X’(x)) 

= Prob(S’(x) A X(x) A X’(x)) since X’(x) => X(x) 

= (Y * Prob(S’(x) A X(x)), by definition of select. 

Observe that S’ U (X) are nodes of G(F), and so by induction hypothesis 

Prob(S’(x) A X(x)) = n label(E). 
E that precede S u (X) in GE’) 

Now, the edges that precede S = S’ U {X’} in G(Z) are identical to those that 
precede S’ U {X} in G(Z) plus the edge (X, X’) that represents the operation 
X’ = select(X, a); the latter edge has weight (Y. Thus 

fl label(E) = a * I-I label(E) 
E E E(S) E that precede s’ u (X) in GW) 

= (Y * Prob(S’(x) A X(x)), as desired. 

Case 2. X’ = X 0 Y. By definition of S(x), 

Prob(S(x)) = Prob(S’(x) A X’(x)) 

= Prob(S’(x) A X(x) A Y(x)) by definition of intersection. 

Observe that S’ U {X, Y) are nodes of G(Z), and so by hypothesis 

Prob(S’(x) A X(x) A Y(x)) = l-I label(E). 
E that precede S’ ” (X,Y) in G(Z) 

The edges that precede S = S’ U {xl} in G( 8) are identical to those that precede 
s’ U {X, Y} in G(Z)’ plus the edges (X, X’) and (Y, X’) that represent the 
operation X’ = X n Y, the latter edges have weight 1. Thus 

n label(E) = l-I label(E) 
E E E(S) E that precede S’ ” (X.3 in G(Y) 

= Prob(S’(x) A X(x) A Y(x)), aa desired. 0 
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