
Louisiana State University Louisiana State University 

LSU Digital Commons LSU Digital Commons 

LSU Historical Dissertations and Theses Graduate School 

1988 

Query Processing on the Entity-Relationship Graph Based Query Processing on the Entity-Relationship Graph Based 

Relational Database Systems. Relational Database Systems. 

Hung-pin Chen 
Louisiana State University and Agricultural & Mechanical College 

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses 

Recommended Citation Recommended Citation 

Chen, Hung-pin, "Query Processing on the Entity-Relationship Graph Based Relational Database Systems." 

(1988). LSU Historical Dissertations and Theses. 4490. 

https://digitalcommons.lsu.edu/gradschool_disstheses/4490 

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It 
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU 
Digital Commons. For more information, please contact gradetd@lsu.edu. 

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_disstheses
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_disstheses?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F4490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_disstheses/4490?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F4490&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


INFORMATION TO USERS

The most advanced technology has been used to photo
graph and reproduce this manuscript from the microfilm 
master. UMI films the original text directly from the copy 
submitted. Thus, some dissertation copies are in typewriter 
face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a 
complete manuscript and there are missing pages, these will 
be noted. Also, if unauthorized copyrighted material had to 
be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re
produced by sectioning the original, beginning at the upper 
left-hand corner and continuing from left to right in equal 
sections with small overlaps. Each oversize page is available 
as one exposure on a standard 35 mm slide or as a 17" x 23" 
black and white photographic print for an additional charge.

Photographs included in the original manuscript have been 
reproduced xerographically in this copy. 35 mm slides or 
6" x 9" black and white photographic prints are available for 
any photographs or illustrations appearing in this copy for 
an additional charge. Contact UMI directly to order.

■UM I
Accessing the World’s Information since 1938 

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA





Order Number 8819930

Query processing on th e  entity-relationship  graph based  
relational database system s

Chen, Hung-pin, Ph.D.

The Louisiana State University and Agricultural and Mechanical Col., 1988

U M I
300 N .Z eeb R d .
Ann Arbor, MI 48106





QUERY PROCESSING ON THE ENTITY-RELATIONSHIP 
GRAPH BASED RELATIONAL DATABASE SYSTEMS

A Dissertation

Submitted to the Graduate Faculty of the 
Louisiana State University and 

Agricultural and Mechanical College 
in partial fulfillment of the 

requirements for the degree of the 
Doctor of Philosophy

in
The Department of Computer Science

Hung-pin Chen 
B.S., Tatung Institute of Technology, Taipei, Taiwan, 1975 

M.S., National Cheng-Kung University, Tainan, Taiwan, 1977
May 1988



ACKNOWLEDGEMENTS

Several people have provided assistance and encouragement during my doctoral 

work. It is impossible to acknowledge everyone involved. Especially, I would like to 

express my appreciation of the support and guidance given by my adviser, Dr. Peter P. 

Chen, Muxphy J. Foster Chair Professor of Computer Science. Studying under Dr. 

Chen has been a distinct privilege, both with formal coursework as well as informal 

learning situation. His professionalism and unbiased attitude have a great impact on 

me.

My committee members Dr. John A. Brewer HI, Dr. Donald Kraft, Dr. Sitharama 

Iyengar, and Dr. Leslie Jones have provided many valuable discussions and sugges

tions. I thank them for their input and support.

Finally, I would like to express special thanks to my wife Shu-Hwa, for her 

understanding and encouragement during the difficult times of the entire doctoral 

research.



Table of Contents

ACKNOWLEDGEMENTS.........................................................................................  ii

TABLES OF CONTENTS........................................................................................... iii

ABSTRACT.................................................................................................................. vi

LIST OF SYMBOLS AND ABBREVIATIONS....................................................  vii

1. Introduction...............................................................................................................  1

1. ERM and Extended E R M ............................................................................. 1

2. A Relational Database System Based on E R M ........................................... 1

3. Overview on a Universal Relation...............................................................  3

4. ERM for Database Design and Query Processing....................................... 5

2. The Entity-Relationship Graph and the Constraints on the Global Con

sistency of Database.....................................................................................................  11

1. Entity-Relationship Graph and Local Regions............................................  11

2. Updating propagation Structure for Data Consistency in the E R G   19

3. Data consistency of a Relational Database Based on the E R G .................. 26

3.1 Deletion .............   30

3.2 Insertion ..................................................................................  33

3.3 Modification.........................................................................................  35

3. ER-semijoin Operation on Local Regions of a Query on an Entity- 

Relationship Graph ......................................................................................................  39

1. ER-Semijoin...................................................................................................  44

2. Equivalent operation of Query in ER-semijoin...........................................  44

iii



3. Physical Representation of a Local Region.................................................  48

4. Efficiency of the operation of ER-Semijoin ................................................  53

4. Entity-Relationship Query Graph Processing on the Relational Database 

Systems .....................................................................................................................  64

1. Entity-Relationship Graph and Entity-Relationship Query G raph  ......  64

1.1 Definition of ERG and E R Q G ............................................................  65

1.2 Automatic Allocation of ERQG on a Universal Relation ................. 72

2. Structure of ERQG......................................................................................... 75

2.1 Categories of ER Q G ...................................................................................  76

2.2 Branching and Merging on a RERQG.......................................................  79

2.3 Merging Arcs on a Merging N ode.............................................................. 81

2.4 Decomposition of Branching Arc and Branching N ode...........................  84

5. An ERG Approach to the Universal Relation.....................................................  90

1. Basic Assumptions on the Universal Relation of Semantic Approach 

.............................................................................................................................. 90

1.1 Global and Unique Roles of Attributes ..............................................  90

1.2 Assumption on the Physical Level of Database System s.................. 91

1.3 Assumption on the Semantic M odel...................................................  92

2. Query Decomposition and Its Associated Access Regions........................  95

2.1 The Semantic Extended Region of a Query on a Universal

Relation.......................................................................................................  96

2.2 Unique Property of a Query and Its ERQG on a Universal Rela

tion .........................    99

3. Propagation of Access Paths Via Relationship............................................ 101

iv



6. ERG Based Relational Database System............................................................  110

1. One-Phase and Two-Phase Database Systems of the RDKER.................... 110

1.1 One-Phase Database Systems of the RD K ER.................................... 110

1.2 Two-Phase Interface of Relational Database System Based on

the ERG ......................................................................................................  113

2. An ERG Based Database System ................................................................. 117

2.1 DDL for the Physical Instances of Entity Node and Relation

ship Node ....................................................................................................  118

2.2 Data Types for Attributes of Relations...............................................  122

2.3 Static Constraints for User’s Interface................................................  123

3. A Universal Relation Query Language Based on E R G .....................  124

7. Discussions and Conclusions ...............................................................................  130

8. References.............................................................................................................  134

9. Appendix................      142

10. V ita .......................................................................................................................  165

v



ABSTRACT

An ERG (Entity-Relationship Graph) can be used to provide a semantic structure 

to a relational database system. An ERG is defined by lo ca l regions. A lo ca l region  

contains two nodes of entity types and a node of relationship type. The semantic con

straints of the database represented by the ERG (Entity-Relationship Graph) can be 

used to enforce the global integrity of the database system. A query is mapped onto 

the ERG to obtain an ERQG (Entity-Relationship Query Graph). This mapping can be 

specified by the user by navigating the database or automatically allocated by the sys

tem via a universal relation interface. The ERQG representation of a query can be 

semantically decomposed into a sequence of Local Regions. These Local Regins can 

then be processed according to their order in the query. The ER-semijoin operation is 

introduced to process this sequence of Local Regions. Using this approach, architec

tures of database systems are proposed - two-phase interface and one-phase interface. 

An implementation of a user interface is also discussed.
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C H A P T E R  1 

IN T R O D U C T IO N

1. ERM and Extended-ERM

The Entity Relationship Model (ERM) was introduced as a semantic model for 

the enterprise view of data [Chen1976]. An enterprise view allows a database 

designer to view the whole enterprise. The most important benefit of introducing 

ERM as an enterprise model on database design is that an ERM used as an enterprise 

schema is more stable and easier to understand than the user schema.

As introduced by Chen, an ERM contains entity types, relationship types, and 

attributes. An entity type may have an Existency Dependency or ID Dependency with 

the other entity types, and such an entity type is called a weak entity type. The 

existent dependency is that the existence of an entity type depends on the existence of 

another entity type; the ID dependency is that an entity type cannot be uniquely 

identified by its own attributes and has to be identified by its relationship with other 

entity types. The semantics of an ERM can always be represented in the relationship 

types which connect the entity types. A cardinality is the description of the association 

between an entity type and a relationship type. The cardinality, which represents con

nection between a pair of entity types to a relationship type, is one of the fundamental 

semantics of an ERM, denoted as 1:1, l:m, m :l or m:n.

An extended semantic representation of an ERM, which is obtained from modi

fying the ERM, always depends on the application of an ERM to represent a real 

world. Thus in order to represent more sophisticated information in the real world, 

several different types of extended ERM which are related to different applications of 

information in the real world has been proposed. [Senl981, Neuml986, Webrl981].

1
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2. A Relational Database System Based on ERM

The semantic structure of an ERM can be converted to implementational models 

such as network data models, hierarchical data models, and relational data models. 

Conversion of the structure of an ERM to a hierarchical model or a network model 

can destroy the semantics carried in the ERM. The mapping of an ERM to the rela

tional data model has the benefit that either an entity type or a relationship type can 

represent a physical relation. Therefore, each entity type or relationship type of an 

ERM can be directly mapped into the physical level. [Hawr1984]. Another benefit of 

the mapping of a relational data model from an ERM is that its entity type and rela

tionship type are related to different semantics. Thus a relational database system 

based on ERM can be viewed as two levels: conceptual and physical. Since there is 

no difference between the representation of an entity type and relationship type in the 

physical level, we may have a unique way of handling entity types and relationship 

types in the physical level. The semantic difference among entity type, weak entity 

type, and relationship type can then be built in the conceptual level. Due to the dif

ferent properties in representing the real world, an entity type or a relationship type 

may have a semantic linkage to another entity type or relationship type. With distin

guishable semantic linkages between entity types and relationship types, the semantic 

structure of a database represented in ERM can be grouped into semantic regions. 

Such a semantic region is discussed in chapter 2.

The four schema approach for database architecture was proposed by Prabuddha 

[Hasel981, Sen 1981]. The traditional three-schema architecture of a database con

tains external schema, internal schema, and conceptual schema. In the four schema 

approach, the conceptual schema is decomposed into enterprise schema and canonical 

schema such that the architecture of database contains external schema, internal 

schema, enterprise schema, and canonical schema. The enterprise schema is the ERM 

(Entity-Relationship Model); and the canonical schema is regarded as the data
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structure of the enterprise schema. The utility of enterprise schema may enhance the 

overall conceptual framework of the database system.

A database and knowledge base integrity control method and constraints valida

tion is presented by Nguyen and Qian [Nguyl986, Wiedl986]. Nguyen introduced 

the prototypes and database samples for the control of semantic integrity. We will 

introduce the semantic control of a relational database system that uses ERM instead 

of prototypes and database samples. In our application, a relational database system 

can be viewed as a knowledge based system that contains the knowledge of the con

ceptual level and the knowledge of the physical relations of the database systems. 

That is, after the mapping of an ERM into a relational database, the semantics of the 

database system are preserved as part of the knowledge of a user-friendly interface or 

knowledge based system. The relational database system whose physical relations are 

mapped from an ERG, and whose semantics are represented by an ERG in the concep

tual level is called RDKER (Relational Database with Knowledge of Entity Relation

ship Graph).

3. Overview on a Universal Relation

Though the relational data model proposed by Codd can help the user without 

the necessity of navigating the physical database, it can not remove the need of the 

user to navigate the logical database. In order to help the user navigating the logical 

database, many user-friendly interface models such as a natural language interface, a 

semantic query language [Poonl978, Dougl985], and a universal relation interface 

are proposed. A universal relation model is always based on a relational data model 

which may help the user without the need to navigate the logical database. [Brad1985, 

Davil984, Kentl983, Ullml983]. In other words, the purpose of a universal relation 

is to provide the user a simplified scheme of database. This simplified universal rela

tion model can help the user to make a query without the necessity of understanding
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the underlining structure of the relational database. Since the user does not need to 

know the conceptual structure of the database, all of the attributes in the scheme have 

to be globally defined. Thus the general universal schema assumption is that all of the 

attributes in the universal relation should be uniquely and globally defined.

To construct a universal relation interface, there are two different approaches. A 

universal relation model which treats the whole relational database system as a univer

sal relation or several universal relations is always called a pure universal relation 

approach. That is, a universal relation which uses multivalue dependency and maxi

mal objects as proposed by the Ullman [Davil984], is a pure universal relation 

approach. Thus a universal relation system, such as system/U [Henri984], which is 

based on the theory of maximal objects, multivalue dependency, and chase manipula

tion is a pure universal relation approach. In this approach, the maximal object is 

defined as the largest set of objects in which the user is willing to navigate [Davil984, 

Alfrl979].

Instead of a maximal object, an extension join was proposed by Sagiv for the 

allocation of the accessing paths of a query on a universal relation interface 

[Sagil983]. In Sagiv’s approach to the universal relation scheme, the concepts of 

multivalue dependency and maximal objects are not employed. In the execution of an 

extension join, the access paths of a user’s query is automatically allocated by the aid 

of functional dependency among attributes. Besides the extension join, Sagiv also 

defines the physical representation phase of the relational database system as a 

representative instance.

There is a new trend to the universal relation that does not use the maximal 

object or extension join. Such an approach to the universal relation uses a semantic 

model, the Entity-Relationship Model (ERM). [Bradl985]. In Brady’s approach to 

the universal relation, the outer join is exerted as the processing operator for a query.
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Instead of the outer join, an efficient operation -ER-semijoin based on the ERM will 

be introduced.

4. ERM for Database Design and Query Processing

Since the Entity-Relationship Model (ERM) was introduced by Chen, it has 

become a widely accepted semantic model in database design [Hawrl985, Fryl982]. 

Besides being a good semantic model for the designing of database systems, An 

Entity-Relationship Diagram (ERD) can also be used as an access model which may 

help users navigate database systems [Zhanl983, Schul986, Poonl978].

We will introduce the application of an ERM as the semantic structure of a rela

tional database system. In order to use an ERM as the structure of a relational data

base system, more constraints are required on an ERM. An extended ERM 

represented by an ERG which may represent the semantic structure of a relational 

database system will be investigated. The research contains the following series of 

phases:

(1). The definition of semantic regions of ERG (Entity-Relationship Graph) and their 

constraints on the global consistency of the database: The updating of a database 

can be categorized as modification, insertion, and deletion. The application of an 

ERG to the maintenance of the integrity for the updating of a database will be 

discussed in this chapter.

(2). Explore efficient query tree processing based on ERG: acyclic subgraphs of an 

ERQG can be decomposed into a set of local regions which can be processed by 

an ER-semijoin. An ER-semijoin is an efficient operator that can be processed in 

the conceptual level with the semantics of ERM.

(3). Define an ERQG (Entity Relationship Query Graph) and tree structures of sub

graphs of an ERQG on a relational database system: The semantic structure of a 

relational database system can be defined as an ERG (Entity Relationship
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Graph). A query graph can be obtained by mapping the query onto this ERG 

such that the queiy graph contains a subgraph of the ERG and the relational 

operators of a query on the ERG. Besides helping the user navigate the database, 

an ERG can also be applied to the automatic allocation of access paths of a query 

on a universal relation interface and the conversion of cyclic subgraphs of an 

ERQG to tree structures.

The traditional relational database system always use functional dependency 

between the attributes to obtain the integrity and consistency on the processing of 

user’s query (update and retrieval). In a RDKER (Relational Database System with 

Knowledge of ERG), the ERG is treated as part of the knowledge of a database system 

and which is in the conceptual level. With the knowledge of the semantic structure of 

a relational database system, the information integrity and data consistency of the 

relational database system on the respondence of user’s query can be enforced through 

the constraint of the semantics of ERG.

Based on the query processing on a local Region, the operation of join operation 

on access paths of user’s query can be efficiently modified by using ER-semijoin. 

ER-semijoin, an efficient operation technique for the processing of the access path of 

user’s query, is based on the built-in knowledge of the ERG in the query system of 

databases. With this knowledge of the ERG in the query system, a user’s query about 

the information in the databases can be decomposed into access paths which contain 

only Entity nodes and relationship nodes. Then, by exerting ER-semijoin operation 

on these entity nodes and relationship nodes, the processing of a query can avoid all 

redundant operation on Entity nodes of physical instances. Nevertheless, ER-semijoin 

operation will also reduce the unnecessary operation of attributes in the related rela

tions.

Being different from traditional join operators, such as natural join, equijoin,
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semijoin, and outer join, the ER-semijoin is an intelligent operator for obtaining the 

function of joining two relations. The operation of ER-semijoin, based on the rela

tions in the conjunct local regions, which is much more efficient than the traditional 

joining operators that are implemented on relationship nodes of local regions one rela

tion after another.

(4). Introduce an ERG approach to the universal relation interface: A universal rela

tion Interface based on the semantic structure of an ERG is discussed.

A new universal relation approach that is based on the ERG and which uses ER- 

semijoin for the query processing will be proposed. In this approach to the universal 

relation, the ERG (Entity-Relationship Graph) is used as the structure of a relational 

database system. For a query, an ERG approach has several advantages. The first 

advantage of the ERG approach is that an query graph can be represented in an 

directed graph. The second advantage of the ERG approach is that the relational opera

tors of the query can be mapped into the ERG. Then, such an ERG can be employed 

on the allocation of the access paths via a universal relation interface. That is, an 

ERQG on the universal relation interface which is based on ERG can be obtained. 

Finally, we may employ ER-semijoin for the quety processing of the ERQG.

(5). Develop an integral relational database based on ERG: The ERG, ERQG, ER- 

semijoin, and universal relation interface can be applied either to One-Phase 

database systems or Two-Phase database systems. The architecture of the con

struction of these systems is discussed.

The organization of these phases is illustrated in the Fig. 1.
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ER-semijoin 
(on the relational databases)

ERG(ER Graph) 
ERQG(ER Query Graph)

The universal relation 
based on ERG and ERQG 
(The retrieval interface)

RDKER(Relational Database with Knowledge of ERG) 
Semantically clear ERG -> RDKER 

Global update on a RDKER

Implementation of (1) (2) (3) and (4) 
One Phase Systems 
Two Phase Systems 

Multiple Interfaces based on RDKER

Fig. 1 The Organization of the phases of the research.
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An ERG (Entity-Relationship Model) may be used as an intermediate level for 

the query processing of Multi-Model DBMS [Dayal983, Goodl983, Morgl983]. A 

Heterogeneous Database interface between global schema and local schema using 

ERG as a conceptual intermediate is proposed by Katz and Goodman [Good1983]. 

Hai and Mattew also employed ERG as a intermediate interface among multimodel 

database systems [Dayal983].

The semantic structure of a well designed relational database system can be 

represented in an ERG. This representation has the advantage that a NJ query  can be 

mapped onto the ERG to obtain a subgraph of the ERG. A natural join query is a query 

which simply computes the natural join of relations on a relational schema. An ERQG 

(ER-Query Graph) represents the natural join query based on the ERG. For a cyclic 

ERQG, the cyclic subgraphs of the restriction part of the ERQG can always be con

verted to tree structures. Finally, ER-semijoin can be employed to process the sub

graphs represented in the tree structures.

The representation of an ERG as the semantic structure of a relational database 

has many advantages. The first advantage is that an query on an ERG can be 

represented by an ERQG which can be processed more efficiently than a traditional 

query graph on a relational database. That is, we may use ER-semijoin to process an 

ERQG, which is an efficient query processing technique that we may skip the process

ing on some entity nodes in the access paths of a query. Such an optimization query 

processing technique of ER-semijoin can be applied to all other intermediate inter

faces built on top of the RDKER (Relation Database with Knowledge of ERG ). 

Besides, we may build a universal relation interface by using ERG without exerting 

FD (functional dependency) for the allocation of access paths of a query on a univer

sal relation interface. Nevertheless, for a query of updating (insertion, deletion, 

modification), we may use local constraints defined on the local regions of the ERG to 

maintain the integrity of the database [Chen 1987].
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The architectures of the construction of database interfaces based on the ERG and 

ERQG can be categorized into two-phase interface and one-phase interface. A two- 

phase interface of relational data model using ERG and ERQG contains more than two 

separate phases - the user-friendly interface and the underlying database system, i.e. to 

process a query, the transaction of the information between the interface and the data

base systems is necessary. A one-phase interface of relational data model using ERG 

and ERQG contains only one phase, i.e. the user-friendly interface is part of the data

base system.



CHAPTER 2 

THE ENTITY-RELATIONSHIP GRAPH AND ITS CONSTRAINTS 
ON THE GLOBAL CONSISTENCY OF DATABASE

1. ENTITY-RELATIONSHIP GRAPH AND LOCAL REGIONS

The ERM is a semantic model which views the real world in terms of entity types 

and relationship types between entity types. An entity is an object which exists in the 

real world and can be distinctly identified. Entities can be classified into different 

entity types. A relationships describes the association between two entities or among 

several entities. Relationships can be classified into different relationship types. The 

properties of the entities and relationships can be expressed in terms of attribute-value 

pairs. An ERD is introduced as the diagrammatic technique to describe the ERM. In an 

ERD, an entity type is represented by the rectangular box and a relationship is 

represented by the diamond box. For example, in Fig. 1, PERSON and BOOK are 

entity types, BORROW and WRITE are relationship types. The labels on of the arcs N 

and M are cardinalities which indicate that the relationship types is many to many 

[Chen1977].

To implement an ERD with extended representation in the diagram, an extended 

ERD is introduced. In this extended ERD, an entity type or a relationship type is 

represented as a node; an entity node is a node of entity type and a relationship node is 

a node of relationship type; an arc is the connection between an entity node and a rela

tionship node. In this application, a relationship node of an "exist dependency" or "id 

dependency" and the relationship node of "ISA" type is defined as the binary relation

ship.

In an ERD, if the existence of an entity node depends on the existence of another 

entity node then this entity node is called a weak entity node.

11
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PERSON person_id

person id 
book 7d WRITE BORROW

BOOK book id

Fig. 1 The Entity-Relationship Diagram of the relational database LIBRARY. 

DEFINITION 1 A local region is a subgraph of an ERD. A local region contains two 

nodes of entity types and a node of relationship type, two arcs such that each arc con

nects the node of the relationship type and one of the entity types, and two labels, 

denoted as [EitRj,Ek, j4/?Cy,i4KCy*,Cy,Cyt ,G], where Ei and Ek represent entity nodes 

or weak entity nodes, Rj represents a relationship node; ARCiy and ARCjk are arcs with 

end nodes EitRj and Rj tEk respectively; C,7 and Cjk represent the cardinalities of the 

relationships and are the labels of the local region; G describes the type of the local 

region, which will be discussed separately.

In the physical representation level of a local region, the constraints among the 

values of the key attributes of nodes is called a local constraint. The local constraint 

of local regions is defined separately according to the different types of semantic 

representation of local regions.

We call a local region [£,, Rj, Ek ARCij, ARCjk, Cijt Cjk,G] with order from £, to Rj 

and from Rj to Ek a directed local region. In a directed local region 

[£,,Rj,EkMCij , ARCjk, Cij,Cjk,G], the node £, is called the tail and the node Ek is 

called the head.

A local region can be categorized according to its semantic representation and 

local constraint into four types - dependency local region (D), specialization local 

region (5), role-relationship local region (R), common local region (C).
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DEFINITION 2 The dependency local region [Eh R j ,E k ,ARCij ,A R C jk, CiJyCjk, D ] is a 

directed local region with tail £, and head Ek, in which the node Ek has "existence 

dependency" or "id dependency" on the node £,, and which satisfies the local con

straint

nPK. r (Ek) = nPKi r(R j)

KptfVlj)  ^TtPKir(Ei)

where PKi tPKk are the key attributes of the nodes of the local region £, , Ek respec

tively; r ( £ ,) ,  r (R j), r(Ek) are physical instances which represent the £,, R j ,  and Ek in the 

physical level respectively.

emp_id
address
phone

LIVE state name

emp_id 
child_name 
child order

state_name
city_name

emp_id 
state name

HAS HAS 1

child_name 
birth date

city_name

city_name 
street nameHAS 2

street name

CITY

STREET

CHILD

EMPLOYEE STATE

Fig. 2 The ERD of the relational database EMPLOYEE.

The head of a dependency local region represents a weak node of the tail. 

According to the local constraint of the dependency local region, the transitive pro

perty of weak nodes exists. In other words, the head of a dependency local region can 

be the weak node of the tail of another dependency local region iff the tail of the first 

local region is the weak node of the second local region. For two dependency local
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regions [EiyR j ,E k , ARCij,ARCjk ,C ij , C jk,D ]  and [Ek, R h Em, ARCkl,ARClm,C kl,C lm,D ] ,  Ek 

is a weak node of the node £, and Em is a weak node of Ek , From the transitive pro

perty E m is a weak node of £,. In the connected local regions, we assume that an entity 

node of a dependency local region can not be a weak node of its weak nodes.

Example 1: The ERD as shown in fig. 2 has dependency local regions [EMPLOYEE, 

H A S, CHILD, ARCe h , ARCh c , 1, M , D ] ,  [STATE, HAS_1, CITY, ARCs j n , ARCH1 c , 1, M ,  

£>], and [CITY, HASJ2, STREET, ARCc_H2> 4£C W2_OT?£Er, 1 M ,  £>]. In these local regions, 

the node CHILD is a weak node of the node EMPLOYEE, the node CITY is a weak node 

of the node STATE, the node STREET  is a weak node of the node CITY and a weak node 

of the node STATE.

In the local regions with common entity nodes, a node is called the content of 

another node if the collection of the values of key attributes on this node is the subset 

of the collection of that on another node.

DEFINITION 3 The specialization local region [Et , I S A , Ek,ARCij,ARCjk, Cy, CJk, S ]  is 

a directed local region with tail Et and head Ek, in which the node ISA describes the 

specialization relationship such that the node Ek is the content of the node £, , and 

which satisfies the local constraint

KpK/(.Ek ) c n PKlr(Ei)

The head of a specialization local region represents the object which is a content 

of the tail. The head is called the specialization node of the tail in a specialization 

local region. According to the local constraint of the specialization local region, the 

transitive property of content exists. In other words, the head of a specialization local 

region can be the specialization node of the tail of another specialization local region 

iff the tail of the first local region is the head of the second local region. We assume 

that in the local regions with common entity nodes, a node can not be the specializa-
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tion node of its specialization node.

ISAISA

TREAT

ISAISA

INTERNIST

PERSON

DOCTOR PATIENT

Fig. 3 The ERD of a relational database PERSON.

Example 2: The ERD as shown in fig. 3 has specialization local regions [PERSON, IS A , 

DO C TO R, ARCpERsoNjsAt A R ^ i s a d o c t o r > 1, 1, 5] , [PRESON, ISA , PATIENT, A R C PE R SO N j s a > 

A R C j s a j ’a t i e n t > 1> 1> 5 ] ,  [DOCTOR, ISA , INTERNIST, A R C D O c t o r j s a > A R C i s a j n t > 1> 1> $]» 

[DOCTOR, ISA , OCULIST, A R C j^ q ^ j q p  j s a > ^ R C j s a  o c u » 1? 1, 5]. In these local regions, the 

node DOCTOR  and the node PATIENT  are the contents of the node PERSON,the node 

INTERNIST  and the node OCULIST are the contents of the node DOCTOR and they are 

also the contents of the node PERSON.

The local constraint of a local region which is not a directed local region is

n PK,r (R j )  Z  Kpk/ ( E i )

Kpic,r (Rj) ^ nPK>r (Ek)

DEFINITION 4 The ro le-rela tionsh ip  loca l region  [£,, R j , E k, ARC i}, ARCJk ,C y, Cjk, R ] 

is a local region in which the nodes , Ek are heads of another specialization local 

regions and they are contents of the same node.

Example 3: The ERD as shown in fig. 3 has a role-relationship local region [DOCTOR, 

TREAT, PATIENT, ARCd o c t o r  t r e a t ■> AR C t r e a t  p a t i e n t > N , A f , R ] .  In this local regions, the
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node DOCTOR and the node PATIENT are the contents of the node PERSON.

DEFINITION 5 The com m on lo ca l reg ion  [Ei ,R j ,E k,ARCij, ARCJk, Cijt Cjk, R ] is a local 

region which is neither a directed local region nor a role-relationship local region.

Example 4: The ERD as shown in fig. 2 has a common local region [EMPLOY, LIVE, 

STATE, ARCmP UVE, ARCn^_mTE, N , M ,  C] .  In this local region, the node EMPLOYEE 

and the node STATE are not the head of any directed local region.

The local region in an ERD can be either a directed subgraph or an undirected 

subgraph. The specialization local region and dependency local region are directed 

subgraphs. The local regions other than specialization local region and dependency 

local region are undirected subgraphs.

DEFINITION 6 An ERG (Entity-Relationship Graph) is an ERD in which if a pair of 

entity nodes are adjacent to a relationship node, then these entity nodes and their adja

cent relationship node can be represented by one of the local region as defined above.

In an ERG nodes of a local region can be the tails of the other local regions. If 

there is a tail of a dependency local region which is not a head of any dependency 

local region, then we may construct a hierarchical region starting from this node.

DEFINITION 7 A hierarch ical reg ion  HR of an ERG is a structure which is the sub

graph of an ERG such that

(1) there is a special node called the start node which is the tail of a dependency 

local region and which is not a head of any dependency local region,

(2) all of the dependency local regions that contain the start node are contained in 

the region,

(3) the dependency local regions whose tails are in the hierarchical region are con

tained in the region.
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Example 5: The ERG as shown in fig. 2 has two hierarchical regions. The hierarchical 

region with root EMPLOY is {[EMPLOYEE, HAS, CHILD, ARCe h , ARCu_c, \ , M , D ] } \  the 

hierarchical region with root STATE is {[STATE, IIAS_1, CITY, ARCS W1, ARCH lc , 1, M , 

D ], [CITY, HAS_2, STREET, ARCC H2, ARC„2jrrREIrr, l M , D ] } .

If there is a tail of a specialization local region which is not a head of any spe

cialization local region, then we may construct an inheritance region starting from this 

node.

A directed inheritance structure TR> of an ERG is the structure which is a sub

graph of an ERG such that

(1) there is a special node called the start node which is the tail of a specialization 

local region and which is not a head of any specialization local region,

(2) all of the specialization local regions that contain the start node are contained in 

the structure,

(3) the specialization local regions whose tails are in the directed inheritance struc

ture are contained in the directed inheritance structure.

DEFINITION 8 An inheritance region IR- of an ERG is a subgraph of an ERG and 

which contains (i) the directed inheritance structure TR> starting from the start node R' 

and (ii) the role-relationship local regions whose two end nodes of entity types are in 

the directed inheritance structure.

Example 6: The ERG as shown in fig. 3 represents an inheritance region with root PER

SON as { [PERSON, ISA, DOCTOR, ARCPERSonjsa, ARCisa_doctor, 1, 1, 5], [PRESON, ISA, 

PATIENT, ARCpeksonjsa > ARCjsa patjent j 1> S], [DOCTOR, ISA, INTERNIST, ARCDOctorjsa > 

ARCisajnt; 1» 1> S]> [DOCTOR, ISA, OCULIST, ARCdoctorjsa> ARCisa_ocu> [DOC

TOR , TREAT, PATIENT, ARCdoctor treat> ARCtReat_patient> N , M , R] } .
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For two end nodes of an arc, one end node is called the adjacen t node of the 

other. The adjacent nodes of an entity node are relationship nodes and the adjacent 

node of a relationship node are entity nodes, A surrounding region  of a node which is 

not a head or a relationship node of a directed local region consists of (i) a central 

node which is represented by this node, (ii) the adjacent nodes of the central node, 

which are also not a head or a relationship node of a directed local region, (iii) the arcs 

connect the central node and its adjacent nodes. A surrounding region of an entity 

node is called an entity  surrounding region. A surrounding region of a relationship 

node is called a relationsh ip surrounding region. We assume that in a surrounding 

region of an E R G , the key attributes is uniquely defined. In other words, in a surround

ing region, the same key attributes in the relationship nodes is defined by only one 

entity node.

Fig. 4 An ERG of a RDKER.

Example 7: The semantic model of a relational database is represented by the ERG in 

fig. 4. The entity surrounding region of the entity node £ 7 is { E l t R %, R 6, /?n}. The rela

tionship surrounding region of the the relationship node R 6 is {/?6, E lt e 9, e s, £ i0) .

A relationship surrounding region with a central node of n-ary relationship can 

be represented by n(n-l)/2 local regions.
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Example 8: The relationship surrounding region [WORK, PERSON, PROJECT, DEPT] of 

an ERG with a 3-ary central node of relationship type WORK can be represented by 

3(3-l)/2 local regions as [PERSON, WORK, PROJECT, N , M , C ] [DEPT, WORK, PERSON,

1, M , C ] [PROJECT, WORK, DEPT, N , M ,  C].

2. UPDATING PROPAGATION STRUCTURE FOR DATA CONSISTENCY 

IN THE ERG

A query of updating is categorized as insertion, deletion, and modification. To 

maintain the integrity of a database for updating a node in an ERG, some of the adja

cent nodes of this node have to be updated. Thus the processing of updating has to be 

propagated from a node to its adjacent nodes which have to be updated. Such a propa

gation of updating from a node to its adjacent node is called updating propagation. 

Similarly, the updating of each adjacent node of a node may require that some nodes 

adjacent to each adjacent node to be updated. The updating of a node can be itera

tively propagated until the integrity of the database is maintained.

In a query of updating, the user specifies the attribute values of a node in an ERG 

to be updated. This specified node in a query of updating is called the start node of 

updating with respect to the query. The structure which represents the propagation 

sequence for the updating of a start node is called the updating propagation structure 

of a start node. In the construction of a updating propagation structure, we assume 

that the head of a specialization local region can not be the head of a dependency local 

region.

For a query of updating with a start node, a top down updating propagation 

structure of the start node which is in a hierarchical region is a structure such that:

(i) The nodes of the dependency local regions which contains the start node as their 

tails or as their relationship nodes can be contained in the structure. In these 

dependency local regions, if the start node is a relationship node, then the heads
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of these local regions are contained in the structure as the children of the start 

node; else all of the relationship nodes of these local regions are contained in the 

structure as the children of the start node and the head of these local regions are 

contained in the structure as the children of their relationship nodes. If a head 

has more than one adjacent relationshiop node in the structure, then duplicates 

the head such that each head in the structure has only one parent node.

(ii) The nodes of the dependency local regions which is never used in the construc

tion of the structure and whose tails are in the structure can be contained in the 

structure. The relationship nodes of the selected dependency local regions are 

contained in the structure as the children of their tails, then the heads of these 

local regions are contained in the structure as the children of their adjacent rela

tionship nodes in the structure. If a head has more than one adjacent relationship 

node in the structure, then duplicates the head such that each head in the struc

ture has only one parent node.

(iii) The relationship nodes of the common local regions which have their nodes in 

the structure are contained in the structure as the children of their adjacent nodes 

in the structure.

For a query of updating with a start node, a top down updating propagation

structure of the start node which is in a inheritance region is a structure such that:

(i) The nodes of the specialization local regions which contains the start node as

their tails or as their relationship nodes can be contained in the structure. In 

these specialization local regions that contain the start node, if the start node is a 

relationship type, then all of the heads of these local regions are contained in the 

structure as the children of the start node; else all of the relationship nodes of 

these local regions are contained in the structure as the children of the start node 

and the heads of these local regions are contained in the structure as the children
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of their relationship nodes. If a head has more than one adjacent relationshiop 

node in the structure, then duplicates the head such that each head in the struc

ture has only one parent node.

(ii) The nodes of the specialization local regions which is never used in the construc

tion of the structure and whose tails are in the structure can be contained in the 

structure. The relationship nodes of the selected specialization local regions are 

contained in the structure as the children of their tails, then the heads of these 

local regions are contained in the structure as the children of their adjacent rela

tionship nodes in the structure. If a head has more than one adjacent relationship 

node in the structure, then duplicates the head such that each head in the struc

ture has only one parent node.

(iii) The relationship nodes of the common local regions which have their nodes in 

the structure are contained in the structure as the children of their adjacent nodes 

in the structure.

(iv) the relationship nodes of the role-relationship local regions whose two entity 

nodes are in the structure are duplicated and contained in the structure as the 

children of its adjacent entity nodes.

For a query of updating with a start node, a bottom up updating propagation

structure of the start node which in a hierarchical regions is a structure such that:

(i) The nodes of the dependency local regions which contain the start node as their

heads or as their relationship nodes can be contained in the structure. In these 

dependency local regions, if the start node is a relationship node, then all of the 

tails of these local regions are contained in the structure as the children of the 

start node; else all of the relationship nodes of these local regions are contained 

in the structure as the children of the start node and the tails of these local 

regions are contained in the structure as the children of their relationship nodes.
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If a tail has more than one adjacent relationship node in the structure, then dupli

cates the tail such that each tail in the structure has only one parent node.

(ii) The nodes of the dependency local regions which is never used in the construc

tion of the structure and whose heads are in the structure are contained in the 

structure. The relationship nodes of the selected dependency local regions are 

contained in the structure as the children of their heads, then the tails of these 

local regions are contained in the structure as the children of their adjacent rela

tionship node in the structure. If a tail has more than one adjacent relationship 

node in the structure, then duplicates the tail such that each tail in the structure 

has only one parent node.

For a query of updating with a start node, a bottom up updating propagation

structure of the start node which is in an inheritance region is a structure such that:

(i) case I: the start node is a relationship node of a role-relationship local region

In a role-relationship local region, the key attributes are specified with the role. 

From the specified role of the start node, the entity node in the local region which 

has the specified role can be identified. The entity node in the role-relationship 

local region which has the same specified role with that of the start node is con

tained in the structure as the child of the start node; 

case II: the start node is in a specialization local region

The nodes of the specialization local regions which contains the start node as

their heads or as their relationship nodes may be contained in the structure. In

these specialization local regions, if the start node is a relationship type, then all 

of the tail of these local regions are contained in the structure as the children of 

the start node; else all of the relationship nodes of these local regions are con

tained in the structure as the children of the start node and the tails of these local 

regions are contained in the structure as the children of their relationship nodes.
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If a tail has more than one adjacent relationship node in the structure, then dupli

cates the tail such that each tail in the structure has only one parent node.

(ii) The nodes of the specialization local regions which is never used in the construc

tion of the structure and whose tails are in the structure are contained in the 

structure. The relationship nodes of the selected specialization local regions are 

contained in the structure as the children of their heads, then the tails of these 

local regions are contained in the structure as the children of their adjacent rela

tionship nodes in the structure. If a tail has more than one adjacent relationship 

node in the structure, then duplicates the tail such that each head in the structure 

has only one parent node.

The possibility for a top down updating propagation structure of a start node in 

an inheritance or hierarchical region to be a cycle is that there are more than one local 

regions with their nodes in the structure having the same head. Similarly, the possibil

ity for a bottom up updating propagation structure of a start node in an inheritance or 

hierarchical region to be a cycle is that there are more than one local regions with 

their nodes in the structure having the same tail. According to rules of the creation of 

a updating propagation structure, if there are more than two local regions which have 

the same head for the top down propagation structure or the same tail for the bottom 

up propagation structure then the common node is duplicated and contained in the 

structure. Since there is not any node in the structure has more than two parent, these 

updating propagation structures are tree structures.

In an inheritance region of an ERG, a node which is not the start node of the 

region can be the start node of a hierarchical region. Likewise, a node which is not the 

start node of a hierarchical region can be the start node of an inheritance region. In 

this case, the updating propagation structure of a start node in an inheritance region 

may propagate to hierarchical regions; and the updating propagation structure of a
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start node in a hierarchial region may propagate to inheritance regions. For the con

venience, we may construct the updating propagation structure according to the updat

ing propagating rules of a start node in an inheritance region or in a hierachical region 

and extend the nodes in the structure as the start nodes of other hierarchical regions or 

inheritance regions respectively if it is available. Thus the updating propagation struc

ture of a start node in an inheritance region or a hierachical region can be constructed 

iteratively form the updating propagating rules of a start node discussed above.

A surrounding updating propagation structure of a start node in a surrounding 

region is a tree structure such that

(i) The nodes in the surrounding region of the start node in the ERG are contained in 

the structure. These nodes adjacent to the start node in the ERG are the children 

of the start node in the tree.

(ii) Each node in the tree may have children. The nodes in the surrounding region of 

a node in the tree, which contain the key attributes of the central node and that 

are not the parent of its central node in the tree, are contained in the structure as 

the children of their central node in the tree. If a child has more than one parent 

in the tree, then it is duplicated such that each child in the tree has only one 

parent.

The surrounding updating propagation structure of a relationship node in a sur

rounding region is called the relationship surrounding updating propagation struc

ture; the updating propagation structure of an entity node in a surrounding region is 

called the entity surrounding updating propagation structure.

These updating propagation structures defined above are tree structures. The 

height of a updating propagation structure for updating is the longest path from the 

root to a leaf. In a updating propagation structure, the degree o f updating propagation 

structure is defined as the height of the tree.
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THEOREM 1 The degree of an entity surrounding updating propagation structure is 

1.

Proof: In a surrounding region, the key attributes of an entity node is uniquely defined. 

In other words, the key attributes of the relationship nodes in this surrounding region 

can not represent the key attributes of their adjacent entity types other than the root. 

The updating propagation of the key attributes starts from the root of entity node and 

ends at its adjacent relationship nodes. Thus the height of the such a updating propa

gation tree is 1.

THEOREM 2 The degree of a relationship surrounding updating propagation struc

ture is 2.

Proof: In a surrounding region, the key attributes of a relationship node should be 

defined by its adjacent entity types. It is obvious that the height of updating propaga

tion from the relationship node to its adjacent entity nodes is 1. The theorem 1 prove 

that the updating propagation of an entity node is 1. The updating propagation of the 

relationship node is the height of the updating propagation from the root to its adja

cent entity nodes and the height of the updating propagation of its adjacent entity 

nodes. Thus the degree of updating propagation of such a relationship is 2.

person_id 
book id

PERSON person_id

WRITE BORROW personid 
book id

Fig. 5.a Updating propagation structure of entity node PERSON.
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BORROW person_id 
book id

person_id PERSON BOOK book id

person_id 
book id WRITE WRITE person_id 

book id

Fig. 5.b Updating propagation structure of BORROW.

Example 9: An ERG of database LIBRARY is shown in fig.l. The updating propagation 

tree of the entity node PERSON is shown in fig. 5.a which represents the updating 

propagation of the primary key person_id of the node PERSON. The updating propa

gation tree of the relationship node BORROW consists of two subtrees, one subtree 

has the primary key person_id and the other subtree has the primary key book_id is 

shown in fig. 5.b . The degree of updating propagation of entity node PERSON is the 

height of the tree of fig. 5.a and the degree of updating propagation of relationship 

BORROW is the height of the tree of fig. 5.b. That is, the degree of updating propa

gation of the entity node PERSON is 1 and the degree of updating propagation of the 

relationship node WRITE is 2.

3. DATA CONSISTENCY OF A RELATIONAL DATABASE BASED ON THE 

ERG

The advantage of using semantic level to control the integrity of a relational 

database during the updating (modification, insertion, deletion) is that the constraints 

among the key values of the physical instances can be defined in the semantic level 

based on the local regions. A physical instance is a table in the physical level which is 

represented by an entity node or relationship node in the semantic level. Thus with
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the knowledge of local regions in an ERG, the integrity control of a relational database 

based on the ERG can be achieved.

To update (modify, insert, delete) a physical instance of an entity node or a rela

tionship node in an ERG, null value constraints in the physical level should be studied. 

A null value is a special value which is used to represent an unknown or inapplicable 

value. In most database systems, some of the information may contain null value, for 

example, the attributes of an entity node PERSON is PERSON[person_id, phone, 

address,...]. If a new person does not have a phone number yet, the null value of the 

phone number should be allowed. But if the person_id is null, the system will have a 

problem in the allocation of the tuple. Thus, the proper allowance of null values will 

make the system more flexible and user-friendly. We assume that the projection on a 

column of a physical instance does not contain null value.

The full null constraint on a physical instance of a RDKER is that there is no null 

value contained in the primary keys. The partial null constraint on a physical 

instance of a RDKER is that for each tuple at least one of the values of the key attri

butes is not null.

Since an entity node represents the distinguishable entities of a database and its 

primary keys are uniquely defined on each entity as an identifies, the null value in the 

key attributes of an entity is a contradiction that an entity can be identified by primary 

keys. Thus the null value is prohibited in the physical instance of an entity node in an 

ERG

The null constraint on the relationship nodes depends on the design strategy of 

the database system [Datel983]. For example, the local region [PERSON, BUY, 

BOOK] contains two entity nodes PERSON, BOOK and a relationship node BUY. In 

the physical level, the primary keys of PERSON and BOOK should not be null. How

ever the null value in the key attributes of BUY may be partially allowed. The policy
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of this database design is that the department may allow the employees to buy books 

without receipt when the price of the book is under twenty dollars. In this case, the 

physical instance of the relationship may have some people who bought a book 

without containing the information about the book. The null value of "book_id" on the 

physical instance of the relationship node is allowed in this example.

For an n-ary relationship other than a binary relationship, the partial null con

straint is always necessary. For example, let RS be a relationship surrounding region 

and RS = [WORK, PERSON, PROJECT,DEPARTMENT], where WORK is a relationship 

node surrounding by the entity nodes PERSON, PROJECT, and DEPARTMENT. Then, the 

person who works in a department and who does not work in a project yet should have 

a null value on the primary keys of the physical instance PROJECT.

A query on a database is categorized as retrieval and updating. The updating can 

further be categorized into modification, insertion, and deletion. For a query of updat

ing, the correctness and accuracy in the database can be controlled in the semantic 

level. The integrity control of a relational database based on the local regions of the 

ERG can be categorized according to the information of a node to be updated as

(1) the attributes to be updated are key attributes of a node in an inheritance region,

(2) the attributes to be updated are key attributes of a node in a hierarchical region,

(3) the attributes to be updated are key attributes of a node which is neither in a 

hierarchical region nor in an inheritance region,

(4) the attributes to be updated are nonkey attributes.

The updating of the nonkey attribute values of a node will not affect the integrity 

of a database. Thus the updating of nonkey attributes will not be discussed in this 

chapter.

The local constraints of the local regions in an ERG can be applied directly on the 

integrity checking of a relational database based on the ERG. The integrity checking of
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a database by applying the local constraints of all local regions in an ERG is called the 

static integrity checking based on the local regions. The integrity checking of a data

base which uses local constraints in updating propagation structures of a node to be 

updated is called the dynamic integrity checking based on the local regions.

The integrity checking in a local region contains the following contents:

(i) Each physical instance of a local region has to be at least in the third normal 

form.

(ii) The key values of the physical instance of the relationship node should satisfy 

the cardinality constraints defined in the local region. That is, in the physical 

instance of a relationship node, the key values of the entity nodes have to be 

checked whether they violate the cardinality specified in the local region.

(iii) The physical instances in a local region should satisfy the local constraint on the 

local region.

The normal form of (i) have been widely discussed [Datel983, Hawrl984], and 

cardinality constraints of (ii) is discussed by Lenzerini [Santl983. We will discuss the 

using of the updating propagation tree and the local constraints of the local regions of 

the nodes in the tree for the updating of the database in the folio wing, sections. As dis

cussed by the DATE that the updating of a relational database always depend on the 

policy of the database design [Date1983], the detail implementation of these updating 

propagation trees is depend on the policy of the database design. The design policy of 

a database during update is not discussed here.

Example 10: The ERG as shown in fig. 2 has local regions [EMPLOYEE, HAS, CHILD, 

ARCe h , ARCh c , 1, M , D ], [STATE,HAS_ 1, CITY, ARCs m , ARCH1C, h  M , Z>], [CITY, 

HAS_2, STREET, ARCCH2, ARCH2Jm E E T, 1 M , D ] } ,  and [EMPLOYEE, LIVE, STATE, ARCEL, 

ARCl s , N, M , C]. The static integrity checking of this database can be processed as (i) 

checking whether the physical instances of EMPLOYEE, HAS, CHILD, STATE, LIVE,
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HAS_ l, CITY, HASJ2, and STREET are in the third normal form or not, (ii) checking the 

cardinality restriction on the physical instances of HAS, HAS_ 1, and HAS_2 for l:m 

relationship; LIVE for n:m relationship, and (iii) checking the local constraints of the 

physical instances of these local regions respectively.

The dynamic integrity checking in an ERG is more complex than the static 

integrity checking based on the local regions. In the following sections, we will dis

cuss the dynamic integrity checking based on local regions of an ERG for the updating 

of a database. In a updating propagation tree, if an entity node is duplicated, then the 

counter for the number of duplication have to be set up on this node. In the processing 

of updating by using the updating propagation structure, if an entity node is dupli

cated, then the updating of the subtree with this node as start node can be propagated 

only if all the duplicated nodes of this entity node in the tree is updated.

3.1. Deletion

The updating propagation for the deletion of key values of nodes in inheritance 

region, hierarchical region, and surrounding region can be represented by the top 

down inheritance updating propagation structure, top down hierarchical updating pro

pagation structure, and surrounding updating propagation respectively. A updating 

propagation tree specifies the sequence of the deletion of the physical instances of the 

nodes in the tree when key values of the start node are deleted. The deletion start from 

the start node of the structure. If a node in the structure contains the information to be 

deleted, then the processing of deletion should be propagated from this node to all the 

children of this node; else the processing of deletion should not be propagated to any 

child of this node.

Deletion of Key Values in an Inheritance Region
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An inheritance region may contain two types of local regions - role-relationship 

local regions and specialization local regions. A role relationship local region is an 

undirected local region such that the deletion of the tuples of the relationship node of 

this local region will not affect the integrity of the other nodes in the ERG.

To delete the key attributes of a node in a specialization local region of an inheri

tance region, a top down inheritance updating propagation structure which has this 

node as start node can be created. The top down inheritance updating propagation 

structure describes the processing order which specifies the sequence of the nodes in 

the inheritance region and the nodes connected to the inheritance region to be deleted.

Example 11: The database PERSON as shown in fig. 3 represents an inheritance region 

with start node PERSON. To deleted a tuple from the physical instance PERSON, some 

tuples of the physical instance in the top down inheritance transition with start node 

PERSON have to be deleted. This updating propagation tree contains entity nodes PER

SON, DOCTOR, PATIENT, INTERNIST, OCUUST, and TREAT, where the node TREAT is 

duplicated and connected to the nodes DOCTOR and PATIENT. In the physical 

instances of the entity nodes DOCTOR, PATIENT, INTERNIST, OCUUST, the tuples 

whose key values contain the key values of the tuple deleted in PERSON have to be 

deleted. To delete the physical instance TREAT, the deletion has to be processed on 

both the key attributes with role DOCTOR and the key attributes with role PATIENT 

That is, the tuples in the physical instance of TREAT have to be deleted if (i) the key 

values of the role DOCTOR which contains the key values of the deleted tuple in PER

SON, or (ii) the key values of the role DOCTOR which contains the key values of the 

deleted tuple in PERSON.

Deletion of Key Values in a Hierarchical Region

To delete the key attributes of a node in a dependency local region of a hierarchi
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cal region, a top down hierarchical updating propagation structure which has this node 

as start node can be created. The top down hierarchical updating propagation structure 

describes the processing order which specifies the sequence of the nodes in the 

hierarchical region and the node connected to the hierarchical region to be deleted. 

The processing of the deletion should obey the local constraint of the dependency 

local region. If the start node of a top down hierarchical updating propagation struc

ture is a entity node and that is not the start node of the hierarchical region in which 

this node is contained in, then the local constraints between the relationship nodes of 

the dependency local regions which have this node as head and this node have to be 

checked.

Example 12: In the database as shown in fig. 2, a top down hierarchical updating pro

pagation structure with root ST A T E  can be represented by the list with order of nodes 

as S T A T E , H A S _  l, C IT Y , H A S _ 2, S T R E E T .  The sequence for the processing of the check

ing of local constraints in this structure are :

( 1 )  ^statt_name r (RllAS_l) £  ^state_namt r  (E state ) ’>

(2 ) city_name ̂  ) 'K'cityjiame ̂  $ H A S _  1)  *

(3) ^city_name r (^HAS_2) £  JR‘city_name r (E c n Y ) ’,

(4) ^street_name r ( E s tr e e t )  ^streetjiame

If the tuples of ST A T E  are deleted, then the tuples in the H A S _ l  which violate the local 

constraint (1) are deleted; then the tuples in the C IT Y  which violate the constraint (2) 

are deleted; then the tuples in the H A S 2  which violate the constraint (3) are deleted; 

then the tuples in the S T R E E T  which violate the constraint (4) are deleted.

Deletion of Key Values in a Surrounding Region

We assume that the deletion of the key values of the relationship node in an 

undirected local region does not affect the integrity of any other node in the E R G . To
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delete the key values of an entity node in a surrounding local region, an entity sur

rounding updating propagation structure which has this node as root can be created.

If the root of an entity surrounding updating propagation is also the roots of 

inheritance regions or hierarchical regions, then the top down inheritance updating 

propagation structures or top down inheritance updating propagation structures are 

created as the subtree of the root. Such a updating propagation structure describes the 

processing order which specifies the sequence of the nodes in the ERG to be deleted.

Example 13: In the database LIBRARY as shown in fig. 1, the updating propagation 

structure of PSRSON is shown in fig. 5.a. To delete a tuple in the physical instance PER

SON, the tuples of the relations WRITE and BORROW, which contain the key values of 

the tuple deleted in the relation PERSON have to be deleted.

3.2. Insertion

The updating propagation for the insertion of key attributes of nodes in inheri

tance region and hierarchical region can be represented by the bottom up inheritance 

updating propagation structure and bottom up hierarchical updating propagation struc

ture. The bottom up inheritance updating propagation structure describes the process

ing order which specifies the sequence of the nodes to be inserted.

Insertion of Key Values in an Inheritance Region

To insert the key attributes of a node of an inheritance region, a bottom up inher

itance updating propagation structure which has this node as root can be created.

Example 14: The database PERSON as shown in fig. 3 represents an inheritance region. 

To insert a tuple into the physical instance of the node OCUUST, a bottom up inheri

tance updating propagation structure with root OCULIST can be constructed. In this
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example, the processing sequence can be represented by a list of nodes as OCULIST, 

DOCTOR, PERSON. To apply the local constraint of a specialization local region into 

this structure, the sequence of local constraints checking in this structure are

Kpersonjd r (PoCVUSr) ^Kpersonjd T (PdOCTOr)\ 

ftperson_id r  P DOCTOR ) E  ^ personjd r  (Ep e r s o n ) -

The first constraint specifies the key values of the new tuple of the OCUUST should be 

defined in the DOCTOR, and the second constraint specifies that the same key values 

should also be defined in the PERSON.

Insertion of Key Values in a Hierarchical Region

To insert the key attributes of a node in a dependency local region of an hierarch

ical region, a bottom up updating propagation structure o f hierarchical regions which 

has this node as root can be created.

Example 15: The database EMPLOYEE as shown in fig. 2 contains two hierarchical 

regions. To insert a tuple into the physical instance of the node CITY, a bottom up 

hierarchical updating propagation structure with root CITY can be constructed. In this 

example, the processing sequence can be represented by a list of nodes as CITY, HAS, 

STATE. By applying the local constraint of dependency local region into this sequence, 

the constraints in this structure are

ĉityname r(ECm ) -  ftcityjuvne r (̂ HAS_ 1) >

^state/tame C ^statename r (PSTATe )-

The first constraint specifies the key values of the new tuple of the CITY should be 

defined in the HAS_ 1, and the second constraint specifies that the key values of the 

state_name in the tuples containing the inserted key should be defined in the STATE.
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Insertion of Key Values in a Surrounding Region

The insertion of tuples of an entity node which is not in a directed local region 

will not affect the integrity of the other nodes in the ERG. To insert the key attributes 

to a relationship node, the entity nodes which is in the relationship surrounding region 

of the relationship node and which contain any attribute to be inserted have to be 

checked. If there is any entity node which have a new key attributes to be inserted 

and which is the root of an inheritance region or a hierarchical region, then bottom up 

updating propagation tree of an inheritance region and hierarchical region with this 

node as root have to be created as the subtree of this node.

3.3. Modification

A trivial case of the modification is that the user want to modify the key values 

of a relationship node without the modification of the values of the entity nodes con

nected to the relationship node. In this case, if the new values are defined in the 

entity node which contain the key attributes and which is adjacent to the relationship 

node, then the modification can be processed; else the modification does not allowed.

Modification of Key Values in an Inheritance Region

The modification of key values of a start node in an inheritance region can be 

categorized as

(i) modification of all nodes in the inheritance region and related nodes which have 

to be modified for the modification of these nodes,

(ii) modification of nodes in the top down updating propagating structure of the start 

node.

The policy of modification can be specified by the database designer. The user 

may have to select the option of the modification before the processing of the 

modification.
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The modification of a node in an inheritance region may start from any node in 

the region, and a top down inheritance updating propagation structure with this node 

as root can be created. If a node to be modified is not a start node of an inheritance 

region, then before the processing of the modification in the updating propagation tree 

the local constraint between this node and the tails of the specialization local regions 

which have this node as head have to be checked. If the new tuples of the root node 

of the top down hierarchical transition tree does not violate the integrity of the data

base, then the modification can be propagated in the updating propagation tree start 

from the root. For any node in the tree contains the information to be modified, then 

the processing of modification should be propagated from this node to all the children 

of this node; else the processing of modification should not be propagated to any child 

of this node.

Example 16: The physical instances of PERSON,DOCTOR,INTERNIST, and OCUUST 

contain key values [<p{>, <pz>, <Pi>, <p4>, <Ps>], [<Pi>, <Pi>, <Pa>, <Ps>L 

[<Pi >,<Ps>], [ <Pi>, <Pi>, <Ps>] respectively. To modify the key value p x of DOCTOR 

to p6 by option (i), these nodes in the inheritance region contain the value of p x can be 

modified to p 6. To modify the key value p 1 of DOCTOR to p 2 by option (ii), the nodes 

DOCTOR, INTERNIST and OCUUST which contain the value of p x have be modified to 

P2-

Modification of Key Values in a Hierarchical Region

The modification of the key values of an entity node of a dependency local 

region can be extended to the relationship nodes of the directed local region which 

have this entity node as tail or the undirected local regions which contain this entity 

node.
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The modification of the values of key attributes of a relationship node in a depen

dency local region can be processed as

(i) if the key attributes to be modified are the key attributes of the tail, then the 

modification is a trivial case;

(ii) if the key attributes to be modified are the key attributes of the head, the new key 

values can be either contained in the values of the key attributes of the head or 

not. For the former case, the processing of the modification does not have to be 

extended to the subtree with this relationship node as root. For the later case, the 

modification have to be extended to the modification of the head on the same key 

attributes.

Example 17: The nodes EMPLOYEE,HAS, CHILD represent nodes of a hierarchical 

region in fig.2. The physical instances of these nodes EMPLOYEE,HAS, CHILD contain 

key values [<«!>, <e2>,<e3>, <e4>], [ K e ^ c ^ ,  <eu c2>, < ez,c2>], and [c j> , <c2>, < c 3>] 

respectively. To modify key values of <ex, ct>, to <eA, c x> is a trivial case. To modify 

key values of <eu c x>, to <eu c4>, the key value c t of CHILD has to be modified to c 4.

Modification of Key Values in a Surrounding Region

The modification of the key values of a relationship node in a surrounding region 

does not affect its adjacent entity nodes. For the modification of the key values of an 

entity node in a surrounding region, the relationship nodes in the surrounding region 

of this entity node have to be modified. Since the degree of surrounding updating pro

pagation of an entity node is 1, the modification of an entity node will only propagate 

to the adjacent nodes of this entity node. If this entity node is a start node of an inher

itance region or a start node of a hierarchical region, the modification should be
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extended to the inheritance region or the hierarchical region as discussed in the previ

ous sections.



CHAPTER3
ER-SEMIJOIN OPERATION ON LOCAL REGIONS OF A QUERY 

ON AN ENTITY-RELATIONSHIP GRAPH

1. ER-SEMIJOIN

Goodman propose a NJ query (Natural Join query) which simply computes the 

natural join of relations on a relational schema [Chul981, Shmul982]. Berstein’s and 

Goodman’s works are based on the logic structure of a relational database defined by 

a relational schema. In this chapter, we study a NJ query based on the logical struc

ture of a relational database represented by the acyclic subgraph of an ERG. Such a 

NJ query whose navigation paths on the conceptual level can be represented by an 

acyclic subgarph of ERG and which can be computed by the natural join operation. 

For the convenience, we use query to represent natural join query on the acyclic sub

graph of an ERG.

A physical instance of a database is defined as the representation of an entity 

node or a relationship node in the physical level. The collection of physical instances 

of a database (D ) is defined as a representative instance, denoted as Rep(D) 

[Sagil983]. The access paths of a query on a RDKER may be decomposed into a 

sequence of entity nodes and relationship nodes such that for each entity node or rela

tionship node there is one and only one physical instance in corresponding to it. Then, 

for a query on an ERG, we can exert natural join operator on these physical instances 

in sequence to compute the query.

We observe that those queries which have long access paths can be implemented 

more efficiently by skipping the unnecessary joining operation on the entity nodes in a 

local region. Nevertheless, the joining operation on physical instances in some local 

regions of a query can be reduced to the primary keys. The following example will

39
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illustrate the operation of ER-semijoin on a local region of a query.

DEFINITION I  : In a local region of a query, the object entity node is the entity 

node in the local region which contains the attributes whose domain is restricted. In 

the physical instance of an object entity node, the tuples whose values of restricted 

attributes are in the restricted domain are called object tuples. The collection of the 

key values of the object tuples of an object entity node is called object list.

DEFINITION 2 : In a local region of a query, if one of the entity nodes is an object 

entity node, then the other entity node is a target entity node with respect to the 

object entity node. In the physical instance of the relationship node, the tuples whose 

attribute values of the object entity node is in the object list is called the target tuples. 

A target list is the collection of the key values of the target entity node of the target 

list.

DEFINITION 3 : Let L, be a local region with two entity nodes and £,+1, with E/+1 

being the object entity node and being the target entity node; and a relationship 

node /?, . The operation of acquiring the target list from instance of relationship £, and 

the object list of Ei+1 is called ER-semijoin. We may illustrate the utility of ER- 

semijoin as follows:

(i). Object list of Em  is 0M , where Oi+I = {[a(l+1)i a(M)j, . . . ,  a(M)k] | k £ 1;

[U(i+i)i <Z(j+i)*] is the list of the value on the primary keys of £ (,+i)}

(ii). Target list of is r w , where = { [ a ^ i  a{i_iy  |

(n>l) A ([a(,_!)! a e  itPK(lJRi)); K -n i  a<;-n„] is the list of the value on

the primary key of where PK{i_X) is the primary keys of the entity node

Ei-1-

(iii) s = { r j ( r m € /?,) a  (nPKj r m) e  01+I)}, where PK(M) is the primary keys of the
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entity node Ei+1

(iv) r,_! ={tm | (3rj ((rj e S )  A (nPK(tJ r j )  = tm))) A ((V tn ) (/„ g T ^ )  [m*n) - >  (tn *  /„ ))}

dept_id

dept_id
person_id

person_id

person id 
proj_Id

projid

proj_id
bud_id

bud_id 
budget

Fig. 1 The ERG of the relational database DEPARTMENT.

Example 1 : Let DEPT, EMPLOY, PERSON, WORK, PROJECT, HAS, BUDGET be 

the entity nodes and relationship nodes of the ERG DEPARTMENT as shown in fig. 1. 

The query "Find the dept_id of the DEPTs that EMPLOY the PERSONs who WORK in the 

PROJECT which HAS BUDGET with budget = 1500000.00 ", has long navigation path 

that can be represented by local regions as {[DEPT, EMPLOY, PERSON], 

[PERSON, WORK, PROJECT], [PROJECT, HAS, BUDGET]}. The utility of ER-semijoin on 

this query can be processed according to the following procedures:

(i). Selecting and projecting on the primary key of the entity node BUDGET for bud_id 

= 1500000.00

EM PLOY

W ORK

HAS

PERSON

BUDGET

PROJECT

D EPT
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(ii). Employing ER-semijoin on the local region [PROJECT, HAS, BUDGET].

(iii). Employing ER-semijoin on the local region [PERSON, WORK, PROJECT].

(iv). Employing ER-semijoin on the local region [DEPT, EMPLOY, PERSON].

The procedures for the processing of ER-semijoin on a local region [Eh R , E 2] can 

be illustrated as:

(i). If E 2 is conjunctive to any local region that is processed before [£lfR , EJ, a set 

of values on the primary key of E 2 can be obtained by executing ER-semijoin 

on that conjunctive local region.

If the attributes of E 2 is restricted in the queiy, then selecting the primary key 

of E 2 from the tuples whose restricted attributes is in the restricted domain.

(ii). Collecting the value of the primary keys of E { from the tuples of R such that 

each tuple whose attributes of the primary key E 2 is in the list obtained from 

step (i).

Example 2 : For the same database as illustrated in example 1, the physical instance of 

the local region [Project, Has, Budget] are represented in Table 1. In this local region, 

the object entity node is BUDGET and the object list for "budget=1500000.00" is 

{[bOOOOll], [b000013]}. The target entity node of this local region is PROJECT and 

the target list is {[p00111], [p00222]}.

Table 1 Physical Instances of the Database DEPARTMENT.

DEPT
dept id location
d 001 Tower
d 002 Basement
d 003 A building

EM[PLOY
dept id person id
d 001 555555550
d 001 555555551
d 002 555555552
d 002 555555553
d 003 555555554
d 003 555555555



PERSON
person id phone
555555550 3434445
555555551 3434446
555555552 3555555
555555553 4555555
555555554 5555555

PROJECT
proi id date
pOOlll 5/6/83
P00211 6/7/83
O00222 8/7/83
P00257 5/3/84

HAS
proi id bud id
pOOlll bOOOOll
P00211 b000012
P00222 b000013

BUDGET
bud id budset
bOOOOll 1500000.00
b000012 1040000.00
b000013 1500000.00
b000014 2000000.00
b000015 1800000.00

WORK
person id proi id
555555550 oOOlll
555555551 pOOlll
555555552 O 0 0 2 1 1
555555553 P 0 0 2 1 1
555555554 O 0 0 2 2 2
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ER-semijoin can be implemented on the RDKER (Relational Database with 

Knowledge of ERG) by using logical programming on a user’s interface. The follow

ing rules illustrate an example for the implementation of ER-semijoin by using the 

logic programming.

er_semi_join(Entl,Rel,Ent2,Attl,Att2) —» 

entity_node(Entl,Kl l,key),

entity_node(Ent2,K21,key), abstract_name(Kl 1,K1), 

abstract_name(K21 ,K2), rel_res_l(Rel,Att_set,L), 

var_list(L,R2), append([Rel],R2,Rl),

R=. .R1, att_order( Att_set,K 1,01,1), 

att_order(Att_set,K2,02,1), 

findall(Attri,in_key_set(R,01,02, Attri, A ttl), Att2).

2. EQUIVALENT OPERATION OF QUERY IN ER-SEMUOIN

The physical instances of a local region must be consistent to the local con

straint of a local region. The local constraint of a local region is that the projection of 

the primary keys of an entity node on the relationship node is the subset of the projec

tion of those primary keys on the entity node which has the same primary keys.

'l+l' i - 1

Fig. 2 An ERG of a database.

For a local region £,, £, = [£,_!, £,, £i+1] as shown in fig. 2, the physical represen

tation of the entity nodes and the relationship of can be denoted as :

£,-_i = . . . .  a (i-i)i, ■■■)>k 2  1 ,1 2 0  (1*0)

Em  = r(a(i+1)l..........a ((+,)g, a (i+i)m, ...); g > 1, m  2  0 (2.0)

R i  = r K '-w  a a - i ) k .  *(,+1)1........*(,+!)«. «,i........a i n ,•••);« ^ o (3.0)
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where ap.,,,.....a (;_ a(i+1)k and an  ain are the keys of £ (/_,) £ (l+)), and £,

respectively. Then the physical instances of £,• obeys the constraint

H-w d ? i ) c ^ ( £ i+i) ' (4-0)

*V*<*i) = w<w(£i-i> (5-°)

In a query, the attributes whose values are to be retrieved are called target attributes; 

the attributes whose domain are restricted are called restricted attributes.

Example 3 : For the database represented by the ERG in fig. 2, let aJp be the pth attri

bute of the jth  relation (an entity node or a relationship node). The following query is 

expressed on a universal relation as : 

retrieve alm ,a ln 

where a(i+l)q * 3000.00 

This query has access path [Eu R2, ..., Ei+J ; the attributes alm , aln are target attributes 

and the attribute a(l+1)9 is a restricted attribute.

THEOREM 1 :  For two conjunt local regions [£,_!, /?,, £i+1] [Ei+l, Ri+2, £1+3] of a query, 

the target list T is the attributes of E ^  to be retrieved and the object list O specifies a 

list of the key values of Ei+3. Then, the following two procedures on the query pro

cessing of these local regions are equivalent:

(i). First decompose this segment of the query into two local regions, then imple

ment ER-semijoin on these two local region sequentially from £1+3 to

(ii). First apply the natural join operator to all entity nodes and relationship nodes in 

these two local regions and select tuples whose value of restricted attributes is in 

the restricted domain, then project target attributes on these tuples.

Proof: By procedure (ii), the processing of the query can be represented as

T = (5((£l-_1MRi^ i+1)M(£i+1MRi+2fc4Ei.(.3))) (6.0)
where 8 is the operation to select the tuples whose key values of £)+3 is in the O .
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The implementation of natural join on these two contiguous local regions is 

equivalent to the following equation :

(£,_! M/?, txiE,+1)txa(£l+1 tx3£1+2tX£(+3) = (Ei-i t*£, NE.-+1 M^i+2M£i+3)

From the local constraint of Eq. 4 and 5, the entity node Ei+1 can be omitted since 

there is no effect on the query. That is, the above joining operation on two local region 

can be further reduced to: (£,_, MRt- m/?i+2m£,+3)

Thus, Eq. 6 can be reduced to

T = nTa (8(£,_1 txi £, M Ri+2 M £i+3) (7.0)
By employing the optimizing processing techinique [Ullml982, Ullml983], the Eq.7

can be optimized as (1) select the tuples of Ri+1 whose key values of £i+3 are in 0  then

project on the key values of PKi+1; (1) select the tuples of £, whose key values of £,+1

are in the list obtained from step (1), then project on the key values of PK^. The

optimizing operation is the interpretation of ER-semijoin processing of procdure (i).

Thus, (i) and (ii) are the equivalent processing procedures for the query.

Example 4 : As in example 2, we may employ the natural join operator on the rela

tions PROJECT, HAS, and BUDGET. By using natural join on all of the relations of 

the local region [PROJECT, HAS, BUDGET], the intermediate relation is shown in 

table 2. By selecting the tuples from this intermediate relation with "budget = 

1500000.00" and projecting on "proj_id", the result is equivalent to the implementa

tion of ER-semijoin on the same local region.

Table 2 The relation of (PROJECT m (HAS t*BUDGET)).

nroi id date bud id budget
pOOlll
p00211
t>00222

5/6/83
6/7/83
8/7/83

bOOOOll
b000012
b000013

1500000
1040000
1500000

DEFINITION 4 : Let D be the representative instance of a database. For a local 

region L of D, the full reduction of L relative to D, denoted as FR(L,D), is uL ( txiD). In
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other words, FR(L,D) is the portion of L that take part in the join with all other rela

tions in D.

DEFINITION 5 : The full semantic reduction of a local region L is the full reduction 

of the local region to its relationship node R  denoted as FSR(R,L), is %(ixiL). In other 

words, FSR(R,L) is the portion of R that takes part in the join with the other two entity 

nodes in the local region.

By the local constraint of a local region, the full semantic reduction of a local 

region with a binary relationship is equivalent to the physical instance of a relation

ship node.

THEOREM 2 : In an query on an ERG, if a local region which does not contain tar

get attribute and restricted attribute then the full reduction of this local region can be 

reduced to its full semantic reduction.

Proof: It is obvious that the relationship node of the local region contains the keys of 

its adjacent entity nodes. From equations 8.0 and 9.0, the projection on one of the keys 

of the relationship node is the subset of the projection of that key on the entity node 

adjacent to this relationship node. Then, by mathching the key values of the tuples of 

relationship node to the key values of entity nodes, the joining of the relationship node 

and its adjacent entity nodes in the local region is equivalent to adding the values of 

nonkey attributes of a matched tuple of the entity nodes into each corresponding tuple 

of the relationship node. Since the local region does not contain the target attribute, 

the nonkey attributes of the entity nodes in this local region have nothing to do 

with the information to be retrived. Thus we can reduce the full reduction of such a 

local region to its full semantic reduction.

A RDKER (Relational Database System with Knowledge of Entity-Relationship 

Model) is a relational database whose concept view can be represented by a semantic 

structure of an ERG(Entity-Relationship Graph) [Chen1987]. Each RDKER has a



48

logical view which is represented as a semantic Entity-Relationship Model and a phy

sical view that is represented by a set of physical relations(tables). For a RDKER, 

there is a function of "one-to-one and onto" mapping between its semantic model and 

physical relations. That is, for an entity node or a relationship node in an ERG, there is 

a bijective function which maps it to a physical instance.

Example 5 : The physical representation of the database DEPARTMENT, whose physi

cal relations [DEPT, EMPLOY, PERSON, WORK, PROJECT, HAS, BUDGET] 

represented in table 1, has a semantic view represented by the ERG in fig. 1. It is 

obvious that for each entity node or relationship node in this ERG, there is a "one-to- 

one and onto" function which maps this entity node or relationship node to the 

representative instance of table 1.

3. PHYSICAL REPRESENTATION OF A LOCAL REGION

As discussed in section 2, a RDKER which is not a single entity node should be 

able to be decomposed into a set of local regions.

DEFINITION 6 : For a RDKER, each relation of an entity node or a relationship 

node of the ERG can be represented as r, ([Ay ], ],- ,/v, ), where

r, : Physical instance of an entity node or relationship node of ERG.

[Ay ],- : A set of attributes of ri .

[PKm], : A set of primary keys of r, .

Ni : Cardinality or number of tuples (rows) of the physical instance r,.

Bt : Bytes of a tuple of physical space of r,

BPi : Bytes of physical space of each primary key of relation r,.

In a RDKER, the representation of an entity node or a relationship node as 

r, ([A y], ,[PJ:m], ,N, ,jB, ,BP, ) is called the physical denotation of an entity node or a rela

tionship node of the ERG in a RDKER. An entity node or a relationship of the ERG
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in a RDKER has one and only one physical instance corresponding to it. The physical 

denotation of this entity node or relationship node carries the information of the physi

cal instance of an entity node or relationship node.

Example 6 : For the relation BUDGET as in Table 1, the attribute bud id is defined as 8 

bytes and the attribute budget is defined as 10 bytes. The physical denotation of 

BUDGET is Budget ( \b u d jd , budget], [bud_id], 5, 18, 8).

DEFINITION 7 : The physical denotation of a local region [£;_lf/?j ,£,+1] of an ERG in 

a RDKER can be represented as [r.-iflvy,..!,

Ui,BitBPi ),ri+m ^ i +u[PKm,]M/Ji+UMBPM)], where [PKml]^,[PKm3]M c  [PKm̂ .  Let 

P(ri\pK),J the value set of (PK)i_1 which is obtained from projecting the primary 

keys of entity node £,_! on the physical instance of relationship node

P(r»-iViC)M: the value set of (PK)(_j which is obtained from projecting the primary 

keys of entity node £,_x on the physical instance of entity node £,_]. 

P(ri)(PKu- the value set of (PK)M  which is obtained from projecting the primary 

keys of entity node Ei+1 on the physical instance of relationship node E,.

P(ri+i)(nc),*,: the value set of (PK)i+l which is obtained from projecting the primary 

keys of entity node E,-+1 on the physical instance of entity node Ei+1.

The proportion of occurrences of the primary keys of E-t_x on /?, , denoted as PKOiXi_X) is

PKOi = J  P^1 I jh e  proportion of occurrences of the primary key of Ei+, on 
I P(ri-i)(PA:),-, I

Ri, denoted as PKOiiiM), is PKOUi+1)= ‘ •
I Ptri+i/(pjr)ci I

Example 7 : The local region [BUDGET, HAS, PROJECT] is a local region of Table 1. 

For the relation PROJECT, the attribute proj_id is defined as 8 bytes and the attribute 

date is defined as 12 bytes; and for the relation BUDGET, the attributes is defined as in
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example 6. Then the physical denotation of this local region is [Budget 

([bud_id, budget], [budjd],  5,18,8), Has ([bud_id, proj_id] , [bud_id,proj_id], 3,16,16), 

Budget {[projjd , date], [p ro j jd ] ,  4, 20, 8)].

LEMMA 1 : The PKOt^  and PKOiXi+l) of a local region [£,_!,£, ,£,+i] have the pro

perty that 0 < PKGii(i_1)fPKOit(i+l) < l.

The PKOit{i_i) and PKOit{i+l) will be helpful in estimating the occurrences of the 

values of the primary keys of the entity node in the physical instance of the relation

ship node. The maximal possibility of occurrences is that when all values of the pri

mary keys in the physical instance of an entity node are occurring in the physical 

instance of the relationship, which means that the PKOXj  of an entity node Ej in the 

physical instance of a relationship node Rt is one. The zero value of PKOXJ means that 

the projection of primary key of Et on the physical instance of Rx is null.

In the physical instances of a local region [£,_i,/?;,£I+i] of the ERG in a RDKER, 

the frequency of occurrences of Ex_x on R,, denoted as ((££),-,(,_i))/> is the frequency of 

the j t h  value of the primary keys of entity node E, in the relationship node /?, . The 

average frequency of occurrences of E^x on Rt is the average of the frequency of 

occurrences of the entity node £, on the relationship node, denoted as {{FR )iAi-X))mg

With the proportion of occurrences and the average frequency of an entity node 

on a relationship node in a local region, we may estimate the space complexity of the 

intermediate table for the operation of natural join in a local region. In the same way, 

the space complexity of ER-semijoin can also be obtained.

LEMMA 2 : In the physical instances of a local region [£l_i^l^ ,+1], the average fre-

H ((FR)- )■
quency of entity node Ex_x on relationship node Rx is {{FR)i(i. X))mg = ——  and

iV4_ i

the average frequency of Ei+1 on /?, is (.(FR)it(M))mg = ——  J .
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Example 8 : As in example 7, ((FR )projectmas )mS = ((FR)projectjuas )> / Nproject = 

(1* 1 + 1* 1 + 1* 1 +1* 0)/4 = 3/4 = 0.75.

LEMMA 3 : The local region [Ei_ltRi ,Ei+1] which has the physical denotation as 

represented in Lemma 2, then space complexity SpK of operating natural join on the 

local region (£t_j m (/?, is :

= *(B t +Bi+1 - B P m )+ Max((Ni * ( B ^  +Bt + BM - B P ^ - B P m ) + N ^ ' B ^ ) ,

(Pm 'B m + N ^ B M

where Max is the function of the maximal space complexity, and

Case I : which has cardinality M -El between the target entity node £,_! and the object

entity node Ei+U has the property that

=  ((FR  )i,(i+l))avg * ^ i+ 1

Case I I : which has cardinality 1:M between £,_i and Ei+l has the properties that

Ni=((FR)iAM))avg * N i+1 

= PKOlAi_n *

Case I I I : which has cardinality 1:1 between E ^  and Ei+1, has the following properties

( 1). Ni =PKOiXi_1)* N i_1

= PKOit(M)* N i+l

(2). N tZN uflM

Proof:

Case I : (1): From Definition 8 and Lemma 2, the order of the physical instance of the 

relationship node £, is fy. The order of the values of the primary keys of i in the 

relationship R: is = ((£/?)« * Ni-u and the order of the values of the primary

keys of Ei+l in the relationship £, is = ((FR )iXi+i))mg * NM. Since the entity node or 

relationship node of a RDKER is at least in 3NF [Chen1987], the order of each
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column of should be equal. Thus Ni =((FR)iili_l))ovg * and

Then from the local constraint of a local region, the order of the intermediate table by 

the operation of natural join on a local region should be equal to N{. Since the process

ing of the operation (E.-.jixi (/?,- m£;+1)) is processed in two steps as J?, m£i+1 and 

txi£i+1, the space complexity is the maximal space of these two steps. That is,

(1). A local region with the 1:M relationship requires that in the physical instance of 

relationship £,, the projection of the primary keys of £,•_t on RL may have multiple 

occurrences. But by projecting the primary keys of Ei+1 on the physical instance 

of /?, , each value must be unique. That is, the average of frequency of the pri

mary keys of Ei+l on the relationship node £, is equal to one.

(2). The estimation of the space complexity can be obtained by the same reason as 

Case I.

Case I I I : (1). For the same reason as in the Case II, the frequency of occurrence of

£;_i and £l+1 should be equal to one. That is, ((FR),,(,_!)) = ((FR ),i(l+i)) = 1.

(2). The estimation of the space complexity can be obtained by the same reasoning as

substituting the frequency of occurrence into the equation of N,, we get

Ni=((FR)iim))avg* Nm .

(2): The local constraint of a local regions requires that

(Ri (E/+i) (4.0)

(5.0)

Sp^Max(Ni *(Bi +Bi+l-BPi+1) + ( Nt * + £, + Bi+l -  BP^  -  BPi+1) + N ^ B ^ ) ,

(Ar,.*(£,-+£/+i-£ £ ,+i) + Ni+1*Bi+1 + Nj * £,)). =Ni *(Bi +Bi+l-BPM)+

Max ((Ni *(Bi-1 + £,• +Bi+1 - B P - B P M) + N ^ B ^ ) ,  (NM*BM + N; * £,)).

Case IE:

N ^ P K O i^ *  N^=PKOii{M)* Nm . From Lemma 1, for 0<PKOiXî FKOiXi+1)<l
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substituting into the previous equation, we get the result

Example 9 : Let the local region [BUDGET, H A S , PROJECT] illustrated in example 8 be 

a 1:1 relationship.

(1). PKOpTOJECTJHAS = (1 + 1 + l)/4 = 0.75 

PKOBUDGET#AS =(1 + 1 + l)/5 = 0.6

Nhas =PKOproject#as * Nproject = 0.75 * 4 

=PKObudget#as * Nbudget =0-6 *5  = 3

(2). Nhas * (BhaS + BBUDGET ~BPBUDGET) — 3* (18 + 1 6 -8 ) =78

NflAS * (PhAS + PBUDGET +PPROJECT ~PPBUDGET ~ PPPROJECT) + ̂ HAS * BhAS

= 3* (18+ 16 + 2 0 - 8 - 8 ) +  4*20 = 3* 38+ 80= 194 

Nbudget * Bbudget + ̂ has * Phas = 5* 18 + 3* 16= 138.

Thus Max{{Nhas * (.Phas + Pbudget + Pproject ~PPbudget ~ PPproject) + ̂ has * Phas)’ 

(Nbudget * Bbudget +^ has * Phas)) “  Max(138,194) = 194.

So, S p K = 78 + 194 = 272.

The ER-semijoin processing is based on a local region which represents the 

semantic unit of an ERG in a RDKER (Relational Database with Knowledge of ERG). 

The local regions of a query are obtained by decomposing a semantic structured

query. The procedures for the processing of a query via ER-semijoin are :

(1). Parsing the syntax and checking the local constraint of the query.

(2). Converting a query into a semantic structured query — ER-queiy graph.

(3). Converting an ER-query graph into an ER-query tree.

(4). Decomposing an ER-query tree into a local region with a semantic order (the 

conjunctive sequence of the local regions of the query which may represent the 

access paths of the query).

(5). Processing local regions at inverted semantic order by employing ER-semijoin.
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Steps 1-4 constitutes the query preprocessor based on a RDKER. These can be treated 

as higher level steps as compared to step 5 which processes the physical instances. In 

other words, the main processing schema which manipulates the operation of physical 

instances is the ER-semijoin. As the overhead of query preprocessing is much lower 

than the processing of the physical instances of a database, the time complexity and 

space complexity of the query processing of a query on a RDKER can be reduced to 

the time complexity and space complexity of ER-semijoin processing on the physical 

instances.

4. EFFICIENCY OF THE OPERATION OF ER-SEMUOIN

The efficiency of time complexity and space complexity of exerting ER-semijoin 

on the access paths of a query can be obtained by comparing the time complexity and 

space complexity of employing the operator of natural join on the same access paths.

In a local region, if an object list is empty, then the order of the object list is zero. 

With zero order of the object list, the order of the target list must be equal to zero. The 

zero result of the empty target list can be directly obtained from the operation of ER- 

semijoin on the local region.

LEMMA 4 : In a local region with an empty object list, the empty target list will be 

obtained by the application of ER-semijoin on the physical instances of the local 

region.

Proof : The implementation of ER-semijoin on an empty object list of a local region 

jE/+1], of which £,_! is the target entity node and Ei+1 is the object entity node, 

can be done according to Definition 3 as :

(i). For an empty object list, 0 1+1 = 0.

(ii). Substituting (Oi+x = 0) into 5, = { r, | ( r, c/?,) a (r, c  0 i+1)}

=» Si = (r, ( r, cRj) a (r, c  0)}
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=> S, = 0 .

(iii). Substituting (5,- = 0) into £>, = i ‘m |(fm c5.) a (ot =* fm */„)}, we get & = 0-

(iv). Target list of £M, r,_! = n ̂ ( g .)  = n fc(,_n(0) = 0 , where is the key of

Thus, the operation of ER-semijoin on a local region will yield an empty target 

list.

The ER-semijoin can be applied recursively to the set of local regions of a query. 

In a recursive implementation of ER-semijoin on the local region of a query, the target 

list of a local region becomes the object list of its conjunctive local region which is to 

be processed next. Thus, the current target list will only be related to the next rela

tionship node. That is, the operation of ER-semijoin in a set of local regions, the target 

entity Type of the current local region, can always be skipped.

The coefficient of the spatial full semantic reduction of a local region L(, 

denoted as r^ , is the ratio of the space complexity obtained by operating ER- 

semijoin on the local region to the space complexity acquired by using natural join on

SpER
the same local region. That is, = —— .

LEMMA 5 : The local region [£,_i,/?,,£;+i] has physical denotation [r,_i([Ayjl.-.j, 

IP K m ih-lJii-l'B i-lftP i-l) Ti ( t y d i  M  ^ +l(Wy3]i+I .[ ^ » 3 ] i+l ^ +l A +l ^ i +l)l. 

order of object list CN0, and order of target list CNt . Then the space complexity of 

implementing ER-semijoin in this local region is

SpER = (BPm  * CN0)+(£,- * N i) + ( B P * CN,)

Proof : The space complexity Sp of the operation of ER-semijoin on the local region 

[£,_1̂ ,J?I+1] is the maximal space complexity for the implementation of ER-semijoin 

on this local region. In case of the operation of ER-semijoin on a local region, the 

maximal space complexity is equal to the summation of space complexity of object 

list, target list, and physical instance of relationship node. Since the space complexity
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of object list is CN0 * b p m  and the space complexity of target list is CN, * B P we get 

Sp = (BPi+1 *CN0) + (B, *Ni) + (BP,-, * CN,)

LEMMA 6  : The range of the coefficient of the full reduction % is 0 < <1.

Proof: The space complexity of employing ER-semijoin on local region with physical 

denotation [rM( [PKm ,]<-„Wi-i,B,-„BP,_i), r, ([Ay2], ,[PKm2ii. Nt , B,, BP,),

r«-+i([̂ y3]i+i. 3]i+1 W+1 > B1+1>bpi+i)] has the worst case space complexity and best case

complexity as :

(i) From Lemma 5 we g e t:

SpER = (BPi+1 * CÂ WB,- * JV,) + ( B P * CN,)

< (BPJ+1 * PKOi(i+l) * NM W Pi *N,) + (BP,_i * P K O w -tfN ^ ).  (8.0)
and from Lemma 3 < Nt * ( B ^ + B ,+ B M - B P i_1- B P M ) +

Ari-i*B i_1+JVi+1*Bi+1.

Thus S p ^ N ,  * B ^ + N i  * B, + tfi+I * Bi+1 -JV,- * BB;.j -AT, * BPi+, + Af(sM) *B,..,} + 

N ( M) * B (M). S o , S p„-S pER = Ni *Bi_i+ N{ * BM - N t * B P ^ - N i *  BPi+l - 

BPm * P K O i w *  N,.! - BPm * PKOi(f+1)* Nm . For PKOiV. iy, PKOi(i+l) <1, the 

derivation of SpK-S p ER >0 is trivial. The result is equivalent to SpK> SpER. Then

(ii). The best case of the space complexity of the operation of ER-semijoin on a 

corresponding physical instance of a local region is when the object list 

approaches empty. From the Lemma 6 when the object list approaches empty, 

the space occupied by the target list approaches zero. Substituting CNa = 0 and 

CN, = 0 into Eq. 8 , we get SpER =0 +B, * N, +0. Since the ER-semijoin is an intelli

gent operator on a local region, when the object list is empty, the operation of 

ER-semijoin can skip the join operation to get an empty object list. Thus B, *N , 

~ 0. So, the best case of space complexity approaches zero.
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Example 10 : ER-semijoin is applied on the same low! region

[BUDGET, H A S , PROJECT] as illustrated in example 9. From Table 1, the object list of 

this local region is [>000011,6000012,6000013,6000014,6000015], and CN0 = 5. 

Bhas*Nhas=3* 16 = 48.

By employing ER-semijoin on this local region, the target list is 

[p00111,p002ll,p00222]. => CN, =3.

S P e r  =  CNt *BPp r o j e c t  + ̂ h a s  * & h a s  + CN0 * BPb u d g e t  = 5*8 + 3*16+3*8 =72

SpER 72 
=> rj = = -r^r = 0.2647.1 SP„ 272

Sammy proposed a matrix representation model to estimate the storage cost on a 

distributed database system [Riorl976]. Substituting a single node into Sammy’s 

model, the monthly cost of the storage of a single file on a single node can be obtained 

as G = 6 * /, where G is the cost, b is the average cost per bit and 1 is the average 

length in bits of file. By converting the cost to CPU time and the starage to retrieval 

we get T = C *6 * /, where T is the time complexity of retrieval and C is the constant. 

For the big memory space complexity, the overhead for the optimization of block 

accessing is necessary. Thus, the equation is modified as T = C *6V * /, where v is the 

exponetial coeffienct and v >1. Considering the time complexity of searching during 

the operation of join, the model of correlation equation which estimates the time com

plexity from the space complexity can be obtained.

Let [£,_!, Rj, £1+1] be a local region in a RDKER, and [ri_1([i4/-1]i_i , 

n i l A j A J P K ^ ^ B i J l P , ) ,  rM ([Aj3]i+l,[PKm3]M JIM  , BM fiPM )} 

be the physical denotation of this local region. Assuming the order of operating 

natural join on the local region is £,_i m (£, m£1+1) = E i ^ R ump. Then the correlated 

equation is the expression of the time complexity which correlated to the space com

plexity on [£(_i,£,-,£/+il, denoted as Tw and 7* = Cm(Bm * Nm?  + C„(Bn * Nnf  + 

£,(£,,£,+1) + TsiRumpA-1)> where Cm and Cn is the coefficient of space complexity for
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(Ri m£/+1) and (RUmp m E ^ ) ,  respectively; v is the correlational coefficient of space com

plexity and time complexity; Nn and Nn is the order of the intermediate relation;

Ts(Rtemp£i-1) and Ts {RifEM ) are the time complexity of searching the matching of the

primary keys between relations (RUmp£ i - 1) and (RiyEi+l), respectively.

THEOREM 3 : The time complexity of employing natural join on the local region 

[£,_i, Ri,E i+l] whose physical instances are unsorted is :

(i). Time complexity of intermediate relation Rump, where R,emp = (£,■ m£i+1) is 

CoWBi + BM  -  BP i+1))v + { Nm2+ 1) * Ni,

where the physical denotation of Rump is [rtemp, ([Ay2],- u  [v4ya]i+1),

-B PiB P

(ii) Time complexity of ( R ^ m E ^ )  is TK = C 1(fil (jBi_1+B i +B M - B P i_1-B P M ))v +

(iii). Time complexity of using natural join on local region [£,_!,£,, £i+1] which has 

order of operation (£,_! m (£, M£i+1)) is :

T J E ^ ,  Ri, £ 1+1) = (C0(N, (Bi + B i+i -  BPi+1) f  +  ( - " ■ -) *  N t )

+ (C,(Mi (B,_, + Bi + Bi+l -  B P -  BP  i+]))v + (■— * Ni). (9.0)

Proof:

(i). The intermediate relation R ump is created during the processing of natural join 

operator on £, and £i+1. The attributes of RUmp is the union of attributes of physi

cal instance of £, and the attributes of the physical instances of £i+I, that is, the 

set of attributes of £, is [A>2], u  [A>3],+1. After the operation of natural join of /?, 

with £(+1, Ri should join with £,_i. Thus the primary keys of intermediate relation 

of Ri can be reduced to As a local region of a RDKER has the property

of local constraint as illustrated in the Eq. 3.0 and Eq. 4.0 :
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(4.0)
(5.0)

The operation of natural join operator on Rt and Ei+U has equivalence with 

natural join expression as

The physical instances of a local region have the property of semantic integrity. 

Thus for each value of the primary keys in the physical instance of the relation

ship node, there is exactly one value in the column of the physical instance of the 

related entity node corresponding to it. That is, in the physical instances, the 

mapping from the primary key of the relationship node to the same attributes of 

its adjacent entity node is a bijective function. Then, the order of the intermedi

ate relation after the process aft.0,^w.aiA>...A.Oj=E,w.a,(B xS) is equal to the order of 

R:. After the operation of the cartesian product on R and S, the length of each 

tuple of relation obtained from B, x£;+1 is Bt + Bi+l. Since the basic difference 

between natural join and equal join is that in the natural join processing one of 

the duplicated columns of the intermediate relation are deleted, the duplicated 

primary key PKi+l of the primary key of Ei+1 is deleted after the operation of pro

jection. Thus, with the subtraction of the duplicated primary key, the length of 

the each tuple in intermediate relation is B, +BM - B P M . For the operation of 

natural join on the physical instances of [B(fEi+1], the search algorithm is:

procedure search(valuel,value2); 

begin

For each value 1 of PKi+1 in relationship_node 

do find value2 in entity_node 

where the PKi+l of value2=valuel;

Ri MEi+l -  n [All]l viAppR.MrEMA, * x ^)> where a x ...aj e PKi+lt

end.
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For each value of PKM  in the physical instance of /?,, the best case to find the 

value is 1, and the worst case is NM . So, the average time complexity of search

ing the primary key in £/+1 is N,+1 + 1 . Thus TK = Time complexity of searching +£

time complexity of the operation of join. That is 

T„ = C0(Ni(Bi + £,+i — BP 1+i))v * ^  + ( Nm2+ 1 ) * Hi-

=> Tk = CoiN^Bi +Bi+l - B P m )Y  + * N(.

(ii). The time complexity of T J R ^ ^ /E ^ )  can be obtained by the same procedures as 

described in the step(i). By substituting the physical denotation of RUmp into £, 

and £,_] into Ei+U via the same induction processes, we may get TK as:

T„ =  C M P i - i  +B{ +Bm  - B P m  -f?£,_,))v + (~—y  -1 ) * Ni

where C x is the coefficient of space complexity of the operation of natural join on 

RUmp and £,_j; v is the correlation coefficient of space complexity as defined in 

the Definition 10.

The correlation coefficient is the coefficient via which the space complexity and 

time complexity of the operation of join are correlated. If the time complexity of pro

cessing join is proportional to the space complexity, then the value of v is equal to 1.

THEOREM 4 : The time complexity of employing natural join on the local region 

[£,_!, Ri, £i+1] whose physical instances are sorted is :

(i). Time complexity of intermediate relation Rump, where time complexity of the 

creating intermediate relation of RUmp =£,_ iM£1+1 is

CoW(£,- + £;+i - B P M ))v +(Ni +Ni+1)

where the physical denotation of Rump is [rUmp, ([A/2],- u  [A>3],+1,

l>N,»fli+£x+i - B P
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(ii) Time complexity of (Rtcmp m£,_!) is TK

C M W i- 1  + Bi +Bi+l - B P ^ - B P ^ r  * Ni H N i  +Ni_1).

(iii). Time complexity of operating natural join on the local region L, where 

L; = [£,_!, Ri,Ei+1] which has the order of operation (£,_, m (/?,- m£1+1)) is :

T J E ^ ,  R t , EM ) =  (C0(Ni (Bi + Bi+1 -  BPM ) f  + (ty +  NM ))

+ (C1(ffi (Bi. 1+Bi +  Bi+i -  BPi+i -  BP ,_i))v +(Ni +  IV,•_,)). (1 1 .0 )

Proof : The physical instances of a relation in local region can be stored in a sorted

order of its primary key. For an indexed relation, the pointer can be set up to the 

indexed attributes of the relations. Then the joining operation can be implemented 

more efficiently during the searching of the tuples in the different relations that are to 

be joined. That is, for two sorted relations with order and N2, the time complexity 

of searching primary keys in both indexed relations is N x+ N 2. Thus the time com

plexity of searching primary keys for the natural join operation on the physical 

instances of RitEi+1 is +Ni+1. Substituting the time complexity of sorted relations in

(i) of Theorem 1, we obtain the result as : r j/? ,, £i+1) = C0(N; (£,■ + Bi+l -b p m ))v + 

(Ni +Nm ). By the same reason, substituting the time complexity of natural join opera

tion on the sorted relations, we may get the result is, as in (ii). Then for the natural 

join operation on the sorted files of a local region with the processing order as 

(£,_! m (Ri txi£1+1)), the time complexity is :

TdMi _ j, Ri, £,-+i) = TyfEi _j, RUm) + TJfii, £,+i).

=  (C0(Ni (Bi + Bm  -  BPj+i))v + (Ni + Ni+1))

+ ( C m  (Bi_i +Bi+  Bm  -  BPm  -  B P i- i f f  +(Ni + Ni_i)). 

THEOREM 5 : local region £, =[£,_!,£ i,£ i+1] which is a local region in the access

paths of a RDKER. In this local region, the the object entity node is £i+1 which has

object list Oi+i with order CN0, and the target entity node is £,_! which has target list

Ti_x with order CN,. The time complexity of the operation of ER-semijoin on this local

region of unsorted files is
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T Er  = C0 * * CN, +BPM  * CN0 + N, * B j H N , * — | l i )  (12)

Proof: Form the definition 3, the processing of ER-semijoin is

(!)• S = (rm|(rm £ Rt) A (tcPKJ r m) £  0 M )}

(2). r,_! ={fm I (V/m) ((3 rj £  5) a  ( r c ^ r ,  ) = ;„)) a  ((Vrm)((3rn)(/m e r M ) (*„ e )(m 

& n) —» (tm *  /„)))} For the processing of ER-semijoin on a local region, the inter

mediate file to be created is the target list T^u and the working memory for the 

processing of searching, selection, and projection is the working memory of B, 

and the object list Oi+1. Then the space complexity of implementing ER-semijoin 

on the local region is Tsp = C 0 * (BP,., * CN, + BPi+1 * CN0 +N, * £,)); and the aver

age time complexity of the processing (2) is (ty*— —)• Thus by substituting 

these terms into the correlation equation of time complexity, the result of TER is 

T e r  = c0 * (BP,.., * CN, + BPi+1 * CN0 + N, * B( ))v + (N *~^~ - - )

THEOREM 6 : local region L, P, , £i+1] which is a local region in the access 

paths of a RDKER with physical denotation [rI_i([Ayl]1_1, 

[PKm x l-xJN i-x^ i^P i-^n  ([A>2], ,[PKm7\; M  fiPi

[Pi%rx_i]- In this local region, the object entity node is £;+1 which has object list 0M with 

order CN0, and the target entity node is £,_! which has target list T,_j with order CN,. 

The time complexity of the operation of ER-semijoin on this local region of sorted 

files is

Te r =C0* (BP;_! * CN, + BPm  * CN0 +  B, * N, )V+(AT, +  CN0 ) (1 5 .0 )

Proof : The only difference of operating ER-semijoin operation on the sorted files is

the time complexity of searching. That is, we substitute the time complexity of search

ing N, +  CNa into the Eq. 13, the time complexity of implementing ER-semijoin on a 

local region is TER =C0* (BP,_, * CN, + BPM  * CN0 + B, * N-,)v + (N, + CN0).
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Example 11: The correlational coefficient of the correlation equation is :

log(TM- T s ) - C c 
v=— -— —-  (16.0)

log(C0 * t)

where TK is the time complexity of operating natural join on the local region; Ts is the 

time complexity of searching the value set of the primary key in the value set of the 

primary key of object entity node; Cc and C0 are constants.

Proof: As the space complexity is a linear function of time, let SpK= C0 +  C x. 

for t=0, the space of working memory is 0, i.e. SpJB) 11=0 = Ct = 0.

=> C i =  0 , => SpK(B) =  C0 * t

from the correlation equation, we may get TK =  C2(C0 * t +CI)v + rs.

= * (T „ -T s) = C2(C0 * t + C t f .

=> log( r M- T s) = logC2 +  v  * log(C0 * t + C i).

=> lo g (T ^ -T s ) = logC2 + v *  log(C0 * t ).

=> log(Tm- T s ) = Cc + v * log(C0 * t ), where Cc = logC2.

= * lo g (T „ -T s ) - lo g C 2 = v *  log(Ca * t ).

l°8 (t m~  Ts ) — Cc 
V logC0 + logt

In the physical instances of a RDKER, if the files are indexed, the time complex

ity of searching is constant. That is, in Eq. 14.0, Ts = constant, and Ts «  Tw Then,

losT  ~  C*
Eq. 14.0 can be simplified as v  =  — ^ —- ,  where C c - C c -  vlogC0 .

THEOREM 7 Let the coefficient of temporal full semantic reduction of a local region 

be 0) t henO< ,t)<l.

Proof: For the unsorted files the theorem can be derived from the Eq. 9 and 12; for the 

sorted files the theorem can be derived from Eq. 11 and 13.



CHAPTER 4
ENTITY-RELATIONSHIP QUERY GRAPH PROCESSING ON 

THE RELATIONAL DATABASE SYSTEMS

1. ENTITY-RELATIONSHIP GRAPH AND ENTIT Y-REL ATIONSHIP

QUERY GRAPH

An ERG can be represented either by a single entity node or by local regions. For 

an ERG which is not a single entity node, it should be able to be represented as a set of 

local regions [Chenl987b]. The "local region" is the semantic unit of a semantically 

clear ERM. Each local region in an ERM contains a pair of entity types and a relation

ship type that connects these entity types. Such a semantically clear ERM which 

represents the semantic structure of a relational database can be further defined by an 

implementation model represented as an ERG (Entity-Relationship Graph). By using 

an ERG as the semantic structure of a RDKER, the accessing direction of a query on the 

database can be represented in the subgraph which is obtained by mapping a query 

onto an ERG. Then by adding the relational operators of the query to the subgraph, an 

ERQG can be obtained. In other words, a query can be represented by an ERQG (ER- 

query Graph) which consists of a subgraph of ERG and the relational operators of a 

query. Besides on a global accessing interface of a database (e.g. on a universal rela

tion interface), a query can be processed with the aid of the ERG according to the fol

lowing steps : (i) Allocating of subnodes (attributes) (ii) Obtaining an ERQG from sub

nodes and ERG (iii) Processing of a query based on the ERQG. These subnodes, main- 

nodes, and the allocation of subnode and main-nodes of an ERG will be discussed in 

this section.

64
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1.1. DEFINITIONS OF ERG AND ERQG

Since an ERG is an implementation model which is derived from an ERM, it 

inherits the semantics of an ERM defined on a relational database. Like an ERM, it 

may have many different abstract levels [Chenl983], and likewise an ERG may con

tain several abstract levels. In this chapter, only the basic level of the implementation 

model of an ERG will be discussed. A basic level of an ERG is designed such that each 

entity node or relationship node of the graph are connected to the attribute nodes of 

that node. For our convenience, we use ERG to represent the graph of the basic level 

of a RDKER.

An ERG is defined as an extended ERD [Chen1987b]. In an ERG, each pair of 

entity nodes and the relationship nodes that connects them is defined as a local region. 

In the previous chapter, we concern only entity nodes and relationship nodes and the 

arcs connects these nodes. Now, we want to discuss attributes nodes connects to 

entity nodes and relationship nodes. For this purpose, the entity nodes and relationship 

nodes of an ERG are called main-nodes and the arcs connects them are called main- 

arcs.

In an ERG, there are two types of nodes: main-node and subnode and there are 

two types of arcs: main-arc and sub-arc. A main-node is an entity node or a relation

ship node and a subnode is a node which represents an attribute of an entity node or a 

relationship node. A main arc is the arc in the ERG whose two end nodes are main- 

nodes; a sub-arc is an arc in the ERG that one of the end nodes of the arc is a main- 

node and the other end node is the subnode. An unit graph U of an ERG which is not 

a single entity type is the graph representation of a local region. The unit graph U =

[gi> fy, ek , ARC,}, A R C ji, . . . ,  fl,/}, ■[Uj\ {a /u> • ■ ■ > • • • >

{dJ U , djm], {dki  d ^ } ,  C,, C*] of a local region L  is a labeled graph which con

sists of three main-nodes, two main arcs, three sets of subnodes and three sets of sub
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arcs; where «,■ and ek are the main-node of entity type, rj is the main-node of relation

ship type; {ap l, . . . .  apq}  is a set of q subnodes of attributes of the main-node ep or rp \

{dn  db } is a set of s sub-arcs and both of the two end nodes of each sub-arc du

are the main-node e, or r, and the subnode a„ ; ARCi} and ARCJk are the main-arcs with 

two end nodes «?,, ry> and <ek, rt > respectively; C, and Ck are the cardinality of e, and 

ek that are labeled on the arc ARCi} and ARCjk separately, and C,, Ck e {1, M ,N } .

u name

HAS

c name

fONT
location dept_id

'MPLO'

RUNs.s.# dc time

MAJOR TEACH

TAKE

COURSE

FACULTY

STUDENT

UNIVERSITY

COLLEGE

DEPT

Fig. 1 The ERG  of the relational database UNIVERSITY.

Example 1 : Fig. 1 is an ERG for the relational database system UNIVERSITY. The 

figure shows two types of main-nodes : entity type based main-node and relationship
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type based main-nodes. The main-nodes {UNIVERSITY, COLLEGE, DEPT, 

FACULTY, COURSE, STUDENT} are main-nodes of entity types. Those {HAS, 

CONTAIN, EMPLOY, TEACH, TAKE, RUN, MAJOR} are the main-nodes of rela

tionship types. The subnodes are {u_name, cjname, location, dept_id, f_name, s.s#, 

time, co_id, stu_id, dc_time}. In the ERG of the UNIVERSITY, the nodes of ellipse 

are the subnodes; the nodes of rectangle are the entity type based main-node; the 

nodes of the rhombus are the relationship type base main-node.

Two local regions are said to be conjunct if they have the common main-nodes. 

The conjunction of two local region Lj and Lz are the common main-nodes of these 

local regions, denoted as Lx © L2, where © is the operator of conjunction. For exam

ple, as shown in fig. 1, [DEPT, EMPLOY, FACULTY] © [DEPT, RUN, COURSE] = 

{DEPT}; [UNIVERSITY, HAS, COLLEGE] © [COURSE, TAKE, STUDENT] = 0 .

A NJ query (Natural Join Query) on a relational schema may calculate the 

natural join of all relations in derived database [Chul981, Shmul982, Shmul981]. As 

discussed by Goodman, queries which may be represented by tree schemas are easier 

to be processed than those cyclic queries. An acyclic query can be either converted to 

the tree schema and processed by the semijoin or directly processed by joining the 

relations in the acyclic graph into a new relation [Kamb 1985b, Shmul981, 

Shmul982].

In a RDKER, the logic structure of the relational database is represented by an 

ERG. A N J  query  on a relational database based on an ERG can be represented by a 

subgraph of ERG. For a NJ query with acyclic structure, ER-semijoin can be employed 

to processed it. The processing of acyclic subgraphs of a NJ queiy will be studied in 

this chapter. A NJ query based on an ERG can be viewed as a relation with natural 

join operator between relations represented as entity node or relationship node.
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DEFINITION 1 A unit query graph UQ is a unit graph with the relational operators 

on the main-nodes such that UQ, = [<?,-, rjy ek, ARCij,ARCjk, {an , au },  {aj l t ajm }, 

{.akv ••• i i d;/J, { d j , djm}, {dkj , . . . ,  dk , C ; ,  Ck,Ln Lj,Lk, where and

ek are the main-node of entity type, rj is the main-node of relationship type;

{ap j  apq} is a set of q subnodes of attributes of the main-node ep or rp ;

{dn , . . . ,  du} is a set of s sub-arcs and both of the two end nodes of each sub-arc da 

are the main-node e, or r, and the subnode au; ARC,; and ARCJk are the main-arcs with 

two end nodes <eit rj> and <ek, rj> respectively; C,- and Ck are the cardinality of e, and 

ek that are labeled on the arc ARCy and ARCjk separately, and Ci t Ck e L^Lj,

Lk are relational operators on the main-nodes i, j, and k respectively and L, , Ljy Lk e  

{ a ,  v ,  - i ,  x ,  - ,  ©} which are operators of relational algebra that represent and (inter

section), or (union), negation, cartesian product, difference, and exclusive or respec

tively.

A query may have sub-queries which contain two derived relations which are 

represented by NJ queries In other words, by representing a NJ query as a subgraph of 

ERG , a query may have subgraphs such that a subgraph of a query may contain two 

subgraphs with relational operators between these two subgraphs.

DEFINITION 2 A NJERQG (Natural Join Entity-Relationship Queiy Graph) is a 

query graph (i) which contains a connected graph such that the natural join operator is 

to be employed on all the main-nodes of the graph, (ii) which can be represented by a 

sequence of unit query graphs.

Query processing of a NJ query and equijoin query can be processed by semijoin 

[Kamb1985b, Shmul981, Shmul982]. In this chapter, we extended the function of 

the query processing such that queries which can be represented by NJ queries with 

relational operators between them can be processed by the optimizing technique dis

cussed in this chapter. We also assume that the relational database is based on an ERG
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[Chen1987b]. Those queries which satisfy these limitations can be represented by an 

ERQG which is defined in the following definition.

DEFINITION 3 An ERQG (Entity-Relationship Query Graph) of a query on a 

RDKER is a query graph such that it can be represented as

(1) A NJERQG (Natural Join Entity-Relationship Query Graph), or

(2) A query graph which contains a relational operator between two NJERQGs, or

(3) A nested query graph which contains a relational operator between two nested 

query graphs (a query graph which contains a relational operator between two 

NJERQGs is a nested query graph).

Thus, an ERQG can be represented as a query graph based on an ERG  which con

tains a sequence of unit query graphs and a precedence order between unit query 

graphs such that (i) the innerest pair of parenthesis specifies a subgraph of natural join

(ii) the relational operator between two subgraphs specifies the relational operator 

between two subgraphs.
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name=
JamesCOURSE TEACH FACULTY

name=
JamesCOURSE TEACH FACULTY

Fig. 2.c

Fig.2 An ERQG on the ERG UNIVERSITY.

The trivial case of an ERG contains only a main-node. We now discuss the ERG 

and ERQG, which is not a trivial case and that is composed of more than one main- 

node. A w alk  of an ERQG is a finite nonempty sequence Wr = v(idQxv ld n v 2 • ■ • d (n_i)nvn, 

where v, is a main-node of ERQG and dtj is a main-arc of ERQG with two main-node v, 

and vj. If all of the arcs of the walk W are distinct, then this walk is a trail. For a trail 

W of ERQG , if all of the nodes of W are distinct, IV is called a p a th  [Thull981],

Two main-nodes v , and v2 in an ERG are said to be connected  if there is at least a 

path from vx to v2 or from v 2 to v ,. The set of main-nodes in the path which connects 

two main-nodes is called connecting nodes. For example, the path vi d la va vb dbc vc 

dc2y2 connects the main-nodes v j and v 2, the set {v j va vb vc v 2} is the connecting nodes 

for the main-nodes v , and v 2. If all pairs of nodes of a graph are connected, then such 

a graph is called a connected graph. An ERG is a connected graph. That is, each pair 

of nodes in an ERG should be connected. A cycle of an ERG is a path whose start
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node and end node is the same.

A query interface on a relational database can be categorized into two types as 

CLNI (conceptual level navigating interface) and URI (universal relation interface). 

For a query on a CLNI interface, the user has to navigate the conceptual level of the 

relation database; for a query on a URI, the user does not need to navigate the concep

tual level of the relational database. Most of the query language on a relational data

base such as QUEL and SQL are conceptual level navigating interface; while the 

query language designed on the System/U is a universal relation interface. The alloca

tion of a ERQG from a query on a relational database is based on the type of the query 

interface.

In an ERQG, the subnodes whose information are to be retrieved are called 

retrieval subnodes, and the main-nodes that adjacent to the retrieval subnodes are 

called retrieval main-nodes; the subnodes which restrict the domain of the retrieval 

subnodes are called restricted subnodes, and the main-nodes that are adjacent to the 

restricted subnodes are called the restricted main-nodes.

In a CLNI, the target part of an ERQG (TERQG) contains retrieval subnodes and 

the main-nodes which are in the navigating path of the query; the restriction part of an 

ERQG (RERQG) contains the restricted subnodes and the main-nodes of the navigat

ing paths that do not contain the arcs of the target part.

Example 2 : A query of SQL on the relational database UNIVERSITY of fig. 1 is : 

SELECT c_name, deptid,  location 

FROM COLLEGE, CONTAIN, DEPT 

WHERE COLLEGE.cname = CONTAIN.c_name 

AND CONTAIN.dept_id=DEPT.dept_id 

The target part of this NJ query is specified in the query and which is represented as 

COLLEGE, CONTAIN, DEPT. The restriction part of this query is empty.
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Example 3 : The ERQG of the query "Find the dc_time of the courses that are taught 

by the faculty with name = ’James’ " on UNIVERSITY of fig.l is represented in the 

fig. 2.a. This ERQG can be decomposed into a target part represented in the fig. 2.b 

and a restriction part represented in the fig. 2.c.

1.2. AUTOMATIC ALLOCATION OF ERQG ON A UNIVERSAL RELATION

By using ERG as the semantic structure of a relational database, the ERQG can be 

allocated on a universal relation. The traditional universal relation approach always 

use the functional dependency to obtain the access paths of a query on a universal 

relation [Sagil983, Ullml983]. The allocation of an ERQG on a universal relation by 

the ERG approach does not have to use the functional dependency between attribute.

Any subode of the ERQG that represents the target attribute of a query is a target 

subnode. In an ERQG, if a subnode specifies the domain of the value of an attribute in 

a query, then this subnode is defined as a restricted subnode; the main-node that 

directly connected to the restricted subnode is the restricted main-node.

Example 3 : The following query Q is based on a Universal Relation interface on the 

relational database UNIVERSITY represented in fig. 1 :

Q: retrieve u_name, c_name

where s.s.# = ’45678912345’

In the query Q , the subnodes are u_name, c_name, and ss.#. where u_name and 

c_name are target subnodes and s.s# is a restricted subnode. Thus the main-nodes 

UNIVERSITY and COLLEGE are target nodes; the main-node FACULTY is a res

tricted main-node.

DEFINITION 4 : Let TNQ be the set of target subnodes of a ERQG on an universal

relation based on an ERG such that TNQ = {a1 ak}. The target part of the ERQG

(TERQG) contains TNQ and the target main-nodes, where the target r. ain-noder- of the



73

query is equivalent to T, u  Tr U Tp , in which Te , Tr , and Tp are defined as follows :

(1). Tt = {e, I (3aj)((aj e TNQ) A (aj e {an  a^})); where {a n , . . . .  a^} is the Set of

subnodes of the entity type main-node e, }.

(2). Tr = {r, | (3a?)((a? G TNQ) A (a? g {an , . . . .  aln})); where {a n , . . . .  aln} is the set of 

subnodes of the relationship type main-node rt }.

(3). TP which contains all nodes in {Pi | (P, = {vs, . . . .  vf , . . . .  v„}), where 

(vi> ve e (Te vTr)) and Pt representing connecting nodes from vs to ve}.

DEFINITION 5 : Let RNQ be the set of restricted subnodes of an ERQG on a universal

relation based on an ERG such that RNQ =  { a x aq } . The restriction part of the

ERQG  (RERQG) contains RNQ and the restriction main-nodes, where the restriction 

main-nodes of the query is equivalent to Re u  R ru R  (ve), in which R e, R r , and R (ve) are 

defined as follows :

(1). Re = {es I (3a,)((a,. g RNq ) a  (a, e  {asl asu})); where {aj l t . . . .  aJU} is the set of

subnodes of the entity type main-node es }

(2). Rr = {r, | (3aw)«aw e  RNq ) a  (aw s  {an  G(v})); where {a t l  a ^ }  is the set

of subnodes of the relationship type main-node r, }.

(3). R (v e) = {P(vs)i | (Ptyj, = {v,, Vg,..., ve}), where ((v, g (Re u R r)) a

(v£ e (Te u  Tr u  Tp)) A (vJ £ (Te u f , u  Tp))) A

(VvA(vA G (Vj, V,,..., ve)(vh *ve)^>(vh £ (Tt u r . u Tp)))); is the connecting nodes 

from v, to ve}.

For any nonempty subgraph of a RERQ G , the intersection of this subgraph with 

the TERQG is a nonempty set of main-nodes which is a subset of Te u  Tr u  Tp . The 

degree of a node of an ERQG  is given by the number of main-arcs that are incident at 

that node. For the convenience of query processing, we assign the direction of the pro

cessing order to an RERQ G . A path of a RERQG  is a directed graph from the restricted
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main-node to the target main-node. The in-degree of a node of RERQG  is the number 

of main-arcs that have this node as head. The out-degree of a node of RERQG  is the 

number of main-arcs that have this node as tail.

The ERG F  is called a subgraph of the ERG G denoted as F  c  G , if every node of 

F  (main-node or subnode) is also a main-node of G and every arc of F  (main-arc or 

subarc) is also an arc of G . An RERQG  can be decomposed into a set of connected 

subgraphs, such that each subgraph contains just one restricted main-node. Thus a 

RERQG  is the union of its subgraphs SRERQG (subgraph of restriction part of ER-query 

Graph) that may be denoted as RERQG = \jjSRERQ Gi. A RERQG  does not have to be a 

connected graph, but each SRERQG, of RERQG  should be a connected graph.

Then, for a SRERQG , we define the start node of the the SRERQG as the restricted 

main-node in the SRERQG ; The end node of a main-node in a SRERQG is defined as a 

the target main-node of the SRERQG . From (3) of definition 5 we know that for each 

SREQ G , the only main-node in the target part is the end node of the SRERQG. The 

sequence of query processing of a SRERQG starts from the start node to the end node 

of the SRERQG.

The ring sum of two query graphs ERQG x and ERQGZ denoted as ERQG i®  ERQG 2, 

which does not have any isolated node and consists of only those arcs which are either 

in ERQG i or in ERQG2 but not in both of them.

THEOREM 1 : Let 0  be the operator of ring sum, ERQGq be an ER-query Graph, and 

TERQGq and RERQGq be the subgraphs of target part and restriction part of ERQGq 

respectively. Then (TERQGq © RERQGq) =  (TERQGq u  RERQGq)

Proof: Let TERQGq = {<Iterqg,’ Lterqg,>i> •••* Iterqg,> ̂ -terqg,>s } 2nd RERQGq = 

{<Irerqq,J-'rerqG'>i, <Irerqg, J^rerqp,■>»1 • From (3) of Definition 3, we get (^Irerqg,) 

Qrerqg, & TERQGq )

=> (TERQGq ® RERQGq) = (TERQGq uRERQGq).
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By representing an ERQG  as TERQG u  RERQ G , the query of these ERQG can be 

processed in two steps as : (i) processing the RERQG (ii) processing the TERQG . And 

the query processing of an ERQG  should starts from the start nodes of SRERQG s and 

end at end nodes.

2. STRUCTURE OF ERQG

The processing of an acyclic query graph has more advantage than the process

ing of a cyclic query graph, thus the conversion of a cyclic query graph to the tree 

structure is widely studied [Epstl982, Shmul981]. For the convenience of the query 

processing, we assigned the direction of processing order to the ERQ G . As an ERQG 

represents a subgraph of an E R G , if the subgraph of the ERG represented by an ERQG 

which has a path that starts from a main-node and ends at the same main-node then 

the ERQG  is a cyclic query graph. The representation of a query by an ERQG is dif

ferent from that by a query graph in a traditional relational database. An ERQG is 

represented by a set of local regions and it can always be processed by the ER- 

semijoin based on the E R G , which is not applicable on the traditional relational data

base.

An ERQG  can be either a cyclic graph or an acyclic graph. To process an acyclic 

graph efficiently, the query graph is always decomposed into a set of local regions so 

that we may use optimizing operator - ER-semijoin to process it. For a cyclic graph 

whose restriction part is an acyclic graph, ER-semijoin can also be used to process this 

restriction part. In this section we will discuss the structure of an ERQG  based on the 

structure of the target part and the restriction part of the E R Q G .

In the query processing of a ERQ G , a subnode which is not a restricted subnode, 

target subnode, or a prime ( key attribute) is called a redundant subnode . In other 

words, during the query processing of an ER Q G , we may neglect these redundant sub
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nodes. A main-node of entity type of an ERQG which is not a restricted main-node 

and such that it can also be neglected in the query processing is called a redundant 

main-node.

Thus an ERQG with nonempty RERQG can be processed in the order as (i) convert 

the cyclic subgraphs of the restriction part to the tree structures (if it is available) (ii) 

process of the restriction part (ii) process of the target part. For the processing of a 

restriction part which contains n disjunct subgraphs, each subgraph can be processed 

independently as in steps (i) and (ii). In the following sections, the categories of a 

ERQG and the conversion of subgraphs of restriction part to a tree structure is dis

cussed.

2.1. CATEGORIES OF ERQG

Since several relational query interfaces may be built on the top of a relational 

database system [Li 1984], the user may access a database system through any inter

face built on the system. The representation of a query by an ERQG helps the process

ing of the query on this system in a unique way, i.e. the processing of a query can be 

reduced to the processing of an ERQG on any interface of a database system with mul

tiple interfaces.

A cyclic subgraph of a RERQG may always be converted to a tree structure and 

which can be decomposed into a set of local regions. Thus for a subgraph of a RERQG 

which is either an acyclic graph or one that can be converted to an acyclic graph, we 

may use ER-semijoin to process this subgraph [Chen 1987a].

As discussed in the previous section, an ERQG which is based on an ERG can be 

decomposed into of TERQG and of RERQG, these TERQG and RERQG can be either a 

cyclic graph or an acyclic graph. Thus an ERQG can be grouped as : cyclic  ERQG and 

acyclic  ERQG. According to the structures of the TERQG and RERQG, an ERQG can
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further be grouped into the following five types:

Type I : Linear structure of an ERQG : both TERQG and RERQG of an ERQG are linear 

structure.

Example 4 : The main-nodes of an ERG  is shown in fig. 3, let aif be the p  th subnode of 

the main-node r,. The query Qx is expressed in the query language for the universal 

relation a s :

Q i: retrieve anu anj

where aVi = 'VALUE..:.

The ERQG representation of the query Q { is a linear structure.

Type I I : Tree structure of an ERQG  : The structure of an ERQG  is an acyclic graph.

Example 5 : The main-nodes of an ERG is shown in fig. 3, let and ajt be the p  th sub

node of main-node rx and the <?th subnode of respectively. The query Q 2 is 

expressed in the query language for the universal relation as :

2  2: retrieve aX), aXj, aX3

where = (VALUE  ••• 0  V (aVj = 'VALUE ■■■ ').

Both the TERQG and RERQG o f  the ERQG of Q2 are tree structures.

The ERQG s of Type I and Type II are acyclic graphs.
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Fig. 3 An cyclic ERQG  where only RERQG  or TERQG is cyclic.

Type m  : Only RERQG  is a cyclic graph.

Example 6 : The main-nodes of an ERG is shown in fig. 3. Let a ^ , aK, and ajt be the 

pth subnode of main-node rx , the ?th subnode of main-node rk , and the gth subnode of 

rj respectively. The query Q 3 is expressed in the query language for the universal 

relation a s :

Q 3. retrieve aXi,aXl

where (a*, = 'VALUE ') a  (ah = 'VALUE ■■■').

The ERQG  of the query Q 3 shows that only the RERQG  of this ERQG  is a cyclic 

graph.

Type IV : Only TERQG is a cyclic graph.

Example 7 : The main-nodes of an ERG is shown in fig. 3. Let a ^ ,  av  and aJt be the 

pth subnode of main-node r„, the <? th subnode of main-node rv, and the #th subnode of
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rj respectively. The query Q A is expressed in the query language for the universal 

relation a s :

12* retrieve ah,an2

where (aVi = 'VALUE ■■■ ') a  (aVl = 'VALUE ■■■ ').

For the ERQG  of this query, the TERQG of this ERQG  is a cyclic graph while the 

RERQG of the ERQG is an acyclic graph.

Type V : Both TERQG and RERQG  are cyclic graphs.

Example 8 : The main-nodes of an ERG  is shown in fig. 3. Let a^, a^, aL, and afi be 

the pth subnode of main-node r„, the ?th subnode of main-node rk, the wth subnode of 

main-node r, , and the gth subnode of rf  respectively. The query graph Q4 is expressed 

in the query language of the universal relation as :

Q s. retrieve ait,ak2

where (afi = 'VALUE • • • ') V (ani = 'VALUE ■■■ ') v (ai2 = 'VALUE ■■■ ').

In Q s, both the TERQG and the RERQG of the ERQG are cyclic graphs.

2.2. BRANCHING AND MERGING ON A RERQG

Comparing a cyclic query graph with a query tree, the query processing on the 

query tree has more advantages than the query processing on the cyclic graph: (1) The 

query graph can be decomposed into segments of subgraph, then we can employ semi- 

join [Yul984], ER-semijoin [Chenl987a] and etc. on the physical instances of the 

subgraph. For a cyclic graph, we have to use join operator on the representative 

instances of the cyclic graph, such a processing procedure takes more time and more 

physical space than the the query processing on the decomposed segments (2) In a 

distributed database system, the decomposition of a cyclic query into segments can 

reduce the size of the transactions among distributed nodes [Kamb 1985b].
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DEFINITION 6 : Two queries are said to be semantically equivalent if both of them 

will produce the same result under the processing rules that are applied on their physi

cal instances. Two ERQGs are said to be equivalent if both of them represent two 

semantically equivalent queries.

A main-node whose out-degree is greater than or equal to two is called a 

branching node (as fig. 4.a). A main-node whose in-degree is greater than or equal to 

two is called a merging node (as fig. 4.b). A main-node can be a merging node for a 

set of arcs and be a branching node for another set of arcs (as fig. 4.c). The loop of an 

arc on a main-node is not allowed, i.e., a main-node cannot be a merging node and a 

branching node of an arc.

A branching arc is an arc that has a branching node as its tail, the head of this 

branching arc is the branching head; a merging arc is an arc that has a merging node 

as its head, the tail of this merging arc is the merging tail. The merging of two merg

ing arcs of a merging node is the unification of the semantics of two merging arc.

The order of a branching node is the out-degree of that branching node, and the 

order of a merging node is the in-degree of that merging node. For a branching node 

with n branching arcs, the order of this node is n , and this node is a n-ary branching 

node. In the same way, for a merging node with n merging arcs, the order of this node 

is an n-ary merging node. An n-ary branching node may have another role as an m- 

ary merging node. For example, the node 19 j in fig. 4.c is a branching node with order 

2 and a merging node with order 2.
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Fig. 4.a A branching node of RERQ G .

Fig. 4.b A merging node of RERQ G .

Fig. 4.c A node which is a merging node and a branching node of RERQ G .

Fig. 4 A subgraph of a RERQG with branching node and merging node.

2.3. MERGING ARCS ON A MERGING NODE

Two merging arcs with same head may be merged to a new arc. The head of this
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new arc is the original merging head and the tail of this new arc is obtained by apply

ing the relational operators on the physical instances of these two merging tails.

DEFINITION 7 : For arcs ARCph and ARCqh (where p, q are the tails of merging arc 

ARCph and ARCqh respectively; h is the head of these two merging arcs and h is an 

entity main-node), the operators which represent the merging of these two arcs are 

defined as follows: denoted as

(1). Union (logical OR) : (ARCph u A R C qh -* ARCgh) a  (rp u r ,  - » rg); where ARCgh is 

the new arc with tail g ; rp and rq are the physical instances that contain only 

values of key attributes which are common key attribute of the main-node p and 

q \  rg represent the derived relation [Datel983] obtained from processing the 

operator on rp and rq . This derived relation corresponds to a new node that is the 

tail of the arc ARCg . The union operator (u) in the ERQG  is mapped to the physi

cal instances on which the operator (u) of the relational algebra can be applied.

(2). Intersection (Logical AND) : (ARCph n A R C qh -4  ARCgh) a  (rp n r q rg); where 

ARCph, ARCqh, ARCgh, rg , rp ,rq , p ,  q ,  and g are the same with (1 ). The intersection 

operator (n) in the ERQG  should be mapped to the physical instances on which 

the operator (n ) of the relational algebra can be applied.

(3). Difference : (ARCph -  ARCqh -4 ARCgh) a  (rp -  rq -> rg) where ARCph, ARCqh, ARCgh, 

rg , rp ,rq , p ,  q ,  and g are the same with (1 ); The difference operator (-) in the 

ERQG  should be mapped to the physical instances on which the operator (-) of 

the relational algebra can be applied.

(4). Cartesian Product : (ARCph *A R C qh -4 ARCgh) a  (rp x r q -> rg). where ARCph, 

ARCqi,, ARCgh, rg, P> <1, a n d  8 are the same with (1 ); rp and rq are the physical 

instances of the main-node p  and q respectively. The cartesian operator (x) in 

the ERQG should be mapped to the physical instances on which the operator (x) 

of the relational algebra can be applied.
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(5). Join {ARCph joinARCqh -» ARCgh) A (rp Mr, ->rs); where ARCph, ARCqh, ARCgh, rg, 

p , q , and g are the same with (1); rp and rq are the physical instances of the 

main-node p  and q respectively. The join operator (tx) in the ERQG should be 

mapped to the physical instances on which the operator (m) of the relational alge

bra can be applied.

(6). Negation (-. ARCph - >ARCgh) a  (-. rp -> rg); where ARCphM C ghj q, p ,  and g are 

the same with (1). rp is the physical instances of the main-node p .  The negation 

operator (-i) in the ERQG should be mapped to the physical instances on which 

the operator (-i) of the relational algebra can be applied.

(7). Exclusive-OR (ARCph &ARCqh -» ARCgh) a  (rp @rq ->rg); where ARCph, ARCqh, 

ARCgh, rg> rp,rq, p ,  q, and g are the same with (1). The Exclusive-OR operator 

(©) in the ERQG should be mapped to the physical instances on which the opera

tor (©) of the relational algebra can be applied. The operation of this operator on 

the physical instances can be represented by an equation which is relevant to the 

union, intersection, and difference operator as : (rp @rq) = (rp u  rq) -  (rp n  rq).

(8). Division (ARCph + ARCqh ARCgh) A (rp + rq —> rg ). where ARCph, ARCqh, ARCgh, rg , 

P, q , and g are the same with (1); rp and rq are the physical instances of the 

main-node p  and q respectively. The division operator (-*-) in the ERQG should 

be mapped to the physical instances on which the division operator (+) of the 

relational algebra can be applied.

Example 9 : For the relational database system UNIVERSITY as represented in ERG of

the fig. 1, the following queries have the same access paths but different operator

representation on the merging node DEPT :

(i). Find the dept id of the DEPT that RUN the COURSE and that EMPLOY the 

FACULTY who TEACH the same COURSE with course_id = ’csc4354\ This query 

has the relational operator representation "n" on the merging node DEPT.
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(ii). Find the dept_id of the D EPT  that RUN  the COURSE or that EMPLOY the FACULTY 

who TEACH the same COURSE with course_id = ’csc4354’. This query has the 

relational operator representation "u" on the merging node D EPT.

(iii). Find the dept_id of the DEPT  that RUN  the COURSE and that does not EMPLOY the 

FACULTY who TEACH the same COURSE with course_id = 5csc4354’. This query 

has the relational operator representation on the merging node DEPT.

The merging of arcs on a merging node depends on the relational operator 

representation of that merging node. The application of these operators (Union, inter

section, D ifference, Cartesian product, Join, Exclusive-O R, Division) to merge the arcs of a 

merging node of an ERQG  is equivalent to the implementation of these operators on 

the corresponding physical instances of the merging tails of these arcs.

2.4. DECOMPOSITION OF BRANCHING ARC AND BRANCHING NODE

A branching node with order n can be decomposed into n separate arcs with 

separate tails. The decomposition of a branching node depends on the semantic 

representation of that node. The decomposition of a branching node can be categor

ized as the decomposition of the branching node of entity type and the decomposition 

of the branching node of the relationship type.

person_id

WRITE BORRO’

book id 
title 
year

PERSON

BOOK

W ld d < |o r r o 5>

Fig. 5 The ERG of the RDKER LIBRARY.

The decomposition of a branching node or the breaking up of a branching arc
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will convert a cyclic queiy graph into a tree structure [Shmul981]. Many different 

techniques for the conversion of a cyclic query graph to a query tree on a relational 

database system are proposed [Epstl982, Shmul981, Kambl985a, Shmul982]. The 

conversion of cyclic subgraphs of an ERQG  to tree structures in a RDKER is different 

from the conversion of a cyclic query graph to a query tree in a traditional relational 

database system. The difference between a cyclic ERQG of a RDKER and a cyclic 

query graph of a traditional relational database system is illustrated by the Example 

10.

The conversion of cyclic graph to a query tree in the traditional relational data

base system does not have to consider the semantic representation of relations. That is, 

a traditional relational database system always uses the data definition on the attri

butes and the functional dependency among attributes to recognize a relation and the 

relationship between relations. In a RDKER (Relational Database with Knowledge of 

ERG), we use the semantic representation of a relation in a local region to recognize a 

relation.

Example 10 : In the relational database as represented in the fig. 5, the relationship 

types BORROW(person_id, bookid) and WRITE(person_id, bookid) contain the 

same set of attributes. In this case, we can not distinguish these two relationship types 

by just looking into the data definition of the set of the attributes of these two relation

ship types. Concerning to the semantic representation in the E R G , these two relation

ship types have different semantics which represent WRITE and BORROW 

separately.

A relational database system, which is based on the semantics of its E R G , is dif

ferent from traditional relational database system. Thus the technique for the mapping 

of cyclic subgraphs of restriction part of an ERQG to tree structures is different from 

the mapping techniques that is applicable to the traditional relational database system
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[Epstl982, Shmul981].

2.4.1. AN ENTITY-TYPE BASED BRANCHING NODE

For a cyclic query graph, the decomposition of a branching node will convert a 

cyclic subgraph to a tree structure [Epstl982]. As discussed in the previous section 

that a cyclic ERQG of a RDKER has a semantic representation, thus the decomposition 

of a branching node of subgraphs an ERQG to a tree structure is equivalent to the 

semantic decomposition of that branching node.

An old arc of a branching node is a branching arc before the decomposition rule 

is applied. A new arc of a decomposed branching node represents a new arc obtained 

from the decomposition of a branching arc on that branching node.

An n-ary branching node can be decomposed into n arcs by the following 

decomposition ru le :

(i). Decomposition of an n-ary branching node of a relationship type:

An n-ary branching node of a relationship type can be decomposed into n arcs. 

The head of these new arcs are the original heads of the old arcs; the tail of each 

new arc is obtained by projecting the key attributes of the head on the physical 

instance of the branching node.

(ii). Decomposition of an n-ary branching node of an entity type:

An n-aiy branching node of an entity type can be decomposed into n arcs. The 

head of these new arcs are the original heads of the arcs; the tails of each new arc 

is obtained by projecting the primary keys of the branching node on the physical 

instance of that branching node.

Example 11 : The database UNIVERSITY is shown in fig. 5. On this database, the 

query " find person id, where year > 1980 " can be mapped onto the database such 

that it can be represented by an ERQG  as in fig. 5. Since the main-node BOOK is a
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branching node with order 2, this query graph can be decomposed into ERQG as 

shown in fig. 6 according to the decomposition rule.

PERSON person_id

person id 
book Id WRITE BORRO'

Fig. 6 The decomposition of the branching node B O O K .

From the local constraint of a local region, and the decomposition rule on a 

branching node of an entity type, the following two procedures for the processing on a 

branching node are equivalent:

(1). Directly join the physical instances of old arcs of branching node by steps as:

(i) join the physical instances of the end nodes of each old arc on the branching 

node, (ii) project on the key attributes of the head of the arc on this intermediate 

relation separately.

(2). The branching node can be either a entity node or a relationship node. The query 

processing on a branching node is depend on whether the branching node is a 

entity node or a relationship node as:

a. For a branching node of relationship type, (i) decompose the arcs of a branch

ing node into a set of new arcs by the decomposition rule, then (ii) implement the 

join operation on the end nodes of each new arc, finally project the primary key 

of each head node.

b. For a branching node of the entity type, (i) decompose the arcs of a branching 

node into a set of new arcs according to the decomposition rule, then (ii) imple

ment the join operation on the end nodes.
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A cyclic subgraph of a RERQG  that has single branching node can be decom

posed to a tree structure by processing the decomposition rule on the branching node. 

For a cyclic subgraph which has more than one branching node, it can be converted to 

several "single branching node contained" cyclic subgraphs by duplicating the cyclic 

subgraph to each branching node.

Let n, and be two branching nodes in a cyclic subgraph of RERQ G . If there is a 

path pi from to nj and a path p 2 from n, to n, such that, pi = n,vl0«ovoi«i • • • and 

Pi = nj vjqnqvq(q-i)nq-i - ni> ^ en>the Paths Pi anc*Pi, are called the compound path.

An acyclic subgraphs of an ERQG can be decomposed to a sequence of local 

regions that we may employ ER-semijoin to processed it. In case of a cyclic subgraph 

of a restriction part have multiple branching nodes and merging nodes, the processing 

of such a cyclic subgraph by converting it to an acyclic structure may be not efficient. 

For a subgraph of a RERQG  which is either a cyclic graph with multiple branching 

nodes and merging nodes or a compound path, all of the main-nodes in the graph can 

be aggregated to an aggregation node which is obtained by joining all the entity 

nodes and relationship nodes in the subgraph.

DEFINITION 8 : Let G be a subgraph of an ERQG which contains a set of main- 

nodes of relationship types {rlt . . . , r , rw}, a set of restricted main-nodes of entity 

types {erl, . . . ,erJ, . . . ,erp},  and a set of non restricted main-nodes of entity types

(e„i e ^ , ..., e ^ } .  Then the aggregation node M of this subgraph G is M = (tx̂ r, ) txi

H j erj) IX* W h ere  txfcr,- =  r x\A,...,rit • • • , Mrw; =  er l M...,erJ, ...,M«rp; =

THEOREM 2 : Let G be a subgraph of an ERQG defined as in Definition 8 and PK 

be the primary keys of a branching main-node in G . Then,

1tpKM = nPK (txi r,-) M (tx̂ - erJ) Ml (tx^ )
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=  ftpK (H  r«) ■xl (Hy erj ).

Proof : A subgraph of an ERQG  should be able to be decomposed into a set of unit 

graphs. For a "non-restricted main-node" of an entity node in a local region, its seman

tics can be reduced to the relationship node of the local region [Chenl987b]. In other 

words, ER-semijoin can be extended to the creation of an aggregation node of any 

subgraph of an ERQG. Since main-nodes of entity type, which is not a restricted 

main-node may be skipped during the ER-semijoin operation, the Theorem is proved.

Concerning to the ERQG (Entity-Relationship Query Graph) representation of a 

query, the TERQG (Target part of ERQ G ) is an undirected subgraph of an ERQG  and the 

RERQG  (Restriction part of ERQ G ) is a directed subgraph of an ERQ G . To process of 

the undirected subgraph of a TERQG , an aggregation node processing technique may 

be applied. Entity-Relationship Query Graph) it can be processed as an aggregation 

node.



CHAPTER 5 
AN ERG APPROACH TO THE UNIVERSAL RELATION

I. BASIC ASSUMPTIONS ON THE UNIVERSAL RELATION OF SEMAN

TIC APPROACH

In order to implement the universal relation by the utility of the ERG  proper 

assumptions on this universal relation scheme are necessary. The general assumption 

of the universal relation is that each attribute in the scheme is globally and uniquely 

defined.

To obtain the access paths of a query on a universal relation interface, by using 

the semantics of an E R G , certain assumptions on the ERG are required. After the gen

eral assumptions of a universal relation based on an ERG the assumption which make 

the preprocessing of the query on the conceptual level feasible is made.

1.1. GLOBAL AND UNIQUE ROLES OF ATTRIBUTES

The purpose of the universal relation interface on a database system is to relieve 

the user from the work of navigating the conceptual level of a relational database sys

tem. In other words, on a universal relation interface, the user may directly query on 

the attributes of a database and he do not have to know the structure of the conceptual 

level. To allow the user to do the query directly on the attributes of a database the 

first assumption made on a universal relation scheme is that there exists a set of attri

butes in a universal relation [Ullml983]. Since the user does not have to know the 

conceptual level on a universal relation scheme, the application of an attribute to more 

than one representation is not allowed. This restriction on a universal relation is based 

on the second universal relation assumption. The second assumption on a universal 

relation scheme is that all the attributes in a universal relation scheme are uniquely

90
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defined.

The first assumption of the universal relation asks that all the attributes of a 

universal relation should be globally defined. The second assumption of the universal 

scheme is to enforce an attribute should not have more than one representation in a 

database.

1.2. ASSUMPTION ON THE PHYSICAL LEVEL OF DATABASE SYSTEMS

The representative instances R ep (P ) of a database D  is a collection of all of the 

physical instances (physical relations) of entity types and relationship types of a data

base [Sagil983]. A physical instance r,- is a set of tuples which represents the true 

value of a relation in the physical database. A physical instance of entity type is a 

physical instance whose representation in the semantic level is an entity type; a physi

cal instance of relationship type is a physical instance whose representation in the 

semantic level is a relationship type. For a database D  with physical instances 

r u r2, ..., rk , the representative instances of this database is denoted as Rep (D ) =

( r i > r 2>

Though the concept of exerting representative instance to represent the physical 

level of a database is similar to that proposed by Sagiv, the approach to a universal 

relation using semantic model is quite different from Sagiv’s approach to the univer

sal relation. In Sagiv’s approach the functional dependency is employed to obtain the 

access paths of a query; in the semantic approach, a query is mapped onto an ERG of a 

database to obtain a set of access paths represented as an E R Q G .

A query can be categorized into two types : Update and Retrieval. The Update can 

be further grouped into Modification, Insertion, and D eletion. The global updating of a 

database system is discussed in chapter 1.

For the global retrieval of a database, a queiy is processed by a queiy processor in the
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conceptual level. That is, a query on a universal relation interface can be mapped 

onto an ERG to obtain an E R Q G . Then, the preprocessing of a query decomposition 

and optimization can be implemented in the conceptual level on an ER Q G . To obtain 

proper access paths on the universal relation interface, we employ semantic model 

rather than functional dependency as basis for the allocation of access paths of a 

query. In the next section, the assumptions made on an ERG  will make the prepro

cessing of a query on the semantic level feasible.

1.3. ASSUMPTION ON THE SEMANTIC MODEL

To employ the semantic model as the structure of a relational database system, a 

relational database should be defined by a semantic clear E R G . [Chenl987a].

The second assumption on an ERG is that for an entity type or a relationship type 

in an ERG there is a unique physical instance corresponding to it, and for a physical 

instance of a representative instance, there is a unique entity type or relationship type 

in the semantic model to represent it. That is, a relational database system is well 

designed on a semantically clear ERG  and there is a bijective function between entity 

nodes or relationship nodes of the semantic level and the physical instances of the 

representative instances.

LEMMA 1 Let r x and r2 be the physical instances of relations R x and R 2 on a relation 

scheme, and (Pki), {PKX, PK2,..., PKm} are the sets of primary key of relations R x and 

R 2 respectively. Then, UPKl(r2) c  I W ^ i )  =* (n*, ( r , D0 r 2) = r 2) a  (n*, (r, do r 2) do II*, (r, do 

r 2) = r ! DO r 2).

Proof : Let rjDor2 = {u/"VB>l-} and r 2 = {u"V0j}; where VHii is a tuple of the physical 

instance r,D0r2 and { u " ^ }  is the set of m  tuples of the physical instance r t D0r2; V0 j  

is a tuple of the physical instance of r 2 and {u"V0J-} is the set of n tuples of the physi

cal instance of r 2. The implementation of the natural join operator on r x and r 2, the
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property n ^ i  tx r 2) Q  r 2 should be true. Thus to prove tx r2) =  r 2 we have to 

prove r 2 £  n flj (r1 Mr2). Since n PKi(r2) £  n f o r  each V0 j  of r 2, there exist a tuple 

of r x whose projection on P K X is equal to the projection of VoJ on P K X. Thus for each 

V0j in r2t there exist a tuple Vnii corresponding to it. That is, r2 c  ( r x tx r2). The equality 

( r ! m r 2) = r 2 is proved. The next step we want to prove (r2 txi txj n /?i ( r x tx r 2) = r x txi 

r 2. As ( r x m r 2) =  r 2, we get the equal cardinality of r 2 and r x txi r 2, that is m = n . In other 

words, the cardinality of n # i( r 1 tx r 2) is equal to the cardinality of r t m r 2 and the cardi

nality of r2. Thus for x m r 2)) = Hp^ ( r 2), r 2 tx r x = r 2 txi ( r x txi ( rx tx

r 2) txj ri/t, (r j M r 2).

In an E R G , a unit graph represents a local region which contains a pair of entity 

types and a relationship that connects to these entity types. A local region 

may have the property of the local integrity iff [Chenl987a]

*«,-*(*.■) 1)- (!) 
Since a local region has the property of the local integrity, the physical instances of a

local region has the property of the join dependency which is proved in the Lemma 2.

LEMMA 2 Let a relation scheme R whose semantic structure be represented by an 

E R G , and R = {L t I Li = [£<_!,/?, £1+1]}. Then, V(£;) ((£,- e £ ) , (L, = [£p, R q, £ j  => rL = 

rE, * % m rEi = n Ef(rL) tx (rL) tx n e, (rL)); where r^, rRn, and r& are the physical 

instances of Ep ,R q, and Es respectively.

Proof : Let PKp be the set of the primary key of Ep and PKq be the set of the primary 

key of Es . For the integration rule of a local region of an E R G , the physical instances 

of local region L has the property of (nPKf(rRt) c  nWf(r£f)) a  (nPK(rRi) £  nPK(rEi)). 

From the LEMMA 1, (n*, (r£,tX/-fi<) = rR<) A (n£f (rEf M rRf) tx n^f {rEr tx rR')) = rEp IX rRp, and 

( r E , 1x3%) ~ %) A (He, (rEi IX rR') tx (rEi tx rR ) = rE tx rR ).
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Thus nEf (rEf M rR' ) M II£< (rEf r£f, and UEi (rEi II£> (r£, MrS() = {rEf (r£#

m rR) = rEf M rEt txi rR< = rL. From the integration rule, we amy also get UE_ (rE§ txi rRt) = ri£i 

(rEl tx) rRf M Ep), TlEf (rEf M rRf) = (r£_ M rR< txi Ep), and n £f (rEf M rRJ  = n £f (r£, M rR<) = UR<

(rE, txi % txi Ep). Then rL = rEr txi rR< txi r£, = UEf(rL) txi n £f (rL) M UEi (rL); where rEf, rR<, and 

r£j are the physical instances of Ep,Rq, and Es respectively.

From Lemma 2, the join dependency property for the physical instances of a 

local region in an ERG is proved. Such a join dependency property of the physical 

instances of a local region can be extended to the ERG.

THEOREM 1 Let Rer be a relation scheme whose structure can be represented in an

ERG as Rer = { l lt...,£,} andRm = {Ex Ei, . . . , E m,R1 Rj /?„}; where £,

and Rj are entity type or relationship type respectively. And let r be the physical 

instance such that r = txft" (r£,(r)MrJ;(r)); £,,/?; e Rer. Then, r = (n£((r)txin£/r)) =

n £i(r) 1X1 n£j( r ) ... txi n£_(r)M n£i(r)M n £j(r) ... txi n£ (r).

Proof:

(i) For an ERG with single entity type, the proof of the Theorem is trivial type; for 

an ERG with only one local region, the Theorem is proved by the LEMMA 2.

(ii). For Rer = {Lx Lk}, assuming r(k) = txf/ (n£,(r)lxin£j(r)) = n £l(r) txi n£j(r) ...

txin£,(r)txin£i(r)txin£3(r) ... txin£.(r).

(iii). ForJfo = {Lx Lk,Lk+1}, le tLk+1 = [EgJthE i l

Case 1. If (£g e R ^ )  a  (Rr b R^ ) a  (£; e R^ ), Then r(k+l) = r(k) = tx̂ nj n 

(n£|(r)txin£>(r)) = n £l(r) txi n £l(r) ... txin£.(r) txi n £l(r) txi n Rj(r) ... txin£.(r). Then, by 

the inductive hypothesis, the Theorem is proved.

Case 2. If (Eg e Rer) a  (Rk e Rer) a  (Et e Rer), Then r (&+1) = r(k)wrRk = 

(n£i(r)txin£/(r))) txlrA = ((n£ r(*:)Mr£J  (txi n£/(*)txlr£J  ,..., txl(n£_r(*:)txlr£4) txi 

(n£ir(*)lxlr£i) M (n£/(A)txirA),..., txi(n£/(A:)txlr£J )  = (n£ r(^+l) Cxi n£jr(*+l),...,
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txHT£<ir (* + l) )  M n ^ r( fc + l)  tx] n Alr ( ^ + l) ) , .„ ,  tx] ! ! * /( £ ) )  MrA(i| =  ( n £ir(& +l) txi TlEir (k + l),...,  

t x in ^ r ^ + l ) )  txi n £ r (£ + l)  m n £lr(ifc+l)),..., M ll^r(/fc)) m I T ^  Then, by inductive 

hypothesis, the Theorem is proved. Case 3. If (Eg e  Re r ) a  (Rh g R ^ )  a  (E, g Re r ), 

Then r (£ + l)  = r(k )M rRk Mrf t . From case 2, r(k + l) = r{k )W rRk (H y ( n £i( r ) ix in ^ tr ) ) )  

*>/*, =  ( n £l( r (/:+!)) M n £j(r(* + l))  ... M n£J r ( t + l ) )  M n £l(r(* + l))  M n £j(r(£ + l))  ... 

cxin£<(r(& +l))) M n£iirMi By viewing r (k )  ixi rRk as an intermediate physical instance 

of an entity type Then, by Lemma 2, we may get r (k + l) = r(k)t»irRk n t£j = ( t x y  

( n £j( r (k ) ) M n £/( r ( k » ))  MrRk MrR = ( n £i(r(£ + l))  tx] II£j(r(£ + l)) ... MII£m(/-(£+1)) M 

n fil(r(* + D ) txi n £j(r(* + i)) ... t x i n ^ r ^ + i ) ) )  tx n W ffl Then, by induc

tive hypothesis,

Case 4. If (Eg g r er ) a  (Rh e  Rer ) a  (E, g Rer ), the Theorem can be proved with 

the same reason as Case 3.

Thus the Theorem is proved.

Ullman proved that there exists a relation for a universal set of attributes of a 

universal relation if and only if this relation satisfies the join dependency on the physi

cal instances of the universal relation. [Ullml982]. From Theorem 1, for a relational 

database whose semantic structure can be represented by a semantically clear E R G , the 

join dependency is always true. That is, the assumption that there exists a universal set 

of attributes on a universal relation is always true.

2. QUERY DECOMPOSITION AND ITS ASSOCIATED ACCESS REGIONS

The universal relation assumption based on an ERG requires that for a query on a 

universal relation, there is one semantic extended region corresponding to it. By 

representing a semantic structure of a relational database in an E R G , a query on the 

relational database can be represented by an ERQG which contains a subgraph of an 

ERG  with logics of the query. An ERQG can be grouped into two types. That is, each 

valid query can be grouped into a target part and a restriction part. The target part
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pertains to the attributes of the information to be retrieved. Thus for a valid query, the 

target part should not be empty. The restriction part restricts the domain of the attri

butes to be retrieved. An empty restriction part always means that the domain of the 

target part is not restricted.

2.1. THE SEMANTIC EXTENDED REGION OF A QUERY ON A UNIVER

SAL RELATION

A query on a universal relation based on the semantics of an ERG  yields lossless 

information if the access paths of the query cover all of the possible attributes of the 

query. For two different main_nodes in an E R G , there may exist more than one path 

connecting them. The lossless information to represent the relationship between two 

main_nodes in an ERG is obtained by the union of all the paths that connect them. 

Thus we define the subgraph of two separate main_nodes in a query as the set of paths 

that connect them. [Chen1987b].

The target part and restriction part of a natural join query of a universal relation 

is defined in the previous chapter.

DEFINITION 1 A minimal semantic extended target part of a query is the minimal 

set of the target part of the query which represents lossless information.

We define the target part of the qeury to cover all the loseless information. By 

deleting the redundant main-nodes as in the Example 1, the target part of a query can 

be represented by a minimal semantic extended target part.

Example 1: The query Q on the database COMPANY of fig. 1 is :

Q retrieve rdept id, person id

where p a rtid  = "part00001532".

To represent lossless information of Q ,  the target part can be [DEPT, EMPLOY, 

PERSON] or [EMPLOY, PERSON]. The minimal extended target part is
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[EMPLOY, PERSON].

DEFINITION 2 A minimal semantic extended restriction part of a query is the 

minimal set of the restriction part of the query which may specify the domain of loss

less information.

The minimal semantic extended restriction part of a query can only be obtained 

after the allocation of the minimal semantic extended target part. We define the res

triction part of the qeury to cover all the loseless information and which do not cover 

the redundant paths, thus it is a minimal semantic extended restriction part.

Example 2: The query Q in example 1 has two equivalent semantic extended restric

tion parts represented as [PERSON, [WORK O N ,M AN AG E ], PROJECT, USE,PART] and 

[PERSON, [WORK ON, MANAGE], PROJECT, USE]. The minimal semantic extended res

triction part is [PERSON, [WORK ON, MANAGE], PROJECT, USE].

DEFINITION 3 A semantic extended region SR of a query Q is the union of minimal 

semantic extended target part and minimal semantic extended restriction part of Q . 

That is SR = TMIN u  RMIN, where TMIN is the minimal semantic extended target part of Q , 

and Rmin is the minimal semantic extended restriction part of Q .

The minimal semantic extended target part (TMIN) of a query contains the 

minimal set of local regions and includes all of the attributes to be retrieved such that 

Tmin =  (A  I (A £  SR ) A ((V j )  (O' ^ j ) a ( A  * L j) )  (3 rn) {{m * i )  a  (A * L m) A

(A* A  * 0 ))}  a  Tmin * 0 .  The minimal extended restriction part of the query con

tains the minimal set of local regions that connect the target part and the attributes 

whose domain is specified in the query such that Rmin = (A IA £  S R }. 

SR = ( TM!N u Rmin ) a  ( Rmin ^  0  —» ( TGM/n © RGUin -  A /w  u Rmin))> where TG is the 

graph representation of the target part, RG  is the graph representation of the restriction 

part, and ® is the ring sum operation on the ERQG [Chen1987b].
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For a valid query, the semantic extended region can be decomposed into a query 

part and a restriction part. The necessary condition for a valid query is that the target 

part of the query must not be empty. Then, each query can be decomposed into two 

sets of local regions. One set of local regions is the set of local regions of the target 

part, the other set of local regions is the set of the local regions of the restriction part. 

For a nonempty restriction part, the intersection of the restriction part and the target 

part should not be empty. By representing a queiy by an ERQ G , 

(T G min © RGmin = Tmin u RUiN) defines that the intersection of the target part and the 

restriction part of a query contains a set of main-nodes such that each isolated sub

graph of the restriction part does not have two main-nodes in this set.

personid
proj_id

dept_id
location

dept_id
person_idEMPLOY

person_id

MANAGE ORKOl

proj_id

proj_id
part_id

part_id

PERSON

PROJECT

DEPT

PART

person_id
proj_id

Fig. 1 The Entity-Relationship Graph of the relational database COMPANY. 

Example 3 : Consider a relational database COMPANY whose semantic model is 

represented in the Entity-Relationship Model as in fig. 1. The query "Find the dept id
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of the DEPT  that EMPLOYS the PERSON  who WORKS ON or MANAGES the PROJECT that 

USEs the PART with part_id =’part000Q01532’." specifies that the target entity part is 

DEPT  and the restricting object is part_id which is the attribute of the entity type 

PART. The query specifies the semantics regions which extend from the local region 

[DEPT, EM PLOY, PERSON] to the local region [PROJECT, USE, PART]. The semantic 

extended region of the query includes the local regions [PERSON, WORK O N , PROJECT] 

and [PERSON, M ANAGE, PROJECT], which connect [DEPT, EMPLOY, PERSON] and 

[PROJECT, USE, PART]. The same query can be represented in a query of the universal 

relation as "retrieve dept_id where part id = part000001532’ These two equivalent 

queries have the same extended region. From example 1 and example 2, the minimal 

semantic extended region of these two queries is [EMPLOY, PERSON, 

[WORK O N , MANAGE], PRO JECT,U SE].

The allocation of the semantic extended region of a query on a universal relation 

interface is equivalent to the searching of the access paths to represent the query. Such 

semantic extended region must contain the lossless information of the query.

Example 4: For the query in example 3, there are two paths between mainnodes 

DEPT  and PART : [DEPT, EMPLOY .P E R SO N , WORK ON .PRO JEC T, USE, PART] and 

[DEPT, EMPLOY, PERSON, MAN A G E , PROJECT, U SE, PART]. The relationship between 

these two access paths may be one of the following : Union, Intersection, Difference, 

Cartesian Product, Jo in , Negation, E xclusive-O R , Division. To represent a lossless query, 

we take the union of these two access paths and get the result as in Example 3.

For the query based on the universal relation as in the second query of example 

3, the allocation of the semantic extended region of the query is necessary. In general, 

the semantic extended region of a query is not unique. But for a query, there is a 

unique minimal semantic extended region corresponding to it. In the next section, we 

will discuss the uniqueness property of the minimal semantic extended region.
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2.2. UNIQUE PROPERTY OF A QUERY AND ITS ERQG ON A UNIVERSAL 

RELATION

For the interpretation of a query of a universal relation approach on an E R G , the 

allocation of different access paths may yield different results. Thus we will prove that 

for each query on a universal relation interface, there is a unique set of access paths 

that can be allocated.

DEFINITION 4 Let R  be a RKER with an ERQG G. For any two main_nodes Mx and

M2 in G , P is a set of access paths between and M2 such that P = {Pi,...,P.- Pn }.

Let I, be a relation which is obtained by joining all of the physical instances of the 

path Pt , P, £  P. Then, G is a non-redundant ER iff (VP,)(VPy) ((P, cP)(Py e P )

(Pi *Pj)(Pi - P j  * 0) (Pj - P i  * 0)->  (/,- * /,»

LEMMA 3 The minimal semantic extended target part of a query on a universal rela

tion of a non-redundant ER is unique.

Proof : Assuming there are two different target parts T x and T 2 for a query Q , that is 

T \ * T 2.

(i). If Tx c  T 2, then T2 is not a minimal semantic extended target part, the result is 

contradictory to the assumption that T 2 is the minimal semantic extended target 

part.

(ii). If T 2 c  t u  then is not a minimal semantic extended target part, the result is 

contradictory to the assumption that T x is the minimal semantic extended target 

part.

(iii). If (T 2 <z Tx) a  (Tx <t T 2), then either T x or T 2 is redundant. Then, the assumption is 

contradictory to the fact that the relational database is non-redundant ER.

Thus the minimal semantic extended target part of a query on a universal relation of a 

non-redundant ER is unique.
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LEMMA 4 The minimal semantic extended restriction part of a query on a universal 

relation of a non-redundant ER is unique.

P roof: Assuming there are two different restriction parts R x and R 2 for a query Q, that 

is R1^ R 2.

(i). If R 1 <z R2, then R2 is not a minimal semantic extended restriction part, the result 

is contradictory to the assumption.

(ii). If R z c  R  1} then R x is not a minimal semantic extended restriction part the result is 

contradictory to the assumption.

(iii). If (R 2 <z/?i) a  (/?! <zR2), then either R x or R 2 is redundant. Then, the assumption is 

contradictory to the fact that the relational database is a non-redundant ER.

Then, contradicting results are obtained from the assumption that there are two dif

ferent restriction parts in a valid query. Thus the uniqueness property of a minimal 

semantic extended restriction part of a query on a universal relation of a non- 

redundant ER is proved.

THEOREM 2 The minimal semantic extended region of a query on a universal rela

tion of a non-redundant ER is unique.

Proof : The semantic extended region of a query on a universal relation of a non- 

redundant ER is the union of its target part and the restriction part of the query. Let 

TG be the target part subgraph of the query and RG  be the restriction part subgraph of 

the query, and G be the query graph of the query. Then, TG ® R G  -  TG \ jR G .  Thus 

the uniqueness property of a semantic extended region can be obtained from the 

uniqueness properties of its target part and restriction part.

For a valid query, there exists just one semantic extended region to represent it. 

A minimal semantic extended region can be further decomposed into a semantic 

extended target part and semantic extended restriction part. The user may navigate 

the relational database on any of the relational query interfaces such as SQL, QUEL,
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QBE, and etc. In a universal relation interface, the system may automatically allocate 

a minimal semantic extended region on the ERG  of a database system. The implemen

tation rules for the allocation of the semantic extended region of a query on a univer

sal relation are discussed in the next section.

3. PROPAGATION OF ACCESS PATHS VIA RELATIONSHIP

In a RDKER (A Relational Database with Knowledge of E R G ), the ERG  represents 

the semantic structure of the database. In the universal relation model on a RD KER, 

the relationship in a relationship-based surrounding region plays the role of connect

ing the access paths. The first step of the allocation of the access paths of a query on a 

universal relation is to obtain the restriction main nodes and the target main nodes of 

the query [Chenl987b]. The second step of the allocation of access paths is to allo

cate the paths that connect from restriction main nodes to the target main nodes. This 

technique of the allocation of the access paths of a query on a universal relation is 

quite different from that used by the Sagiv [Sagil983].

A relationship based surrounding region contains the identification or the pri

mary keys of the entity types that are in the region. Such a "connected entity types 

identification including" property of a relationship type makes the allocation of the 

access paths between target main nodes and restriction main nodes available.

Example 5 : A relationship-based surrounding region is {R 0 , E l t E 2£ $ } ,  where the pri

mary keys of the entity types of £ „  E 2, and £ 3 are {P K n ,P K 12, ...,P K 19] ,  

{P K 2u P K 22, ..., P K 29}, and {P K n , P K i2, ..., P K 29)  respectively. As the primary keys of an 

entity type or a relationship type may have more than one attribute, the use of 

identification representation of the entity types makes the allocation of access paths 

more convenient during the process of searching. The representation of this 

relationship-based surrounding region in the primary keys of the entity type is : 

relationship-surround_region(R#l, P K U P K 2, PK 2)
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E  (p kn , p k   pk  19,...)

E (p k 2u p k 22, . ..,p k 29, ...)

E (p k 3Up k n , ...,p k39, ...), where P K t = [pkn ,p k 12, . .. ,p k 19, . . . ] ,

P K 2 =  [pk2l,p k 22, . .. ,p k 2 9 , ...], and P K 3 = \p k2l,p k 22 p k i9, ...].

The representation of this relationship-based surrounding region by the internal 

identification of the entity types in the system is :

relationship-surround_region(R#l, E_ID U E_ID2, E J D 2)

E iE jD i , ...)

E iE J D 2, ...)

E (E _ID 3, ...).

Thus the representation of an entity type or a relationship type by the internal 

identification representation of the system will simplify the work of allocating the 

access paths of two main nodes.

For two main-nodes X  and Y  and an n-ary relationship based surrounding region 

that connects X any Y ,  a local region which contains this n-ary relationship and which 

connects X and Y  is called a projected local region. A projected local region is 

defined as the projection of a local region on a relationship-based surrounding region. 

A projected local region is the full semantic reducer of an n-ary relationship based 

surrounding region. That is, for an n-ary relationship in an access path of a query, 

only the projected local region of this n-ary relationship-based surrounding region 

have to be used for the processing of a query.

The searching of the connecting paths of a target main-node and a restriction 

main node in an ERG  can be treated as the searching of the sets of unit graphs ( the 

graph representation of a local region) that connects these two main nodes. The 

searching algorithm can be illustrated as :

a(X,Y) -> relationship_surrounding_region(R#l, X, Y, Z , ...);
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where X , Y , and Z are the identification of the entity and R  is the 

relationship that which has the relationship-based surrounding region 

of { R , X ,Y ,Z ,

paths(X,Y,Ll) -> findall(L,go(X,Y,L),Ll). 

go(Start,Dest,Route) -> goO(Start,Dest,[],R),rev(R,Route). 

goO(X,X,T,[X|T]).

goO(Place,Y,T,R) -> legalnode(Place,T,Next), goO(Next,Y,[Place|T],R). 

legalnode(X,Trail,Y) -> (a(X,Y); a(Y,X)),not(member(Y,Trail)). 

a(X,Y) -> relationship_surrounding_region(R# 1, X, Y, Z , ...);

THEOREM 3 Let a and b be two main-nodes in an E R G , there exists at least a path 

P = uh ..., «( i uk such that P connects a and b , where «,• is a unit graph in the E R G . 

Proof: If the ERG is a single entity type, then a = b , the Lemma is proved.

For an ERG which is not a single entity type, let u1 and u2 be the unit graphs that have 

a and b as their main-nodes respectively. Then, if «a n  ub #  0 ,  then the Theorem is 

proved. Now, we want to prove when ua n  ub = 0 ,  there exist a path which connects 

ua and ub. Let G = {«, | «, is the unit graph of the ERG }. From the Theorem 1 of the 

"ERQG and ERQT on a Relational Database System" [Chenl987b], G = ({«],...,«, }), 

and (V«, e G ) ((Vuj e G)(Ui nuj  = 0 )  —» (3uk e G )(uk *«,) a  (uk n  «,• <t 0 )) . Let ua = 

{«!} and ub ={m2}. Since uxr \ u 2 = 0 ,  then (3up e  G (up n  {«i} *  0 )). Let u\  = ux u  

v . If u\  n  «2 = 0 ,  then the Theorem is proved. If u\  o>u2* 0 ,  by the same reason 

we can add a unit graph into u\  to test the intersection of this new graph and u2. The 

worst case for the allocation of the connecting path from a to b is that we g e t«" = G - 

u2 - u'i and «'1n i i 2^ 0 .  Since G is a connected graph, then (mj u  «") n  u2 *  0 ,  thus 

the Theorem is proved.

Thus for any two main-nodes in the E R G , we can find a set of directed access 

paths starting from one main-node and ending at the other main-node. Let two main-
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nodes be specified as a target main-node and a restriction main-node, then we can get 

a set of paths such that each path starts from the restriction node and ends at the target 

main node. In an E R G , the rule for the propagation of access paths from a restriction 

main node to a target main node is called the access propagation rule.

THEOREM 4 An ERQG  contains m  target main-nodes and n restriction nodes. If 

m , n * 0, then the maximum sets of paths that connects the target main nodes and res

triction main-nodes i smxn.

Proof : From Theorem 3 that for each pair of a target node and a restriction node, 

there is a set of paths that connect them. Thus for each target main-node there are n 

sets of access paths that connect it to the restriction main-nodes. Since there are n res

triction nodes, we can find m x n  pairs of access paths connecting these target main- 

nodes and restriction main-nodes.

The access paths that connects the target main-nodes and the restriction main- 

nodes of a query can always be reduced according to the decomposition rule and 

merging rule of an ERQG  [Chen 1987b]. Any access path of an ERQG which contains 

more than two target main-nodes is called a redundant access path. To process an 

ERQG efficiently, the redundant access can be skipped during the allocation of access 

paths of an E R Q G . The set of access paths of a target main-node and a restriction 

main-node of an ERQG can be merged by a merging algorithm. The following merg

ing algorithm illustrates an example to merge those access paths that have the same 

end nodes and that have common portions :

(i). Merging two paths into a combined path: e.g. [l,2,3,d,f,g,p,q,r] and 

[l,2,3,v,p,q,r] will be merged into [l,2,3,[[f,g],[v]],p,q,r]: 

merge(A,B,C) -> merge_head(A,B,H,Tl,T2), merge_tail(Tl,T2,Hl,H2,T), 

rev(T,Ts), append(H,[[Hl|[H2]]],S), append(S,Ts,C).
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(ii) Merging paths with the same beginning segments:

mergeJiead([X|Yl],[X|Y2],[X|H0],P,Q) -> merge_head(Yl,Y2,H0,P,Q). 

merge_head(U,V,[] ,U,V).

(iii). Merging paths with the same ending segments of arcs : 

merge_tail(Tl,T2,P,Q,T) -> abstract_tail(S,Tl,Hl), 

abstractJail(S,T2,H2),!,mergeJail(H132,P,Q,TT),T4S|TT]. 

merge Jail(X,Y,X,Y,[]).

The Theorem 3 proved that for a target main-node and a restriction main-node 

there exists a set of access paths that connect them. An access path that connects two 

main-nodes can be represented by a set of unit graphs [Chen 1987b]. The Theorem 4 

proved that for a query contains m target main-nodes and n restriction main-nodes, 

there are m x n sets of access paths that connect them. In other words, the allocation of 

the access paths of a query on universal relation interface is to find the sets of access 

paths that connect the restriction mainnodes and the target mainnodes. To reduce 

the redundant access paths, the optimizing rule can be built in the searching algorithm. 

Thus with these basis, an optimizing rule for the allocation of the sets of access paths 

of the ERQG  of a query on a universal relation is shown in the following procedures:

(1). Allocate the target subnodes and the restriction subnodes of a query on the E R G .

(2). Link each subnode to the main-node such that the main-node and the subnode 

are the end nodes of a subarc.

(3). Group the main-nodes into a set of the target main-nodes and a set of the restric

tion main-nodes.

(4). Allocate the target part of the ERQG  of the query by the application of propaga

tion rule on the target main-nodes collected from step(3). region.

(5). Construct the undirected subgraphs from the restriction mainjnodes to the target 

main-nodes of the target part.
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(6). Merge the access paths according to the merging algorithm.

(7). Lable the direction of subgraphs from the restriction node to the target node.

(8). Check the in_degree and out_degree of each main-nodes in the access paths such 

that the cyclic subgraphs of the ERQG can be allocated.

(9). Convert the cyclic subgraph of the restriction part of the ERQG to the tree struc

ture.

(10). Employ ER-semijoin to process the query represented in the ERQG from the step 

(9).

A minimal semantic extended ERQG  represents a well optimized semantic 

representation of an ERQG . Since the time complexity of the minimization of the 

access paths of a query is much less than the time complexity of the processing of the 

query, the allocation of a minimal query is one of the important optimizing technique 

for the processing of a query on a RD KER .

In the following example, the allocation of the ERQG  of a query on a universal 

relation is illustrated.

Example 6 : The query Q is a query on a universal relation interface for the relational 

database UNIVERSITY shown in fig. 2.

Q: retrieve c_name, ujname

where s.s# = ’456789123’

The following procedures illustrate the procedures to obtain the ERQG  of the query Q 

from the ERG of UNIVERSITY.

(1). The first step to obtain the ERQG of the Q is to collect the set of the target attri

butes and the restriction attributes. From the query, we get the set of target attri

butes {c name, u name} and the set of restriction attributes {s.s#}. By mapping 

these sets of target attributes and restriction attributes onto E R G , we get the sets
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UNIVERSITY u name

HAS

COLLEGE c name

!ONTj
location k dept_id

DEPT

;MPLO'

FACULTY s.s.# RUN dc time

MAJOR TEACH

COURSE

TAKE

STUDENT

Fig. 2 The ERG of the relational database UNIVERSITY.

of target subnodes and restriction subnodes respectively. Then, (i) by linking the 

u_name to the main-node through subarc du U, the target main-node UNIVER

SITY can be obtained; (ii) by linking the c_name to the main_node through the 

subarc dc C, the target main-node COLLEGE can be obtained; (iii) by linking the 

s.s# to the main-node through the subarc dJtF, the restriction main-node 

FACULTY can be obtained.

(2). The target main-nodes are grouped into the set as {UNIVERSITY, COLLEGE}; 

and the restriction main-nodes are grouped into the set as {FACULTY}.
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(3). By propagating the linkage of the target part via the relationship-base surround

ing region, we get a new set of target main-nodes as {UNIVERSITY, HAS, 

COLLEGE} and we also get a set of main-arcs as {ARCUtH, ARCHC}.

(4). For these three pairs of main-nodes paths < UNIVERSITY, FACULTY>, 

<HAS, FACULTY>, and cCOLLEGE, FACULTY>, allocate the access paths 

that connect them. That is, each set of access paths is obtained by applying the 

searching algorithm on a target main-node and a restriction main-node. The sets 

of access paths of <UNIVERSITY, FACULTY> and cCOLLEGE, FACULTY> 

are redundant paths. Thus only the set of access paths of cCOLLEGE, 

FACULTY> is not redundant. Thus we get the paths as 

{[COLLEGE ARCc c CONTAIN ARCDM MPLOY ARCE f FACULTY], [COLLEGE ARCc ,c 

CONTAIN DEPT ARCDfi RUN ARCrc  COURSE ARCr c TEACH ARCF J  FACULTY], 

[COLLEGE ARCc'C CONTAIN ARCCfi DEPT ARCMJ) MAJOR ARCMJS STUDENT ARCTfi 

TAKE ARCCJ TEACH ARCpj FACULTY]}.

(5). Merging access paths : The set of paths between COLLEGE and FACULTY can be 

merged into the following path :

{COLLEGE ARCCjC CONTAIN ARCCJ) DEPT [[ARCDM MPLOY FACULTY] V 

[[[ARCDJt RUN ARCr c ] V [ARCMJ) MAJOR ARCM<S STUDENT ARCTiS TAKE]] 

ARCt c  TEACH ARCF J]\ FACULTY}.

(6). The direction of the paths is from the restriction main-node to the target main- 

node. Thus the main-arcs of the query is directed by the direction from the 

FACULTY (restriction main-node) to the COLLEGE (target main-node).

(7). The out-degree of the COURSE (main-node) is 2 and the in-degree of the DEPT is

2. Thus COURSE is a branching node with two branching arcs ARCr c and ARCt c ; 

DEPT is a merging node with two merging arcs ARCMJ) and ARCDF.



CHAPTER 6 
ERG BASED RELATIONAL DATABASE SYSTEM

1. ONE-PHASE AND TWO-PHASE DATABASE SYSTEMS OF THE RDKER

An ERG can be used either on a one-phase interface or on a two-phase interface 

of a relational database as the semantic structure of the database, which will be dis

cussed in this section. A database system which uses ERG as the structure of the one- 

phase interface of the relational database system is shown in the Fig. 1.

1.1. ONE-PHASE DATABASE SYSTEMS OF THE RDKER

A one-phase interface of a relational database based on the ERG (OPRER) is com

posed of five components, namely as user-friendly interface, query mapping interface, 

query tree converting interface, query processing interface, and database storage. 

These interfaces have different functions on the processing of a query as:

(1). USER-FRIENDLY INTERFACE : On a one-phase system, multiple interfaces 

can be used in a database system. That is, more than one query interfaces of the 

relational database can be applied to an OPRER. In such a OPRER those query 

language such as SQL, QBE, QUEL, universal relation Interface, ERG- 

approached quasi-natural language, etc. are available on the same database sys

tem. Then the user may select any query language of the OPRER he likes to pro

cess a query.

(2). QUERY MAPPING INTERFACE : In a RDKER , the semantic structure of the 

database is represented by an ERG  and the internal structure of a query on a 

OPRER of the RDKER is represented by an ERQG  [Chen1987a]. To obtain an 

ERQG  of a query on a OPRER, the query has to be mapped onto the ERG to get a 

subgraph of ERG . Then by combining the logics of the query into the ER G , a
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undirected ERQG  can be obtained. Finally, by labeling the direction of the query 

from each restriction main-nodes to the target part of the query, a directed ERQG 

of a query on a OPRER can be obtained.

(3). QUERY TREE CONVERSION INTERFACE : A cyclic subgraphs of an ERQG 

can be converted to a semantic equivalent tree structure [Chen 1987a].

(4). QUERY PROCESSING : A subgraph of the restriction part of an ERQG 

represented by a tree structure can be further decomposed into a set of local 

regions. Then, for each local region of an ERQ G , ER-semijoin can be used to pro

cess it. For a complex cyclic subgraph, the aggregation node processing tech

nique can be employed [Chen1987a].

(5). DATABASE STORAGE : Although various interfaces may be applied to the 

user, the representation of the physical level under all interfaces is the same. That 

is, the user may select any interface of the system to process a query on the data

base system.

A database system with multiple interfaces was demonstrated by Li in the con

struction of the ILEX [Lil984]. Li employed "logic" as the internal structure of a 

query on the ILEX. While in our research, we use an ERG  to represent the structure of 

a database and an ERQG  to represent the internal structure of a query. One of the 

advantage of the ERG  is that it can be used to allocate the access paths of a query on a 

universal relation interface. The universal relation interface was not introduced in the 

ILEX. Thus in this research, we use the universal relation to demonstrate the feasibil

ity of using ERG as the structure of a relational database, allocation of access paths of 

a query in a global interface, and the processing of an ERQG  by the ER-semijoin.
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QUEL
interface

UR
interface

QBE
interface

SQL
interface

DATABASE
(FACTS)

ENTITY-RELATIONSHIP GRAPH 
ENTITY-RELATIONSHIP QUERY GRAPH

QUERY OPTIMIZATION AND 
QUERY PROCESSING

SUBGRAPHS OF AN ENTITY-RELATIONSHIP QUERY GRAPH 
WITH TREE STRUCTURES

Fig. 1 The architecture of a multiple user interfaces of an OPRER.
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1.2. TWO-PHASE INTERFACE OF RELATIONAL DATABSE SYSTEM 

BASED ON ERG

The TPRER (two-phase interface of the relational database based on the E R G ) 

contains four different phases for the processing of a query : a user-friendly query 

interface or a two-phase query conversion interface, ERQG allocation interface, query 

mapping interface, and the underlying database systems. The query mapping inter

face and the entity relationship query tree conversion interface of the TPRER have the 

same functions as that of the OPRER . Fig. 2 shows the architecture of a TPRER . These 

ERQG  processing phases of a TPRER are as follows :

(1). USER-FREINDLY INTERFACE OR QUERY TRANSFORMATION INTER

FACE: A TPRER can be either applied to the building of a user-freindly query 

interface on top of a database system or the transforming of a query from one 

underlying database system to another.

A queiy on the user-friendly interface of a TPRER can be mapped onto the ERG 

of the underlying system to obatain an ERQ G . There are two advantages for the con

struction of an ERG  based query interface on top of a database system. The first 

advantage of the construction of a high level user-friendly interface is that its query 

language can be easily understood and handled by the user. The second advantage is 

that by representing a query by with ERQ G , the query can be implemented according 

to the operation logic of the ER-semijoin. The proceessing of a query by the ER- 

semijoin is more efficient than the processing of the query by the traditional joining 

processing techniques [Chen1987b].

A TPRER can also be used as a query language conversion interface. In a TPRER 

a query language from one of the underlying database sytems can be mapped to an 

ER Q G . Then, the ERQG  can be mapped onto the query langauge of another underlying 

database system.
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(2). ERQG REPRESENTATION PHASE : A query can be mapped onto the ERG of a 

underlying database system to obtained an E R Q G . Most of the cyclic subgraphs 

of an ERQG  can be converted to their semantically equivalent trees according to 

the ERG  semantic structure of the underlying database system. Example 1 illus

trates the intelligent query decomposition and mapping procedures of this phase.

(3). QUERY MAPPING : In this phase, a query represented by an ERQG is mapped 

to the query language of a underlying database system. If the segment of the res

triction part of an ERQG  can be decomposed into a unit graph, then ER-semijoin 

operation can be employed for the mapping from the ERQG  to the query language 

of a underlying database system in the TPRER [Chen1987b]. Otherwise a acyclic 

subgraphs of an ERQG  can be mapped according to the aggregation node process

ing technique [Chenl987a].

(4) THE UNDERLYING DATABASE SYSTEMS : From the query mapping phase, 

a query represented by an ERQG  is mapped to the executable query language of a 

underlying database system in the TPRER. Then, this executable language is 

transmitted to the underlying database system for the processing of the query. 

Finally, the information obtained from the underlying database system can be 

transmitted back to the user.

In a TPRER , a user-friendly query interface can be built on top of a database sys

tem for the novel users. Nevertheless, the TPRER can also be applied as query map

ping interface to the database system which contains distributed nodes.
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DATA
BASE
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BASE
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BASE
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ENTTTY-RELATIONSHIP QUERY TREE
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QUERY PROCESSING

A USER-FRIENDLY QUERY INTERFACE 
OR QUERY TRANSFORMATION INTERFACE

ENTITY-RELATIONSHIP GRAPH 
ENTITY RELATIONSHIP QUERY GRAPH

Fig. 2 The architecture of a two-phase interface based of the relational database based 
on the ERG.
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Example 1: The database BOOK  shown in fig. 3 contains the relations [PERSON, BOR

R O W , BO O K , PU BU SH , COMPANY], where PERSON, BORROW , and COMPANY are entity 

nodes; BORROW  and PUBLISH  are relationship nodes. A quasi-natural language inter

face based on the ERG is built on top of this database. The query : Find the <phone > of 

the cPERSON > who <BORROW> the book <PUBUSHED > by the <COMPANY> with 

name = ’CROWN C O .’ This query including two local regions : [PERSON , BORROW , 

BOOK] and [BOOK, PU BU SH , COMPANY], Thus the mapping of the query to the under

lying database system can be processed according to the ER-semijoin operation as fol

lows :

(1). Project on the primary key companyjd. of the tuples of the COMPANY which 

satisfy the condition company_id = CROWN C O .’

(2). Select and project on the key b o o k jd  of the tuples of the PUBUSH  such that the 

value of the company j d  of these tuples are in the collected list from the step (1).

(3). Select and project on the key person J d  of the tuples of the BORROW  such that the 

value of the b o o k jd  of these tuples are in the collected list from the step (2).

(4). Select the tuples whose primary key person j d  is in the list collected from the step

(3).

(5). Project on the phone obtained from (4).

(6). Display the result.

PERSON BORROW

person_id
phone
address

person J d  
book id

BOOK

bookjd
title

PUBUSH

bookjd 
company J d

COMPANY

comp any J d  
co_phone 

co address

Fig. 3 The ERM of the database BOOK.

By using the traditional operation of the joining operators to process the query,
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the procedures for the processing of the query of Example 1 are : (i) creating an inter

mediate table TEMP that contains only of the key of the COMPANY with name = 

’CROWN C O ’, (ii) joining the relations of PERSON, BORROW , BO O K , PU BU SH , and 

TEM P, (iii) projecting on the attribute person id . By mapping the query onto the data

base system according to the decomposition procedures of Example 1, the ER- 

semijoin operation can also be interpretered as a semantics based optimizing operator. 

The comparison of the efficiency of the time complexity and the space complexity for 

the execution of a query by using ER-semijoin with that by using tradition join opera

tor is discussed in the Chapter 3.

The user-friendly interface of the TPRER can be extended to the multiple inter

faces as that discussed in OPRER . For example, in a user-friendly interface with multi

ple interfaces built on top of the system-R, the user may select SQL, QBE, or another 

interface in this user-friendly interface to process a query. Then, the query will be 

represented by an ERQG  and converted to the QUEL. Finally, the query represented in 

QUEL will be transmitted to the underlying system to process the query. Similarly, a 

user may also select QUEL, QBE, universal relation interface, etc. to process a query 

in a multiple interface built on top of the DB-2. In such cases, the ERG and ERQG are 

used as the structure of a database and the structure of a query respectively for the 

executing and optimizing of a query in an TPRER .

2. AN ERG BASED DATABASE SYSTEM

An ERG  based database system with a universal relation interface is demon

strated by using logical programming [Kostl985, Kehll985]. In this experimental 

system, we demonstrate the design of a relational database based on the E R G , the allo

cation of the access paths of a query by the aid of the E R G , and the processing of the 

query by using ER-semijoin. In this section, we sketch the basic definition of an ERG 

and the static constraints of attributes in a relational database system. Besides the
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semantic constraints of the ERG, the user can also define constraints on attributes. 

Since there are various different static and dynamic constraints with different applica

tions, we will only introduce the basic static constraints in this section.

DDL FOR THE PHYSICAL INSTANCES OF ENTITY NODE AND RELA

TIONSHIP NODE

In the physical level of a relational database system, the representations of an 

entity node and the relationship node are the same. That is, we do not have to distin

guish an entity node from a relationship node in the physical level. The recognization 

of an entity node and a relationship node can be done in the semantic level. With the 

semantic structure represented by an ERG , the semantic difference of the entity nodes 

and the relationship nodes of a relational database base can be processed in the seman

tic level. To represent the semantic structure of a relational database in the ERG , the 

DDL to define an ERG on the database system is necessary. In this section, we intro

duce the DDL of the ERG such that an ERG can be used as the structure of a relational 

database system. In an ERM, the semantic unit is represented by a local region. The 

representation of a local region in the ERG is a unit graph [Chen 1987a]. The unit 

graph of an ERG is defined as u } = rJ} ek , ARCij,ARCjk, {au } ,  K J ,  {dtl},

{dJm }, {4b,}, Ct , Ck],  which contains the following properties:

(1). ENTITY NODE : entity_node ( [entity_name]i, [attribute]y, {key ,n o -k e y }, 

[specification]^,..., etc. ),

where [attribute]ij is the yth attribute of the entity node [entity_nam e\, and this 

attribute can either be a prime (denoted as key)  or a non-prime (denoted as 

no key). The [specification}i] is the specification of the type of this attribute of an 

entity node.

(2). RELATIONSHIP NODE : relationship_node ( [relationship nam e],, [attribute]^, 

{k e y ,no k e y } , [specification]^,..., etc.),
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where [attribute is the j'th attribute of the relationship node [relationship name ],-, 

and this attribute can either be a prime (denoted as key)  or a. non-prime (denoted 

as no jcey). The [.specification ]y is the specification of the type of this attribute of a 

relationship node.

(3). ENTiTY RELATIONSHIP : entity_relationship {[relationship_name ],,

[entity_name~\j, { W ,E }, {role,no_role } , . . . , ) ,

where [entity_name]j is the entity node that connects to the relationship 

[relationship nam e]^ The [entity_name]j must either be an entity node £ or be a 

weak entity node W;  such an entity-relationship set may either be a role type 

(IS-A) or a non-role type (not an IS-A).

(4). LOCAL REGION ( UNIT GRAPH ) : local_region {[relationship_name ](-, 

[entity_name]i_u  [entity_name]i+u [c a r d [ c a r d ] i+l),

where [relationshipjiame]; is the relationship which connects the entity nodes 

[entity_name]1_1 and entity node [entity_name]M ; [c a rd ]^  and [card)i+i are the cardi

nalities of the local region [PERSON, BORROW, BOOK].

The predicates of (1) and (2) defines the physical instances of an entity node and 

a relationship node. The first term of such a predicates represents the identification of 

an entity node or a relationship node; the second term of the predicate defines an attri

bute in the relation; the third term of the predicate declares whether the attribute is a 

primary key or not; then, the specification of the type of the attribute may be added. In 

the Example 2, these DDL of a unit graph of an ERG is illustrated.

Example 2: A relational data model LIBRARY is represented by the ERM as
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person_id
phone
address

person id 
book Id

book_id 
author 
title

The person_id is the primary key of the relation PERSON, book_id is the primary key 

of the relation BOOK, and both of person_id and book id  are the keys of the BOR

ROW. Then, the database LIBRARY can be define as follow : 

entity node ( person, person_id, key, c-9). 

entity_node ( person, phone, no_key, i-10). 

entity_node ( person, address, no_key, c-32). 

relationship_node ( borrow, person_id, key, c-9). .

relationship node (borrow, book id, key, c-12). 

entity node ( book, book_id, key, c-12). 

entity_node (book, author, c-30). 

entity_node (book, title, c-20).

The data types c-12, i-10, and etc. will be discussed in the next section.

The ENTITY-RELATIONSHIP defines the connection of an entity node and a 

relationship node in the ERG. The connection of two entity nodes to a relationship 

node of the ERG is expressed by two of these predicates. An n-ary relationship can be 

represented by n predicates of ENTITY-RELATIONSHIPs whose first item is the 

specific relationship node. The representation of a local region is the projection of 

two entity nodes and a relationship node on an n-ary relationship node.

BOOK

BORROW

PERSON

Example 3: The representation of the database LIBRARY of Example 1 contains the fol
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lowing semantic structures :

entity_relationship (borrow, person, E , no_role, ...). 

entity_relationship (borrow, book, E , no_role, ...). 

local_region (borrow, book, person, n, n).

These two predicates of ’entity_relationship’ represent two partial graphs that 

represent a unit graph of a local region. An entity node can either be a weak entity 

node IT or an entity node E . In this Example both of the PERSON and BOOK are entity 

nodes denoted as E . Both of PERSON and BORROW are non-role types (IS-A type) 

denoted as "no_role". The cardinality of ’n, n’ in the predicate local_region means 

there are n:m relationship between the entity node PERSON and BOOK.

The cardinality ’1, 1* , ’1, n’ or ’n, 1’ specify the 1:1 and l:n relationship 

between two entity nodes respectively. The cardinality amongst multiple attributes 

(more than two attributes) can also be defined according to the application.

The connection of an entity nodes and a relationship nodes in the local-reg ion  

specifies a main-arcs of the ERG that has two main_nodes(entity nodes and relation

ship nodes). While the connection of an attribute and an entity nodes or a 

relationship_node specifies a sub_arc that has a main-node (entity node or relationship 

node) and a subnode (attribute). The information defined above sketch the skeleton of 

an ERG. That is, the information of the sets of the unit graphs of an ERG ERG0 = (t/,

I Uj ~  rj > ek > A R C ij ,A R C jk , { f l , - / } ,  { f l y m } >  {.akn 1  > [ ( } »  C a n  b e

represented by data definition of an E R G .

The DDL of the unit graph is the basic definition of an ERG. Since the ERM can 

be extended to an extended-ERM according to the implementation of the real world, 

more predicates can be added to the ERG to represent an extended_ERM. For example, 

in the representation of a semantically clear ERM, the semantic regions such as 

hierarch ical reg ion  and inheritance region  of an ERG can be represented as follows
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[Chen1987c]:

(1). HIERARCHICAL REGION: hierarchical ([en tiy jia m e ]; , [relationship_name]j, ..., 

[entity_name]m, [relationshipjiame ]„ ). This predicate defines a list of entity nodes 

and relationship nodes in the hierarchical region.

(2). INHERITANCE REGION: inheritance {[en tiy jiam e]f, [relationshipjiame ]g, ..., 

[entity_name]k , [relationship_name], ). This predicate defines a list of entity nodes 

and relationship nodes in the inheritance region.

2.1. DATA TYPES FOR ATTRIBUTES OF RELATIONS

The first character of an attribute must be the character between the alphabet ’a’ 

to ’Z ’and the length of an attributes must under 32. The hyphen is used as the recog

nizer for type definition of the name of an attribute. Thus the alphabet of the name of 

attribute may be any character except the character There are three basic types 

which are defined in the Table 1.

type of attributes representation maximum number

character -c-000 3 digits

integer -n-000 3 digits

floating point -n-000-000 3-3 digits

Table 1. DDL of the type of attributes.

For example: The entity node person contains three attributes: address,

social security number, and salary.

(1). The attribute address, a list of characters with 32 character, is represented as 

address-c-32.
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(2). The attribute security num ber, an integer with 9 digits, is represented as 

security_number-n-9.

(3). The attribute salary, a floating point with 2 decimal points and 9 digits, is 

represented as salary-n-9-2.

The data definitions of these attributes are:

(person address-c-32 no-key)

(person security_number-n-9 key)

(person salary-n-9-2 no-key).

Besides these basic data definition on the attributes, the user may define data 

definitions according to the application.

2.2. STATIC CONSTRAINTS FOR USER’S INTERFACE

In the URERG (Universal Relation based on the E R G ), the semantic constraints of 

the ERG can be automatically enforced to maintain the semantic integrity of the data

base. The processing of a queiy of updating (modification, insertion, deletion) for the 

global access of attributes is discussed in the chapter 5. Besides the semantic con

straint of the E R G , a URERG do allow the user to define the domain of an attribute. 

Since in a universal relation each attribute is uniquely defined in the database system, 

the declaration of entity node or relationship node to which an attribute belongs to is 

unnecessary. In a relational database system where universal relation assumption is 

not applied, the declaration of the attributes in an entity node or a relationship node is 

needed.

The static constraints of a database is desirable in a relational database 

system[Nancl983 ]. In a URERG , the user is allowed to specify the static constraint on 

the attributes. For example, the maximum salary of an employee of a company is 

defined as 100,000.00. If the input salary is higher than the maximum value, the sys

tem may friendly notify the user. The predicate of constraint is declared as
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CONSTRAINT ( entity / relationship, attribute, type specification ).

The CONSTRAINT is the predicate for the specification of the static constraints. 

The type is the declaration of the type of constraint. For example, user may use MAX 

to specify the maximum value of salary of employees in a company. The different 

types of constraints on URERG is summarized in the table 2.

SPECIFICATION TYPE SPECIFICATIONUST

maximal value MAX digital value

minimum value MIN digital value

range of value RAV minimal value & maximal value

range of character RAC lower character & upper character

Table 2. Constraints of the attributes which users may specified.

Example 4: The information of a company is represented as [EMPLOYEE, WORK, 

DEPARTMENT], where the entity node EMPLOYEE has attributes person id, social secu

rity number, salary, address, age, and etc. Constraints on these attributes may be 

optionally specified as:

CONSTRAINT (employee salary RAV 400 20000)

CONSTRAINT (employee age MAX 55)

Since the dynamic constraints is always depend on the application, we will not 

discuss the dynamic constraints in this chapter.

3. A UNIVERSAL RELATION QUERY LANGUAGE BASED ON ERG

A universal relation interface based on the ERG  is quite different from the tradi

tional approach to the universal relation. The traditional universal relation approach 

always uses the functional dependency amongst attributes to allocate the access paths 

of a query. These access paths are represented as maximal object [Ullml983], or
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extension join [Sagil983j. For the ERG  approach to the universal relation, the ERG is 

used as the structure of the database and it also is employed as the tool to allocate the 

access paths of a query on the universal relation interface. The theoretical survey of 

the universal relation of the ERG  approach are discussed in chapter 5. The universal 

relation introduced by Ullman and Sagiv is just for the retrieval of information from 

the representative instances. For the ERG  approach to the universal relation, besides 

the retrieval, the updating (modification, deletion, and insertion) of the representative 

instances can be achieved by the enforcement of the semantic constraints of the data

base represented by an E R G .

The benefit of using ERG  as the theoretic basis of universal relation is that the 

semantic integrity among physical instances of the relational database system can be 

easily obtained, that is, the semantic integrity of updating the universal relation with 

semantic structure represented by an ERG can be achieved within a constant semantic 

transition level of the attributes that are to be updated [Chen1987c]. Thus in the ERG 

approach to the universal relation, a query may be categorized into two types as 

retrieval and updating. The syntax of the retrieval of the universal relation by the ERG 

approach is similar to the system/U [Henri984]. But the traditional universal relation 

like system/U does not have the function of updating (insertion, deletion, 

modification).

3.1. QUERY LANGUAGE OF THE UNIVERSAL RELATION BASED ON 

ERG

On the universal relation based on the ERG  the user is able to do a query which 

may either be the query of retrieval or of updating (modification, insertion, deletion). 

In this section we discuss the syntax of the query language on the universal relation 

based on the ERG.
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The Syntax of the Universal Relation Based on the ERG :

A query on the universal relation based on the ERG contains target part and the 

restriction part. The target part of a query consists of a list of attributes to be 

retrieved; and the restriction parts of the query contains the predicates that define the 

domain of the attributes to be retrieved.

The context free grammar of the universal relation queiy language by the ERG 

approach is illustrated as follows :

<QUERY>::= <UPDATE> | <RETR1EVAL>.

<UPDATE>::= MODIFICATION> | <INSERTION> | <DELETION> | <APPEND

ING:^

<RETRIEVAL>::= <TARGET PART> <RESTRICTION PART>.

<TARGET PART>::= [RETRIEVE] <AGGREGATE> < ATTRIBUTE_LIST>. 

<ATTRIBUTE_LIST>::= [ATTRIBUTE] <ATTRIBUTE LIST> | [ATTRIBUTE]. 

<RESTRICTION_PART>: := <AGGREGATE> <RESTRICTION_LIST>.

<RESTRICTION_LIST >: :=

e | ( <RESTRICTION_LIST> ) | <ATT_SET> <RESTRICTION_LIST> | 

<RESTRICTION_LIST> <LOGIC PAIR>.

<ATT_SET>::= [ATTRIBUTE] <LG> [ATTRIBUTE] | [ATTRIBUTE].

<AGGREGATE>:: = e | COUNT | SUM | AVG | MAX | MIN.

<LG>::= a | v | - |  + | x | - , | ® .

<MODIFICATION>: :=

[MODIFY] x [FROM] a [TO] b | [MODIFY] R [FROM] ( au..„ a,) [TO] (b1......

bi) | [MODIFY] x ; [TUPLE] [FROM] (au ..., a,) [TO] (bu ..., £»,-).

<DELETION>::=

[DELETE] t, x op a | [DELETE] x op a | [DELETE] r ; (au ..., a,-).
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<INSERTION>::=

[INSERT] <INSERT_APPEND>.

<APPENDING>::=

[APPEND] <IN SERT_APPEND>.

<IN SERT_APPEND>::=

x a | x ( x’ ) a ( a’) r (flj...... a,).

op ::= = | > | < | > | <.

The query language of system/U contains only the function of retrieval. Brosda 

proposed the theory of global consistency of modification, insertion, and deletion 

through the Universal Relation by using the chase manipulation and extension join. In 

the URERG , the control of the semantic integrity of a queiy of Update ( modification, 

insertion, and deletion ) is obtained by the semantic constraints of the structure of the 

relational database system represented in the ERG . Through the semantic control 

based on the structure of the database represented by an E R G , the query ( Retrieval 

and Update ) can be processed without losing the semantic integrity of the database.

In a URERG, a query language is categorized as either Retrieval or Update 

(Modification, Insertion, and Deletion). The syntax of the query of retrieval on the 

universal relation based on the ERG  is the same as that of other universal relations. 

That is, each statement of retrieval consists of two lists. The first list is a list of target 

attributes to be retrieved. The second list is composed of a set of predicates that limit 

the domain of the target attributes to be retrieved.

The syntax for the Update of the URERG are as follows:

(1). MODIFICATION : The modification of a relational database system on a univer

sal relation interface can be categorized into two types - modification of attri

butes of tuples and modification of tuples. In other words, a user can either 

modify the attributes of tuples or the tuples of a relation of a relational database
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system without understanding the conceptual level of the database. A queiy of 

modification can be processed according to the functions as follows:

(i). Modifying the value of an attribute from the value a to value b : [MODIFY] x 

[FROM] a [TO] b.

(ii). Modifying of a tuple of a relation from a set of values to another set of values : 

[MODIFY] R [FROM] ( values «*,-) [TO] (bu ..., &,.).

(iii). Modification of a set of values of attributes to another set of values. 

[MODIFY] x ; [TUPLE] [FROM] (fll a,) [TO] (bl bt).

(2). DELETION : The function of deletion can be categorized as the deletion of the

specified attributes of a relation or the deletion of the tuples of a relation.

(i). Deleting the column of attribute x with value a : [DELETE] x op a; the values 

in the column of attribute x which satisfy the condition will be deleted.

(ii) Deleting the tuple of a relation of which contains a specified set of values : 

[DELETE] r ; (a l5..., aL).

(3). Inserting and Appending : The only difference of the function of appending and 

inserting is that the function of appending inserts the new tuple to the end of the 

file of the relation while the inserting can be processed before or at the tuple 

which satisfies the condition :

(i). Inserting or appending value to a primary key : [ INSERT / APPEND ] x a ;

the value a of attribute x is going to be inserted or appended.

(ii). Inserting or appending value a’ to the attribute x’ : [ INSERTION / APPEND

ING ] x ( x’ ) a ( a’); where x’ and x are in the same relation and the x is the 

primary key with value a.

(iii). Inserting of a set of value to a relation : [ INSERTION / APPENDING] r (au 

..., a,) ; where r is a relation and (au ..., a,) is the tuple to be inserted or
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appended.

The universal relation based on the ERG allows the user to update the physical 

representation of the database either through the universal relation representation ( 

attributes ) or through the relations of the conceptual level. The purpose of the per

mission of the update through conceptual level is that it may apply a convenient 

interface to the user.



CHAPTER 7 
DISCUSSIONS AND CONCLUSIONS

A RDKER (Relational Database with Knowledge of ERG) can be viewed on two 

levels: the conceptual level and the physical level. The physical level of a RDKER 

represents physical relations of entity nodes and relationship nodes. In the physical 

level, there is no specific difference between entity nodes and relationship nodes. 

Thus, both entity nodes or relationship nodes of an ERG are treated as physical rela

tions in the physical level. The conceptual level of a RDKER contains the semantic 

structure of the physical level represented in the ERG. That is, for each entity node or 

relationship node in the conceptual level, there is one and only one relation in the phy

sical level corresponding to it.

The semantic structure of a relational database can be widely applied in the 

query optimization, dynamic constraints for updating (modification, insertion, dele

tion) attributes, allocation of access paths on the Universal Relation interface, and 

conversion of cyclic sub-query graphs to tree structures. To employ an ERM as the 

semantic structure of a relational database system, more restrictions on the ERM are 

needed. Thus, we define a semantically clear ERG such that it may be applied as the 

structure of a relational database.

An ERG that is not a single entity node should be able to be represented by a 

finite set of local regions. A local region contains a pair of entity nodes and a relation

ship node that connects these entity nodes. Owing to the different semantic properties 

of entity nodes and relationship nodes of an ERG, the ERG can be further grouped 

into a set of different regions. These regions of an ERG may help consistency and 

integrity control of a database.

By defining a database as an ERG, the integrity control for the updating of a data
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base can be obtained by using the semantic structure of the E R G . The local constraints 

of local regions of an ERG  can be either applied to the static integrity checking or 

dynamic integrity checking of a database. By using the updating propagation struc

ture of a nodes in the E R G , the dynamic integrity control for the updating of that node 

can be achieved.

In a RDKER, a query can be mapped onto the ERG to obtain a semantic struc

tured query. A semantic structured queiy can be decomposed into a set of semantic 

units represented by local regions. Then, ER-semijoin can be employed to process the 

query based on these local regions.

The semantics of a local region can always be reduced to its relationship. Thus, 

to process two conjunctive local regions by using the ER-semijoin, the operation can 

always be reduced to two relationship nodes. While, to process these two local 

regions by the joining operation, five relations (three entity nodes and two relationship 

nodes) have to be operated.

The comparison of employing the ER-semijoin with joining operation on the 

processing of a local region is done using the coefficients of full semantic reduction. 

The coefficient of full semantic reduction of a local region is categorized as spatial 

coefficient and temporal coefficient of full semantic reduction. The range of spatial 

and temporal coefficient of full semantic reduction of a local region is between zero 

and one. That means for the best case, the ratio of space complexity by using ER- 

semijoin to the ratio of that by using traditional join operator approaches zero. The 

worst case is that the space complexity of using ER-semijoin on a local region are 

equal to that exerting joining operation on that local region.

An ERG contains main-nodes and subnodes. A main-node represent a node of 

entity type or relationship type; and a subnode that represent an attribute of a main- 

node. For each subnode there is one and only one subarc which connects it to a
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main-node. On a universal relation a global set of attributes is assumed such that the 

user’s view is a set of subnodes. For a query on a universal relation based on a RDKER 

the access paths of a query can be allocated by mapping it to the E R G .

The ERG  in a RDKER can be decomposed into a set of unit graphs, and a query on 

this RDKER may be mapped on to the ERG  to acquire a semantically structured graph 

represented by a subgraph of the E R G . Then an ERQG  can be obtained by adding the 

relational operators of the query to this semantically structured E R G .

The query processing on an ERQG is independent of the user-friendly interface. It 

is more stable to represent the structure of a query in an ERQG than to represent it in 

the structure of a specific user-friendly interface. That is, we can use several interfaces 

on the top of a relational database system for the user. A query may be processed on 

different interfaces with the same ERQG representation. For a cyclic subgraph of an 

ERQ G , it can be converted to a tree structure such that we may use the efficient opera

tor - ER-semijoin to process this acyclic graph. For a complex cyclic subgraph of an 

ERQG or the TERQG (Target part of Entity-Relationship Query Graph) it can be pro

cessed as an aggregation node.

On a universal relation interface of a relational database, the user does not have 

to navigate the conceptual level. The universal relation proposed by Ullman and Sagiv 

uses function dependency amongst attributes to allocate the access paths of a query. 

We investigate a universal relation approach to a relational database by using seman

tic structure of a relational database for the processing of a query on a universal rela

tion interface.

The semantic structure of a relational database can be applied to the allocation of 

the access paths and to the query decomposition of a query of a universal relation. On 

this universal relation based on an E R G , the non-redundant ER assumption is made on 

the E R G . The non-redundant ER assumption on an ERG  ensures that for each pair of
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main-nodes in the E R G , there will be no redundant path which has duplicated seman

tics. Thus for a query on a universal relation of a non-redundant ER, a unique 

minimal semantic extended region on the semantic level can be allocated. The 

minimal semantic extended region of a query has a corresponding minimal E R Q G . For 

a queiy on a universal relation interface, there exists one and only one ERQG in 

corresponding to it. Then for an ERQ G , we may use ER-semijoin operation to process 

it.

A one-phase multiple interface system and a two-phase interface system that are 

based on the structure of a relational database represented by an ERG  are proposed. 

For a one-phase multiple interface system, multiple relational query interfaces can be 

built in the system. Thus the user may select any query interface in the system he 

likes. The internal representation of a query on any interface of the system is 

represented by an ERQ G .

A two-phase interface system is to construct a user-friendly interface on top of a 

relational database system. That is, we may construct a natural language interface or 

universal relation interface on top of any other relational database system. A query on 

such a user-friendly interface is represented by an ERQG . The ER-semijoin can be 

used as an optimizing operation for the conversion of a query represented by an ERQG 

to the query language of the underlying relational database system.

A universal relation interface can be built either on the two-phase interface sys

tem or on the one-phase interface system. The universal relation interface based on 

the ERG of the relational database has advantage that the static constraints can be 

enforced by the semantic structure of E R G . The query interface of the universal rela

tion based on the semantic structure contains the function of updating (modification, 

insertion, deletion ) and retrieval, while the query on the system/U has only the func

tion of retrieval.
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APPENDIX

A relational database system is created by using C-prolog 
on Vax/Unix. In this system, the following functions are 
demonstrated:
(1). Entity-Relationship Graph defined by the Local Regions.
(2). ER-semijoin based on the ERG.
(3). A simple data input interface.
(4). A universal relation interface.

/♦CONCATENATION OF TWO LISTS WITHOUT DUPLICATE ELEMENT ♦/ 
cat_list(G,X,X).
cat_list([A|B],C,Z):-member(A,C),!,cat_list(B,C,Z).
cat_list([A|B],C,[AiZ]):-!,cat_list(B,C,Z).

/* HEAD AND TAIL OF LIST */
tail([X|Y],Y).
head([X|Y],X).

/♦LIST INTERSECTION IS USED TO TEST WHETHER TWO ATTRIBUTE LIST OF 
TWO DIFFERENT RELATIONS HAVE THE COMMON ATTRIBUTE. (INTERSECTION 
IS NOT EMPTY) ♦/ 

intersection^] ,B,[]).
intersection([X|Y],B,[X|C]):-member(X,B),!,intersection(Y,B,C).
intersection([X|Y],B,C):-intersection(Y,B,C).

/♦SEARCH WHETHER AN ATTRIBUTE IS IN AN LIST ♦/
search_attribute(A,[A|C]).
search_attribute(A,[B|C]):-search_attribute(A,C).

/♦ The following rules copy one file to another ♦/ 
file_copy(Fl,F2):- see(Fl),tell(F2),

repeat,read(X),write(X),nl,
(X=end_of_file,! ,told(F2),seen(Fl));
(write(X),fail).

/♦ THE RULE COLLECT A SUBSET OF A LIST WHICH DOES NOT CONTAINED 
IN ANOTHER LIST ♦/ 

not_sublist(Q,B,[]).
not_sublist([X|Y],B,[X|C]):-not(member(X,B)),!,not_sublist(Y,B,C).
not_sublist([X|Y],B,C):-not_sublist(Y,B,C).

/♦FINDALL : COLLECT ALL POSSIBLE VALUES IN A LIST ♦/ 
findall(X,G,_)

142



143

asserta(found(mark)),
call(G),
asserta(found(X)),
fail.

findall(_,_,L)collect_found([],M),!,L=M. 
collect_found(S,L):-getnext(X),!,collect_found([X|S],L). 
collect_found(L,L).
getnext(X) :-retract(found(X)),!, X == mark.

/♦APPEND*/
append(D,X,X).
append([A|B],C,[A|D]):-append(B,C,D)-

/♦MEMBER*/
member (X, [X |_]).
member(X,[JY]):-member(X,Y).

/♦NEGATION*/
no(P):-call(P),!,fail.
no(P).

/* REVERSING A LIST */ 
rev([],[]).
rev([H|T],L)rev(T,Z),append(Z,[H],L).

/* GET THE LAST ELEMENT OF A LIST */ 
last(X,[X]).
last(X,[JY]):-last(X,Y).

/* SEPARATE A LIST INTO LAST AND REMAINING LIST */ 
abstract_tail(X,[X],[]).
abstract_tail(X,[Y|Z],[Y|T]):- abstract_tail(X,Z,T).

/* MERGE TWO PATHS INTO A COMBINED PATH: e.g. [l,2,3,d,f,g,p,q,r] 
AND [l,2,3,v,p,q,r] WILL BE MERGED INTO [l,2,3,[[f,g],[v]],p,q,r] */ 

merge(A,B,C):- merge_head(A,B,H,Tl ,T2),merge_tail(Tl ,T2,H1 ,H2,T), 
revCXTsJ^ppendCH l̂HllliElll ĵjappendCS.Ts.C).

/* MERGER THE SAME HEADS OF TWO LISTS */
merge_head([X|Yl],[X|Y2],[X|H0],P,Q):-merge_head(Yl,Y2,H0,P,Q).
merge_head(U,V,[],U,V).

/* MERGE THE SAME TAILS OF TWO LISTS */ 
merge_tail(T 1 ,T2,P,Q,T)abstract_tail(S,T 1,H1), 

abstract_tail(S,T2,H2),
!,merge_tail(Hl,H2,P,Q,TT),T=[S|TT].

merge_tail(X,Y,X,Y,[]).

/* TAKE AN SPECIFIC ELEMENT AWAY FROM A LIST */
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exclude(S, [],[]).
exclude(S,[Sli^jG):- exclude(S,T,G). 
exclude(S,[H|T],[H|Tl]):- exclude(S,T,Tl).

(JjjJ St'**********************************/

/* INPUT STRING WHICH IS ENDED BY "RETURN" */ 
reading_l(Z):- tab(2),getO(X),check_end(X,Z). 
check_end(10,[]). 
check_end(27,[]).
check_end(X, [W|W 1 ] ) readword(X,W,Xl),W ==[],restsent(Xl,Wl),!. 
reading([W|Wl]):-tab(2),getO(X),readword(X,W,Xl),W ==[],restsent(Xl,Wl),!. 
reading([]):-!.
restsent(10,[]):-!. /*The rest of the sentence is empty */
restsent(X, [W2|W l]):-readword(X,W2,X 1), W2 ==[], restsent(Xl,Wl). 
restsent(_,[]):-!.
readword(C,W,C2):-in_sp_word(C,NewC),!,getO(C2),name(W,[NewC]). 
readword(C,W,C2):-in_sp_word_l(C,NewC),getO(C3),chk_name(W,NewC,C3,C2). 
chk_name(A,60,62,C2):- ! ,name(A,[60,62] ),getO(C2). 
chk_name(A,B,C,C2):- C == 61,!,name(A,[B]),C2=C. 
chk_name(A,B ,C , C 2 ) ! ,name(A, [B ,C]) ,getO(C2).
readword(C,W,C2):-in_sp_word_l (C,NewC), !,getO(C l),ck_restword(C,C 1 ,Cs,C2,W), 

name(W,[NewC|Cs]). 
ck_restword(C,61,Cs,C2,W):- getO(C2),name(W,[C,61]),write(hereO). 
ck_restword(60,62,Cs,C2,W):- get0(C2),name(W,[60,62]). 
ck_restword(C,C 1 ,Cs,C2,W):- restword(C 1 ,Cs,C2),write(oi),put(C),put(C 1), 

name(W,[NewC|Cs]). 
readword(C,W,C2) :-in_word(C,NewC),! ,getO(C l),restword(C 1 ,Cs,C2), 

name(W,[NewC|Cs]). 
r e a d w o r d ( 1 0 , [ ] / * T h e  first letter is "return" */ 
readword(_, W,C2): -getO(C 1 ),readword(C 1 ,W,C2).
restword(C,[],C2):- (in_sp_word(C^fewC);in_sp_word_l(C,NewC)),!,C2=C.
restword(C,[NewC|Cs],C2):-in_word(C^NewC),!,get0(Cl),restword(Cl,Cs,C2).
restword(C,[],C).

/* THE COMMON CHARACTERS FOR ALL LANGUAGES */
in_word(X,Y)language(L),in_w(X,Y,L).
in_word(X,Y)in_w(X,Y,all).
in_sp_w°rd (X, Y): - language(L),in_spw(X,Y,L).
in_sp_w°rd_ 1 (X, Y)language(L),in_spw_l (X,Y,L).

/* LANGUAGE s_u IS DEFINED AS SIMPLE BASED ON UNIVERSAL RELATION 
INTERFACE*/ 

language(s_u).
/* These characters can appear within a word in any language */ 
in_spw(40,40,_). /* _ */
in_spw(41,41,_). 
in_spw(61,61,_).



145

/ * > < * /
i n s p w l  (60,60,s_u). 
in_spw_l (62,62,s_u).

/* These characters can appear within a word in ahy language */
in_w(95,95,_). /* _ */
in_w(45,45,_). /* - */

in_w (C ,C ,_ )C  > 96, C < 123. /* lower case a..z */
in_w (C ,C ,_ )C  > 64, C < 91. /* upper case A..Z */
in_w (C ,C ,_)C  > 45, C < 58. /* . / 0 1 2 —9 */
in_w (C ,C ,_ )C  > 38, C < 44. /* ’ ( ) * +  */
in_w (C ,C ,_ )C  > 59, C < 63. /* < = > */

/* s_u (SIMPLE BASED ON UNIVERSAL RELATION INTERFACE */ 
in_w(58,95,s_u). /* := > _  */

/* These characters can appear within a word in any language */
in_w(126,126,p).
in_w(35,35,p).
in_w(27,27,p).
in_w(63,63,p).
in_w(58,95,p).
in_w (C ,C ,p )C  > 64, C < 91.
/* These characters can appear within a word in ML */
in_w(37,37,m).
in_w(58,58,m).
in_w(91,123,m).
in_w(44,38,m).
in_w(C,D,m) :-C > 64, C < 91, D is C +32.
/* These characters can appear a word in EL */

in_w(44,38,e).
in_w(58,58,e).
in_w(C,D,e) :-C>64, C < 91, D is C +32.

base:- all_att,att_of_entity(At_e), asserta(att_of_entity(At_e)), 
att_0f_relationship(At_r), asserta(att_of_relationship(At_r)), 
att_of_entity_l(At_e_l), asserta(att_of_entity_l(At_e_l)), 
att_ofj«lationship_l(At_r_l), 
asserta(att_of_relationship_l(At_r_l)),att_of_all(Att_a), 
asserta(att_of_all(Att_a)),att_of_all_l(At_a_l), 
asserta(att_of_all_l (At_a_l)), 
e_r_set(Ll,L2), 
nl,nl,nl,nl,nl,nl,nl,

^ ̂  ̂  ̂  ̂  Ĥ sfc H* He H® Ĥ Ĥ Ĥ Ĥ Ĥ ̂  Ĥ ̂  Ĥ ̂  Ĥ ̂  Ĥ ̂  Ĥ ̂  Ĥ ^  Ĥ ̂  Ĥ ̂  Ĥ ̂  Ĥ ̂  Ĥ ̂  Ĥ Ĥ ̂  Ĥ Ĥ ̂  Ĥ ̂  Ĥ  ̂̂

nl,write(’** ENTITY RELATIONSHIP MODEL BASED RELATIONAL 
DATABASE SYSTEM ***’),
nl write^ ******** **** ********** *******>!<** ****’̂
,nl,nl,keyword.
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keyword:- base_info 1 ,read_more(A,B),' 
head(B,C),name(C,D),head(D,G), 
lower(G,Z),! ,check(Z). 

read_more(W,K):- reading(A),A == [],!,K=A. 
read_more(W,K):- read__more(Q,K). 
lower(X,Y):- X < 96,!,Y is X+32. 
lower(X,Y):- Y is X. 
check(113):- query_help(A).
check(l 17):- write(’Undo; Please select keyword again ’),nl,!,key word. 
check( 105):- ! ,call_inputdata,! .keyword. 
check(lOl):- halt.
check(114):- !,write(’Execution Begin’),nl,write(’To be finished’), 

nl,!,key word. 
check(_):- write(’Please select correctly’),!,key word. 
call_inputdata:- input_data. 
call_inputdata:-!.
basejnfol:- write(’ Input Data:i/I Query:q/Q Undo:u/U Run:r/R’), 

write(’ Exit:e/E’),nl,write(’ =====>’).

/♦The following rules testing the input string */ 
print_test(W):-nl,write(’String of input is:’),!,print_screen(W). 
print_screen([]): -!.
print_screen([Wl|W2]):-Wl ==[],!,write(Wl),write(’ ’),print_screen(W2).
y * * * * * * * * * * * * * * * * * * * * * * * * * * * *  4= ■I'**

entity_relationship(order,offer,card 1 ,no_role, ’ord_id-c- 8 ’).
entity_relationship(customer, offer, cardn,no_role,’cust_id-c-8’).
entity_relationship(product,place_on,cardn,no_role,’prod_id-c-6’).
entity _relationship(order,place_on,cardn,no_role,’ord_id-c-8’).
relationship_type(offer, ’quantity-n-7 ’ ,no_key).
entity_type(order,’ord_id-c-8’,key).
entity _type(order,’ord_date-c-8 ’ ,no_key).
entity_type(order,’shi_date-c-8’,no_key).
entity_ty pe(cus tomer, ’ cust_id-c- 8 ’ ,key).
entity_type(product,’prod_id-c-6’Jcey).
basic_rel(offer,’quantity ’ ,no_key).
basic_entity(order,’ord_id’,key).
basic_entity(order,’ord_date’ ,no_key).
basic_entity(order,’shi_date’,no_key).
basic_entity(customer,’cust_id’,key).
basic_entity (product,’prod_id’^ey).

/* INTERFACE FOR INPUT DATA OF DATABASES. THE INFORMATION IS 
STORED AS FACT OF RELATION */ 

input data:- display_all_rel(Z),nl,
write(’ Please input the relation name===> ’),!,reading(Relation), 
abstracting(Relation,Y),rel_exi(Y,Z). 

abstracting([],[]):- !.
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abstracting(A,B):- head(A,B). 
rel_exi(A,B):- member(A,B),!,data_input( A). 
rel_exi(A,B):- nl,write(’Relation ’),write(A),write(’ does not exist’),nl, 

write(’ select relation name again ? (y/n) ’),reading(P), 
str_test(P),!,input_data.

str_test(P):- P==Q.
str_test(P):- !,head(P,Q),name(Q,R),head(R,T),lower(T,S),(S ==78,

S==110).
/* DISPLAY THE ATTRIBUTES OF A RELATION; ASK USER WHETHER TO INPUT 

DATA OR NOT;*/ 
data_input(Rel):- display_rel(Rel,Attlist),nl,write( ’input data ? (y/n) ’), 

length(Attlist,N),!, 
reading(X),str_test(X),
! ,input_tuple(Rel,N).

/* INPUT A TUPLE OF A RELATION. USER MAY INPUT DATA RECURSIVELY*/ 
input_tuple(Rel,N):- Y=[Rel] ,input_value(Rel,N,Y,N,W). 
input_value(Rel,M,Y,N,W):- reading_l(Value),chk_value(Value,Rel,N), 

write(’ continue? (y/n) ’), 
reading(A),! ,str_test(A), 
input_tuple(Rel,M).

chk_value(Value,Rel,N):- length(Value,Ln),Ln == N, 
append([Rel],Value,Y),
G =..Y,
tell(prog_tem) ,assert(G) ,nl, write(G) ,put(46), 
told,system("catprog_tem»prog_out").

chk_value(Value,Rel,N):- nl,write(’ **** Error ****’),nl,
write(’ **** Correct number of attributes should be’), 
write(’ : ’),write(N).

/* SHOW ALL RELATIONS OF THE DATABASE ON THE SCREEN */ 
display_all_rel(Z):- e_r_set(E,R),append(E,R,X),display _relation(X,Z),nl. 
display_relation([],W):- !,write(’No relation exists’). 
display_relation(Y,W):- nl,write(’ All of the relations in the database are:’), 

nl,V=[],disp_rel(Y,V,Z,W),tab(2). 
disp_rel([]JL,Z,W):- !,W=L.
disp_rel([A|B],L,Z,W):-tab(2),head(A,C),write(C),!,append(L,[C],Z),

disp_rel(B,Z,Q,W).
â(e>(e>(c%4c>i<>|e>}c>{c>}c>}c%»|c>}c>(c% >)cifc>}e>}e>)c9feaft3(c>|c

query_help(X):- e_r_set(A,B),
nl,write(’ *** ERM-BASED DATABASE QUERY SYSTEM ***’),
nl,write(’ L : LIST ALL ATTRIBUTES’),
nl,write(’ F : FIND COMMAND’),
nl,write(’ P : PUT COMMAND’),
nl,write(’ R : RUN/EXECUTE THE QUERY’),
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nl,write(’ E : EXIT THE SYSTEM’), 
nl,write(’ ====>’ ),reading(Ans), 
head(Ans,Al),name(Al,A2),head(A2,A3),lower(A3,A4), 
q_select(A4,X).

/* L */
q_select(108,A):- att_of_all_l (Atts),print_screen(Atts), 

query_help(A).

/* R */
q_select(l 14,A):- nl,write(’TO BE FINISHED LATER’).

/* B */
q_select(98,A):- base.

jg >j<i
q_select(101,A):- halt.

/* p  */
q_select(102,A):- univ_query(Target,Restrict,R_Summary), 

query_parsing(Target,Restrict,L), 
parsingflag (L,T arget, Restrict, R_Summary). 

parsing_flag(0,Target,Restr,RJSummary):-
concate_phrase(Restr,Tl,T2,Restr_phrase),
par_convert(Restr_phrase,R_lst),

/* sim_par([Restr_list],R_l),R_lst=R_l] ,*/ 
att_vs_entity (T arget,E_T arget), 
target_reg(E_Target,R 1 ,T_g,L),
p_f_l(L,Target,Rl,Restr JR._Summary,Restrjphrase,R_lst,E_Target).

parsing_flag(0,T,R,RS):- nl,write(’Please do the query properly’), 
!,query_help(Y).

P _ f_ l(0 ,Target,Rl,Restr,R_Summary,Restr_phrase,Restr_list,E_Target):- 
att_vs_entity(R_Summary,Entity_Restr), 
delete_duplicate(Entity_Restr,E_Restr),

/* print_test(Target), print_test( [R1 ]) ,print_test(Restr),
print_test(Restr_phrase), 
write(’restrict list is’),write(Restr_list),*/

/* print_test(R_Summary),print_test(E_Target),
print_test(E_Restr), */
q_run(Target,Rl,Restr_list,E_Target,E_Restr,R_Summary),
!,query_help(Y).

p_f_l(0,T,Rl,Xl,X2,X3,X4,S):- nl,write(’Please do the query properly’), 
!,query_help(Y).

/* START THE FIND COMMAND */ 
univ_query(Target,Restrict,R_Summaiy):- write(’Find : ’),!,
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chk_target(T arget, Restrict, R_Summary).

/* CHECKING ATTRIBUTE LIST OF INPUT FROM TARGET LIST */ 
chk_target(Target,Restrict,R_Summary):- att_of_all_l(L),!,take_query(Target), 

not_sublist(Target,L,A), 
act_target( A,Restrict,L,R_Summary).

/* THE INPUT OF THE RESTRICTION LIST */ 
act_target([],Restrict,L,R):- writef Where :’),tab(2), 

take_query (Restrict), 
att_summary (Restrict,R), 
not_sublist(R,L,A), 
chk_restrict(A).

/* GO BACK TO THE INPUT OF THE TARGET LIST */ 
act_target(A,Restrict,L):- write(’the attributes is not correct’), 

printscreen(A).

/* CHECKING WHETHER RESTRICT LIST IS PROPER */ 
chk_restrict([]).
chk_restrict(A):- nl,write(’ **** The following input list is not’), 

write(’ correct: ’),nl,print_screen(A).
/* p  */

q_select(112,A):- write(’Put :’), 
write(’here is put’).

/* OTHERS */
q_select(_,A):- write(’Select 1/L, f/F, or p/P’). 
take_query(List):-reading(L),query_continue(Ll),append(L,Ll,List). 
query_continue(A):- tab(9),reading_ 1 (B),test_list(B,A). 
test_list([],0).
test_list(B, A)query_continue(C) ,append(B ,C,A).

/* LIST OF ALL NAMES OF ALL RELATIONS OF REPRESENTATIVE DATABASE */ 
all_relations(A):- all_entity(B),all_relationship(C),cat_list(B,C,A).

/* LIST OF ALL NAMES OF ALL ENTITY TYPES */ 
all_entity (A)e_set(L),head_list(L, A).

/* LIST OF ALL NAMES OF ALL RELATIONSHIP TYPES */ 
all_relationship(A):- r_set(L),head_list(L,A).

/* COLLECT ALL HEAD OF SUBLIST OF A LIST INTO A LIST */ 
head_list([],G).
head_list([H|T],S):-head(H,Hl),head_list(T,Sl),cat_list([Hl],Sl,S).

/* LIST OF ALL ATTRIBUTES OF ALL RELATIONS */
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att_of_all(A):- att_of_entity(B),att_of_relationship(C), 
cat_list(B,C,A).

/* LIST OF ALL ATTRIBUTES OF ALL RELATIONS WITHOUT 
INFORMATION OF "key" OR "no_key" */ 

att_of_all_l(A):- att_of_entity_l(B),att_of_relationship_l(C), 
cat_list(B,C,A).

/* LIST OF ALL ATTRIBUTES OF ALL ENTITY TYPES */ 
att_of_entity(A):- e_set(L),tail_list(L,A)-

/* LIST OF ALL ATTRIBUTES OF ALL ENTITY TYPE WITHOUT INFORMATION 
"key" OR "no-key" */ 

att_of_entity_l(A):- att_of_entity(B),head_list(B,C),abs_list_att(C,A).

/* LIST OF ALL ATTRIBUTES OF ALL RELATIONSHIP TYPES WITHOUT 
INFORMATION OF "key" OR "no-key" */ 

attofrelationship1(A ):- att_of_relationship(B),head_list(B,C), 
abs_list_att(C,A).

/* LIST OF ALL ATTRIBUTES OF ALL RELATIONSHIP TYPE */ 
att_of_relationship(A):- r_set(L),tail_list(L,A).

/* COLLECT ALL TAIL OF SUBLIST OF A LIST INTO A LIST */ 
tail_list([],[]).
tail_list([H|T],S):- tail(H,Hl)»tail_list(T,Sl),cat_list(Hl,Sl,S).

/* MERGE TWO PATHS INTO A COMBINED PATH: e.g. [l,2 ,3 ,d ,f,g ,P ,q ,r ]  
AND [l,2,3,v,p,q,r] WILL BE MERGED INTO [ l ,2 ,3 ,[[f ,g ] ,[v ]] ,p ,q ,r ]  * / 

merge(A,B,C):- merge_head(A,B,H,Tl ,T2),merge_tail(Tl,T2,Hl ,H2,T), 
rev(T,Ts),append(H,[[Hl|[H2]]],S),append(S,Ts,C).

/* MERGER THE SAME HEADS OF TWO LISTS */ 
merge_head([X|Yl],[X| Y2],[X|H0],P,Q):- merge_head(Yl,Y2,H0,P,Q). 
merge_head(U,V,[],U,V).

/* MERGE THE SAME TAILS OF TWO LISTS */ 
merge_tail(T 1 ,T2,P,Q,T):- abstract_tail(S,T 1,H1), 

abstract_tail(S,T2,H2),
!,merge tail(Hl,H2,P,Q,TT),T=[S|TT]. 

merge_tail(X,Y,X,Y,D).~
*********>(<He********* dbg ***************************/

paths(X,Y,Ll):- setof(L,go(X,Y,L),Ll). 
go(Start,Dest,Route):- goO(Start,Dest,[],R),rev(R,Route).

goO(X,X,T,[X|T]).
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goO(Place,Y,T,R)legalnode(Place,T,Next), 
goO(Next, Y, [Place|T] ,R).

legalnode(X,Trail,Y) (a(X,Y); a(Y,X)),not(member(Y,Trail)).

a(X,Y)entity_relationship(X,Y,A,B,C).

/♦ COLLECT ATTRIBUTES OF ENTITY TYPE AND RELATIONSHIP TYPE ♦/ 
e_r_set(L 1 ,L2)(e_set(L 1) ;true) ,(r_set(L2) ,true),asserta(e_set(L 1)), 

asserta(r_set(L2)).

/* COLLECTION OF ATTRIBUTES AND ROLES INTO A SUBSET OF LIST OF 
ALL ENTITY TYPES ♦/ 

e_set(L 1): - setof([X |L] ,set_entity (X ,L) ,L 1).

/♦ COLLECTION OF ATTRIBUTES AND ROLES INTO A SUBSET OF LIST OF ALL 
RELATIONSHIP TYPES ♦/ 

r_set(Ll):- setof([X|L],set_relationship(X,L),Ll).

/* THE RULE COLLECT ATTRIBUTES AND ROLES OF SAME ENTITY TYPE 
INTO A LIST ♦/ 

set entity(X,L)setof([Y| [Z]] ,entity_type(X,Y,Z),L).

/* THE RULE COLLECT ATTRIBUTES AND ROLES OF SAME RELATIONSHIP TYPE 
INTO A LIST ♦/ 

set_relationship(X,L)setof([Y| [Z]] ,relationship_type(X,Y,Z),L).

/♦ABSTRACT THE ATTRIBUTE LIST FROM A SPECIFIC RELATION NAME ♦/ 
take_rel_nam e([],Rel,[])!.
take_rel_name([A|B],Rel,Z):- head(A,X), X==Rel,!,tail(A,Z). 
take_rel_name([A|B],Rel,Y):- !,take_rel_name(B,Rel,Y).

/* l.CHECKI WHETHER THE RELATION IS IN AN ENTITY LIST OR IN A 
RELATIONSHIP LIST. 2.RETURN THE ATTRIBUTE LIST OF THE 
RELATION ♦/ 

check_rel(Relation,Attlist):- e_r_set(E,R),append(E,R,X), 
take_rel_name(X,Relation,Attlist).

/* INPUT DATA OF A RELATION CORRESPONDING TO THE ATTRIBUTE LIST */ 
displayJuple([]):- !•
display_tuple([A|B]):- head(A,X),write(X),tab(2),!,display_tuple(B).

/* DISPLAY ALL OF THE ATTRIBUTES OF A RELATION */ 
display_rel(X,Attlist):- tab(3),check_rel(X,Attlist),display_tuple(Attlist).

/♦ABSTRACT NAMES OF ATTRIBUTES: e.g. abcd-c-8 => abed ♦/
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abstract_name(X,X 1):- name(X, Y),abs_name( Y, Y 1 ),name(X 1,Y1). 
abs_name([A|B],[]):- A == 45. 
abs_name([A|B],[A]):- B==[]. 
abs_name([ A |B], [ A| W]): - abs_name(B,W).

/♦ ABSTRACT WHOLE NAMES OF ATTRIBUTE LIST ♦/ 
abs_list_att([A|B],[Al]):- B == [],!,abstract_name(A,Al). 
abs_list_att([A|B],[Al|W]):- abstract_name(A,Al),abs_list_att(B,W).

/♦ AN ABSTRACTION LIST OF ATTRIBUTES FROM RESTRICTION LIST ♦/ 
att_summary([],P):- P=[],
attjsummary ([ A|B], [ A| W])not(member_predicate( A)),!, 

att_summary(B,W).
att_summary([A|B],P):- member_comp(A),B == [],!,tail(B,B 1),att_summary(B1 ,P). 
att_summary([A|B],P):-!,att_summary(B,P).

/♦ INPUT A: AN ATTRIBUTE LIST; OUTPUT B: AN ENTITY TYPE LIST.
(FIND THE ENTITY TYPE OF EACH ATTRIBUTE AND CONCATENATE THEM 
IN A LIST ♦/ 

aU_vs_entity ([],[]).
att_vs_entity([A|T],[B|W])not(member(A,T)),

(basic entity(B,AJ’); basic_rel(B,A,P 1)),!, 
att_v se n tity(T,W). 

att_vs_entity([A|T] ,W)att_vs_entity(T,W).

/♦DELETE REDUNDANT MEMBER OF A LIST. A: INPUT LIST; B: OUTPUT 
LIST WITHOUT DUPLICATE ELEMENT */

delete_duplicate(Q ,□).
delete_duplicate([A|T],[A|W]) :-not(member(A,T)),delete_duplicate(T,W). 
delete_duplicate([A|T],W)deIete_duplicate(T,W).

/* ADDS ATTRIBUTES TO THE SUITABLE RELATIONS */ 
all_att: - (add_attribute 1 (relationship_type(X, Y,key)) ;true), 

(add_attribute2(entity_type(A,B>no_key));true), 
aIl_reIation,rel_generate.

/♦ADDS THE ATTRIBUTES WHICH CONSTITUTE THE PRIMARY KEY TO THE 
RELATION OF n:m RELATIONSHIP (ADD KEYS TO THE RELATIONSHIP) ♦/ 

add_attributel(relationship_type(Y,V,key)):- entity_relationship(X,Y,cardn,U,V),
entity_relationship(Z,Y,cardn,T,W),
not(relationship_type(Y,V,key)),
assert(relationship_type(Y,V,key)),
fail.

/♦ADDS THE ATTRIBUTES WHICH CONSTITUTE THE PRIMARY KEY TO THE 
RELATION OF l:m  RELATIONSHIP (ADD KEYS TO THE RELATIONSHIP) ♦/ 

addattribute 1 (relationship_type(Y,V,key)):- entity_relationship(X, Y,cardl ,U,V),
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entity_relationship(Z,Y,cardn,T,W),
not(relationship_type(Y,V,key)),
assert(relationship_type(Y,V,key)),
fail.

/♦ADDS THE ATTRIBUTES OF l:m RELATION (ADD KEY OF ENTITY TO THE 
ENTITY OF ITS DEPENDENCY OR ITS EXIST DEPENDENCY ♦/ 

/♦add_attribute2(entity_type(X,W,no_key)):- entity_relationship(X,Y,cardl,U,V),
entity_relationship(Z,Y,cardn,T,W),
X == Z,assert(entity_type(X,W,no_key)), 
fail.*/

/♦FIND ALL INSTANCES OF DATABASE ♦/ 
allrelation:- findall(X, (entity _type(X,Y,Z);relationship_type(X,Y,Z)),S), 

delete_duplicate(S,W),assertz(rel_set(W)).

/♦ GENERATE SET OF RELATION THAT HAS THREE ITEMA:RELATIONAL 
NAME, ATTRIBUTE SET OF THAT RELATION, KEY OF THAT RELATION ♦/ 

rel_generate:- rel_set(X),create_rel(X).

create_rel([]).
create_rel([X|R]):- rel(X,Y,Z),!,take_att_name(Y,Yl),

!,asserta(rel_info(X,Y 1 ,Z)),! .create _rel(R).

/♦ THE RELATIONS(TABLES) OF THE DATABASE SYSTEM ♦/ 
rel(X ,Y ,Q )entity _ty pe(X,Q1 ,key),! ,abstract_name(Q 1 ,Q),!, 

check_rel(X, Y 0),! ,concate_att(Y 0, Y).

rel(X, Y,Q): - relationship_type(X,Q 1 ,key),! ,abstract_name(Q 1 ,Q),!, 
check_rel(X,YO),concate_att(YO,Y).

take_att_name( [],[]).
take_att_name([A|B],[A 1 |B 1 ] ) abstract_name(A,A1 ),take_att_name(B,B 1). 

concate_att([],[]).
concate_att([A|B],[Al|Bl]):- head(A,Al),concate_att(B,B 1).

/♦ ALL PREDICATE DEFINED IN THE SYSTEM ♦/ 
predicate(X):- Y = [and,or,>,>=,<,<=,=,<>,not],name(C,[40]), 

name(D,[41]),append([C],[D],E),append(E,Y,X).

/♦ CONJUNCTION LOGIC,NEGATION LOGIC, AND PARENTHESIS ♦/
symbol(X):- Y = [and,or,not],name(C,[40]),

name(D,[41]),append([C],[D],E),append(E,Y,X).

/♦ CONJUNCTION LOGIC ♦/ 
logic(X):- X = [and,or].

/♦ COMPARATIVE LOGIC ♦/
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comp_logic(X):- X =

/* NEGATION */ 
negation(X):- X = [not].

/♦CHECKING WHETHER AN ELEMENT IS MEMBER OF "logic(defined above)"
OR NOT*/ 

member_logic(A):- logic(X),member(A,X).

/♦CHECKING IF AN ELEMENT IS MEMBER OF "comparative logic(defined above)" */ 
member_comp(A):- comp_logic(X),member(A,X).

/* CHECKING MEMBER OF NEGAION */ 
member_negation(A):- negation(X),member(A,X).

/* CHECKING MEMBER OF "symbol(defined above)" */ 
member_symbol(A):- symbol(X),member(A,X).

/* CHECKING MEMBER OF PREDICATE */ 
member_predicate(A):-predicate(X),member(A,X).
/*  jjc SjC jjs jjc j|s )jc jjt 5|4 3jC S}C j{C }JC )}( ^ ̂  ̂  ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ^ 5§€ 5jc ^ Jjc jjc i|S }|C $jc 5jC 5jC Sjc )j( S|c Sj{ 5jC 5jc 5jc j

/* THE FOLLOWING RULE CONCATENATE THE RELATIVE PHRASE OF 
RESTRICTION PART INTO S LIST */ 

concate_phrase([],[],[],[]).
concate_phrase([P|Q],J,W,[[P]|T]):- what_next([P|Q]),

(not member_comp(P),not member_negation(P)) 
,concate_phrase(Q,J,W,T). 

concate_phrase([P|Q],J,W,[Fi|T])head(Q,Th),
member_comp(Th),
concate_restr(Q,J,W,S),
append([P],WEi),
concate_phrase(J,D,M,T).

concate_phrase(R,J,W,[W|T])concate_restr(R,J,W,S),!, 
concate_phrase(J,D,M,T).

/* CONCATENATE THE REMAINING OF ">=,<>,<=,=,not" TO THE LIST */ 
concate_restr([A|B],G,[A|[W]],S)(member_comp(A); membernegation(A)),!, 

head(B, W), tail (B ,G).

/♦CHECKING NEXT ELEMENT IS NOT AN ELEMENT OF A LIST:
(">=,<>,<=,="). */ 

what_next(D). 
w hat_next([A |B])B  == Q.
what_next([A|B])head(B,Bl)>!,(not membercomp(Bl)).

/* PARSE BOTH TARGET PART AND RESTRICT PART */ 
query_parsing(Target,R_List,L) > !,parsing_target(Target),
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parsing_restr(R_List,L).

/* PARSING OF THE TARGET PART */ 
parsing_target(Target).

/* PARSING OF THE RESTRICT PART: 1. CHECKING THE PARENTHESIS. */ 
parsing _restr(R_List,L)chkjparenthesis(R_List,0,M,L).

/* 2. CHECKING THE NUMBER OF PARENTHESIS AND MAPPING THE 
PARENTHESIS */ 

chk_parenthesis([],0,M,0).
chk_parenthesis([],N,M,l):- nl,write(’Parenthesis doesnot match’). 
chk_parenthesis(X ,N ,M ,l)N  < 0,nl,write(’Parenthesis doesnot match’).
chk_parenthesis([A|B],NM»L)A == ’(’,M is N+l,!, 

chk_parenthesis(B,MsO,L). 
chk_parenthesis([A|B],NjM,L)A == ’)’,M is N -l,

!,chk_parenthesis(B,M,0,L). 
chkjparenthesis([A|B],N,M,L)!,chk_parenthesis(B,N,M,L).

/* CONVERT LIST WHICH CONTAINS [(] AND [)] INTO A NESTED LIST: 
e.g. [a,[Q,b,c,DLd,e] ==> [a,[b,c],d,e] */

par_convert(In,Out):- left_par(In,N),N> 0,par_convert_l(In,Out,N,M). 
par_convert(In,In). 
par_convert_l ([],[] ,N,M)- 
par_convert_l([H|T],[H|Tout],N,M):- H==[’(’],

par_con vert_ 1 (T,Tout,N,M) • 
par_convert_ 1 ([[’(’]|TJ,[Y|Tout],N,M):- p_x(T,X,Tl,P,l),

par_convert(X,Y), 
par_convert(Tl ,Tout).

/* CONVERT THE LIST BETWEEN FIRST [(] AND LAST [)] INTO ’[’ AND ’]’ */ 
P_x([[’)’]|T],[],T,N,1).
P_x([[V]|T],[[’(’]|T1],A,N,M):-

P is M+l,p_x(T,Tl,A,N,P).
P_x([[’)’]|T],[[’)’]|T1],A^,M):-

P is M-1 ,p_x(T,T 1, A ,N,P).
P_x([H|T],[H|Tl],A,N,M) p_x(T,Tl,A,N,M).

left_par(In,Num):- element_count(In,0,Num).

/* COUNT THE NUMBER OF AN ELEMENT IN A LIST */ 
element_count([],Num,Num). 
element_count([Il|I2],NJ>):- Il==[’(’], 

element_count(I2,N,P). 
element_count( [11 |I2] ,N,P): - Num is N+l,element_count(I2,Num,P).
I* REMOVE THE REDUNDANT PARENTHESIS */ 
s_par([],[]).
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s_par([A|B],[A|B 1]):- atomic(A),s_par(B,B 1). 
s_par([A|B],[Al|Bl]):- s_par_l(A,Al),s_par(B,Bl).

/* REMOVE REDUNDANT PARENTHESIS FOR EACH SUB-STATEMENT */ 
s_par_l([],[]).
s_par_l([A],P):-not(atomic(A)),length([A],l),s_par_l(A,P).
s_par_l([],[]).
s_par_l([H|T],[H|T1]):- atomic(H),s_par_ 1 (T,T 1). 
s_par_l(A,B):- s_par(A,B).

/* ANALYZING THE LOCAL REGION OF TARGET PART */
target_reg(T_R,R,L,Cl)rel_exist(T_R,L,R,Cl,W).

/* WHETHER SINGLE RELATIONSHIP EXIST IN THE LOCAL REGION */ 
rel_exist([],L,W,0,W).
rel_exist([H|T],L,H,C,W):-entity_relationship(A,H,B>F>D),member(H,L)5

s_nd(H,L 1),! ,rel_exi s t_ 1 (T JL1 ,H,C). 
rel_exist([H|T],L,R,0,W):-entity_relationship(H,A,B>K,D), 

s_nd(H,L),! ,rel_exist(T ,L,R,C,H). 
rel_exist([H|T],L,R,C,W):-entity_relationship(H,A,B5K!D), 

s_nd(H,L 1 ),intersection(L,L 1 ,[R]), 
s_nd(R,L2), rel_exist_l (T,L2,R,C). 

rel_exist([H|T],L,R,l,W):- nl,write(’The attribute set of the target part is ’), 
write(’not in the proper region’).

rel_exist_l([],L,R,0).
rel_exist_l([H|T],L,R>C):-member(H,L),!,rel_exist_l(T,L,R,C). 
rel_exist_l([H|T],L,R,l):- nl,write(’The attribute set of the target part is ’), 

writefnot in the proper region’).

/* SURROUNDING REGION OF AN ENTITY TYPE OR RELATIONSHIP */
s_nd(A,[A|L]):- findall(X,entity_relationship(A,X,B,C,D)>L),L==[].
s_nd(A,[A|L]):- findall(X, entity _relationship(X, A, B,C,D),L).
y9fca|es|e>ics)e3{c>(e»H>|c3|e>|c9|csie>(c>|c>ic3te3|cs|e9)c4c3{c>)e>i«3tcaj«>i»j«̂ ^

/* MANIPULATION OF ACCESS PATHS OF USER’S QUERY */
/* Paths : A LIST OF LISTS FROM TARGET TO EACH DESTINATION */
/* Ps : A LIST OF ALL ACCESS PATHS */
/* Main : MAIN ACCESS PATH. */
/* M_set : MAIN SET OF ACCESS PATH. */
/* M_nodes : ALL NODES OF MAIN SET OF ACCESS PATH(M_set) */
/* Inter nodes: ALL NODES THAT ARE INVOLVED IN MORE THAN TWO */ 
/* ACCESS PATHS */
access_paths(Start, Nodes, Paths, Ps, Main,M_set,M_nodes, Internodes):- 

find_paths(Start, Nodes, Paths, Ps),find_main(PsJMain, Start), 
main_set(Paths,Main,M_set),main_node(M_set,[],M_nodes),
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access_nodes(Ps,Interjriodes).

/* FIND THE ACCESS PATHS OF USER’S QUERY */ 
find_paths(Start, □,[],[]).
find_paths(Start,[H|T],[Pl|R],Ps):- paths (Start,H,P 1 ),find_paths(Start,T,Pt,P),

append(Pl,P,Ps).

/* OPTIMIZE THE ACCESS PATH */
access_nodes([A|[]],[]).
access_nodes([A|B],Nodes):- inter_nd(A,B,Nh),access_nodes(B,Nd), 

cat_list(Nh,Nd,Nodes).

/* NODES OF INTERSECTION OF ONE PATH WITH THE OTHERS */ 
inter_nd(A,[],[]).
inter_nd(A,[B|C],L):- intersection(A,B,L 1 ),inter_nd(A,C,L2), 

cat_list(Ll,L2,L).

/* FIND THE MAIN PATH: THE PATH WHICH HAS THE MAXIMUM NUMBER OF 
INTERSECTION WITH OTHER PATHS */ 

fmd_main(Paths,Main,S):- length(Paths, l),head(Paths,Main). 
find_main(Paths,Main,S):- head(Paths,H),inter_num(S,H,Paths,0,N,L 1), 

main_path(H,Paths, Paths, N,Main, L 1 ,L2).

/* FIND THE NUMBER OF INTERSECTION NODES OF ONE PATH WITH 
ALL OTHERS */ 

main_path(Main,[],Paths ,N,Main,L1 ,L2).
main_path(M 1 ,[M 1 |B],Paths,N1 ,Mg,L 1 ,L2) :-main_path(M 1 ,B,Paths,N 1 ,Mg,L 1 ,L2). 
main_path(M 1 ,[M2|B],Paths,N1 ,Mg,Ll ,L2):-inter_num(S,M2,Paths,0,N2,L2),

select_main(N 1,M1 ̂ 2,M2,Main,No,Ll,L2,Ln), 
mainjpath (Main,B,Paths,No^VIg,Ln,Lb).

/* SELECT THE MAIN BY COMPARING THE INTERSECTION NUMBER */ 
selectjnain(Nl,Ml,N2,M2,M2,N2,LI,L2,L2):- N2>=N1,L2>L1. 
select_main(Nl,Ml,N2JVI2>Il^ri,Ll,L2,Ll).

/* FIND THE TOTAL NUMBER OF INTERSECTION NODES OF A PATH WITH 
ALL OTHER PATHS OF ACCESS PATHS */

inter_num(S,A,[],Num,Num,Lth):-length(AJLth). 
inter_num(S,A,[A|B],N 1 ,Numd-th):- inter_num(S,A,B,N 1 ,Num,Lth). 
inter_num(S,A,[B|C],N 1 ,Num,Lth):- exclude(S,B,B 1),intersection^,B1 ,D), 

length(D,L),
N is Nl+L,inter_num(S,A,C,N,Num,Lth).

/* FIND THE MAIN SET OF ACCESS PATHS */
main_set( [] ,Main, 0).
main_set([H|T],Main,H):- member(Main,H). 
main_set([H|T]JvIain,M):- main_set(T,Main,M).
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/* COLLECTING ALL NODES IN THE MAIN SET INTO A LIST */
main_node( [] ,L 1 ,L 1).
main_node([A|B],Ll,L):- cat_list(L 1,A,L2),main_node(B,L2,L).

/* THE ACCESS PATHS WHICH IS NOT IN THE MAIN ACCESS SET WILL BE 
SUMMARIED TO BRANCHES OF MAIN ACCESS SET */

abs_branch(M_st,M_nodes, [],[]).
abs_branch(M_st,M_nodes,[M_st|T],Bs):- abs_branch(M_st,M_nodes,T,Bs). 
abs_branch(M_st,M_nodes, [H|T] ,[H 1 |T 1 ] ) s_branch(M_nodes,H,H 1),

abs_branch(M_st,M_nodes,T,T 1).

/* PROCESS THE ACCESS SETS OTHER THAN MAIN ACCESS SET */
/* 1 .TAKE REVERSE LIST OF ANY ACCESS PATH. */
/* 2.CONCATENATE TO THE LIST UNTIL THE NODES IS IN THE M_set. */
/* 3.TAKE THE REVERSE LIST OF THE ABSTRACTED LIST. */
s_branch(M_nodes,[],[]).
s_branch(M_nodes , [ A | B ], [ A21B1 ]): - rev(A, AO),br_summary (AO, A1 ,M_nodes), 

rev(A 1, A2),s_branch(M_nodes,B,B 1).

/* EACH BRANCH START FROM THE LAST NODE WHICH INTERSECT WITH 
THE MAIN ACCESS SET */

br_summary([H|TJ, [H] ,M_Nds): - member(H,M_Nds). 
br_summaiy([H|T],[H|Tl],M_Nds):- br_summaiy(T,Tl,M_Nds).
j  j|c )Jc jj? jjt )|c )|c jjc jjc j|c )ĵ  jjc )Jc jjc sjc )|c sjc )|( )|( )|c )|c )|c jjt sjt )|( jJc j|c jjc )|c jji sjc J

q_mapping(In,Out):- q_run(In,Out). 

q_run([],D).
q_run(ln,0):- restr_simple(In),exclude([3}In,A),q_process(A,0). 
q_run(ln,0):- iength(In,l),head(In,H),q_run_l(H,0). 
q_run([H|T] ,[Q 1 |Q2]) q_run_ 1 (H,P 1 ),q_run(T,P2) ,delete_duplicate(P 1 ,Q 1), 

delete_duplicate(P2,Qq),con_par_l(Qq,T,Q2).

con_par_l (Q,[],Q).
con_par_l(Q,[T|Tl],R):- con_par(Q,Tl,R).
con_par(Q, [], [Q]).
con_par(Q,T,Q).

q_run_l([],[]).
q_run_l (A,R):- simple_list(A),exclude([],A,A1 ),q_process_l (A 1 ,R). 
q_run_l (A,R)restr_sim ple( A),cxclude([], A, A1 ),qjprocess(A 1 ,R). 
q_run_l([H|T],[Ql|Q2]):- q_run_l(HJ>l),q_run_l(T,P2), delete_duplicate(Pl,Ql), 

delete_duplicate(P2,Q2),con_par_l(Qq,T,Q2).

/* CHECK WHETHER A LIST IS SIMPLE(THAT DOES NOT CONTAIN 
ANOTHER LIST */ 

simple_list([]).
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simple_list([H|T]):- ! ,atomic(H),simple_list(T).
/* CHECK WHETHER A LIST IS A SIMPLE TYPE (PREVIOUS RULE) */ 

restr_simple([]).
restr_simple([A|B])simple_list(A),restr_simple(B).

/* THE INPUT IS A LIST OF SIMPLE LIST: e.g. [[a,b,..],[c..d],[..],..] */ 
q_process([],[]).
q_process(W,L):- head(W,Wl),head(W 1 ,E),att_vs_entity([E] ,E 1), 

head(E 1, A),rel_res(A,B,W,LO),path_process(LO, A,L).

/* THE INPUT IS A SIMPLE LIST: e.g. [a,b......],WHERE a,b,... ARE ATOMIC */
q_process_l([],[]).
q_process_l (W,L):- head(W,E),att_vs_entity ([E] ,E 1 ),head(E 1,A), 

rel_res (A ,B, [ W] ,L0) ,pathjproces s (LO, A,L).

q_execute([],[]). 
q_ececute(A,R):- write(A).

/* FIND THE KEY OF A INSTANCE */
which_key(A,X):- relationship_type(A,X,key). 
which_key(A,X): - entity_type(A,X,key).

/* CONCATENATE ALL ATTRIBUTES OF A RELATION TO A LIST WITHOUT 
DDL PART*/ 

rel_res_l(A,At,L):- check_rel(A,Att),abs_tuple(Att,Atl),
abs_list_att(Atl,At),length(At,L).

abs_tuple([],[]).
abs_tuple([A|B],[X|Y]):-head(A,X),abs_tuple(B,Y).

/* FROM THE RESTRICTION PART OF AN INSTANCE, FIND A KEY LIST 
OF THE INSTANCE*/ 

rel_res(A,B,With,Lst):- rel res l(A,B,L),var_list(L,S),append([A],S,S 1), 
which_key (A,K 1 ),abstract_name(K 1 ,K), 
search_tup(A,B,S 1 ,With,Lst,K).

/* SEARCHING FOR THE SUITABLE TUPLE AND DOING THE PROJECTION ON 
THE KEY*/

search_tup(A,B,S 1 ,W,L,K):- S2=..Sl,findall(X,(with_restr(S2,X,W,A,B,K,0)),L).

/♦BEGIN THE EXECUTION OF RESTRICTION PART */
with_restr(S2,V,W,A,B,K,0):- call(S2),att_order(B,K,0,l), 

arg(0,S2,V),map_with(W,S2,X,B). 
map_with([] ,S2,Y,B).
map_with([H|T],S2,Val,B):- arg_n(H,Y,3,l),arg_n(H,Op,2,l),arg_n(H,Att,l,l), 

att_order(B, Att.Ord, 1 ),arg(Ord,S2,Val),
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is_value(Val,Op,Y),nl,map_with(T,S2,X,B).

/* FIND THE ORDER (POSITION) OF AN ATTRIBUTE IN A RELATION */ 
att_order([A|B],Att,P,P):- A==Att.
att_order([A|B],Att,Ord,P):- Q is P+l,att_order(B,Att,Ord,Q).

/* FIND THE Nth ARGUMENT OF A LIST */
arg_n([A|B],A,P,P).
arg_n([A|B],Att,Ord,P):- Q is P+l,arg_n(B,Att,Ord,Q).

/* CHECK WHETHER THE VALUE IS PROPER */
is_value(Value,’>=’,Y):- Value >= Y.
is_value( Value,’<=’,Y):- Value =< Y.
is_value(Value,’o ’,Y):- Value == Y.
is_value( Value,’= ’ , Y ) : -  Value == Y .

is_value(Value,’>’,Y):- Value > Y.
is_value( Value,’<’,Y):- Value < Y.

/* CREATE A LIST OF VARIABLE WITH LENGTH N */ 
var_list(0,[]).
var_list(L,[H|T]):- P is L -l,var_list(P,T). 
rel_res_l(A,At,L):- check_rel(A, Att),abs_tuple(Att, A tl), 

abs_list_att( At 1, At).

/* THE FUNCTION OF ER-SEMI JOIN IS PASSING A SET OF PARAMETER OF 
LOCAL REGION ON ERM AND GET A LIST OF PROJECTION OF A SET OF 
KEY:
1: INPUT ENTITY TYPES AND RELATIONSHIP TYPE OF A LOCAL REGION.
2: ENTER A SET OF KEY OF ENTITY TYPE AT ONE SIDE OF LOCAL REGION. 
3: PROJECT A SET OF KEY OF ENTITY TYPE AT ANOTHER SIDE OF LOCAL 

REGION.*/
er_semi_join(Entl,Rel,Ent2,Attl,Att2):- entity_type(Entl,Kl l,key), 

entity_type(Ent2,K21 ,key), abstract_name(Kl 1,K1), 
abstract_name(K21 ,K2), rel_res_l (Rel,Att_set,L), 
var_list(L,R2), append([Rel] ,R2,R 1),
R=. .R1, att_order( Att_set,K 1,01,1), 
att_order( Att_set,K2,02,1), 
findall(Attri,in_key_set(R,01,02,Attri,Attl),Att2).

/* PROJECTION ON RELATIONSHIP SET TO GET A SET OF KEY FROM 
ANOTHER SET OF KEY */

in_key_set(R,01,02,Attri,Attl):- call(R),arg(01,R,Val),member(Val,Attl), 
arg(02,R,Attri).

jJjj *7 *** Holt***** **>!<* **>!<*** ****** si:***/

/* FIND ACCESS PATHS OF USER’S QUERY, DOING THE ER-SEMIJOIN 
OPERATION UNTIL IT MEET THE TARGET REGION */
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path_process(L,P,F):- target_node(T),paths(T,P,D),p_process(D,L,F).

/♦ CUT ACCESS PATHS INTO SEGMENT OF LOCAL REGION, AND OPERATE 
ER-SEMIJOIN ON THESE SEGMENTS OF LOCAL REGIONS ♦/ 

p_process([],L,[]). 
p_process([[A|[]]],L,[A|[L]]). 
p_process([D|Dt],L,F):- rev(D,D2),head(D2,H),

er_process(D2,L,F 1 ,H,K),delete_duplicate(Fl ,Q11),
Q1=[K|[Q1 l]],p_process(Dt,L,F2), 
cat_list(Q 1 ,Q2,03),exclude([] ,03 ,F). 

er_process(D,L,L,Ek,Ek):- length(D,Leng),Leng < 3.
er_process(D,L,F,Es,Ek):- length (D,Leng),Leng>=3,[El|T0]=D,[R|Tl]=T0,[E2|_]=Tl, 

er_semiJoin(El,R,E2,L,Att),erjprocess(Tl,Att,F,E2,Ek).

/* CHECK WHETHER THE TARGET PART OF USER’S QUERY IS IN A 
SINGLE INSTANCE OR NOT ♦/

type_target([E],0):- length([E],l),asserta(target_node(E)). 
type_target(E,l).

q_run (Targe t,R 1 ,Restr_list,E_T arget,E_Restr,R_Summary): - 
cat_lis t([R 1 ] ,E_Target,E l),type_target(E 1 ,Code), 
t_exe(Target,Rl,Res tr_list,E_Target,E_Restr,R_Summary,Code), 
retract(target_node(G)).

/♦ PROJECTION OF TARGET REGION ON A SINGLE ENTITY TYPE ♦/ 
/♦t_exe(T arget,R1 ,Restr_list,E_Target,E_Restr,R_Summary ,0): - 

rm_logic(Restr_list,R_l),sim_par(R_l,Rest_l), 
q_mapping(Rest_l,Out),nl,

^  ^ ) |c  s |c  s |(  ) |c  ) |c  ) |c  ) jc  3 |(  jjc  3jc 3jc 3^3 3|C 3 |(  3|C 3jC 3|C 3|C 3 |(  3 |( 3 |(  3^! S jt 3|C 3 |t jjC  3|C ?|C ^ ^

nl, write(Out). ♦/

/* PROJECTION OF TARGET REGION ON THE RELATIONSHIP TYPE ♦/ 
t_exe(T arget,R 1 ,R_list,E_Target,E_Restr,R_Summaiy ,Q): - 

asserta(target_node(R 1)), 
rm_logic(R_list,R_l), 
logic_operation(R_list,R_logic,C), 
sim_par(R_logic,Rg),
q_mapping(R_l,0),sim_par(0,01 ),q_merg(01 ,Rg,Out), 
final_info(Target,Rl,E_Target,Out,Result),
write(’_______________________________________________ ’),nl,
write(Result).

/♦REMOVE ALL THE REDUNDANT PARENTHESIS OF A LIST ♦/ 
sim_par(I,0):- sim_p(I,0).

sim_p([A],B):- A=[D|E],!,sim_p(A,B).
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sim_p(A,B):- !,s_parg(A,B). 

s_parg([],[]).
s_parg(A,A):-simple_list(A). 
s_parg([A|B],[A|Bl]):- simple_list(A),s_parg(B,B 1). 
s_parg([A|B],[A|Bl]):- atomic(A),s_parg(B,Bl). 
s_parg([A|B],[Al|Bl]):- sim_p(A,Al),s_parg(B,Bl).

* * * * * *  g  s f c s f c s le s is * # * * * * * * * * * * * * * * * * * * * * * * /

/* DELETE LOGIC ”AND"(WHICH IS THE DEFAULT), SET LOGIC "OR"
IN THE RIGHT LEVEL OF PARENTHESIS */

logic_operation([],[] ,0).
logic_operation(A,[or|B 1 ],C)place_logic(A,Lg,Q),Lg==[or],!,level_ck(A,B 1 ,C). 
logic_operation(A,Bl,C):- place_logic(A,[and],0),!, level_ck(A,Bl,C). 
logic_operation([ A|B],B 1 ,C):- place_logic([A|B],[or],0),!,level_ck(A,B 1 ,C).

/* CHECK IS THERE ANOTHER LEVEL OF PARENTHESIS EXIST */ 
level_ck([],[],0).
level_ck([[or]|B],B 1 ,C)level_ck(B,B 1 ,C). 
level_ck([[and] |B] ,B 1 ,C):- level_ck(B,B 1 ,C). 
level_ck([A|B],[s|B 1],C):- simple_Iist(A),level_ck(B,B 1 ,C). 
level_ck([A|B],[D|E],C):- logic_operation(A,D,C),level_ck(B,E,C). 
level_ck([A|B],F,l).

/* AT EACH LEVEL, IF THERE ARE EAXCT ONE TYPE OF LOGIC 
(EITHER "AND" OR "OR"), THE SET THE LOGIC SIGNAL TO BE 
”0"(CORRECT), IF THERE ARE MORE THAN ONE TYPE OF LOGIC, 
THEN SET THE LOGIC SIGNAL TO BE " l"(INCORRECT,AMBIGUOUS) */ 

place_logic([], [and] ,0). 
place_logic([],L,0).
place_logic([A|B],L,C):- A==[or],A==[and],place_logic(B,L,C). 
place_logic([[or]|B],[or],C):-place_logic(B,[or],C). 
place_logic([[and]|B],[and],C):-place_logic(B,[and],C). 
place_logic(S ,L, 1).
q_merg(I,Ic,0):- target_node(R),q_m(R,I,Ic,0).

q_m(R,[],Ic,[]). 
q_m(R,[A],Ic,[]):- atomic(A). 
q_m(R, A, [or |Tc] ,0): - u_merg(R, A,Tc ,0). 
q_m(R,A,Tc,0):- int_merg(R,A,Tc,0).

u_merg(R,[],J,0).
u_merg(R, [A],J,0):- simple term(A) ,projection(R,A,0). 
u_merg(R,[H|T],[s|Tc],0):- projection(R,H,01),u_merg(R,T,Tc,02),
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cat_list(01,02,0).

u_merg(R,[H|T],[Hc|Tc],0):- q_m(R,H,Hc,01),u_merg(R,T,Tc,02), 
cat_list(01,02,0).

int_merg(R,[],J,[]).
int_merg(R,A,J,0):- simple_term(A),projection(R,A,0). 
int_merg(R,[H|T],[s|Tc],0):- projection(R,H,01),int_merg(R,T,Tc,02), 

do_inter(01,02,0).

int_merg(R,[H|T],[Hc|Tc],0):- q_m(R,H,Hc,01),int_merg(R,T,Tc,02), 
do_inter(01,02,0). 

do_inter(01, [] ,01).
do_inter(01,02,0): - intersection(01,02,0).

/♦ FOR A SIMPLE LIST, BEGINS THE STEP OF PROJECTION. IF IT’S 
NOT A SIMPLE LIST, CONTINUING THE RECURSIVE REACTION ♦/ 

q_decomp(T,Tc,0):- simple_list(T),target_node(R),projection(R,T,0). 
q_decomp(T,Tc,0):- q_m(T,Tc,0).

/* PROJECTION THE KEY SET OF RELATIONSHIP FROM ITS SURROUNDING 
ENTITY TYPES ♦/ 

projection(R,[Lh|Lt],0):- entity_type(Lh,Lhk,key),abstract_name(Lhk,Key), 
rel_info(R,Att,K),length(Att,N),var_list(N,St), 
append([R] ,St,S l),Rs=..Sl ,att_order(Att,Key ,Ord, 1), 
head(Lt,Lg),
findall(X,(call(Rs),Rs=..Xc,Xc=[A|X],arg(Ord,Rs,Gs),member(Gs,Lg)),0).

/♦REMOVE THE LOGIC OPERATOR FORM A LIST ♦/
rm_logic(In,Out):- place_logic(In,Log,C),!,rm_act(In,Log,Out). 
rm_act([],P,[]).
rm_act([[or]|B],[or],B 1):- !,rm_act(B,[or],B 1). 
rm_act([A|B],[or],[[A]|B 1]):- simple_list(A),!,rm_act(B,[or],B 1). 
rm act([A|B],[or],[[Al]|Bl)):- !,rm logic(A,Al),!,rm act(B,[or],Bl). 
nn_act([[and]|B],[and],Bl):- !^m_act(B,[and],Bl). 
rm_act([A|B],[and],[A|Bl]):- simple_list(A),!,rm_act(B,[and],Bl). 
rm_act([A|B],[and],[Al|Bl]):- !,rm_logic(A,Al),!,rm_act(B,[and],Bl).

simple_term([A|B]):- atomic(A),B=[Bl],simple_list(Bl).
y3(c>|c>J<>|e)]<>(c>|c>)c>|c>| c» |«>{«>|«>)c>|c>)e»|<>)c>)c> ( < Q

/♦PROJECTION THE VALUE OF TARGET PART IN THE LOCAL REGION ♦/ 
final_info(Target,R 1 ,E_Target,Out,Result): - print_target_head(Target),nl, 

g_p(Target,E_Target,Tx,Ex,L),take_value(L,Rl,Out,Result).

take value(L,R, [],[]).
take_value(L,R,[H|T],[Res 1 |Res2]):- take value l (L,R,H,Res 1),

take_value(L,R,T,Res2).
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take_value_l([],R,Ou,[]).
take_value_l([H|T],R,0u,[01102]):- [E|A]=H, rel_info(R,Att_r,Kr),

rel_info(E,Att_e,Ke), 
att_order (Att_r,Ke ,Ord, 1), 
arg_n(Ou, V al,Ord, 1), 
take_e_value(E,Att_e,Ke,Val,Va_z), 
take_target_value(A, Att_e,Va_z,01), 
take_value_ 1 (T ,R,0u,02).

take_e_value(E,Att_e,Ke,Val,Va_z):- length(Att_e,N),var_list(N,List), 
append([E],List,Lst),E_val=..Lst, 
call(E_val),att_order(Att_e,Ke,Ok, 1), 
arg(Ok,E_val,V al),
E_val=..Pst,tail(Pst,Va_z).

/* TAKE THE VALUE OF ATTRIBUTE PUT INTO A LIST */
take_target_value([],Att_e,Val_z,Q).
take_target_value([H|T],Att_e,Val,[V|V1 ]):- att_order(Att_e,H;Ord, 1),

arg_n(V al, V,Ord, 1), 
take_target_value(T, Att_e,V al,V 1).

/* THE RULE GROUP ATTRIBUTES OF THE SAME RELATION INTO A LIST 
LEADED BY THE NAME OF THAT RELATION */

g_p([],[],T,E,[]).
g_p(Ta,En,T,E,[[S|G]|Gl]):-grouping(Ta,En,S,T,E,G),g_p(T,E,Tl,El,Gl).

grouping([Th|Tt],[Eh|Et],Eh,Tl,El,[Th|G]):- grouping(Tt,Et,Eh,T 1JE1 ,G). 
grouping(T,E,S,T,E,[]).

/* PRINT THE HEAD ATTRIBUTE OF TARGET PART */
print_target_head([]).
print_target_head([A|B]):- write(A),tab(2),print_target_head(B).
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