
San Jose State University

From the SelectedWorks of Magdalini Eirinaki

2009

Query Recommendations for Interactive
Database Exploration
Gloria Chatzopoulou, University of California, Riverside
Magdalini Eirinaki, San Jose State University
Neoklis Polyzotis, University of California, Santa Cruz

Available at: https://works.bepress.com/magdalini_eirinaki/66/

http://www.sjsu.edu
https://works.bepress.com/magdalini_eirinaki/
https://works.bepress.com/magdalini_eirinaki/66/

Query Recommendations for Interactive
Database Exploration

Gloria Chatzopoulou1 ?, Magdalini Eirinaki2, and Neoklis Polyzotis3

1 Computer Science Dept., University of California Riverside, USA
chatzopd@cs.ucr.edu

2 Computer Engineering Dept., San Jose State University, USA
magdalini.eirinaki@sjsu.edu

3 Computer Science Dept., University of California Santa Cruz, USA
alkis@cs.ucsc.edu

Abstract. Relational database systems are becoming increasingly pop-
ular in the scientific community to support the interactive exploration
of large volumes of data. In this scenario, users employ a query interface
(typically, a web-based client) to issue a series of SQL queries that aim
to analyze the data and mine it for interesting information. First-time
users, however, may not have the necessary knowledge to know where to
start their exploration. Other times, users may simply overlook queries
that retrieve important information. To assist users in this context, we
draw inspiration from Web recommender systems and propose the use of
personalized query recommendations. The idea is to track the querying
behavior of each user, identify which parts of the database may be of in-
terest for the corresponding data analysis task, and recommend queries
that retrieve relevant data. We discuss the main challenges in this novel
application of recommendation systems, and outline a possible solution
based on collaborative filtering. Preliminary experimental results on real
user traces demonstrate that our framework can generate effective query
recommendations.

1 Introduction

Relational database systems are becoming increasingly popular in the scientific
community to manage large volumes of experimental data. Examples include the
Genome browser4 that provides access to a genomic database, and Sky Server5

that stores large volumes of astronomical measurements. The main advantage
of a relational database system is that it supports the efficient execution of
complex queries, thus enabling users to interactively explore the data and retrieve
interesting information. It should be noted that the aforementioned systems
employ web-based query interfaces in order to be accessible to a broad user
base.
? This work was performed while the author was affiliated with UC Santa Cruz
4 http://genome.ucsc.edu/
5 http://cas.sdss.org/

Even though a database system offers the means to run complex queries
over large data sets, the discovery of useful information remains a big challenge.
Users who are not familiar with the database may overlook queries that retrieve
interesting data, or they may not know what parts of the database provide useful
information. This issue clearly hinders data exploration, and thus reduces the
benefits of using a database system.

To address this important problem, we draw inspiration from the successful
application of recommender systems in the exploration of Web data. In partic-
ular, we focus on approaches based on user-based collaborative filtering. The
premise is simple: If a user A has similar querying behavior to user B, then they
are likely interested in the same data. Hence, the queries of user B can serve as
a guide for user A.

The transfer of this paradigm entails several challenging problems. In web
collaborative filtering systems, a user-item matrix approach is used to generate
recommendations. More specifically, each user is represented as an item vector,
where the values of the vector elements correspond to the user’s preferences for
each item (such as movie ratings, purchased products, read articles, etc.) The
similarities between users in this representation can be easily computed using
vector similarity metrics. Given the most similar users and their preferences, the
collaborative filtering system can subsequently predict what items will interest
each user, and generate item recommendations.

The aforementioned methodology cannot be directly applied to the context
of a relational database for several reasons. First, we observe that in the case of a
database the “items” of interest are database records, and the users access these
items indirectly by posing SQL queries. Thus, even though the users’ behavior
is identified by the set of queries they send to the database, their interest lies
on the database tuples they retrieve. Given that SQL is a declarative language,
however, the same data can be retrieved in more than one way. This complicates
the evaluation of similarity among users based on their queries alone, since it is
no longer obvious whether they are interested in the same “items”.

This raises a second important issue that needs some consideration. The
similarity between users can be expressed as the similarity between the fragments
of their queries or, alternatively, the data that they retrieve. This is not as
straightforward, since a query fragment or a tuple might have different levels of
importance in different user sessions. Thus, we must be able to create implicit
user profiles that model those levels of importance, in order to effectively compare
the users.

Finally, contrary to the user-based collaborative filtering approach, the rec-
ommendation to the users have to be in the form of SQL queries, since those
actually describe what the retrieved data represent. Thus, we need to “close the
loop” by first decomposing the user queries into lower-level components in order
to compute similarities and make predictions, and then re-construct them back
to SQL queries in order to recommend them. Moreover, these SQL queries must
be meaningful and intuitive, so that users can parse them and understand their

intent and usefulness. All those issues make the problem of interactive database
exploration very different from its web counterpart.

In this paper, we present our work in the development of a query recom-
mender system for relational databases. We first discuss an abstract framework
that conceptualizes the problem and defines specific components that must be
instantiated in order to develop a solution. Based on this framework, we develop
a solution that transfers the paradigm of collaborative filtering in the context of
relational queries. The recommended solution can be implemented using exist-
ing technology, and is thus attractive for a real-world deployment. Finally, we
present an experimental study on real user traces from the Sky Server database.
Our results indicate that our first-cut solution can provide effective query rec-
ommendations, and thus demonstrate the potential of our approach in practice.

The remainder of the paper is structured as follows. We review the related
work in Section 2 and cover some preliminaries in Section 3. Section 4 discusses
the conceptual framework and its instantiation. The experimental results are
presented in Section 5. Section 6 concludes the paper and outlines directions for
future work.

2 Related Work

So far, the work that has been done in the area of personalized databases has
focused to keyword-based query recommendation systems [1]. In this scenario, a
user can interact with a relational database through a web interface that allows
him/her to submit keywords and retrieve relevant content. The personalization
process is based on the user’s keyword queries, those of previous users, as well
as an explicit user profile that records the user’s preferences with regards to the
content of the database. Clearly, our approach is different from this scenario in
several ways. First, the proposed framework is meant to assist users who pose
complex SQL queries to relational databases. Moreover, the system does not
require from its users to create an explicit profile. This gives a higher level of
flexibility to the system, since the same user might have different information
needs during different explorations of the database.

Our inspiration draws from the successful application of user-based collabo-
rative filtering techniques, proposed in the Web context [2, 3, 4, 5, 6, 7, 8, 9, 10].
As previously mentioned, this approach cannot be directly applied to the rela-
tional database context. The inherent nature of interactive database exploration
raises certain implications that cannot be addressed by the straightforward col-
laborative filtering approach. In this work, we are based on its premises, but
extend them in order to apply them in the database environment.

The challenges of applying data mining techniques to the database query logs
are also addressed in [11]. In this work, the authors outline the architecture of
a Collaborative Query Management System targeted at large-scale, shared-data
environments. As part of this architecture, they independently suggest that data
mining techniques, such as clustering or association rules, can be applied to the
query logs in order to provide the users with query suggestions. We should stress,

however, that contrary to our work, the authors do not provide any technical
details on how such a recommendation system could be implemented.

The work presented in this paper is part of the QueRIE (Query Recom-
mendations for Interactive database Exploration) project. In this project, we
investigate the application of personalization techniques in interactive database
exploration, particularly to assist the user in discovering interesting subsets of
the database with minimal effort.

3 Preliminaries

Our work considers the interactive exploration of a relational database using
SQL queries. In what follows, we summarize some basic notions in this context
that will be used in the remainder of the paper.

3.1 Database and Querying Model

We consider a relational database comprising N relations denoted as R1, . . . , RN .
We use Q to denote a Select-Project-Join (SPJ) query over the database, and
ans(Q) for its result set. We focus on the class of SPJ queries because they are
common in interactive database exploration, particularly among the group of
novice users which is the focus of our work.

We say that a tuple τ of some relation Rn, 1 ≤ n ≤ N , is a witness for a query
Q if τ contributes to least one result in ans(Q). We use RQ

n to denote the set of
witnesses for Q from relation Rn. (For notational convenience, we assume that
RQ

n = ∅ if relation Rn is not mentioned in Q.) Overall, the subsets RQ
1 , . . . , R

Q
N

contain the tuples that are used to generate the results of Q. In that respect, we
say that RQ

1 , . . . , R
Q
N is the subset of the database touched by Q.

3.2 Interactive Data Exploration

Users typically explore a relational database through a sequence of SQL queries.
The goal of the exploration is to discover interesting information or verify a
particular hypothesis. The queries are formulated based on this goal and reflect
the user’s overall information need. As a consequence, the queries posted by a
user during one “visit” (commonly called session) to the database are typically
correlated in that the user formulates the next query in the sequence after having
inspected the results of previous queries.

We identify users with unique integer identifiers. Given a user i, let Qi denote
the set of SQL queries that the user has posed. In accordance with the previous
definitions, we assume that the SQL queries belong to the class of SPJ queries.
We define Ri

n, 1 ≤ n ≤ N as the union of RQ
n for Q ∈ Qi, i.e., the set of tuples of

relation Rn that the user’s queries have touched. Hence, Ri
1, . . . , R

i
N represent

the subset of the database that has been accessed by user i. A summary of the
notation used throughout this paper is included in Table 1.

Table 1. Notation Summary

Rn Relation n

RQ
n Set of witnesses for query Q from Rj

Ri
n Set of tuples of Rn that queries of user i have retrieved

Si Session summary of user i

Spred
0 Extended session summary for current user

4 Personalized Query Recommendations

The problem of personalized query recommendations can be formulated as fol-
lows: Given a user that is currently exploring the database, recommend queries
that might be of interest to him/her. To generate such recommendations, the
system will rely on information gathered from the querying behavior of past
users, as well as the queries posed by the current user so far.

The information flow of the QueRIE framework is shown in Figure1. The
active user’s queries are forwarded to both the DBMS and the Recommendation
Engine. The DBMS processes each query and returns a set of results. At the
same time, the query is stored in the Query Log. The Recommendation Engine
combines the current user’s input with information gathered from the database
interactions of past users, as recorded in the Query Log, and generates a set of
query recommendations that are returned to the user.

Fig. 1. QueRIE Architecture

In what follows, we identify the current user with the id 0, and note that
Q0 contains the queries that the user has posed thus far. We use {1, . . . , h} to
denote the set of past users based on which recommendations are generated.

The following sections describe a solution to this interesting problem of gen-
erating personalized query recommendations. We begin by discussing a concep-

tual framework that can encompass different approaches, and then propose an
instantiation based on collaborative filtering.

4.1 Conceptual Framework

Clearly, the queries of each user touch a subset of the database that is relevant for
the analysis the user wants to perform. We assume that this subset is modeled as
a session summary. This summary captures the parts of the database accessed
by the user and incorporates a metric of importance for each part. For instance,
a crude summary may contain the names of the relations that appear in the
queries of the user, and the importance of each relation can be measured as the
number of queries that reference it. On the other extreme, a detailed summary
may contain the actual results inspected by the user, along with an explicit
rating of each result tuple. Assuming that the choice of the summary is fixed for
all users, we use Si to denote the summary for user i.

To generate recommendations, our framework generates a “predicted” sum-
mary Spred

0 . This summary captures the predicted degree of interest of the active
user with respect to all the parts of the database, including those that the user
has not explored yet, and thus serves as the seed for the generation of recommen-
dations. As an example, if the summary S0 contains the names of the relations
that the user has referenced so far, then Spred

0 may contain more relations that
might be of interest, along with the respective degree of “interestingness” for
each part.

Using Spred
0 , the framework constructs queries that cover the subset of the

database with the highest predicted importance. In turn, these queries are pre-
sented to the user as recommendations.

Overall, our framework consists of three components: (a) the construction of
a session summary for each user i based on the queries inQi, (b) the computation
of Spred

0 based on the active user S0 and the summaries S1, . . . , Sh of past users,
and (c) the generation of queries based on Spred

0 . An interesting point is that
components (a) and (c) form a closed loop, going from queries to summaries and
back. This is a conscious design choice following the fact that all user interaction
with a relational database occurs through declarative queries.

4.2 A Witness-based Collaborative Filtering Approach

We now discuss an instantiation of the previously described framework. In the
following sections, we discuss the model and construction of session summaries
using witnesses, the computation of the extended summary Spred

0 , and the rec-
ommendation algorithm.

Session Summaries. The session summary Si is represented as a weighted
vector that corresponds to the database tuples. We assume that the total number
of tuples in the database, and as a consequence the length of the vector, is T .

The weight Si[τ] represents the importance of a given tuple τ ∈ T in session Si.
In what follows, we describe the computation of tuple weights in Si.

We assume that the vector SQ represents a single query Q ∈ Qi. The value
of each element SQ[τ] signifies the importance of the tuple as the witness for Q.
We propose two different weighting schemes for computing the tuple weights in
Si:

Binary weighting scheme.

SQ[τ] =

{
1 if τ is a witness;
0 if τ is not a witness.

(1)

This is the most straightforward approach. There are two options: either a tuple
is a witness in Q, or not. All participating tuples receive the same importance
weight.

Result weighting scheme.

SQ[τ] =

{
1/|ans(Q)| if τ is a witness;
0 if τ is not a witness.

(2)

Here ans(Q) is the result-set of Q. The intuition is that the importance of τ is
diminished if Q returns many results, as this is an indication that the query is
“unfocused”. On the other hand, a small ans(Q) implies that the query is very
specific, and thus the witnesses have high importance.

Given the vectors SQ for Q ∈ Qi, we define the session summary of user i as:

Si =
∑

Q∈Qi

SQ. (3)

Using the session summaries of the past users, we can construct the (h ×
T) session-tuple matrix which, as in the case of the user-item matrix in web
recommender systems, will be used as input to our recommendation algorithm.

Computing Spred
0 . Similarly to session summaries Si, the predicted summary

Spred
0 is a vector of tuple weights. Each weight signifies the predicted impor-

tance of the corresponding tuple for the active user. In order to compute those
weights, we adopt the method of a linear summation that has been successfully
employed in user-based collaborative filtering. More specifically, we assume the
existence of a function sim(Si, Sj) that measures the similarity between two
session summaries and takes values in [0, 1]. The similarity function sim(Si, Sj)
can be realized with any vector-based metric. In this work, we employ the cosine
similarity:

sim(Si, Sj) =
SiSj

‖Si‖2‖Sj‖2
. (4)

This implies that two users are similar if their queries imply similar weights for
the database tuples.

The predicted summary is defined as a function of the current user’s summary
S0 and the normalized weighted sum of the existing summaries:

Spred
0 = α ∗ S0 + (1− α) ∗

∑
1≤i≤h sim(S0, Si) · Si∑

1≤i≤h sim(S0, Si)
(5)

The value of the “mixing” factor α ∈ [0, 1] determines which users’ traces will be
taken into consideration when computing the predicted summary. If α = 0, then
we follow the user-based collaborative filtering approach and take into account
only the past users’ traces. On the other hand, when α = 1, only the active
user’s session summary is taken into account when generating recommendations,
resulting in what is known in the recommendation systems as content-based
filtering. Finally, any value in between allows us to bias the predicted vector
and assign more “importance” to either side, or equal “importance” to both
the current and the previous users (when α = 0.5). This bias can be useful for
two reasons. First, we do not want to exclude from the recommendation set any
queries that touch the tuples already covered by the user. Even though there
might exist some overlap, such queries may provide a different, more intuitive
presentation (e.g., a different PROJECT clause), making it easier for the user
to search for the information she is looking for. Second, by including the covered
tuples in Spred

0 , we are able to predict queries that combine the seen tuples
with unseen tuples from other relations. In other words, we are able to predict
queries that “expand” on the results already observed by the user. Intuitively,
we expect from the active user to behave in a similar way by posing queries
that cover adjacent or overlapping parts of the database, in order to locate the
information they are seeking. These two observations derive from the nature of
database queries and are in some sense inherent in the problem of personalized
query recommendations.

Generating Query Recommendations. Having computed Spred
0 , the algo-

rithm recommends queries that retrieve tuples of high predicted weights. One
possibility would be to automatically synthesize queries out of the predicted
tuples in Spred

0 , but this approach has an inherent technical difficulty. Another
drawback of this approach is that the resulting queries may not be intuitive and
easily understandable. This is important in the context of query recommenda-
tions, as users must be able to interpret the recommended queries before deciding
to use them.

To avoid the aforementioned issues, we choose to generate recommendations
using the queries of past users. Such recommendations are expected to be eas-
ily understandable, since they have been formulated by a human user. More
concretely, we maintain a sample of the queries posed by previous users. In the
context of predicting queries for the active user, we assign to each query Q in the
sample an “importance” with respect to Spred

0 . This importance is computed as
the similarity between the query vector SQ and Spred

0 , and is defined as follows:

rank(Q,Spred
0) = sim(SQ, S

pred
0). (6)

Hence, a query has high rank if it covers the important tuples in Spred
0 . The top

ranked queries are then returned as the recommendation.

5 Experimental evaluation

We completed a prototype implementation of the framework described in the
previous section. We are also in the process of developing a visual query interface
that employs our framework to provide on-demand recommendations to users
who navigate the database. In this section we present preliminary experimental
results of using our system with real database traces, as well as examples of
queries and the related recommendations generated for this data set.

5.1 Data Set.

We evaluated our framework using traces of the Sky Server database6. The traces
contain queries posed to the database between the years 2006 and 2008. We used
the methods described in [12] to clean and separate the query logs in sessions.
The characteristics of the data set and the queries are summarized in Table 2.

Table 2. Data Set Statistics

Database size 2.6TB

#Sessions 720

#Queries 6713

#Distinct queries 4037

#Distinct witnesses 13,602,430

Avg. number of queries per session 9.3

Min. number of queries per session 3

5.2 Methodology.

We employ 10-fold cross validation to evaluate the proposed framework. More
concretely, we partition the set of user sessions in 10 equally sized subsets, and in
each run we use 9 subsets as the training set and we generate recommendations
for the sessions in the remaining subset. For each test user session of size L,
we build the session summary S0 using L − 1 queries and we thus generate
recommendations for the L-th query of the user. In order to generate the top-n
recommendations we use the queries in the current training set.

We experimented with different values for n. In this paper we report the
results for n = 3 and n = 5. A larger recommendation set might end up being
overwhelming for the end user, who is usually interested in selecting only a few
recommended queries.
6 We used version BestDR6.

The effectiveness of each recommended query is measured against the L-th
query of the session, using the following precision and recall metrics:

precision =
| τQL

∩ τQR
|

| τQR
|

(7)

recall =
| τQL

∩ τQR
|

| τQL
|

(8)

where τQL
represents the witnesses of the L-th query and τQR

represents the
witnesses of the recommended query. The precision metric shows the percentage
of “interesting” tuples to the user with respect to all the recommended tuples.
The recall metric captures the hit ratio of each recommended query with respect
to the last query of the user.

Following the practice of previous studies in recommender systems [13], we re-
port for each user session the maximum recall over all the recommended queries,
and compute the precision for the query that achieved maximum recall. We also
report the average precision and recall for one set of recommendations. Unless
otherwise noted, we set α = 0.5.

5.3 Results.

We conducted several experiments to evaluate different aspects of our system.
Overall, the results show the feasibility of query recommendations as a guide for
interactive data exploration.

In the first experiment, we evaluate the effectiveness of recommendations for
the two different tuple-weighting schemes described in Section 4.2, namely the
Binary and the Result methods. Figures 2 and 3 show the inverse cumulative
frequency distribution (inverse CFD) of the recorded precision and recall for
the test sessions. (Recall that all sessions are used as test sessions, using the
10-fold cross validation methodology described earlier.) A point (x, y) in this
graph signifies that x% of user sessions had precision/recall ≥ y. For instance,
as shown in Figure 3, the Binary method achieves a perfect recall (i.e., the
recommendations cover all the tuples that the user covers with his/her last
query) for more than half of the test sessions. We also observe that several
test sessions have a precision and recall of 0, i.e., the recommendations did not
succeed in predicting the intentions of the user. On closer inspection, these test
sessions are very dissimilar to training sessions, and thus the framework fails to
compute useful weights for Spred

0 .
Overall, we observe that both methods achieve similar precision. This means

that both methods’ recommended queries cover the same percentage of inter-
esting tuples for the user. The Binary method, however, achieves much better
results than the Result one in terms of recall. As previously mentioned, recall
represents the number of recommended tuples that were of interest to the user
with respect to the user’s last query, and is a better predictor in terms of useful-
ness of the recommended query. This finding implies that the result size of the

query may not be a good indicator of the focus of users. Thus, in the experiments
that follow, we report the results of the Binary weighting scheme only.

0 10 20 30 40 50 60 70 80 90 100
Percentage of sessions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
pr

ec
isi

on
top5-result
top5-binary

Fig. 2. Inverse CFD of precision for top-5 recommendations

In the next set of experiments, we compare the recommendations with regards
to the size of the recommendation set. More specifically, in Figures 4 and 5 we
compare the top-3 and top-5 recommendation sets in terms of precision and
recall respectively. Both recommendation sets achieve good results, being 100%
accurate in almost half test sessions. The top-5 recommendation set seems to
be performing better than the top-3 one, both in terms of precision and recall.
This can be justified by the fact that we report the maximum recall over all
the recommended queries and compute the precision for the query that achieved
maximum recall. This query might not always be included in the top-3 ones,
but is very often included in the top-5 recommendations. Notably, in about 55%
of the test sessions, the maximum recall was 1, meaning that the recommended
query covered all the tuples that were retrieved by the user’s original one.

Figure 6 shows the average recall and precision of all top-5 recommended
queries. In this case we achieve high precision and recall for almost 1/3 of the
test sessions. The lower average precision and recall for the remaining sessions
means that some recommended queries might not be as accurate in covering the
interesting subsets of the database, dragging the overall average down. In real-
life applications, however, it is likely that the active user will be able to select
the few recommendations closest to his/her interests. This motivates the use of
the maximum recall metric, which is used in the experiments of Figures 4 and
5.

0 10 20 30 40 50 60 70 80 90 100
Percentage of sessions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
ca

ll

top5-result
top5-binary

Fig. 3. Inverse CFD of recall for top-5 recommendations

0 10 20 30 40 50 60 70 80 90 100
Percentage of sessions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ec

isi
on

top3
top5

Fig. 4. Precision of top-3 and top-5 recommendations

0 10 20 30 40 50 60 70 80 90 100
Percentage of sessions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
ca

ll

top3
top5

Fig. 5. Recall of top-3 and top-5 recommendations

10 20 30 40 50 60 70 80 90 100
Percentage of sessions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
recall
precision

Fig. 6. Average precision and recall of top-5 recommendations

Next, we evaluate the effect of the mixing factor α (Equation 5). More specif-
ically, we evaluate the precision and recall of the top-5 recommendations for the
pure user-based collaborative filtering approach (α = 0), the content-based fil-
tering approach (α = 1), as well as the case when both inputs are given equal
importance (α = 0.5). As shown in Figures 7 and 8, the pure collaborative
filtering approach (α = 0) yields worst results with respect to the other two ap-
proaches, in terms of both the precision and the recall of the recommendations.
The comparison of the other two approaches (α = 0.5 and α = 1) shows that
the combination of both sources (α = 0.5) yields slightly better results in terms
of recall. We should point out, however, that the results shown here are tightly
connected to the specific data set and workload. In practice, we expect that α
will be calibrated prior to deploying the recommendation algorithm, based on
the characteristics of the database and a representative user workload.

10 20 30 40 50 60 70 80 90 100
Percentage of sessions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ec

isi
on

alpha=0
alpha=0.5
alpha=1

Fig. 7. Precision of top-5 recommendations for different α values

Finally, we present some examples of recommended queries for sessions in
which the recommendations were 100% successful in terms of maximum recall
and precision. Table 3 shows a description of the session’s characteristics and
the recommended query. The table lists recommendations for three user ses-
sions, where the users had a very different progression in terms of the submitted
queries. Our system was able to recommend a query that returned exactly the
same results as the actual last query of the user, without the two queries being
necessarily identical. This evidence demonstrates the usefulness of our approach
in assisting users to interactively explore a relational database.

10 20 30 40 50 60 70 80 90 100
Percentage of sessions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
ca

ll

alpha=0
alpha=0.5
alpha=1

Fig. 8. Recall of top-5 recommendations for different α values

6 Conclusions

In this paper, we present a query recommendation framework supporting the in-
teractive exploration of relational databases and an instantiation of this frame-
work based on user-based collaborative filtering. The experimental evaluation
demonstrates the potential of the proposed approach.

We should stress that this is a first-cut solution to the very interesting prob-
lem of personalized query recommendations. There are many open issues that
need to be addressed. For instance, an interesting problem is that of identifying
“similar” queries in terms of their structure and not the tuples they retrieve. Two
queries might be semantically similar but retrieve different results due to some
filtering conditions. Such queries need to be considered in the recommendation
process. We are currently working on extending our framework to cover such
query similarities. Another interesting direction is to apply item-based collabo-
rative filtering instead of the user-based approach of the current framework. We
also intend to explore other approaches for instantiating the proposed conceptual
framework.

We are also in the process of developing a visual query interface for the
QueRIE system and plan to evaluate its performance using real users. To ensure
that the system generates real-time recommendations for the active users of a
database, we need to devise smart methods to compress the session-tuple matrix
and to speed up the computation of similarities. In this direction, we plan to
leverage randomized sketching techniques as a compression method [14, 15, 16].

Table 3. Query recommendations examples

Session description Recommended query

Each consecutive query
was posted to a different
table.

SELECT *
FROM PhotoZ
WHERE objId = 0x082802f0c19a003e;

The user kept refining the
same query adding ex-
actly one selection predi-
cate in every consecutive
query.

SELECT p.ra, p.dec, s.z, s.ew, s.ewErr
FROM specLine s, PhotoObj p
WHERE s.specObjId = p.specObjid AND s.specLineId = 1549;

The user posted queries to
the same tables, but each
query had several selec-
tion clauses in addition to
the previous one.

SELECT top 10 L1.height Halpha h, L2.height Hbeta h,
L3.height OIII h, L4.height NII h, L1.sigma Halpha sig,
L2.sigma Hbeta sig, L3.sigma OIII sig, L4.sigma NII sig

FROM Specline L1, Specline L2, Specline L3, Specline L4, SpecObj
WHERE SpecObj.SpecObjID = L1.SpecObjID AND

SpecObj.SpecObjID = L2.SpecObjID AND
SpecObj.SpecObjID = L3.SpecObjID AND
SpecObj.SpecObjID = L4.SpecObjID AND
SpecObj.specClass = 3 AND
L1.lineID = 6565 AND
L2.lineID = 4863 AND
and L3.lineID = 5008 AND
L4.lineID = 6585;

References

[1] Koutrika, G., Ioannidis, Y.: Personalized queries under a generalized preference
model. In: ICDE ’05: Proceedings of the 21st International Conference on Data
Engineering. (2005) 841–852

[2] Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria
rating systems. IEEE Intelligent Systems 22(3) (2007) 48–55

[3] Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on
Knowl. and Data Eng. 17(6) (2005) 739–749

[4] Bell, R., Koren, Y., Volinsky, C.: Modeling relationships at multiple scales to
improve accuracy of large recommender systems. In: KDD ’07: Proc. of the 13th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. (2007) 95–104

[5] Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM
Trans. Inf. Syst. 22(1) (2004) 143–177

[6] Greco, G., Greco, S., Zumpano, E.: Collaborative filtering supporting web site
navigation. AI Commun. 17(3) (2004) 155–166

[7] Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collabora-
tive filtering recommender systems. ACM Trans. Inf. Syst. 22(1) (2004) 5–53

[8] Lee, H.J., Kim, J.W., Park, S.J.: Understanding collaborative filtering parameters
for personalized recommendations in e-commerce. Electronic Commerce Research
7(3-4) (2007)

[9] Mohan, B.K., Keller, B.J., Ramakrishnan, N.: Scouts, promoters, and connectors:
the roles of ratings in nearest neighbor collaborative filtering. In: EC ’06: Proc.
of 7th ACM Conference on Electronic Commerce. (2006) 250–259

[10] Park, S., Pennock, D.M.: Applying collaborative filtering techniques to movie
search for better ranking and browsing. In: KDD ’07: Proc. of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
(2007) 550–559

[11] Khoussainova, N., Balazinska, M., Gatterbauer, W., Kwon, Y., Suciu, D.: A case
for a collaborative query management system. In: CIDR ’09: Proceedings of the
4th biennal Conference on Innovative Data Systems. (2009)

[12] Singh, V., Gray, J., Thakar, A., Szalay, A.S., Raddick, J., Boroski, B., Lebedeva,
S., Yanny, B.: Skyserver traffic report - the first five years. Microsoft Research,
Technical Report MSR TR-2006-190 (2006)

[13] X. Jin, Y. Zhou, B.M.: Task-oriented web user modeling for recommendation. In:
UM’05: Proc. of 10th International Conference on User Modeling. (2005) 109–118

[14] Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. In: STOC ’96: Proceedings of the twenty-eighth annual ACM
symposium on Theory of computing. (1996) 20–29

[15] Cormode, G., Garofalakis, M.: Sketching streams through the net: distributed
approximate query tracking. In: VLDB ’05: Proceedings of the 31st international
conference on Very large data bases. (2005) 13–24

[16] Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: STOC ’98: Proceedings of the thirtieth annual ACM
symposium on Theory of computing. (1998) 604–613

	San Jose State University
	From the SelectedWorks of Magdalini Eirinaki
	2009

	Query Recommendations for Interactive Database Exploration
	tmpPq5qQd.pdf

