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Abstract. Recent image retrieval algorithms based on local features indexed by

a vocabulary tree and holistic features indexed by compact hashing codes both

demonstrate excellent scalability. However, their retrieval precision may vary dra-

matically among queries. This motivates us to investigate how to fuse the ordered

retrieval sets given by multiple retrieval methods, to further enhance the retrieval

precision. Thus, we propose a graph-based query specific fusion approach where

multiple retrieval sets are merged and reranked by conducting a link analysis on

a fused graph. The retrieval quality of an individual method is measured by the

consistency of the top candidates’ nearest neighborhoods. Hence, the proposed

method is capable of adaptively integrating the strengths of the retrieval methods

using local or holistic features for different queries without any supervision. Ex-

tensive experiments demonstrate competitive performance on 4 public datasets,

i.e., the UKbench, Corel-5K, Holidays and San Francisco Landmarks datasets.

1 Introduction

Image retrieval based on visual features has long been a major research theme due to

the many applications such as the web and mobile image search. From the perspec-

tive of image representation and methodology, most of the successful scalable image

retrieval algorithms fall into two categories: 1) quantized local invariant features [1,2]

indexed by a deep vocabulary tree [3]; and 2) holistic features [4,5] indexed by compact

hashing codes [6,7]. These two approaches demonstrate distinct strengths in finding vi-

sually similar images. Vocabulary tree based methods are powerful in identifying near-

duplicate images or regions since local features are particularly capable of attending

to local image patterns or textures. On the other hand, similar textures may confuse

these methods to present some candidates which appear to be irrelevant to a query.

By contrast, holistic features such as color histograms or GIST features [4] delineate

overall feature distributions in images, thus the retrieved candidates often appear alike

at a glance but may be irrelevant. Fig. 1 shows two illustrative cases of a success as well

as a failure for either approach. The complementary descriptive capability of local and

holistic features naturally raises the question of how to integrate their strengths to yield

more satisfactory retrieval results.
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Query by a GIST

Query by a BOW

(a) Holistic features yield more satisfactory

results than local features.

Query by a GIST

Query by a BOW

(b) Local features yield more satisfactory

results than holistic feature.

Fig. 1. Retrieval results of two query images (in the green boxes) in the Corel-5K dataset, using

a holistic feature (GIST) at the first row and in the blue boxes, and BoW of local features (SIFT)

at the second row and in the black boxes

Although both lines of retrieval methods have been extensively studied, there is not

much research effort focusing on the fusion of image retrieval methods using local and

holistic features. This is due to the fact that the feature characteristics and the algorith-

mic procedures are dramatically different. Generally the fusion can be carried out on

the feature or rank levels, e.g., employing the bag-of-words (BoW) representation [2]

to combine different types of features in a histogram [8,9], or combining the ordered

results from different retrieval methods by rank aggregation [10,11]. However, for a

specific query image, it is quite difficult to determine online which features should play

a major role in the retrieval. Moreover, it is even possible that there is no intersection

among the top candidates retrieved by the local and holistic feature based methods, as

shown in Fig. 1. This is very challenging for rank aggregation as it requires voting from

multiple rank results. An alternative is to train a classifier to predict the retrieval quality

using the similarity scores of top candidates, which is confronted by the issue of being

sensitive to different queries and image databases, e.g., the distributions of similarity

scores may be quite different for queries with a couple or tens of relevant images. These

challenges prompt us to investigate a relatively principled way to evaluate online the

quality of retrieval results from methods using local or holistic features and fuse them

at the rank level in an unsupervised way, while preserving the efficiency and scalability

of the vocabulary tree structure and compact hashing mechanisms.

Without any supervision or relevance feedback for a retrieval set, we assume that

the consensus degree among the top candidates reveals the retrieval quality. Therefore,

we propose a graph-based approach to fusing and reranking retrieval results given by

different methods, where the retrieval quality of an individual method is measured by

the consistency of top candidates’ nearest neighborhoods. Given a list of ranked results

by one method, i.e., either the vocabulary tree-based method or the hashed holistic

features, we first build a weighted graph using the constraints derived from k-reciprocal

nearest neighbors [12], described later. Each edge between two nodes, i.e., two can-

didate images, is assigned a weight based on the Jaccard similarity coefficient [13]

of two neighborhoods. Such weights reflect the confidence of including the connected

nodes into the retrieval results. Then, multiple graphs from different cues are fused

together by appending new nodes or consolidating edge weights of existing nodes. By

conducting a link analysis on the resulting graph to search for the PageRank vector [14]
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or the weighted maximum density subgraph, the candidate images from various retrieval

methods are fused and ranked.

The main contribution of the proposed approach is on the unsupervised graph-based

fusion of retrieval sets given by different methods, which has three merits: 1) the re-

trieval quality specific to one query is effectively evaluated online without requiring

any supervision; 2) the fusion favors the candidate images similar to a query in terms of

different complementary image representations; and 3) the method can well cope with

some singular cases such as little overlap of top candidates from individual cues. We

have validated this method of fusing the retrieval sets using the BoW of local features

and holistic features on 4 diverse public datasets, the UKbench, Corel-5K, Holidays and

the large scale San Francisco Landmarks datasets. The evaluation shows our method

consistently improves the retrieval precision and compares favorably with the recent

state-of-the-art results.

2 Related Work

Most of the scalable image retrieval algorithms fall in two threads: indexing local fea-

tures by a vocabulary tree and hashing holistic features by binary codes. Their strengths

and limitations as well as possible ways to combine them are briefly reviewed below.

Local Features with Vocabulary Trees: Image retrieval based on the BoW of local

invariant features [1,2] has been significantly scaled up by using vocabulary trees [3]

which contain millions of leaf nodes attached with inverted indexes. This method demon-

strates an excellent scalability in computation and precision, although it is memory

consuming. It has been further improved by a spatial verification by RANSAC [15]; the

query expansion [16]; using Hamming embedding and weak geometry constraints [17];

constructing high-order features [18]; and indexing relative spatial positions [19] or

quantized spatial offsets [20] among local features. Since images are essentially delin-

eated by local invariant features, these methods are effective in handling image scaling,

rotation, and partial occlusions, leading to a very high precision in near-duplicate image

retrieval. However, if no near-duplicate image regions exist in the database, large areas

of similar textures may confuse these retrieval methods and lead to irrelevant candidate

images and unsatisfactory user experience.

Holistic Features with Compact Hashing: As introduced in [6], holistic features

such as color histograms and GIST [4] are indexed by locality sensitive hashing [21], re-

sulting in highly compact binary codes (e.g., 128 bits), which can be efficiently

compared with a large database using the Hamming distance. The scalability and per-

formance have been improved by spectral graph partitioning and hashing [7] and in-

corporating the pairwise semantic similarity and dissimilarity constraints from labeled

data [22]. As suggested in [23], a random rotation on the PCA-projected features,

which is optimized by iterative quantization, achieves surprisingly good performance.

These methods leveraging compact hashing of holistic features are efficient in com-

putation and memory usage. However, holistic features tend to be less invariant than

local features, and are in general more sensitive to image transformations induced by

illumination changes, scaling and pose variations. In practice, the focus on aggregated

image statistics rather than fine details results in images that appear roughly similar but

the retrieval precision is often lower compared to local feature based methods.
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Fusion of Local and Holistic Feature Based Image Retrieval: For best results, one

may want to combine the strengths of complementary cues such as local and holistic

features. To our best knowledge, there is little in-depth work addressing how to achieve

this properly in the literature, although there have been several attempts combining such

cues either at the feature or rank level. Combining local and holistic cues at the feature

level makes it hard to preserve the efficiency and scalability induced by the vocabulary

tree structure and compact hashing. Rank aggregation [10] is a possible solution to

fusing them at the rank level, however, it requires voting from multiple rank lists and is

unable to handle two lists with an empty intersection which does occasionally occur for

results returned by these two retrieval approaches. In either way, the key issue is how to

measure and combine the cues whose effectiveness or importance varies dramatically

among different query images. The closest inspiring work to ours includes [12] and [24]

which address different problems, i.e., reranking one retrieval result by k-reciprocal

nearest neighbors [12] or reranking text-based retrieval results by visual similarities

employing the PageRank algorithm [14]. In contrast, we concentrate on how to fuse the

retrieval results based on local and holistic features to enhance the precision.

3 Proposed Approach

3.1 Overview

To fuse the ranked retrieval results given by different methods, the critical issue is

how to automatically measure and compare their quality, since no supervision and user

relevance feedbacks are available online. The similarity scores of candidates may vary

largely among queries, especially for the vocabulary tree based method, and are not

comparable between different retrieval methods. Thus, a reasonable idea is to measure

the consistency among the top candidates returned by one retrieval method as the re-

trieval quality specific to one query. Therefore, for each query image, we construct a

weighted undirected graph from the retrieval results of one method, where the retrieval

quality or the relevance is modeled by the edge weights using the Jaccard similarity

coefficient of two neighborhood image sets. Then we fuse these graphs to one and per-

form a localized PageRank algorithm or find the weighted maximum density subgraph

centered at the query image to rerank the retrieval results. As a result, the fused retrieval

results tend to be consistent in terms of different image representations.

3.2 Graph Construction

Denote q the query image, d an image in the database D, and i either the query or

a database image. Given a similarity function S(·, ·) between images and a retrieval

method, we represent retrieval results for a query as a sorted list of candidate images

with associated similarity scores {(d, s)} where s = S(q, d). We define the neighbor-

hood of an image i as Nk(i) or N ′

ǫ(i), where Nk(i) includes the images that are the

top-k retrieved candidates using i as the query and N ′

ǫ(i) includes those with s > ǫ. We

further define the reciprocal neighbor relation for i and i′ as:

Rk(i, i
′) = i ∈ Nk(i

′) ∧ i′ ∈ Nk(i). (1)
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As discussed in [11,12], being the reciprocal neighbor is a reliable indication that two

images are visually similar w.r.t. a particular image representation in a retrieval method.

For each set of retrieval results, we construct a weighted undirected graph G =
(V,E,w) centered at q where the nodes are the images (q and d ∈ D) and two images

i, i′ are linked by an edge (i, i′) ∈ E if they satisfy Rk(i, i
′) as reciprocal neighbors.

The attached edge weight w is defined as the Jaccard similarity coefficient J(i, i′)
between the neighborhoods of i and i′:

J(i, i′) =
|Nk(i) ∩Nk(i

′)|

|Nk(i) ∪Nk(i′)|
(2)

w(i, i′) = α(q, i, i′)J(i, i′), (3)

Fig. 2. An example of graph construc-

tion, where the query q links to its

reciprocal neighbors (i.e., q and the

green discs in the green zone). d is

a candidate at the first layer with its

reciprocal neighbors in the blue zone,

whose Jaccard coefficient to q is 3/7
(# of nodes in the intersection divided

by # of nodes in the union of the

green and blue zones). The radius of

the disc representing a node indicates

the influence of decay coefficient α.

where | · | denotes the cardinality and α(q, i, i′)
is a decay coefficient related to the number of

hops to the query: let δ(q, i) be the length of the

shortest path in G between q and i; we define

α(q, i, i′) = α
max(δ(q,i),δ(q,i′))
0 , and set α0 = 0.8

in all experiments. The range of edge weights is

from 0 to 1, with J(i, i′) = 1 implying that these

two images share exactly the same set of neigh-

bors, in which case we assume the two images

are highly likely to be visually similar. The query

q’s reciprocal neighbors form the first layer in the

graph whose reciprocal neighbors are expanded to

the second layer w.r.t. q, so on so forth. The graph

construction continues until either: 1) the number

of nodes |V | reaches a given maximum number

(i.e., the maximal number of images to retrieve),

or 2) no more reciprocal neighbors can be found,

or 3) the weights of edges become smaller than a

given threshold. An illustrative example is shown

in Fig. 2. Note, for holistic feature based retrieval

methods, we can also employ the similarity score

and the neighborhood N ′

ǫ(i) in place of Nk(i)
to define the reciprocal neighbor relation and

Jaccard similarity coefficient.

3.3 Graph Fusion

After obtaining multiple graphs Gm = (V m, Em, wm) from different retrieval meth-

ods, we fuse them together into one graph G = (V,E,w) with V = ∪mV m, E =
∪mEm, and w(i, i′) =

∑
m wm(i, i′) (with wm(i, i′) = 0 for (i, i′) /∈ Em), see

Fig. 3. Though the rank lists or the similarity scores in different methods are not directly

comparable, their Jaccard coefficients are comparable as they reflect the consistency of

two nearest neighborhoods. Without any prior, here we have to treat multiple retrieval

methods equally by simply summing up the edge weights.
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3.4 Graph-Based Ranking

Given a graph G (obtained either from a single retrieval method or by fusing multiple

ones), the connectivity of a node reflects its visual similarity to others. Thus, we propose

two solvers to rerank the candidate images, i.e., by performing the local PageRank

algorithm on the edges or finding the weighted maximum density subgraph in G.

Ranking by the PageRank: Since the notion of well-connected nodes in G also re-

veals the visual consensus degree of images, we conduct a principled link analysis [14]

on the whole graphG to rank according to the node connectivity. This graphG is treated

as a network. Since this network is built by considering the retrieval relevance, naturally

a node is more important or relevant if it has a higher probability to be visited.

We define the |V |×|V | transition matrix P as Pii′ = w(i, i′)/ deg(i) for (i, i′) ∈ E,

and 0 otherwise. It is row-stochastic, i.e., each row sums to one. Consider the assump-

tion of the intelligent surfer model [25], whereby a surfer probabilistically hops from

node to node along the edges of G, according to the transition matrix P. Occasionally,

with a small probability 1 − β, the surfer jumps according to a fixed distribution over

nodes π, which we set as πq = 0.99 and uniform otherwise, where q is the index

of the query node. We denote pti as the probability for the surfer to be at node i at a

time t and pt = (pti). The equilibrium state of p, where a higher probability reflects a

higher relevance to the query, is obtained by the query dependent PageRank vector as a

stationary point using the power method:

pt+1 = (1− β)π + βPT pt. (4)

Once p has converged, the images are ranked according to their probabilities in p.

Ranking by Maximizing Weighted Density: As the visual similarity of two images

in terms of one or more representations has been encoded in the edge weights of G,

another natural idea is to search for the subgraph G′ ⊂ G containing q of a weighted

maximum density, as follows:

G′ = argmax
G′=(V ′,E′,w)⊂G: q∈V ′

∑
(i,i′)∈E′ w(i, i′)

|V ′|
. (5)

Fig. 3. Fusion of two graphs where the green and yellow graphs are derived from two different

retrieval methods.
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In other words, we prefer to choose nodes which can contribute more weight to the

subgraph. Since edge weights are correlated with the retrieval quality, this approach

selects images with potentially a higher visual similarity.

qq

Fig. 4. Illustration of expanding G′

(the green zone). Candidate nodes

are connected to G′, and are de-

noted by dash lines.

We solve Eq. (5) approximately by a greedy

algorithm that grows G′ iteratively, starting from

G′ = ({q}, ∅, w). We first compute node degrees

deg(i) =
∑

i′ w(i, i
′) for each node i linked with

q by accumulating weights from its connected edges.

Then the node with the largest weight is selected to be

incorporated in G′. After that, we consider all nodes

connected to the current G′, and select the one which

can introduce the largest weight to G′ (ties broken

arbitrarily). Fig. 4 shows one example of determining

the candidate nodes of a graph G′. G′ is enlarged

by applying this procedure iteratively, until a user-

specified number of images is retrieved. These nodes

are ranked according to their time of insertion intoG′.

The advantage of this ranking method is its efficiency.

The computational complexity mainly depends on the

connectivity (i.e., the average valence of all nodes) but not the number of nodes in G,

since we only check the nodes connecting to the current G′. Thus this method obtains

ranking results within a similar time for different sizes of G. Although this method is

not guaranteed to find a global optimum, our experiments in Sec. 4 suggest that this

method achieves accurate and consistent ranking.

3.5 Complexity and Scalability

The complexity of each power method iteration in the PageRank algorithm is O(|E|). In

our experiments, the node valence in G is around 4-10 and the power method converges

within 10 iterations. The greedy search for the maximum density subgraph is on average

two times faster then the PageRank. The computational cost incurred by the proposed

fusion methods is quite small given the top candidates retrieved by different methods.

In particular the running time of the proposed fusion is about 1ms regardless of the

database size, and the overall query time is less than 1 second for over a million database

images in our experiments. The memory overhead is determined by the number of re-

ciprocal neighbors between images in the database, which have to be pre-calculated and

stored offline the same as [12]. The experiments in Sec. 4 demonstrate the scalability

and efficiency of the original image retrieval methods are retained in the fusion method.

4 Experiments

We first describe the datasets (Sec. 4.1) and the methods (Sec. 4.2) compared in the

experiments, then present the detailed evaluation results (Sec. 4.3), followed by the

discussions about some issues and limitations (Sec. 4.4).
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4.1 Datasets

We evaluate the proposed approach on 4 public datasets: the UKbench, Corel-5K, Hol-

idays and San Francisco Landmarks (SFLandmarks). In the UKbench and Holidays,

relevant images are near-duplicates or the same objects/scenes to the query, while,

the Corel-5K involves category-level relevant images without any near-duplicate ones.

SFLandmarks is a realistic large-scale dataset with a variable number of relevant images

for different queries. We employ the performance measures from the original papers of

these datasets and demonstrate the query specific fusion improves considerably for all

these diverse datasets.

UKbench [3] includes 2,550 different objects, and each one has 4 images taken from

different viewpoints and illuminations. All 10,200 images are indexed as both database

images and queries. The retrieval performance is measured by 4× recall at the first 4

retrieved images, which is referred as the N-S score (maximum is 4).

Corel-5K [26] consists of 5,000 images that fall in 50 categories, such as beach,

bird, jewelry, sunset, etc., each containing 100 images. We use a leave-one-out method

to query all 5,000 images, i.e., querying every image with the remaining 4,999 images

as the database images. The performance is evaluated by r-precision, i.e., the precision

for the top r candidates, averaged over the 5,000 queries.

Holidays [17] contains 1491 personal holiday photos undergoing various transfor-

mations. There are 500 image groups where the first image of each group is the query.

The performance is measured by mAP in a leave-one-out fashion.

SFLandmarks [27] is a city-scale image database, which contains 1.06M perspective

central images (PCIs) and 638K perspective frontal images (PFIs). They are generated

from street-view panoramic pictures with building labels. A set of 803 images taken

by camera phones is provided as queries. The performance is evaluated by the average

recall rate of correct buildings vs. the number of candidates.

4.2 Methods

The baseline local and holistic feature based retrieval methods are denoted by the VOC,

GIST and HSV (described below), for which we apply our graph construction (Sec. 3.2)

on their retrieval results, obtaining GVOC, GGIST and GHSV. The two proposed ranking

methods are denoted by Graph-PageRank and Graph-density to generate the fused

retrieval sets, which are compared with the rank aggregation, and a learning based

fusion method, referred as SVM-fusion. Applying the Graph-density to an individual

baseline obtains the VOC-graph, GIST-graph and HSV-graph, respectively.

VOC: We employ a variant of vocabulary tree based retrieval [3,28] in which up

to 2,500 SIFT features are detected for each image using the VLFeat library [29]. We

employ a 7 layer tree with a branch factor 10. The tree is trained on 50K images in the

validation set of the ImageNet Challenge [30] for UKbench, Corel-5K and Holidays,

and on the PCIs and PFIs, respectively, for SF Landmarks, following [27].

GIST and HSV: For each image we compute the 960-dimensional GIST [4] descrip-

tor and the 2000-dimensional HSV color histogram (using 20×10×10 bins for H,S, V
components). We then apply a PCA hashing method [23] to compress those to 256 bits.

Retrieval is based on exhaustive search using the Hamming distance.
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Table 1. Comparison of N-S scores on the UKbench dataset with recent retrieval methods and

other rank fusion approaches

Jégou Qin HSV VOC HSV VOC Rank SVM Graph Graph

et al. [11] et al. [12] [28] graph graph aggregation fusion PageRank density

3.68 3.67 3.17 3.54 3.28 3.67 3.31 3.56 3.76 3.77

Rank Aggregation: We use the algorithm described in [10] to combine the local and

holistic retrieval results.

SVM-Fusion: We train a linear SVM classifier that predicts which retrieval method

is most appropriate for a given query, by computing a 20-dimensional input feature

consisting of the top-10 normalized similarity scores for two retrieval methods. The

SVM outputs binary indications about which method may achieve a higher precision.

This is motivated by the observation [12] that a sharp degradation of the similarity

scores may imply a confident retrieval and a long tail distribution may imply a less

confident one. We employ a 5-fold cross-validation, where at the test time, we output

for each query the ranked list of images from the method with a predicted higher quality.

In our graph-based fusion, the main parameter k, determining reciprocal neighbor-

hoods, shall reflect the expected number of relevant images and the database size [12].

We set it to 5 for UKbench and Holidays, 15 for Corel-5K, and 30 for SFLandmarks,

which is not sensitive to small variations.

4.3 Evaluation

UKbench: We first compare our approach and the baselines with the state-of-the-art

methods on this widely used UKbench dataset, see Table 1. We consider the fusion of

the VOC and HSV retrievals, as GIST yields poor results here (N-S=2.21). Since the

relevant images in this dataset undergo severe illumination and pose variations, VOC

performs substantially better than holistic features. This imbalance limits the perfor-

mance of rank aggregation and SVM-fusion. Moreover, if we employ a cross-dataset

SVM-fusion, which is learned on the Corel-5K and tested on the UKbench, the perfor-

mance (N-S=3.37) is much worse than using VOC only, showing that SVM-fusion does

not generalize well across datasets. The graph-based fusion improves the baselines con-

siderably to N-S=3.77, which outperforms the state-of-the-art performance N-S=3.68

in [11]. The rank aggregation was employed to combine 19 vocabulary trees [11] to

achieve N-S=3.68, in contrast, we fuse just two types of features. This improvement

significantly decreases the relative error rate. Indeed, this excellent performance verifies

the power of fusing local and holistic feature based retrieval methods.

The performance of the Graph-PageRank and Graph-density are close on the UK-

bench. The reason is that on the UKbench the graphs are usually well-connected because

of the near-duplicate candidates. Thus the PageRank solution by analyzing the whole

graph is similar to applying the greedy search. In general, both proposed methods

improve the state-of-the-art retrieval precision remarkably on this dataset, even without
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Table 2. The top-1 precision (in %) on the Corel-5K dataset

VOC GIST VOC-graph GIST-graph SVM-fusion Graph-PageRank Graph-density

46.66 46.16 51.50 50.72 51.34 51.76 54.62

requiring a geometrical verification which is both time consuming and makes strong

physical assumptions about near duplicates.

Corel-5K: In this dataset, each query is associated with a large number of relevant

images (100), and so we report the precision instead of recall for the top r queries, i.e.,

the corresponding r-precision curves in Fig. 5 and the top-1 precision in Table 2.
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Fig. 5. The scope(r)-precision curves for

the Corel-5K dataset

We fuse the retrieval results of the VOC

and GIST on this dataset. The top-1 preci-

sion 54.62% of the Graph-density is about

8% higher than either baseline method. It

validates that the Jaccard similarity well re-

flects the retrieval quality and the graph fu-

sion combines the strength of both baseline

methods. Graph-PageRank does not achieve

such a good precision in the top-3 retrievals.

However, it becomes comparable to Graph-

density after retrieving more images (see

Fig. 5), because Graph-PageRank pursuits

the optimization of the whole graph, while

the Graph-density greedily finds the most

relevant candidate. Thus the latter method

may achieve a better performance for the first

few retrievals.

The rank aggregation method improves the

precision when there are some common retrieved images in both of the top candidate

lists, since their ranks are promoted by the voting. However, in some cases the two

rank lists may not have any overlap at all (especially for the top-1 candidate), then the

aggregation cannot help.

SVM-fusion effectively improves the top-1 precision to 51.34%. However, this per-

formance is kind of too optimistic since the number of relevant images are about the

same for all the queries in the Corel-5K and both the VOC and GIST work equally-well,

which may not hold for other databases such as the UKbench.

Holidays: On the INRIA Holidays [17], we observe a consistent performance gain

as on the UKbench. The Graph-PageRank and Graph-density improve the mAP of the

VOC (77.5%) and HSV (62.6%) to 84.56% and 84.64% respectively, which are also

among the state-of-the-art. In contrast, as shown in Table 3, the rank aggregation and

the SVM-fusion methods marginally improve over the VOC since the mAP of the HSV

is about 15% lower.
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Table 3. Comparison of the mAP (in %) on the Holidays dataset with recent retrieval methods

and other rank fusion approaches

Jégou et al. Jégou et al. HSV VOC Rank SVM Graph Graph

[17] [31] [28] aggregation fusion PageRank density

81.3 83.9 62.60 77.50 78.62 79.04 84.56 84.64
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Fig. 6. Retrieval results on the SFLandmarks. Recall ver-

sus number of top database candidates of (a) query 803

images in the 1.06M PCIs, (b) query 803 images in the

638k PFIs.

SFLandmarks: We study the

scalability of the proposed fu-

sion on this real-world large-

scale dataset. For efficiency, we

perform the VOC retrieval first,

then compute the holistic feature

based retrieval using the GIST

among the top-50 candidates re-

turned by the VOC. Since the

query is not included in the

database, we approximately de-

termine its reciprocal neighbors

based on the Jaccard similarity

of the top candidates to q. Then,

the two graphs of VOC and

GIST are constructed and fused

to generate the retrieval results.

Please note that although the

GIST graph is built upon the

VOC results, by performing the

graph fusion and ranking, the method enforces the retrieval results to be consistent in

terms of different cues. Thus, this is essentially different from using the GIST to rank

the VOC’s results which actually degrades VOC’s performance on the SFLandmark. For

memory usage, we only store the image id of the top-50 nearest neighbors in the VOC

for the 1.7M database images which costs 340MB additional memory, a small fraction

of the memory requirements for storing the inverted indexes. Although we adopt some

approximations for both the VOC and GIST based retrieval, our experiments show the

fusion effectively improves the performance on this large-scale problem. Moreover this

is a practical setting that easily integrates with vocabulary tree based retrieval systems.

Following the same experimental setting as in [27], we report the recall rate averaged

over the 803 query images versus the number of candidates on the PCIs and PFIs

separately, see Fig. 6. The recall is in terms of retrieving at least once the correct

building among the top r candidates, which means multiple correct hits count as a

single hit. Using the GIST-graph to rerank the top-50 candidates returned by the VOC

actually adversely affects the accuracy in the top-3 retrievals, which is probably due to

the fact that local invariant features are generally more reliable than GIST in finding

near-duplicate images under viewpoint changes. However, such holistic features still
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(Fused)Query

(GIST)

(VOC)
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(GIST)

(VOC)

(Fused)Query

Fig. 7. Three sets of retrieval results from the UKbench (top), Corel-5k (middle), and SFLand-

marks (bottom) datasets, respectively. Top-4 candidates are shown for the fusion results (3rd row

in the purple boxes) of a query (in a green box on the left), using holistic features (1st row in the

blue boxes), and local features (2nd row in the black boxes).

provide complementary information. As shown in Fig. 6, the fusion with the GIST

based retrieval improves noticeably upon the VOC, leading to top-1 recall rates of

62.14% for the PCIs and 48.08% for the PFIs, which compare favorably with the

method using oriented local features without GPS in [27] 1. This validates our proposed

approach as a practical retrieval method in a large-scale setting.

The online query in the proposed method is very efficient, since the nearest neigh-

borhoods are pre-computed offline and the Hamming distance matching is optimized by

the Intel SSE4.2 assembly. The average query time tr in millisecond (not including the

feature extraction) and the breakdown are reported in Table 4. Illustrative fusion results

on three test datasets are shown in Fig. 7, from which we observe that the query specific

fusion integrates the strengths of local or holistic features adaptively.

1 This statement is based on the highest recalls on the green curves in Fig.7(b) and 8(b) in [27].
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Table 4. The average query time (in ms) and the breakdown on the test datasets

Dataset # of images VOC HSV /GIST Graph-fusion tr (ms)

UKbench 10200 85 1 < 1 87

Corel-5K 4999 76 < 1 < 1 78

Holidays 1490 72 < 1 < 1 73

PCI-SFLandmark 1,062,468 645 103 < 1 749

PFI-SFLandmark 638,090 467 64 < 1 532

4.4 Discussion

We discuss implementation issues and limitations here: 1) For certain queries, it is

possible neither local nor holistic features are capable of finding relevant candidates,

thus no reciprocal neighbors nor any graph can be found and built. In such cases, we just

arbitrarily pick up the retrieval results given by the VOC or the holistic feature based

retrieval without any reranking. 2) As the nearest neighbor information is required,

dynamical insertion and removal of database images require some care. One possible

solution is to always keep a sufficiently large representative image set to approximate

the neighborhood relations, which we leave for the future work.

5 Conclusions

In this paper 2, we proposed a graph-based query specific fusion of retrieval sets based

on local and holistic features, where the retrieval quality is measured online by the

consistency of the neighborhoods of candidate images. Our approach does not require

any supervision, retains the computational efficiency of the vocabulary tree based re-

trieval, and at the same time considerably improves the image retrieval precision on

4 diverse public datasets. Moreover, this fusion method can be easily reproduced by

other researchers and may serve as a plug-in in practical image retrieval systems. These

warrant further investigating the fusion of multiple cues for image retrieval.
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