
Query Processing in a System
for Distributed Databases (SDD-1)

PHILIP A. BERNSTEIN and NATHAN GOODMAN

Harvard University

EUGENE WONG

University of California at Berkeley

CHRISTOPHER L. REEVE

Massachusetts Institute of Technology

and

JAMES B. ROTHNIE, Jr.

Computer Corporation of America

Thii paper describes the techniques used to optimize relational queries in the SDD-1 distributed

database system. Queries are submitted to SDD-1 in a high-level procedural language called Datalan-

guage. Optimization begins by translating each Datalanguage query into a relational calculus form

called an envelope, which is essentially an aggregate-free QUEL query. This paper is primarily

concerned with the optimization of envelopes.

Envelopes are processed in two phases. The first phase executes relational operations at various

sites of the distributed database in order to delimit a subset of the database that contains all data

relevant to the envelope. This subset is called a reduction of the database. The second phase transmits

the reduction to one designated site, and the query is executed locally at that site.
The critical optimization problem is to perform the reduction phase efficiently. Success depends on

designing a good repertoire of operators to use during this phase, and an effective algorithm for

deciding which of these operators to use in processing a given envelope against a given database. The

principal reduction operator that we employ is called a sem@oin. In this paper we define the semijoin
operator, explain why semijoin is an effective reduction operator, and present an algorithm that

constructs a cost-effective program of semijoins, given an envelope and a database.

Key Words and Phrases: distributed databases, relational databases, query processing, query opti-

mization, semijoins

CR Categories: 3.70,4.33

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

This research was supported by the Advanced Research Projects Agency of the Department of
Defense and was monitored by the Naval Electronic System Command under Contract NO6039-77-C-
0074, ARPA Order 3175-6.

Authors’ addresses: P.A. Bernstein and N. Goodman, Center for Research in Computing Technology,

Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138; E. Wong, Department

of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA

94720; C.L. Reeve, Laboratory for Computer Science, Massachusetts Institute of Technology, 545
Technology Square, Cambridge, MA 02139; J.B. Rothnie, Jr., Computer Corporation of America, 675

Massachusetts Avenue, Cambridge, MA 02139.

0 1981 ACM 0362-5915/81/1200-osoz6602 $00.75

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1961, Pages 602-625

Query Processing in a System for Distributed Databases * 603

1. INTRODUCTION

SDD-1 is a distributed database system developed by the Computer Corporation
of America [23]. SDD-1 permits a relational database to be distributed among
the sites of a computer network, yet accessed as if it were stored at a single site.
Users interact with SDD-1 by submitting queries coded in a high-level procedural
language called Datalanguage [20]. Figures 1 and 2 illustrate an SDD-1 database
and a Datalanguage query. This paper is concerned with efficient execution of
such queries. Other aspects of SDD-1 are discussed in [5, 6, 14, 231.

Our objective is to process queries with a minimum quantity of intersite data
transfer. That is, we assume network bandwidth to be the system bottleneck and
seek to minimize use of this resource; all other resources are assumed to be free.’
This assumption is appropriate in SDD-1 because the network is the slowest
system component by two orders of magnitude.2 This assumption has been

Database D

S(s#, name, location) yw, p#, GY) P(P#, name, type)
1, Acme, MA 1, 1, 20 1, LSI, micro

2, Best, MA 1, 2, 50 2, Pll, mini

3, Mid, NY 3, 3, 50 3, 360, main

4, Nadir, CA 4, 1, 10 4, CRI, huge

4, 5, 75 5, 8080, micro

S describes suppliers.
P describes parts.

Y tells which suppliers supply which parts and in what quantity.

Assume that S, Y, and P are sorted at sites 1,2, and 3, respectively.

Fig. 1. Example database.

Description of quey

List the supplier name, part name, and quantity supplied for all parts supplied by a

Massachusetts supplier. Also, print how many of these are minis.

Query Q
Begin

Count := 0;

For S

If S.location = “MA” then for Y

If S.s# = Y.s# then for P

If Y.p# = P.p# then begin

Print S.name, P.name, Y.qty;

If P.type = “mini” then Count := Count + 1; end;;;

Print “Number of minis is”, Count ;
End.

Fig. 2. Example datalanguage query. Datalanguage used in this example is defined

in the appendix.

’ In practice, database processing within sites is considered as a secondary objective. For expository

clarity, we shall not treat this issue.
’ Sites in SDD-1 are mainframe computers (PDP-lOs), while the network is a packet-switched long-

distance network (Arpanet). Sustainable bandwidth on the network is at most 10 kbits per second
(see [24-261).

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

604 l P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr.

Envelope E

Retrieve (S.s#, S.name, Nocation) where qualification

Retrieve (Y.s#, Y.p#, Y.qty) where qualification

Retrieve (P.p#, P.name, P.type) where qualification

qualification: Slocation = “MA” A S.s# = Y.s# A Y.p# = P.p#

Fig. 3. Envelope for query of Figure 2. Envelopes are

defied in Section 2. Intuitively, an envelope specifies a

subset of each relation in the database. We express enve-
lopes in a relational calculus similar to QUEL [15].

The result of envelope E is to retrieve any superset of the data specified by E. For

example,

S(s#, name, location) Y(s#, P#, @Y) P(p#, name, type)

1, Acme, MA 1, 1, 20 1, LSI, micro

2, Best, MA 1, 2, 50 2, Pll, mini

3, 360, main

4, CRI, huge

5, 8080, micro

The specific superset retrieved is determined by efficiency considerations.

The retrieved relations are also transmitted to a single site, for example, site 3.

Fig. 4. Processing envelope of Figure 3.

adopted by other researchers [7,8,13, 16,17, 33,341, although naturally it is not
appropriate in every system [lo, 19, 271. Section 5 discusses the impact of this
assumption on our approach.

Our algorithm has three main steps. Step 1 maps a Datalanguage query Q into
a relational calculus form (an envelope) that specifies a superset of the database

needed to answer Q (see Figure 3). Step 1 depends on details of Datalanguage
and is of general interest only insofar as Datalanguage resembles other procedural
query languages. This step is described in [ll].

Step 2 evaluates the envelope. This step retrieves a superset of the database
specified by the envelope, assembling the result at a single site S, (see Figure 4).

(The specific superset retrieved and the “assembly site” S, are determined by
efficiency considerations.) Step 2 is accomplished by translating the envelope into
a program P containing relational operations (a reducer), followed by commands

to move the results of P to S, (see Figure 5). The goal is to construct a reducer P
and select a site S, such that the cost of computing P and moving the results to
S, is minimum over aLl reducers and sites. This optimization problem constitutes

the core of the SDD-1 query processing algorithm and is the focus of this paper.
Step 3 executes Q at S, using the data assembled by Step 2. Since Step 3 only

involves local query processing, it will not be discussed further. Steps l-3 are
outlined in Figure 6.

The paper has five sections. Section 2 defines envelopes and the operations
used to process envelopes. Section 3 presents techniques for estimating the cost
and effect of a reducer composed of these operations. Section 4 presents a
heuristic algorithm that compiles envelopes into efficient (though not necessarily
optimal) reducers. Section 5 discusses related work and suggests directions for

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981

Query Processing in a System for Distributed Databases l 605

Program P

1. S := S[location = “MA”] ; restrict S to MA suppliers
2. Y := Y(s# = s#]S ; this operation is semijoin

-it computes the set of Y

tuples that corresponds to

MA suppliers.
end

Figure 4 shows the result of applying P to the database of Figure 1.

Fig. 5. Program for envelope of Figure 3.

Q (Datalanguage query)

pT--+
1 1

0 (Distributed database)

E (Relational envelope)

and select assemblv site

Distributed execution
of reducer

S, (Assembly site)

\ -//

t-l D ’ (Superset of database
I

needed to compute Q(D))

Step 3 4

Fig. 6. Main steps of query processing algorithm.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

606 l P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr.

(a) Relational Data Objects

Term Definition

Domain A set of values
Attribute An alternate name for a domain
Relation schema A description of a relation, consisting of a relation name and

list of attributes
Relation A subset of the Cartesian product of the domains of the

attributes of the corresponding relation schema
Tuple An element (or row) of a relation
Database A set of relations
attr(R) Attributes of relation R

(b) Relational Algebraic Operations
Restriction: R[A = k] = (r E R] r.A = k}

where r.A is the value of the A-domain in tuple r
Also R[A = B] = (r E R] r.A = r.B)
Projection: R[AI, AZ, . . . , An]

= ((r.Ar, r.Az,. . . , r.A,)] r E R)
Join: R[A=B]S=((r,s)]rER,sES,andr.A=s.B)
Semijoin: R(A = B]S = (RCA = BIS) [attr(R)]

= {r]rERAr.AEs[B])

Fig. 7. Relational terminology.

future research. We assume reader familiarity with relational databases at the
level of [9]. A review of relational terminology appears in Figure 7.

2. QUERY PROCESSING STRATEGY

2.1 Envelopes

The attributes of relation R are denoted attr(R). Relation RI is a subrelation of
relation Ri, if attr(RI) _C attr(Ri) and Rf c Ri[attr(Ri)]. Let D = {RI, . . . , R,}
andD’= {R;,... , Rh} be databases. D’ is a subdcztabase of D, denoted D’ 5 D,
if Rf is a subrelation of Ri for i = 1, . . . , n. An envelope is a relational calculus

expression that maps a database into a subdatabase. We express envelopes in a
language similar to QUEL [15].

An envelope E consists of a qualification q and target lists tl, . . . , t,. The

term q is a Boolean formula with clauses of the form Ri. A = Rj .B or Ri. A = k.3
The terms Ri . A and Rj . B are called indexed variables. Each ti is a set of variables
indexed by Ri: that is, ti is of the form {Ri. Ail, . . . , Ri. Ail}. Envelope E maps
database D into subdatabase D’ defined by the following collection of QUEL
queries.

Retrieve into R; (tr) where q.

.

.
Retrieve into Rb(t,) where q.

We limit the form of envelopes in two additional ways. One, qualifications are

3 Note that we avoid tuple variables. These can be accommodated by (conceptually) duplicating a
relation, thereby having two relation names ranging over the same relation.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Query Processing in a System for Distributed Databases

Join graph for envelope of figure 1.

- 607

0 P.type

assumed to be pure conjunctions; disjunction is handled by placing the qualifi-
cation in disjunctive normal form and treating each conjunct separately. Two, if
Ri. A is a term of q, then 6 must contain Ri. A.

E is an envelope for Datalanguage query Q if for all databases D, Q(E(D)) =
Q(D). I t iti 1 n u ve y, an envelope for Q “envelopes” or delimits the portions of the
database needed to answer Q. In general, there are many envelopes for a given Q;
a good envelope is one that tightly delimits the data needed by Q. Finding good
envelopes is an optimization problem that depends on details of Datalanguage,
and our approach to this problem is described in [ll].

A graph representation of qualifications (a join graph) is useful. The nodes of
a join graph represent indexed variables and constants, and the edges represent
clauses. A join graph contains the edge {Ri. A, Rj .B} (respectively, {Ri. A, k}) iff
the qualification contains Ri .A = Rj .B (respectively, Ri. A = k) (see Figure 8).
The connected components of a join graph characterize the clauses implied by
the qualification: Let N and N’ be nodes of the join graph for q; q implies N = N’
iff N and N’ are in the same connected component. (Proofs appear in [2,3]. Note
that if N and N’ represent distinct constants, q is unsatisfiable.)

2.2 Reducers

A reduction of database D with respect to E is any D’ such that E(D) 5 D’ 5 D.
A reducer for E is a sequential program4 P of relational operations such that for

4 A reducer is executed as a parallel program, however (see [23]).

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

608 * P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr.

Given

S(s#, name, location) yw, Pd @Y) WP#, name, type)

1, Acme, MA 1, 1, 20 1, LSI, micro

2, Best, MA 1, 2, 50 2, Pll, mini

3, 3, 50 3, 360, main

4, 1, 10 4, CRI, huge

4, 5, 75 5, 8080, micro

l Y(s# = s#]S = Y(s#, p#, qty) = (Y tuples that correspond to a MA supplier)

1, 1, 20
1, 2, 50

l P(p# = p#]Y = P(p#, name, type) = {parts that are supplied by some MA
supplier}

1, LSI, micro

2, Pll, mini

l S(s# = s#]Y = S(s#, name, location) = {MA suppliers who supply any

1, Acme, MA thing)

*All of these semijoins are profitable. However, Y(p# = p#]P would not be

profitable.

Fig. 9. Semijoin.

all databases D, P(D) is a reduction of D with respect to E. Given E and D, our
optimization task is to construct a reducer P and select a site S, such that the

cost of computing P(D) and moving the results to S, is minimum over all reducers
and sites. A reduction operation for E is an operation that is permitted in a
reducer for E. A reduction operation reduces the size of D by eliminating data
not specified by E(D). The benefit of a reduction operation is the amount of data
it eliminates; the cost is the amount of intersite data transfer required to compute
the operation.

Restrictions and projections have zero cost and nonnegative benefit, and so
every restriction and projection permitted by E should be included in every
reducer for E. The projections permitted by E are Ri[ti], for i = 1, . . . , n. The
restrictions permitted by E can be determined from its join graph: E permits
Ri[A = B] (respectively, Ri[A = k]) iff q implies Ri.A = Ri.B (respectively,
Ri. A = k) iff Ri. A and Ri. B (respectively, k) are connected in the join graph.

To reduce the database further, data from two or more relations must be

combined. The obvious operation for this purpose isjoin. However, our algorithm
uses an operation called semijoin, which we deem to be superior. A semijoin is
“half of a join”; the semijoin of relation Ri by relation Rj on clause Ri. A = Rj. B,
denoted Ri(A = B]Rj, equals the join of Ri and Rj on that clause projected back
onto attr(Ri) (see Figure 9). (Notice that semijoin, unlike join, is asymmetric;

that is, Ri(A = B]Rj # Rj(B = AIRi. The former reduces Ri, while the latter
reduces Rj .) As with restrictions, the semijoins permitted by E can be determined
from its join graph: E permits Ri(A = B]Rj and Rj (B = A]Ri iff Ri. A and Rj . B

are connected in the join graph.
We prefer semijoins to joins for three reasons. First, Ri(A = B]Rj c Ri, and so

semijoins monotonically reduce the size of the database. By contrast, joins can
increase the size of the database; in the worst case, 1 Ri[A = B]Rj 1 =) Ri 1 *] Rj I.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Query Processing in a System for Distributed Databases - 609

l Let D be the database

%(A, B) MB, C) MA, C) MC, D, E, F, G, H, 1)
0 1 1 1 1 1 0000000

1 0 0 0 0 0 1 1 1 1 1 1 1

site 1 site 2 site 3 site 4

l Let E be the envelope
q: R,.A = &.A A R1.B = R2.B A R2.C = R3.C A R3.C = R.C

t, = attr(RJ for i = 1, . . . ,4.

l Using semijoins, the optimal evaluation of E(D) is to move RI, Rz, and Ra to site

4-that is, no semijoins should be used. This requires the transmission of 12 data

items.

l Using joins, the optimal evaluation is

RIP := R$B = B]RI at site 2-cost = 4

RI= := RnJA = A A C = C] at site 2-cost = 4

Note that RIZS = ()

% := Rs[C = C]Rn3 at site 4-cost = 0.

Total cost = 8.

Fig. 10. Bad case for semijoins. This example is adapted from [2].

Second, semijoins can be computed with less intersite data transfer than joins.
To compute Ri(A = B]Rj, we need only transmit a projection of a relation (viz.,
Rj[B]), whereas to compute Ri[A = B]Rj we must transmit an entire relation. Of
course, the semijoin may also have less effect than the join, since Ri(A = B]Rj

only reduces Ri, whereas Ri[A = B]Rj simultaneously reduces Ri and Rj. However,
the third advantage of semijoins is that the “reductive effect” of any single join
can be attained by two semijoins, usually at lower cost, as follows.

Let Rij = RJA = B]Rj. The reductive effect of this join is its effect on Ri and
Rj, namely, Ru[attr(Ri)] and Rij[attr(Rj)]. By definition of projection,

Rd[attr(Ri)] = {ri] 3 (ri, rj) E Rij}
= {ri E Ri] (3 rj E Rj)(ri.A = rj.B)}, by definition of join

= Ri(A = B]Rj, by definition of semijoin.

Similarly, Rij[attr(Rj)] = Rj(B = AIR. Thus the reductive effect of Ri[A = B]Rj
is attained by two semijoins as claimed.

Now let us compare the cost of the join versus the two semijoins. To compute
Ri[A = B]Rj, one of the relations, Rj say, must be transmitted to the other’s site.
This has cost 1 Rj I* width(Rj), where width(Rj) equals the number of bits in each

tuple of Rj. TO compute the semijoins, we transmit Rj [B] to Ri and Ri[A] to Rj,
for a cost of I Rj [B] I *width(B) + I Ri[A] I *width(A). But Ri[A] c Rj[B] after
Ri(A = B]Rj is executed, and so if we execute the semijoins in sequence, the cost
is less than or equal to I Rj[B]) * (width(A) + width(B)). This quantity is less
than or equal to I Rj \ * width(Rj) under the reasonable assumption that width(A)
+ width(B) I width(Rj). Given this assumption, the cost of the semijoins is less
than or equal the cost of the join, as claimed.

Our arguments in support of semijoins are heuristic and there are cases in
which joins outperform semijoins. Figure 10 illustrates such a case. An optimal
query processing algorithm would almost certainly include both joins and semi-

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

610 . P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr.

Let D = (Ss#, name, location), Yb#, P#, qty),
(1, Acme, MA 1, 1, 10
2, Best, MA 1, 2, 20

PW, name, type))
1, LSI, micro
2, Pll, mini

lk, Mid, NY lk, 370,
lOk, Nadir, CA lk, lk, 50 lOk, 470,

(a) Attributty domains dom(S.s#) = dom(Y.s#) = {idA’s from 1 to 10k)
dom(S.name) = dom(P.name)

= (names of length < 10)
dom(S.location) = {states of U.S.}

v (provinces of Canada)
etc.

main
main

(b) Auxiliary domains X1 = (strings of length < 10)
XP = (integers from 1 to IOk}

(c) Subset hierarchies

dom(S.name) = dom(P.name) dom(S.location) dom(P.type)
dom(S.s#) = dom(Y.s#) dom(Y.qty)

= dom(Y.p# = dom(P.p#)

Fig. 11. Domains.

joins. The graceful integration of these tactics is an open problem, however, and
our algorithm only uses semijoins.

3. COST AND BENEFIT ESTIMATION

To compile an envelope into an efficient reducer, we need to estimate the cost
and benefit of reduction operations. This section presents an estimation procedure
based on a statistical model of the database. We only consider the estimation
problem for semijoins; estimation techniques for restrictions and projections are
described by [28].

Our statistical model is an approximation of a set theoretic model of the
database and is described in Section 3.1. Section 3.2 presents a technique for

estimating the effect of set operations. Section 3.3 extends this technique to
estimate the effect of a sequence of semijoins.

3.1 Database Model

Let D = {RI, R,} be a database. Associated with each attribute of each
relation, for example, Ri. A, is a finite domain of values, dom(Ri. A). Ri[A] is
constrained to be a subset of dom(Ri. A) (see Figure lla). The model also contains
auxiliary domains (see Figure llb). The set of all domains is partitioned into

domain hierarchies, each of which contains a maximum domain X,,, and all
domains X such that X _C X,,, (see Figure 11~). Domains Xi and Xj are joinable

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Query Processing in a System for Distributed Databases * 611

domains

c(domain)
w(domain)

XI X2 dom(S.s#) dom(S.location)
dom(Y.s#)
dom(P.p#)
dom(Y.i#)

26’” 10k 10k 59
10 2 2 2

attributes
c(attribute) I

relations
c(relation)

S.s#
10k

S
1Ok

S.location P.p# Y.s# Y.p# * * *
50 10k lk lk

Y P
lOOk 1Ok

Fig. 12. Statistical model of database of Figure 12.

if they are members of the same domain hierarchy. If a qualification contains
Ri.A = Rj.B, then dom(Ri.A) and dom(Rj.B) must be joinable.

We approximate D by the following statistics, called a database profile.

I (1) For each domain X

I

(i) c(A) = the estimated cardinality of X,
(ii) w(A) = the “width” of X, that is, the number of bits, words, and so forth,

used to represent an arbitrary element of X.

(2) For each relation Ri, c(Ri) = the estimated cardinality of Ri.
(3) For each relation Ri and each A E attr(Ri), c(Ri.A) = the estimated cardi-

nality of Ri[A].

Parameters l(i) and l(ii) are fixed a priori by the database administrator, while
the other parameters are updated by the system to reflect changes in the
database. To reduce overhead, these parameters are updated off-line on a periodic
basis.

The statistical model indicates the domain hierarchies by specifying which
domains are subsets of which other domains. The model also includes the
following assumptions.

(1) If Xi c Xj, then Xi is a randomly selected subset of Xj; operationally this
means that the probability of x E Xi is identical for all x E Xj .

(2) For each relation Ri and A E attr(Ri)

(i) RJA] is a randomly selected subset of dom(Ri.A).
(ii) Tuples of Ri are uniform2y distributed over values of Ri[A]; this means

that the probability of ri. A = a is identical for all ri E Ri and a E Ri[A].

(3) For each Ri and distinct A, B E attr(Rti), Ri[A] and Ri[B] are independent,
meaning that the probability of ri. A = a is unaffected by the value of ri.B.

These assumptions are quite strong and this statistical model is a crude
approximation. However, it is difficult to devise better models without knowledge
of the processes placing data in the database. Figure 12 illustrates our model.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

612 * P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr.

l Let U = X2 from Figure 11
l Let X be the following sequence of operations

Y, = select (U, 1) ; YI might represent S[s#]
Yz = select (LJ, l/10) ; YZ might represent Y[s#]
Y3 = select (Y1, l/50) ; YZ might represent the effect on S[s#] of

S[location = “MA”]
Y4 = Yz n Y3 ; Yd might represent the effect on Y[s#] of

Y(s# = s#]S.
Yg=Y3r3Y, ; YE, might represent the effect on S[s#] of

S(s# = s#]Y

l G(Z) =

Fig. 13. Graph representations of set operations.

3.2 Effect of Set Operations

Consider the following problem. We are given a universe U of objects and two
operations for constructing subsets of U-random selection (defined below) and

set intersection. The problem is to estimate the cardinality of any set that can be
constructed by a sequence of these operations. Let X be such a set. The selectivity
of X is the probability that an arbitrary x E U is also an element of X. The
expected 1 X 1 is just its selectivity times 1 U I, and so to estimate I X I it is sufficient
to estimate its selectivity.

Let X c U and x E U. We use X(x) as an abbreviation for “x E X,” and
Prob(X(x)) denotes the probability of X(x) (i.e., the selectivity of X). Similarly,
if S = {X,, X,} is a family of subsets of U, S(x) is an abbreviation for

At, Xi(x), and Prob(S(x)) denotes the joint probability of x being an element of
every Xi E S.

We now define the random selection operation. Let, X L U and 0 I cr 5 1;
select(X, (u) constructs a set X’ c X in which Prob(X’(x)) = a*Prob(X(x)) for all
x E u.

Let Z be a sequence of selection and intersection operations. We can represent.
Z as an edge labeled DAG, G(Z), whose edges represent operations and whose
nodes represent sets constructed by those operations (see Figure 13). Formally,
G(Z) = (V(Zj, E(Z), label), where

(1) V(Z) = (U} U S, where S is the family of sets constructed by Z;
(2) E(Z) contains the following edges:

(i) (X, X’) with label (Y if X’ = select(X, a);
(ii) (X, X’) and (Y, X’) with label 1 if X’ = X rl Y.

G(X) provides an efficient. means of calculating Prob(S(x)) for arbitrary families
of sets constructed by Z.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Query Processing in a System for Distributed Databases * 613

l LetS= {U,Y,, . . , Y,) . Lemma 1 states that Prob(S(x)) equals the product of all
edge labels that precede S in G(Z).

l Selectivity of U = 1

YI = 1

Yz = l/10

Y3 = l/50

Y4 = l/500

Y5 = l/500

l Note that YS = Y3 n Y, = Ya n (Yz n Y3) = YZ n YI = Yq, so it is not coincidental

that Yg and Y, have identical selectivities.

Fig. 14. Calculating selectivities for Figure 13.

LEMMA 1. Let Z be any sequence of selections and intersections operating
initially on U, let S c V(Z), and let E(S) = {E E E(Z) 1 E precedes some node
XES}.ThenforallxE U

Prob(S(x)) = fl label(E).
EEELS)

PROOF. See the appendix. Cl

The lemma is illustrated in Figure 14.
The main result of this section follows a corollary.

PROPOSITION 1. Let B be a sequence of selection and intersection operations
operating initially on U, and define G(Z) as above. (i) If X’ = select (X, a) is an
operation of Z, then the selectivity of X’ equals a times the selectivity of X. (ii)
If X’ = X n Y is an operation of 2, then the selectivity of X’ equals the product
over all edges E that precede X or Y in G(Z) of label(E).

3.3 Effect of Semijoins

A sequence of semijoins is analyzed as several sequences of set operations, one
per domain hierarchy. Let & be the sequence for hierarchy Hk. The universe for
IZ:k is the maximum domain of Hk, X,,,. I%‘:k is initialized to contain the following

selections.

(1) X = select(X,,,, a), where (Y = c(X)/c(X,,) for each X E Hk.
(2) R[A] = select(dom(Ri.A), a) where a! = c(Ri.A)/c(dom(Ri.A)) for each

relation and attribute such that dom(Ri.A) E Hk.

The effect of a semijoin, Ri(A = B]Rj is analyzed in three steps.

(1) The semijoin maps RJA] into Ri[A] n Rj[B]. Suppose dom(Ri.A) E Hk. To
estimate the new cardinality of Ri[A], we append RJA] = Ri[A] n Rj[B] to &
and use Proposition 1 to estimate the new selectivity of RJA]. c(Ri.A) is updated
to the new selectivity times c(Xmax).

(2) The semijoin eliminates some tuples from Ri. Since tuples of Ri are assumed
to be uniformly distributed over values of Ri[A], the estimated new cardinality of
Ri is (new value of c(Ri.A))*(old value of c(R))/(old value of c(Ri.A)).

(3) The elimination of tuples from Ri causes some values to be deleted from
RJA’], for all A’ E attr(Ri) - {A}. This effect can be analyzed as a hit ratio
problem: Let t be the old value of c(Ri); these t tuples are assumed to be uniformly

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

614 l P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr.

l Consider R(A, B) and buppose 1 R 1 = 6 and 1 R[B] 1 = 3

l We can partition R into 3 blocks based on B values.

- , bl - , bl - t b2

El

- t b2 - , b3 - , b3
l If we select one tuple of R we will, of course, hit one block.

l If we select two tuples, we will probably hit two blocks, but we might only hit one.

l If we select three tuples, we might hit three blocks, but it is more likely that we

will only hit two.

And so forth.

Fig. 15. Hit ratio problem.

distributed over b = c(Ri.A’) “blocks,” where each block contains all tuples with
the same A’ value (see Figure 15). The question is: “How many blocks do we
expect to hit if we randomly select n = c(Ri) tuples?” An efficient formula that

answers this question is given by Yao [32]:

the expected number of blocks =

Yh b, t) = b * ,!! ‘“,“,~i’~~’ , where d = 1 - l/b.

In practice, it is reasonable to approximate Y by

i

for n < +b
P(n, b, t) = iin + b), for+btn<2b

b, for 2b < n.

Y and y are graphed in Figure 16.
Thus we update c(Ri.A’) to P(new value of c(R;), old value of c(Ri.A’), old

value of c(Ri)).
In addition, we append Ri[A’] := select(Ri[A’], a) to the sequence for the

domain hierarchy that contains dom(I&.A’), where (Y = (new value of c(Ri.A’))/
(old value of c(Ri.A’)). This selection is not used in estimating the effect of the
current semijoin, but is needed to estimate the effects of later ones.

3.4 Cost and Benefit of Semijoins

The cost of Ri (A = B]Rj is defined to be the amount of intersite data transfer
required to compute it. This equals

l

0, if Ri and Rj are stored at the same site
c(Rj.B)*w(dom(Rj.B)), otherwise.

The benefit of Ri (A = B]Rj is the amount of data eliminated from the database.
This equals ((c(Ri) before the semijoin) - (c(Ri) after the semijoin))*(the width
of Ri) = ((c(Ri) before) - (c(Ri) after))* &Eattr(q) w(dom(Ri.A)).

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Query Processing in a System for Distributed Databases l 615

Hit Ration
l Given t tuples distributed over b blocks.

l How many blocks will we hit if we select n tuples?

b

10K

1K

1OK

Fig. 16. Yao function.

4. OPTIMIZATION ALGORITHM

This section presents our optimization algorithm. The input is an envelope E and
database profile D. The algorithm compiles E into a reducer P, which is estimated
to be profitable in any database modeled by D. In addition, the algorithm selects
an assembly site S, and appends to P commands to move the reduced database

to s,.
Section 4.1 presents our “basic” algorithm, and Section 4.2 describes two

enhancements to the basic algorithm. Section 4.3 illustrates the operation of the
algorithm on an example.

4.1 Basic Algorithm

The basic algorithm is an iterative hill-climbing procedure. The algorithm ini-
tializes P to contain all local operations permitted by E. (Local operations are
restrictions, projections, and semijoins whose operands are stored at one site.)
The main loop of the algorithm tests whether any nonlocal semijoins permitted
by E are profitable. If so, the algorithm selects the most profitable nonlocal
semijoin and appends it to P. The algorithms iterates until all profitable semijoins

have been exhausted. At this point P is a profitable reducer for E. The algorithm
then selects a site S. and appends commands to move the reduced database to
S,. S, is selected so as to minimize the quantity of data moved.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

616 * P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr.

Reducer Flowgraph

1. S[locaiion = “MA”]

2. Y<s# = s#]s

3. P<p# = p#]Y

S Y P 1
2 3

u 2

3

l The first node in each column represents the initial state of the relation.

l Edge (1) represents operation (1).

l Each semijoin is represented by two edges, one vertical and one diagonal.

l Diagonal edges represent data flow between relations, while vertical edges represent successive
reductions of a single relation.

Fig. 17. Flowgraphs for reducers.

The basic algorithm is listed as follows.

ALGORITHM OPT
Input: envelope E and profile D.

Output: reducer P augmented by commands to move reduced database to S..

1. InitiaZization
1.1 P := sequence of sll local operations permitted by E
1.2 Estimate the cost and benefit of all nonlocal semijoins permitted by E
2. Main Loop
2.1 Do while some nonlocal semijoin permitted by E has benefit > cost
2.2 Let sj be the most profitable nonlocal semijoin permitted by E
2.3 Append sj to P
2.4 Estimate the effect of sj and update costs and benefits accordingly
2.5 end
3. Termination
3.1 For each site S, let size(S) = the sum of c(F$)*w(l+) over all relations Ri referenced

by E and stored at S
3.2 Select S, to be the site with maximum size
3.3 Append to P commands to move data from all other sites to S,
end

4.2 Enhancements

Algorithm OPT is an example of a greedy optimization algorithm, it always seeks
to maximize immediate gain, it never looks ahead, and never backs up. As a
result, the reducers generated by OPT are, in general, suboptimal. This section
presents two techniques for improving OPT. These enhancements help compen-
sate for OPT’s greed by considering the indirect effects of semijoins.

These enhancements are most easily described in terms of data flowgraphs

[18]. Let P be a reducer. Its flowgraph G(P) is a directed graph whose nodes
represent the intermediate results of P and whose edges represent the operations
of P (see Figure 17). By convention we draw flowgraphs in columns, each of which
contains nodes that represent reductions of one relation. With this convention,
the edges of the flowgraph are partitioned into vertical edges and diagonal edges.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Query Processing in a System for Distributed Databases - 617

a) Reducer Flowgraph

1. P<p# = p#]Y

2. Y<s# = s#]S

3. Y<p# = p#]P

b) Improved Reducer

2. Y<S# = s#]S

1. P<p# = P#]Y

3. Y<p#= p#lP

S Y P

2
2

0

b
1

1

3
3

0

Flowgraph

Fig. 18. Enhancements.

Each semijoin is represented by one vertical and one diagonal edge. Intuitively,

the diagonal edge “carries the cost” of the semijoin; for example, the cost of
R (A = B]Rj equals the size of Rj[B] (assuming Ri and Rj are at different sites),
and the diagonal edge represents this data flow.

The first enhancement permutes the order of semijoins in P to decrease the

cost of some semijoins without increasing the cost of any others. Consider Figure
18a. Semijoin 1 (P(p# = p#]Y) uses Y to reduce relation P, and semijoin 2
(Y(s# = s#]S) reduces Y. Since semijoin 2 reduces Y, the cost of semijoin 1 can
be decreased by delaying it until semijoin 2 executes (see Figure 18b). This
permutation also increases the effect of semijoin 1, since semijoin 2 increases the
selectivity of Y[s#], and so the cost of each subsequent semijoin is decreased as
well. Thus this permutation is guaranteed to lower the cost and increase the
benefit of the reducer.

This transformation can be visualized as reducing the cost of a semijoin by
delaying its diagonal edge. For example, in Figure 18, we have reduced the cost
of semijoin 1 by delaying its diagonal edge until semijoin 2 has been executed.
More generally, let P be any reducer, let (Nj, Ni) be any diagonal edge in G(P),
and let NS be any node that follows Nj in the same column. The replacement of

(Nj, Ni) by (N& Ni) monotonically decreases the cost of P, provided the resulting
graph remains acyclic. (If the resulting graph is cyclic, it no longer represents a
sequential program.)

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

618 * P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr.

Let P be the output of OPT. We apply the above transformation to the
semijoins of P considered in decreasing cost order. Thus we delay the most

expensive semijoins in P to take advantage of reductions achieved by other
semijoins.

Our second enhancement prunes semijoins from P that are rendered unprofit-
able by the choice of assembly site El.. Consider Figure 18a and suppose Y’s site
is selected to be S,. This choice renders semijoin 3 (Y (p# = p#]P) useless, and

this semijoin should be discarded. With respect to semijoin 2 (Y (s# = s#]S), the
situation is less clear-cut. Although there is no direct benefit in reducing the size
of Y, semijoin 2 is indirectly beneficial via semijoin 1 (P(p# = p#]Y). In fact,

semijoin 2 both decreases the cost and increases the benefit of semijoin 1.
In general, let P be the output of Algorithm OPT, that is, P is a reducer

augmented by commands to move the reduced database to S,. For each relation
Ri stored at S,, and for each semijoin in P of the form R(A = B]Rj we compare

the cost of P to the cost of P without the semijoin. If the latter cost is lower, the

semijoin is pruned from P.

4.3 Example

In this section we simulate the optimization procedure on the following envelope
and profile.

Database S(s#, name, location), Y(s#, p#), P(p#, name, type)
Profile X1 = dom(S.s#) = dom(Y.s#) ; c(XJ = 100,000

X2 = dom(P.p#) = dom(Y.p#) ; c(X,) = 100,000
X1 = dom(S.location) ; c(X,) = 50
X4 = dom(P.type) ; c(X)=5

All domains have widths of 1.

S b#, name, location)
est. cardinality: 10000 (10000, na, 50)

est. card.: loLo I%o, %b)
P (P#, name, type)

est. card.: 10000 (10000, na, 5)

Each relation is stored at a separate site.

Envelope

Retrieve into S(s#, name, location) where qual
Retrieve into Y(s#, p#) where qua1
Retrieve into P(p#, name, type) where qua1
qual: S. location = “MA” A P-type = “micro”

A S.s# = Y.s# A Y.p# = P.p#

4.3.1 Initialization. The local operations permitted by the envelope are

S[location = “MA”]
P[type = ‘micro’]

The estimated effect of these operations is to reduce the size of S by a factor

of 50 and P by a factor of 5 (see Figure 19a).

ACM Tramactione on Database Systems, Vol. 6, No. 4, December 1981.

Query Processing in a System for Distributed Databases - 619

Flowgraphs are augmented here to show the estimated cardinality of relations and “important” projec-
tions. Numbers in the S (resp. P) column indicate c(S) and c(S.s#) (resp. c(P) and c(P.p#)). Entries in the Y
column have the form CM

w.sw, W.P#)

Reducer Flowgraph

S Y P

a) S[location = ‘MK]
P[type = ‘micro’]

b) Y<s# = s#]s

c) P<p#=p#jY

d) Y<p# = p#]P

e) S<s# = s#lY

f) Move S to Y’s site
Move P to Y’s site

10k 1OOk 10k

ta
2k

Fig. 19. Example reducer.

4.3.2 Main Loop. The estimated cost and benefit of each permitted semijoin is
listed as follows.

Semijoin cost Effect Benefit
1. S(s# = s#]Y 1000 c(S.s#) = c(S) = 20 180*3
2. P(p# = p#]Y 1000 c(P.p#) = c(P) = 200 1800*3
3. Y(s# = s#]S 200 c(Y.s#) = 20 c(Y) = 2k c(Y.p#) = lk 98k*2
4. Y(p#=p#]P 2000 c(Y.p#) = 200 c(Y) = 20k c(S.s#) = lk 80k*2

Semijoin 3 is most profitable and would be selected. The estimated effect of
this semijoin is summarized in Figure 19b. Costs and benefits of semijoins are

updated as follows.

Sernijoin cost Effect Benefit

1. S(s# = s#]Y 20 c(S.s#) = c(S) = 20 180*3
2. P(p#=p#]Y 1000 c(P.p#) = c(P) = 200 1800*3
3. Y(s# = s#]S 200 none none
4. Y(p# = p#]P 2000 c(Y.p#) = 200 c(Y) = 400 c(Y.s#) = 20 1600*2

The most profitable semijoin is 2 and the estimated effect is summarized in
Figure 19c. Costs and benefits are updated as follows.

Semijoin cost Effect Benefit
S(s# = s#]Y

;: P(p#=p#]Y 1;
c(S.s#) = c(S) = 20 180*3

none none
3. Y(s# = s#]S 200 none none
4. Y(p# = p#]P 200 c(Y.p#) = 200 c(Y) = 400 c(Y.s#) = 20 1600*2

Semijoin 4 is most profitable and has the effect shown in Figure 19d. Costs and
benefits are updated once again.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

620 l P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr.

Reducer Flowgraph

a) S[location = ‘MA’]
P[type = ‘micro’]

b) Y<s#= s#]S

c) P<p# = p#]Y

e) S<s# = s#]Y

9 Move S to Y’s site
Move P to Y’s site

Fig. 20. Improved reducer for Figure 19.

Semijoin cost Effect Benefit

1. S(s# = s#]Y 20 c(S.s#) = c(S) = 20 MO*3
2. P(p# = p#]Y 200 none none
3. Y(s#=s#]S 200 none none
4. Y(p# = p#]P 200 none none

The only profitable semijoin is the first one. Its effect is indicated in Figure

lge. No further semijoins are profitable, and so the main loop terminates.

4.3.3 Termination. Y is estimated to be the largest relation in the reduced
database, and so Y’s site is selected as S,. The final program produced by
Algorithm OPT constitutes Figure 19a-f. The estimated cost of this program is

1420 (for semijoins-see Figure 19b-e)
+ 660 (for assembly-see Figure 19f)

2080 (total)

4.3.4 Enhancements. The first enhancement in Section 4.2 does not apply to
this example, but the second enhancement does. In particular, semijoin 4
(Y (p# = p#]P; see Figure 19d) should be pruned from the reducer. The resulting
program has cost 1880 and appears in Figure 20.

5. DISCUSSION

We have presented an algorithm for processing queries in a distributed database.
In this section we discuss the relationships between our algorithm and other work
in this area; we also suggest topics for future research.

The first comprehensive algorithm for distributed query processing algorithms
was developed by Wong [30]. Wong’s algorithm translates a query Q into a
sequence of two tactics: (1) moue a subrelation from one site to another; and (2)
process data at one site using relational operations. The algorithm is a recursive
optimization procedure. It begins by selecting a site S, and then constructing the
following initial solution.

(1) Move all relations referenced by Q to S,.
(2) Process Q at S, as aJocal query, using the relations moved in step 1.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Query Processing in a System for Distributed Databases - 621

The initial solution is improved by recursively replacing individual “move”
commands by lower cost sequences of “move” and “process” commands. The
algorithms terminates when no “move” command can be replaced by a lower

cost sequence. This algorithm produces increasingly efficient sequences of com-
mands, although its hill-climbing discipline is too weak to guarantee optimality.

Wong’s algorithm was implemented in SDD-1 and early experience indicated

problems with the algorithm’s a priori selection of S, [22]. To mitigate this
problem, Rothnie developed a branch-and-bound technique that permits parallel

consideration of several assembly sites.
Our algorithm is a further refinement of Wong’s algorithm, in which the

concepts of semijoin and reducer are used to abstract the main optimization
problem. These concepts simplify the algorithm and provide a framework for

future research. These concepts also improve the effectiveness of the algorithm

by (1) avoiding the need for a priori selection of assembly site, (2) suggesting
enhancements to the basic algorithm, and (3) supporting mathematically sound
cost estimation techniques.

Other distributed query processing algorithms are described by [7,8, 10, 13, 16,

17, 19, 271. Hevner and Yao [16, 171 consider a class of relational queries (simple
queries) that have the form

Retrieve RI(A), where R1.A = R2.A A R2.A = RJ.A A -. . A Rnml.A = R,.A.

Observe that this query is computing RIIA] n R2[A] f~ - - . fl R,[A], and semijoins
are powerful enough to solve such queries. Hevner and Yao present an efficient
algorithm that constructs an optimal sequence of semijoins for solving a given

simple query.5 They also extend their algorithm to produce efficient (not neces-
sarily optimal) reducers for relational queries that are approximately as general
as envelopes.

Chiu [7] considers queries (chain queries) of the form

Retrieve RI(A1),

where RI.A1 = R2.AI A R2.Az = R3.Az A . . . A Rn-I.A,-I = R,.A,-I.

(Chain queries are so named because their join graphs are chains.) Semijoins are
powerful enough to solve chain queries, and Chiu presents an efficient dynamic
programming algorithm that constructs an optimal sequence of semijoins for
solving a given chain query. Chiu and Ho [B] generalize Chiu’s approach and
develop a methodology for producing optimal semijoin programs for queries (tree
queries) whose join graphs are trees.

Distributed query processing algorithms that use joins instead of semijoins are
proposed by [lo, 271. An algorithm that uses joins and semijoins is described by
[19]; this algorithms, however, only considers “star” networks.

Finally, we observe that semijoins have been recommended in disguised forms
in nondistributed query processing contexts. Several associative memory database
machines provide hardware semijoin instructions in lieu of join. Examples include
CAFS [l], CASSM [29], and RAP [21].6 To apply our algorithm to these

machines, it is only necessary to modify our cost estimation techniques. Semijoin

’ Semijoin is called “join-project” in [17].
s Semijoin is called “join using bit array” in CAFS, “match” in CASSM, and “implicit join” in RAP.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

622 * P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr.

is also fundamental to the INGRES query processing algorithm [31], where it is
called “detachment.” Theoretical research on semijoins includes [2-4, 12,33,34].

The conceptual simplicity of our optimization algorithm suggests areas requir-
ing additional research.

1. A major problem is the hill-climbing discipline of Algorithm OPT. The
algorithm selects semijoins that maximize immediate gain, ignoring the fact that
the execution of one semijoin often decreases the cost and increases the benefit
of other semijoins. A principal topic for future research is to develop efficient
optimization algorithms that exploit this fact. The work of [7,8,16,17] represents
preliminary steps in this direction.

2. The programs constructed by our optimization procedure consist of a
reduction phase followed by a final processing phase. The reduction phase
executes all cost-effective semijoins permitted by the query in a distributed
fashion, while the final processing phase executes all joins needed to solve the
query in a centralized fashion. However, it is sometimes better to execute joins in
a distributed fashion also, and the execution of some joins may render additional
semijoins profitable. This suggests an alternate query processing strategy with
the following structure.

Do while the query is not solved

;;, execute all profitable semijoins
execute one or more joins

end

Evidently the critical new optimization problem is to select the joins that are
processed on each iteration.

3. All query processing algorithms developed to date are “open-loop” and
cannot respond to errors in cost estimation. To close the loop, we must be able to
halt execution of a reducer in midstream and construct a new reducer that utilizes
(a) the partial results already computed and (b) the cost information obtained by
the partial computation.

4. Fundamental to our approach is the assumption that intersite data transfer
is the dominant cost of distributed query processing. Our basic strategy of
reducing the database before processing the query makes sense because of this
assumption. In systems where this assumption does not hold, our techniques may
still apply, provided it is cheaper to compute reductions than to solve queries.

APPENDIX. PROOF OF LEMMA 1

The proof is by induction on the length of X.

Basis Step.] Z] = 0. In this case, G(Z) is the singleton graph containing U
and the result is immediate.

Induction Step. Assume the lemma holds when] Z] < L; prove that it still
holds when] Z I = L.

Let Z’ comprise the first L-l operations of Z, and let X’ be the Lth set
constructed by Z. G(Z) is a subgraph of G(Z). G(Z) contains exactly one node
that is not in G(Z)-namely, the node representing X’- and either one or two
edges not in G(Z’)-namely, the edges corresponding to the Lth operation of Z.
These nodes and edges cannot precede any node or edge in G(Z’) by construction.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Query Processing in a System for Distributed Databases l 623

Let S’ be any subset of the nodes of Z’. By induction hypothesis

Prob(S’(x)) = l-I label(E)
E that precede S’ in G(Z)

= l-I label(E), by argument above.
E that precede S’ in G(Z)

Thus the lemma holds for all sets of nodes that do not include X’. Let S = S’ U

{xl}. There are two cases depending on whether the Lth operation is a selection
or an intersection.

Case 1. X’ = select (X, a). By definition of S(x),

Prob(S(x)) = Prob(S’(x) A X’(x))

= Prob(S’(x) A X(x) A X’(x)) since X’(x) => X(x)

= (Y * Prob(S’(x) A X(x)), by definition of select.

Observe that S’ U (X) are nodes of G(F), and so by induction hypothesis

Prob(S’(x) A X(x)) = n label(E).
E that precede S u (X) in GE’)

Now, the edges that precede S = S’ U {X’} in G(Z) are identical to those that
precede S’ U {X} in G(Z) plus the edge (X, X’) that represents the operation
X’ = select(X, a); the latter edge has weight (Y. Thus

fl label(E) = a * I-I label(E)
E E E(S) E that precede s’ u (X) in GW)

= (Y * Prob(S’(x) A X(x)), as desired.

Case 2. X’ = X 0 Y. By definition of S(x),

Prob(S(x)) = Prob(S’(x) A X’(x))

= Prob(S’(x) A X(x) A Y(x)) by definition of intersection.

Observe that S’ U {X, Y) are nodes of G(Z), and so by hypothesis

Prob(S’(x) A X(x) A Y(x)) = l-I label(E).
E that precede S’ ” (X,Y) in G(Z)

The edges that precede S = S’ U {xl} in G(8) are identical to those that precede
s’ U {X, Y} in G(Z)’ plus the edges (X, X’) and (Y, X’) that represent the
operation X’ = X n Y, the latter edges have weight 1. Thus

n label(E) = l-I label(E)
E E E(S) E that precede S’ ” (X.3 in G(Y)

= Prob(S’(x) A X(x) A Y(x)), aa desired. 0

REFERENCES

1. BABB, E. Implementing a relational database by means of specialized hardware. ACM Trans.

Datcdmse Syst. 4, 1 (March 1979), l-29.
2. BERNSTEIN, P.A., AND CHIU, D.W. Using semijoins to solve relational queries. J. ACM. 28, 1

(Jan. 1981), 25-40.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

624 * P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr.

3. BERNSTEIN, P.A., AND GOODMAN, N. The power of natural semijoins. SIAM J. Comput. 10,4
(Nov. 1981).

4. BERNSTEIN, P.A., AND GOODMAN, N. The power of inequality semi-joins. To appear in Znfi Syst.
5. BERNSTEIN, P.A., AND SHIPMAN, D.W. The correctness of concurrency control mechanisms in a

system for distributed databases (SDD-1). ACM Trans. Database Syst. 5,l (March 1980), 52-68.
6. BERNSTEIN, P.A., SHIPMAN, D.W., AND ROTHNIE, JR., J.B. Concurrency control in a system for

distributed databases (SDD-1). ACM Trans. Database Syst. 5, 1 (March 1980), 18-51.
7. CHIU, D.M. Optimal query interpretation for distributed databases. Ph.D. Dissertation, Harvard

Univ., Cambridge, Mass., Dec. 1979.
8. CHUI, D.M., AND Ho, Y.C. A methodology for interpreting tree queries into optimal semi-join

expressions. In Proc. ACM-SICMOD Conf, May 1980.
9. DATE, C.J. An Introduction to Database Systems. Addison-Wesley, Reading, Mass., 1977.

10. EPSTEIN, R., STONEBRAKER, M., AND WONG, E. Distributed query processing in a relational
database system. In Proc. ACM-SIGMOD Conf, June 1978, pp. 169-180.

11. GOODMAN, N., BERNSTEIN, P.A., WONC, W., REEVE, C. L., AND ROTHNIE, JR., J.B. Query
processing in SDD-1. Tech. Rep. CCA-79-06, Computer Corp. of America, Cambridge, Mass., Oct.
1979.

12. GOODMAN, N., AND SHMUELI, 0. Tree queries: A simple class of relational queries. To appear in
ACM Trans. Database Syst.

13. GROUDA, M.G., AND DAYAL, U. Optimal semijoin schedules for query processing in local
distributed database systems. In Proc. ACM-SZGMOD Conf, April 1981, pp. 164-175.

14. HAMMER, M.M., AND SHIPMAN, D.W. Reliability mechanisms for SDD-1: A system for distrib-
uted databases. ACM Trans. Database Syst. 5,4 (Dec. 1980), 431-466.

15. HELD, G.D., STONEBRAKER, M., AND WONG, W. INGRES-A relational database management
system. In Proc. AFZPS 2975 NCC, vol. 44, AFIPS Press, Arlington, Va., pp. 409-416.

16. HEVNER, A.R. Optimization of query processing in distributed databases. Ph.D. Dissertation,
Purdue Univ., Lafayette, Ind., Sept. 1979.

17. HEVNER, A.R., AND YAO, S.B. Query processing in distributed database systems. IEEE Trans.
Softw. Eng. SE-&3 (May 1979), 177-187.

18. KARP, R.M., AND MILLER, R.E. Properties of a model for parallel computation: Determinary,
termination, queueing. SIAM J. Appl. Math. 14 (Nov. 1966), 1390-1411.

19. KERSCHBERG, L., TING, P.D., AND YAO, S.B. Query optimization in star computer networks.
Unpublished Rep., BeII Laboratories, Hohndel, N.J., 1980.

20. MARILL, T., AND STERN, D.H. The datacomputer: A network data utility. In Proc. AFZPS 1975
NCC, vol. 44, AFIPS Press, Arlington, Va.

21. OZKAF~AHAN, E.A., SCHUSTER, S.A., AND SEVCIK, KC. Performance evaluation of a relational
associative processor. ACM Truns Database Syst. 2,2 (June 1977), 175-195.

22. ROTHNIE, J.B. Private communication. See also: A distributed database management system
for command and control applications: Semiannual technical report 2. Tech. Rep. CCA-80-03,
Computer Corp. of America, Cambridge, Mass., Jan. 1980.

23. ROTHNIE, JR., J.B., BERNS’ILEIN, P.A., Fox, S.A., GOODMAN, N., HAMMER, M.M., LANDERS, T.A.,
REEVE, C.L., SHIPMAN, D.W., AND WONG, E. A system for distributed databases (SDD-1). ACM
Trans. Database Syst. 5,1 (March 1980), 1-17.

24. ROTHNIE, J.B., AND GOODMAN, N. An overview of the preliminary design of SDD-1. In Proc.
Berkeley Workshop Distributed Data Management and Computer Newtorks, May 1977,
pp. 39-57.

25. ROTHNIE, J.B., AND GOODMAN, N. A survey of research and develoment in distributed database
systems. In Proc. 3rd Int. Conf Very Large Databases, Oct. 1977, pp. 48-61.

26. ROTHNIE, J.B., GOODMAN, N., AND MARILL, T. Database architecture in a network environment.
In Protocols and Techniques for Data Communication Networks, F.F. Kuo, Ed. Prentice-Ha&
Englewood Cliffs, N.J., 1980.

27. SELINGER, P.G., AND ADIBA, M. Access path selection in distributed database management
systems. In Proc. Znt. Conf Databases, Univ. Aberdeen, Aberdeen, Scotland, July 1980.

28. SELINGER, P.G., ASTRAHAN, M.M., CHAMBERLIN, D.D., LORIE, R.A., AND PRICE, T.G. Access
path selection in a relational database management system. In Proc. ACM-SIGMOD Conf., June
1979, pp. 23-34.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Query Processing in a System for Distributed Databases l 625

29. Su, S.Y.W., AND EMAM, A. CASDAL: CASSM’s data language. ACM Trans. Database Syst. 3,
1 (March 1978), 57-91.

30. WONC, E. Retrieving dispersed data from SDD-1. In Proc. Berkeley workshop Distributed
Data Management and Computer Networks, May 1977, pp. 217-235.

31. WONG, E., AND YOUSSEFI, K. Decomposition-A strategy for query processing. ACM Trans.
Database Syst. 1,3 (Sept. 1976), 223-241.

32. YAO, S.B. Approximating block accesses in database organizations. Commun. ACM 20, 4
(Apr. 1977), 260-261.

33. Yu, C.T., AND OZSOYOGLU, M.Z. An algorithm for tree-query membership of a distributed query.

In Proc. Compsac79, IEEE Computer Society, Nov. 1979, pp. 306-312.

34. Yu, C.T., AND OZSOYOGLU, M.Z. On determining tree query membership of a distributed query.

Tech. Rep. TR80-1, Dep. Computing Science, Univ. Alberta, Edmonton, Alta., Canada, Jan. 1980.

Received October 1979; revised June 1980, accepted December 1980

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981

