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Abstract 

Moving objects (e.g., vehicles in road networks) 
continuously generate large amounts of spatio-temporal 
information in the form of data streams. Efficient 
management of such streams is a challenging goal due to 
the highly dynamic nature of the data and the need for 
fast, on-line computations. In this paper we present a 
novel approach for approximate query processing about 
the present, past, or the future in spatio-temporal 
databases. In particular, we first propose an incrementally 
updateable, multi-dimensional histogram for present-time 
queries. Second, we develop a general architecture for 
maintaining and querying historical data. Third, we 
implement a stochastic approach for predicting the results 
of queries that refer to the future. Finally, we 
experimentally prove the effectiveness and efficiency of 
our techniques using a realistic simulation. 

1. Introduction 

Research on spatio-temporal access methods has mainly 
focused on two aspects: (i) storage and retrieval of 
historical information, (ii) future prediction. Several 
indexes [PJT00, KGT+01, TP01], usually based on multi-
version or 3-dimensional variations of R-trees, have been 
proposed towards the first goal, aiming at minimization of 
the storage requirements and query cost. Methods for 
future prediction assume that, in addition to the current 
positions, the velocities of moving objects are known. The 
goal is to retrieve the objects that satisfy a spatial 
condition at a future timestamp (or interval) given their 
present motion vectors (e.g., "based on the current 
information, find the cars that will be in the city center 10 
minutes from now"). The only practical index in this 
category is the TPR-tree [SJLL00] and its variations 
[SJ02, TPS03] (also based on R-trees). Other, mostly 
theoretical, predictive indexes have been proposed in 
[KGT99] (applicable only to 1D space) and [AAE00] 
(with good asymptotical performance, but inapplicable in 
practice due to the large hidden constants).   

1.1 Motivation 

Despite the large number of methods that focus explicitly 
on historical information retrieval or future prediction, 
currently there does not exist a single index that can 
achieve both goals. Even if such a "universal" structure 
existed (e.g., a multi-version TPR-tree keeping all 
previous history of each object), it would be inapplicable 
for several update-intensive applications, where it is 
simply infeasible to continuously update the index and at 
the same time process queries. For instance, an update 
(i.e., deletion and re-insertion) in a TPR-tree may need to 
access more than 100 nodes, which means that by the time 
it terminates its result may already be outdated (due to 
another update of the same object). Even for a small 
number of moving objects and a low update rate, the 
TPR-tree (or any other index) cannot "follow" the fast 
changes of the underlying data. 

Another problem concerns the space requirements. The 
incoming data are usually in the form of data streams 
(e.g., through sensors embedded on the road network), 
which are potentially unbounded in size. Therefore, 
materializing all data is unrealistic. Furthermore, even if 
all the data were stored, the size of the tree would render 
query processing very expensive since any algorithm 
would have to access at least a complete path from the 
root to the leaf level. Finally, in several applications, such 
as traffic control systems, the main focus of query 
processing is retrieval of approximate summarized 
information about objects that satisfy some spatio-
temporal predicate (e.g., " the number of cars in the city 
center 10 minutes from now"), as opposed to exact 
information about the qualifying objects (i.e., the car ids), 
which may be unavailable, or irrelevant.    

1.2 Contributions 

Motivated by the above observations, in this paper we 
propose a comprehensive method that (i) can 
approximately answer aggregate spatio-temporal queries 
about the past, the present and the future, (ii) can 
continuously follow the (typically, very frequent) changes 
in data distribution, (iii) it is efficient and adjustable to the 



burden of the system, i.e., it does not strain the system, 
especially during periods of intensive workloads, and (iv) 
reduces the space consumption by summarizing the data.  

Our first contribution is an adaptive multi-dimensional 

histogram (AMH), which is used for approximate 
processing of present-time queries. AMH utilizes idle 
CPU cycles to perform incremental maintenance. Its 
precision depends only on the available system resources, 
and does not deteriorate with time (meaning the AMH 
does not need to be periodically re-built).  

The second contribution is a general architecture, called 
the historical synopsis, for maintaining and querying 
historical data. In this architecture, when a histogram 
bucket is updated, the previous version is kept in a main-
memory index. If the available memory is exceeded, part 
of the index containing the least recent information 
migrates to the disk. As a result, queries referring to the 
present and recent past (which are more frequent) can be 
answered without any I/O.  

Third we present a stochastic approach, based on 
exponential smoothing, that answers queries about the 
future using observations from the present and the recent 
past. Unlike previous approaches for spatio-temporal 
prediction, this technique does not assume knowledge of 
velocity vectors, which in most cases is unavailable.  

Finally, we experimentally evaluate the proposed 
techniques under a real-life simulation, where updates and 
queries are interleaved with histogram maintenance 
operations. We study the effect of the system workload on 
the estimation accuracy, and verify the need for 
approximation methods that adapt to the available 
recourses.  

The rest of the paper is organized as follows. Section 2 
reviews previous work related to ours. Section 3 provides 
the problem definition and an overview of the proposed 
methods. Section 4 presents the concrete algorithms of 
AMH, while Section 5 describes the historical synopsis. 
Section 6 presents the stochastic approach for prediction, 
and Section 7 contains the experimental evaluation. 
Finally, Section 8 concludes the paper with directions for 
future work. 

2. Related Work 

Because the proposed techniques combine multiple goals, 
they relate to a number of different research topics. In 
particular, since the core of our method is AMH, in 
Section 2.1 we survey related work on multi-dimensional 
histograms. Section 2.2 presents methods for updating 
such histograms using query feedback. Section 2.3 
discusses other multi-dimensional approximation 
techniques. Section 2.4 overviews spatio-temporal 
prediction techniques and their limitations in several 
applications. Finally, Section 2.5 presents methods for 
(exact) retrieval of spatio-temporal aggregation 
information.  

2.1 Static multi-dimensional histograms 

Histogram construction techniques split the data space 
into buckets, usually based on the assumption that data 
within a small region are (almost) uniform. The various 
methods differ on the partition policy. The equi-depth 
histogram of [MD88] first partitions along one dimension 
so that each bucket has the same number (i.e., frequency) 
of objects. Then, these buckets are partitioned again along 
another dimension. Mhist [PI97] splits on the most 
“critical” dimension according to a partitioning metric 
(e.g., variance). Minskew [APR99] partitions the space 
into a regular grid. Neighboring cells are then grouped 
into rectangular, non-overlapping buckets by a greedy 
algorithm that tries to minimize the spatial-skew (i.e., the 
variance of the cell density in each bucket). Genhist 
[GKTD00] allows overlapping buckets. As with Minskew, 
it starts with a regular grid and creates buckets for the 
cells with high density. Then it removes a percentage of 
data from these cells to make the area around them 
smoother. Finally it decreases the resolution and repeats 
the process recursively.  The SQ [AN00] and Euler 
histograms [SAA02], in addition to locations, take into 
account objects extents, and are more accurate for non-
point data. 

All the above histograms apply to spatial or multi-
dimensional databases, where the data are (almost) static. 
When the data distribution changes due to updates, the 
bucket structure may become outdated, and the histogram 
must be re-built. In several spatio-temporal applications, 
however, there is simply not enough time to scan the 
entire data (possibly several times) in order to build the 
histogram from scratch. Furthermore, the new histogram 
may already be outdated, due to the changes that occurred 
during its re-building.   

2.2 Query-adaptive multi-dimensional histograms 

Query adaptive histograms avoid re-building by using 
query feedback to refine the buckets. STGrid [AC99], 
based on the heuristic that “buckets with higher 
frequencies contribute more to the estimation error”, splits 
buckets with high frequencies and merges buckets with 
low frequencies. Restructuring is performed at certain 
intervals (a parameter of the histogram) for entire rows or 
columns, selected by a split or a merge threshold (also a 
parameter). Its structure, however, cannot accurately 
capture arbitrary distributions. STHoles [BGC01] 
alleviates this problem by allowing nesting of buckets. If 
a query identifies large frequency variance within a 
bucket, a "hole", i.e., a new bucket, is created inside the 
original one. This "drilling" operation replaces the 
splitting mechanism of STGrid. SASH [LWV03] 
decomposes the multi-dimensional space into sub-spaces 
of lower dimensionality. For each subspace a separate 
histogram is built and maintained using query feedback 
mechanisms. 



Query-adaptive histograms are based on the assumption 
that the frequency of queries is much higher than the 
frequency of updates. Thus, after the data distribution 
changes, there is a sufficient number of queries to "train" 
(i.e., refine) the histogram. Although the accuracy for 
these queries will be low, subsequent queries will be 
estimated using the refined histogram, which gradually 
becomes very accurate. Clearly, this assumption does not 
hold for update-intensive applications, where the number 
of queries for each instance of the data is, typically, very 
small. 

2.3 Other multi-dimensional approximation 

methods 

Several multi-dimensional methods embed the data into 
another domain and summarize the embedded data in 
order to provide a compact data representation. The DCT-
based histogram [LKC99] maintains a large number of 
small buckets using discrete cosine transform, which 
cannot be incrementally maintained. The histogram of 
[MVW98] extracts the most descriptive wavelet 
coefficients. Although it can be incrementally maintained 
[MVW00], its performance degrades with the number of 
updates, so that eventually it has to be re-built. Another 
technique [TGIK02] compresses the data distribution into 
a multi-dimensional sketch; when the query arrives, the 
histogram is extracted from the sketch. The main 
drawback of this approach is that the extracting process is 
expensive and, therefore, not suitable for on-line queries.  

[GMP02] incrementally maintains a small sample set 
(backing sample) of underlying data and histograms are 
then constructed/maintained by the backing sample. 
However, it requires scanning the entire data to regenerate 
the backing sample when the distribution changes, which 
is not possible in our case. Furthermore, some other 
applications of sampling-based techniques [GM98, 
WAA01] are also questionable, since it is not clear how to 
select and effectively maintain a representative multi-
dimensional sample in the presence of very intensive 
updates. Finally, all previous methods capture a snapshot 
of the data and cannot be used for historical information 
retrieval. 

2.4 Spatio-temporal prediction methods 

Methods for spatio-temporal prediction estimate the 
number of objects that will satisfy some spatial condition 
during a future interval, based on the current location and 
velocity information.  Choi and Chung [CC02] and Tao et 
al. [TSP03] present probabilistic models for uniform data, 
which are then applied to non-uniform distributions using 
some conventional multi-dimensional histogram. An 
experimental comparison of several techniques can be 
found in [HKT03].  

All existing methods assume linear movement and that 
the velocities of all objects are known (the same 
assumptions that hold for the TPR-tree-based indexes 

[SJLL00, TPS03]). This restricts their applicability in 
several applications because: (i) movement is not always 
linear, (ii) even if it is linear, it is not usually known (e.g., 
mobile devices transmit only their location to the base 
station), and (iii) even if it is linear and known, it changes 
so fast that prediction using velocity information is 
meaningless (e.g., cars moving on road networks). 

2.5 Spatio-temporal aggregation methods 

Several methods (e.g., [PTKZ02, ZTG02]) focus on 
spatio-temporal aggregation. Although the target queries 
are similar to our historical queries, the context is 
different. In particular, they assume a "conventional" 
processing framework where every query invokes disk 
I/Os and returns an exact answer. Here we sacrifice 
accuracy for efficiency and attempt to answer the most 
frequent queries using only the main memory.  

3. Problem Definition and System Overview 

We assume a set of objects moving in the two-
dimensional space and a central server collecting 
information about their locations over time. Update data 
received by the server contain the previous and the new 
location of individual objects, but not their velocity or id. 
Moving objects may issue updates in periodic intervals or 
based on the deviation from the previous transmitted 
position. Static objects do not send information to the 
server; until an object transmits a new location it is 
assumed to be in the last recorded position.   

We adopt a 2D grid that partitions the data space into 
w×w (where w is a constant called the resolution) regular 
cells with width 1/w on each axis. Each cell c (1≤c≤w

2) is 
associated with a frequency Fc, which is the number of 
objects (at the present time) in its extent. The frequencies 
of all the cells are maintained up-to-date in memory, and 
serve as the data of the highest granularity. The resolution 
is determined by the number of moving objects in the 
system, as well as the desirable trade-off between 
accuracy and efficiency.  

A spatio-temporal aggregation query q(qR,qT) retrieves the 
number of objects that fall in a rectangle region qR at a 
timestamp qT. If (i) qT=0 (i.e., the present time), q 

constitutes a present timestamp (PT) query; (ii) qT<0, q is 
a historical timestamp (HT) query; and (iii) qT>0, q is a 
future timestamp (FT) query. When the resolution of the 
grid is high, exhaustive examination of all the cells that 
are relevant to a query is expensive. AMH (adaptive 
multi-dimensional histogram) remedies this problem by 
grouping adjacent cells with similar frequencies into a 
small number of (rectangular) buckets (similar to other 
histograms such as minskew [APR99] and genhist 

[GKTD00]). Bucket information is updated as new tuples 
arrive, and bucket extents (i.e., grouping of cells) 
continuously adapt to the data distribution changes 
through incremental maintenance performed during the 



idle CPU time (i.e., when there are no incoming data or 
queries). A binary partition tree accelerates bucket 
maintenance and processing of PT queries. 

To support historical retrieval, buckets that are outdated 
(due to data or extent changes) are inserted in a main-
memory index (T) optimized for HT queries. Each bucket 
is associated with a lifespan denoting the temporal 
interval during which the bucket information is valid. 
When the size of the index exceeds the available memory, 
part of the tree containing the least recent buckets is 
migrated to the disk, such that queries about the recent 
past can be answered using the memory-resident portion 
of the index. This migration occurs in blocks (rather than 
individual buckets) at a time, and incurs minimal I/O 
overhead. AMH together with index T constitute the 
historical synopsis, whose general structure is shown in 
Figure 3.1. 

 
Figure 3.1: Historical synopsis 

The historical synopsis is directly used for answering PT 
and HT queries. On the other hand, FT queries are 
processed by an exponential smoothing technique, which 
retrieves information about the present and the recent 
past, in order to predict the future. Figure 3.2 shows the 
abstract query processing mechanism and Table 3.1 lists 
the frequently-used symbols. In the rest of the paper we 
describe the various components of the architecture, 
starting with AMH in Section 4.  

 
Figure 3.2: Query processing 

Symbol Description 

w resolution 
Fc frequency of cell c 

(B) n (maximum) number of buckets 
Rk bucket extent or area 
nk number of cells in bucket bk 

fk frequency (i.e., number of objects) in bucket bk 

gk average squared frequency of bucket bk 
vk frequency variance of bucket bk 

Table 3.1: Frequent symbols 

4. Adaptive Multi-Dimensional Histogram 

Given a regular w×w cell partition, AMH generates n 
rectangular buckets whose edges are aligned with the cell 
boundaries. For each bucket bk (1≤k≤n), we denote (i) as 
nk the number of cells it covers, (ii) as fk the average 

frequency of these cells (i.e., fk=(1/nk)Σ(∀  cell in bk)Fc), and 

(iii) as vk their variance (i.e., vk=(1/nk)Σ(∀  cell in bk)(Fc−fk)
2). 

AMH aims at minimizing the weighted variance sum 
(WVS) of all the buckets, or formally:  

WVS=∑i=1~n(ni·vi)     (4-1) 

4.1 AMH structure 

Each bucket stores: (i) its rectangular extent R (abusing 
the terminology slightly, we also use R to denote its area), 
(ii) the average frequency f of all the cells in R, and (iii) 
the average of “squared” frequency g of these cells: 

g=(1/nk)∑(∀ cell c in R)(Fc)
2. Thus, the number n of cells 

covered by a bucket can be represented as R·w
2, where w 

is the cell resolution. A bucket’s variance v equals v=g−f
 2, 

and as a result, WVS can be computed using R, f, g of all 
buckets. 

AMH maintains a binary partition tree (BPT), where each 
leaf node corresponds to a bucket. An intermediate node 
is associated with a rectangular extent R that encloses the 
extents of its (two) children. Initially, BPT contains a 
single leaf node, and the histogram has one bucket 
covering the entire data space. New buckets (leaf nodes) 
are created through bucket splits (elaborated shortly), but 
the total number n of buckets never exceeds a system 
parameter B. As an example, Figure 4.1a shows the 
frequencies of 25 cells (i.e., w=5) at timestamp 1, Figure 
4.1b demonstrates the extents of 6 buckets, and Figure 
4.1c illustrates the corresponding BPT.   
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Figure 4.1: AMH at time 1 



Intermediate node b7, for instance, covers buckets b1, b2, 
implying that they were created by splitting b7. Figure 
4.1d lists the detailed information of each bucket (v is not 
explicitly stored, but computed from f and g). 

4.2 AMH information update 

A location update contains the old and the new position of 
a moving object. When such an update is received, AMH 
executes an info-update process to modify the frequencies 
of the cells and buckets that cover the corresponding 
locations. Particularly, a cell can be identified using a 
hash function, while a bucket is located by following a 
single path of BPT, guided by the extents of the 
intermediate nodes. Assume, for example, that the 
frequency of cell (x5,y2) in Figure 4.1a changes from 6 to 
10 at time 2, due to concurrent movement of several 
objects. After modifying the cell frequency, info-update 
obtains the frequency (squared frequency) difference 4 
(64) between the new and old values. To complete the 
update, it identifies bucket b6 covering the cell (following 
the path b11, b10, b9), and updates its f and g as fb

6
= (fb

6
· 

nb
6
+4)/nb

6
, gb

6
= (gb

6
· nb

6
+64)/nb

6
, where nb

6
 is the number 

of cells covered by b6, and fb
6
 (gb

6
) is their average 

(square) frequency. Assuming that BPT is fairly balanced, 
the algorithm (shown in Figure 4.2) has average cost 
logB, where B is the maximum number of buckets. 

Algorithm Info-update (x, y, d) 
/* (x,y) are the cell coordinates, d is the frequency difference */  
1. find the cell c that contains (x, y) using a hash function 
2. ∆f=d ; ∆g= (Fc+d)2 - Fc

2 ; Fc=Fc+d  
3. descend BPT to find the bucket b that contains (x,y) 
4. fb=(Rb·w

2
·fb+∆f)/(Rb·w

2); gb=(Rb·w
2
·gb+∆g)/(Rb·w

2)  
  // Rb is the extent area of b, w is the cell resolution 

End Info-update 

Figure 4.2: info-update algorithm 

Updates may alter the frequency distribution, increasing 
the frequency variances and the approximation error. 
Figure 4.3a shows the updated cells at time 2, and Figure 
4.3b illustrates the information of the corresponding 
buckets. Notice that vb

1
, vb

5
 are significantly larger than 

those in Figure 4.1d, causing considerable increase of 
WVS (from 7.08 in Figure 4.1d to 173.58). To remedy this 
problem, AMH performs bucket re-organization when the 
CPU is idle (i.e., no data/query is pending), which 
involves bucket merging and splitting. 
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Figure 4.3: AMH at time 2 

4.3 AMH bucket merge 

A merge is performed when the number of buckets has 
reached the maximum value B (assumed to be 6 in these 
examples), and aims at grouping cells of multiple buckets, 
whose frequencies have converged since the last re-
organization, into a single bucket. Towards this, AMH 
selects the leaf node of BPT with the lowest merge 

penalty (MPen); MPen is defined as the increase of WVS 
(see equation 4-1) if the node is merged with its sibling.  

Assume, for instance, the cell frequencies in Figure 4.3a, 
the bucket information in Figure 4.3b, and the tree in 
Figure 4.1c. Merging bucket b3 with its sibling b4 removes 
both nodes from BPT and makes b8 a leaf (i.e., a new 
bucket in the histogram). The change incurs 
n8·v8−(n3·v3+n4·v4) increase in WVS (i.e., the merge 
penalty for b3, b4), where ni is the number of cells covered 
by node bi, and vi is its frequency variance. A bucket’s 
sibling can sometimes be an intermediate node, e.g., the 
sibling of bucket b6 is b8, in which case MPen should be 
computed as n9·v9−(n3·v3+n4·v4+n6·v6). Notice that, 
merging b6 with b8 would reduce the bucket number by 2 
(i.e., removing 3 leaf nodes b3, b4, b6, spawning b9).  

The leaf node with the lowest merge penalty can be 
identified using a single post-order traversal of BPT’s 
intermediate nodes (i.e., each intermediate node is 
processed after its children). Consider, for example, 
Figure 4.1c, where node b7 is the first node processed. We 
compute the following information (from its children b1, 
b2): (i) the average frequency of all cells in its extent fb

7
 = 

(fb
1
·Rb

1
+ fb

2
·Rb

2
)/ Rb

7
, (ii) the average squared frequency gb

7
 

= (gb
1
·Rb

1
+ gb

2
·Rb

2
)/Rb

7
, (iii) the merge penalty of its 

children MPenb
7
 = n7·v7−(n1·v1+n2·v2), where ni=Rb

i
·w

2
, 

vi=gb
i
−fb

i

2. Next, similar computations are performed for 

b8, b9, b10, b11 (in this order). Note that i) the leaf node b3 
(b4, b6) is updated from the corresponding cells; ii) the 
computation for b9 (b10) is based on the already-computed 
information of intermediate node b8 (b9). Similarly, the 
information of b11 is computed by b7 and b10. Finally, the 
algorithm merges the children of the node that incurs the 
smallest penalty (in this case b9). Figures 4.4a and 4.4b 
illustrate the resulting bucket extents and BPT, 
respectively. Figure 4.5 shows the pseudo-code of the 
bucket-merge algorithm. Its running time is B, since it 
visits all nodes of BPT.  
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(a) Buckets after merging (b) BPT after merging 

Figure 4.4: Example of bucket merge (cont. Figure 4.1)  



Algorithm Bucket-Merge 
1. minMPen=∞; newleaf=NULL 
2. let b=the first intermediate node in the post-order traversal  
3. do 
4.  if (b has at least one leaf node) 
5.   compute fb, gb, MPenb from its children 
6.   if (MPenb<minMPen) 
7.    minMPen=MPenb; newleaf=b;  

8.  b=next intermediate node in the post-order traversal 
9. until (b=root) 
10. merge the children of newleaf 
End Bucket-Merge 

Figure 4.5: bucket-merge algorithm  

4.4 AMH bucket split 

A bucket split creates refined partitions in regions where 
buckets have large variance. It improves AMH’s 
approximation accuracy by (i) reducing the bucket 
frequency variance, and (ii) decreasing the bucket extent. 
Towards this, the algorithm splits the bucket with the 
highest split benefit (SBen), i.e., the maximum decrease 
of WVS achieved by splitting this bucket at the “best 
position”. Consider, for example, bucket b1 in Figure 4.4a. 
Since a split guarantees that the resulting buckets cover an 
integer number of cells, there are three possible ways to 
split b1 (one on the x-, and two on the y-axes, 
respectively). The largest reduction of WVS is achieved by 
splitting b1 on the x-dimension, resulting in buckets b12, 
b13 (Figure 4.6a) and split benefit n1·v1−(n12·v12+n13·v13). 
The split benefits of the other buckets are also computed 
and the one with the largest SBen (in this case b1) is split 
(at its best split position).  

The bucket-split algorithm repeats the split process until 
(i) new data/queries arrive, (ii) the number of buckets 
reaches the maximum threshold B or (iii) there does not 
exist any bucket with positive split benefit, implying that 
the current bucket number is sufficient to model the cell 
frequency distribution. Continuing the example, bucket-

split computes SBen for the new buckets (b12, b13) and 
splits b5 (whose benefit is currently the largest) into b14, 
b15. Since the bucket number has reached B (=6), the 
algorithm terminates. Figures 4.6a, 4.6b illustrate the final 
bucket extents and BPT, respectively. 
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Figure 4.6: After splitting b1, b5 (cont. Figure 4.4) 

Figure 4.7 summarizes the bucket-split algorithm. Each 
bucket re-organization involves at most one bucket 
merging (i.e., if the number of buckets equals B), and a 
small number of bucket splits. After its termination, the 

process starts again if the CPU is still idle. Compared to 
traditional histograms requiring expensive total re-
building, AMH deploys repetitive, simple, interruptible, 
partial re-organizations, and, therefore, it is ideal for 
dynamic spatio-temporal environments, where 
updates/queries may occur in (unpredictable) bursts. 

Algorithm Bucket-Split 
1. for every bucket  
2.  compute its split benefit and best split position  
3. sort all split benefits in descending order into a list Lsb 

4.  while (bucket number n <B and no new data/query and 
   the first bucket in Lsb has positive split benefit) 
5.  remove the first bucket b from Lsb 

6.  split it into b1, b2   
7.  obtain split benefits and best split positions for b1, b2 
8.  insert b1, b2 into the appropriate positions in Lsb  
9. return 
End Bucket-Split 

Figure 4.7: bucket-split algorithm  

4.5 AMH PT query processing 

A present-time query is answered by examining all 
buckets whose extents intersect the query region qR. Such 
buckets are located by traversing BPT and following the 
nodes that overlap qR. For example, the query q in Figure 
4.6a intersects only bucket b9, which can be reached by 
following the intermediate nodes b11, b10. For each 
intersecting bucket bk, we compute the overlap area Rintr 
between its extent and qR, and obtain a partial result 
fk·Rintr·w

2 (note that Rintr·w
2 equals the number of cells in 

bk that are covered by qR). Then, the final result is 
computed as the sum of the partial results of all 
intersecting buckets, without accessing the underlying 
cells.  

5. Historical Synopsis 

In this section, we discuss HT query processing using the 
historical synopsis that consists of (i) a dynamic 
histogram maintaining the currently valid buckets (e.g., 
AMH), and (ii) a past index T storing the obsolete 
buckets.  

5.1 General architecture 

A bucket in AMH dies if (i) the frequency in any of its 
cells is updated, or (ii) its extent changes due to a split or 
merge. In case (i), a new bucket with the same extent, but 
different frequency statistics (i.e., f and g) is created. In 
case (ii) new bucket(s) are created due to merge or split. 
Each bucket contains a lifespan [ls, le), where ls (le) is the 
time of creation (death). All the buckets in AMH are 
alive, and their le equals “now”. Dead buckets are inserted 
into index T and their cell content is discarded.  

In Figure 4.1, for example, all the buckets o1,...,o6 are 
alive and have lifespans [1,now). Then, in Figures 4.3 
buckets b1, b3, b5, b6 die at time 2 because some cells in 
their extents change frequencies at this timestamp. This 



produces four dead buckets with lifespans [1,2) (which 
are inserted into T), and creates four live ones with 
lifespans [2,now). At the next timestamp 3, buckets b1, b3, 
b4, b5, b6 die (yielding four buckets with lifespans [2,3], 
and one b4 with lifespan [1,3)) since b3, b4, b6 are merged 
(Figure 4.4) and b1, b5 are split (Figure 4.6). Buckets b9, 
b12, b13, b14, b15 that result from these operations are alive 
with lifespans [3, now). As shown in Figure 5.1, after 
these operations, T contains 9 dead buckets and AMH 6 
live ones.   
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Figure 5.1: Buckets at time 3 (cf. Figures 4.1, 4.3, 4.6) 

The size of T grows continuously with time and 
eventually exceeds the available memory, in which case 
part of it migrates to the disk. The migration is performed 
in blocks, meaning that we simply move pages of equal 
sizes from the memory to the disk. Further, the disk 
accesses are sequential except for, possibly, the first page 
transferred. Accordingly, pointers to these pages are 
modified to the corresponding disk addresses (from their 
original main-memory addresses). Each page of T that is 
currently in memory is assigned a migration rank, such 
that pages are migrated in ascending order of their ranks. 
A separate main-memory structure (e.g., priority queue) 
can be maintained to select the page with the lowest rank 
efficiently. In our implementation, the migration rank of a 
page is set to the latest ending timestamp le of all its 
entries’ lifespans. In general, pages with low ranks should 
contain old buckets, and be less likely accessed by 
queries. Finally, pages that are already on the disk may be 
eventually (physically) erased or moved to tertiary 
storage, when they become completely obsolete.       

5.2 Implementation using a packed B-tree 

The past index T should support the following operations 
efficiently: (i) insertion of a dead bucket, and (ii) selection 
of buckets intersecting a HT query. Our first 
implementation adopts a packed B-tree, which indexes the 
ending time le of the buckets’ lifespans. Specifically, each 
leaf entry stores all information of a bucket b (i.e., Rb, fb, 
gb, and its life span), while an intermediate entry stores a 
lifespan [ls, le), which encloses those of the leaf entries in 

its child node. All the nodes in the B-tree are full, except 
for the right-most one at each level, which does not have a 
minimum utilization requirement. Particularly, we refer to 
the right-most leaf node as the active leaf, for which a 
special pointer is maintained. Since buckets are inserted 
into T in ascending order of their le, each insertion simply 
appends the new bucket into the active leaf, and 
terminates if the leaf incurs no overflow. Otherwise, a 
new active leaf is created with the most recently inserted 
bucket, and this change propagates to the parent levels. 
The amortized insertion cost is constant. Figure 5.2 
illustrates the corresponding packed B-tree for the dead 
buckets in Figure 5.1, assuming a capacity of 3 entries per 
node.  
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Figure 5.2: The packed B-tree 

In some cases, HT may have to access AMH, if there are 
some buckets that were created at the query timestamp, 
but still remain alive. Consider, for example, the query 
with region qR=[x2,x3][y2,y3] and timestamp qT =1 on the 
buckets of Figure 5.1 (the corresponding AMH is shown 
in Figure 4.6). The query must visit all the buckets whose 
extents (lifespans) intersect qR at time 1, namely, those 
marked with “*” in Figure 5.1. The final result is the sum 
of the partial results of all such buckets. The partial result 
from bucket b2 (which is still alive in AMH), is obtained 
by a PT query as discussed in Section 4.5. To locate the 
intersecting buckets (i.e., b1 and b4) in the B-tree, the 
algorithm accesses the nodes whose lifespans contain qT 
(=1), i.e., nodes D, A, B in Figure 5.2. At the leaf level the 
partial results of qualifying buckets are obtained in the 
same way as PT queries (i.e., by computing the size of the 
intersection area with qR). The packed B-tree 
implementation contains a simple and very efficient 
insertion algorithm, but processes HT queries using only 
temporal pruning. In the next section, we describe an 
alternative structure that takes advantage of spatial 
conditions to accelerate query processing. 

5.3 Implementation using a 3D R-tree 

Our second implementation is based on a main-memory 
adaptation of the 3D R*-tree [BKSS90]. In this structure, 
each intermediate entry contains a 3D box which encloses 
the extents and lifespans of all the buckets in its sub-tree. 
Given a HT q (which can also be regarded as a 2D 
rectangle defined by qR at time qT), we only need to visit 
those nodes whose 3D boxes intersect that of q. 
Compared to the packed B-tree, the 3D R-tree 
implementation achieves lower query cost since it utilizes 
both spatial and temporal conditions to prune the search 
space. On the other hand, it incurs higher update overhead 



due to the complex insertion operations of the R-tree 
(which are required to achieve spatio-temporal locality).  

Both indexes use the same migration mechanism 
discussed in Section 5.1, i.e., when the main memory 
capacity is reached, the least recent blocks of the index 
are transferred to the disk. Thus, their update cost 
difference refers to CPU overhead. In summary, the B-
tree method is preferable for very high streaming rates, 
while the R-tree for applications with heavy query 
workload. The tradeoff between update and query 
efficiency is explored in the experimental evaluation.    

6. Prediction Model 

As discussed in Section 2.4, spatio-temporal prediction 
based on current locations and velocities has limited 
applicability in the majority of real applications. Consider, 
for instance, a traffic supervision scenario, where cars 
moving on a road network periodically transmit their 
information. The assumption that the velocity will remain 
constant between the current and the query time qT is not 
realistic, since the cars that reach the end of the road 
segment on which they travel, must update their velocity 
(i.e., they must turn or stop). As shown in the 
experimental evaluation, for typical traffic simulation 
settings, up to 95% of the cars may update their velocities 
per timestamp, implying that velocity-based prediction is 
meaningless even for the next timestamp.  

The motivation of our model is that, although the 
individual object velocities may change abruptly, the 
overall data distribution varies gradually (and slowly) 
with time, due to the continuity of movement. 
Furthermore, since we keep past and present data, we can 
use this information to identify the trend of movement and 
estimate the result of a future query. Consider, for 
instance, that the current time is 0, and we want to process 
the query q(qR,1), that predicts the number of objects in qR 
at the next timestamp. The output of q can be represented 
as a function of the result of a PT and a set of recent HT 
queries with the same region qR.  

Exponential smoothing, a well-known forecasting method 
in time series analysis [G85], is based on the same 
reasoning. According to this method, the estimated result 
S'1 of the query (qR,1) can be modeled as a time series 
such that:  

S'1= αSo+ α(1- α)S-1 + α(1- α)2
S-2 + …+ α(1- α)n

S-n 

where (i) S0 is the actual result of the PT query (qR,0) (at  
the current time), (i) S-i is the actual result of the HT 
query (qR,-i) at the i

th previous timestamp, (iii) n 
determines the length of previous history that will be used 
for prediction, and (iv) a is the smoothing parameter in 
the range (0,1). The formula is based on the idea that 
recent timestamps are more important for prediction than 
older ones. The relative weight is adjusted by the value of 
a: as it approaches 1, the significance of the most recent 
timestamps increases. 

The model is applicable in our case because the changes 
of the query result are smooth, or more specifically, the 
series has a locally constant mean which shows some 
“drift” over time. If we want to predict the result at a 
future timestamp i>1, (i.e., no actual values for S1 to Si-1 
are available), we have to use a step-by-step technique, 
i.e., first compute S'1, then use this value to estimate S'2 
and so on. In general, the value of S'i can be represented 
by the following recurrence:  

S'i= αSo+ (1-α)S'i-1 

where S'i-1 is the predicted value for the query at future 
timestamp i-1. Figure 6.1 illustrates the pseudo-code for 
the prediction algorithm based on the above discussion. In 
our implementation we fix a to 0.25 and n to 6. Although, 
these parameters can be set on-the-fly for each individual 
query (i.e., the values that give the best estimation for the 
current and recent timestamps, since the actual results are 
known), we chose to fix global values for all queries in 
order to avoid the overhead of tuning. In particular, it has 
been suggested [H86] that a = 0.2~0.3 gives accurate 
results for a variety of problems, while n = 6 represents a 
good trade-off between accuracy and query cost (the 
longer we go into the past the higher the cost).   

Algorithm Prediction (qr,qt) 

/* qr: query region; qt: prediction timestamp;  
n: the least recent timestamp taken into account for prediction,  
α : smoothing parameter */ 

1. S0 =PT(qr,0) // compute result of corresponding PT query 
2. for i=1 to n  

3.     S-i= HT(qr,-i) // result of HT at ith previous timestamp 
4. t = -n; Scurrent = S-n; 
5. while (t ≤ qt)  
6.  if (t ≤ 0)  // present or past 
7.   Snext= α St+ (1- α) Scurrent 

8.  else   // future  
9.   Snext = α S0+ (1- α) Scurrent 

10.  Scurrent= Snext 

11.  t = t+1 

12. return Scurrent  // predicted value at qt 

End Prediction 

Figure 6.1: Algorithm for prediction  

7. Experimental Evaluation  

This section evaluates the proposed methods, using a 
Pentium IV 1.8GHz CPU and 256 MBytes of main 
memory. Section 7.1 describes the experimental settings, 
Section 7.2 tunes the size of AMH and Section 7.3 
evaluates its ability to follow the data distribution 
effectively. Section 7.4 compares AMH with the 
conventional, total rebuilding approach. Section 7.5 
evaluates the approximation error and compares 
exponential smoothing with velocity-based prediction. 
Finally, Section 7.6 studies the effect of update intensity 
on the performance of the historical synopsis and the 
approximation error. 



7.1 Settings  

The first dataset, denoted as spatial, simulates a scenario 
involving 50k mobile objects. The initial positions of the 
objects are sampled from the real dataset MG, and their 
destinations are randomly selected from another real 
dataset LB (both available from www.census.gov/geo/ 
www/tiger/). Each object moves from the initial to the 
destination point following a straight line and reports a 
fixed number of location changes to the server. After it 
reaches its destination, it selects a new random destination 
from the initial dataset and this process is repeated for a 
total of 5 "round trips". Although the endpoints of each 
trip are different, the overall distribution after the 
completion of a trip is either MG or LB.  

The second dataset, denoted as road, is created by the 
spatio-temporal generator of [B02]. The input of the 
generator is the road map of Oldenburg (a city in 
Germany), containing 6105 nodes and 7035 edges, and 
the output is a set of point objects moving on this 
network. Each point is represented by its locations at 
successive timestamps. The datasets are created by setting 
the parameters (see [B02] for their detailed semantics) of 
the generator as follows. There are 6 classes of objects 
(e.g., cars, pedestrians), so that each class moves with a 
particular speed range. The total number of objects (in all 
6 classes) at any timestamp is 500,000 (the generator 
decides the number of objects per class according to some 
function beyond users’ control). At each timestamp 25k 
objects disappear (i.e., they reach their destinations), 
while 25k new ones appear at random nodes. Given these 
settings, on average, 95% of the objects issue updates per 
timestamp (i.e., they reach the end of the road segment 
that they are on and they turn or stop). The total number 
of updates in both road and spatial datasets is 2.5M. 

The server maintains a regular partition of the space in 
100×100 cells (as discussed in Sections 3 and 4). When a 
location update is received from an object, the server (i) 
decreases (by 1) the frequency of the cell corresponding 
to the old position, and (ii) increases the frequency of the 
cell at the new location. The first column of Figure 7.1 
shows the density of objects per cell at the initial, median 
and ending timestamp in a single trip, for the spatial 
dataset. The second column illustrates the corresponding 
bucket structure, which continuously follows the data 
distribution. Figure 7.2a shows the road network of 
Oldenburg and 7.2b the density of the cells at the initial 
timestamp. Although the velocity updates for road are 
much more frequent than the spatial dataset, the overall 
distribution does not change significantly over time 
because movement is constrained to the network.  

Each query has two parameters: the side length qL and the 
query timestamp qT. In all cases, the query extent is a 
square with side length qL, uniformly distributed in space. 
For HT (FT), queries qT is uniformly distributed in the 
past (future) 10 timestamps. An FT query is processed by 

issuing 6 HT and 1 PT query with the same extent. The 
error rate is measured as: |act−app|/|act|, where act (app) 
equals the actual (approximate) answer.  

  
(a) Initial data (MG) (b) Initial histogram 

  
(c) Median data (d) Median histogram 

  
(e) Final data (LB) (f) Final histogram 

Figure 7.1: Spatial dataset 

  
(a) Road Network  (b) Data on road 

Figure 7.2: Road dataset 

7.2 Setting the number of buckets  

Unlike other multi-dimensional histograms (e.g., genhist) 
that require tuning for several parameters, AMH involves 
a single parameter B (maximum number of buckets). In 
order to tune B, we issue 25k PT queries, distributed in 
the whole history with length qL=6% of the spatial 
universe. We allow AMH to re-organize every 500 
incoming tuples. This re-organization is limited to five 



merge operations, each followed by one or more splits 
(depending on whether intermediate BPT nodes are 
merged). 

As expected (and shown in Figure 7.3a), the average error 
rate decreases with B. The error is higher for road because 
the local uniformity assumption (within each bucket) does 
not accurately capture the real object distribution. The 
same problem exists for all multi-dimensional histograms 
(see Section 2) that decompose the space based on local 
uniformity. To the best of our knowledge, there does not 
exist any histogram specifically targeting network data. 
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(a) Error rate vs. B (b) Re-organization cost vs. B 

Figure 7.3: Tuning B (qL=6%, qT=0)  

In order to evaluate the overhead, we use the same 
settings and measure the total CPU-time spent on re-
organization operations. Figure 7.3b shows the average 
CPU cost per location update as a function of B for the 
spatial dataset (the CPU cost for road is about the same 
and omitted). The overhead increases linearly with the 
maximum number of buckets, since both merge and split 
operations examine all buckets. Based on these 
experiments, we set B=500, since it provides good 
accuracy (average error less than 5% and 20%, for spatial 
and road, respectively) with reasonable overhead. 

7.3 Robustness with time 

The goal of this experiment is to evaluate the robustness 
of AMH with time. We fix B=500, apply the same 
settings as in Figure 7.3, and issue 25k PT queries, 
uniformly distributed in history (qL=6%). Figure 7.4 
shows the error rate as a function of the total number of 
updates for the spatial dataset. The periodic behaviour of 
the error is because the initial and final distributions are 
more skewed than the intermediate ones (see Figure 7.1).  
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Figure 7.4: Error vs. number of updates (spatial) 

Figure 7.5 repeats the experiment for the road dataset, 
which does not show the periodic effect of spatial, 

because the data distribution is constrained by the 
underlying road network. In both cases the overall error 
rate remains stable as time evolves, indicating that AMH 
captures the dynamic data distribution very well through 
successive re-organizations.  
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Figure 7.5: Error vs. number of updates (road) 

7.4 Comparison with conventional histograms 

Now, we compare AMH with minskew [APR99] (a 
common benchmark in the histogram literature [GKTD00, 
WAA01]), constructed using the same 100×100 regular 
partition as AMH. Since minskew is a static histogram, we 
re-build it every 50k location updates, measure the cost 
(about 0.5 seconds) for each re-building and assign a 
percentage tp of this cost to re-organization operations in 
AMH. For instance, if tp=100%, we use the same amount 
of time for both AMH re-organizations and minskew re-
building. The difference is that the re-organization 
operations of AMH are uniformly distributed among the 
50k location updates. 

Figure 7.6a (b) illustrates the average error rate of spatial 

and road datasets over 25k uniformly distributed (in 
history) PT queries as a function of tp. AMH is much 
more accurate than minskew, even when consuming 
1/1000 of the CPU resources, because it continuously 
adapts to the data distribution using cheap operations. On 
the other hand, minskew is accurate only during the short 
period after the re-building and its bucket structure soon 
becomes outdated. 
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Figure 7.6: Error rate vs. tp (qL = 6%, qT=0, B=500) 

7.5 Evaluation of query and prediction error 

In order to evaluate the error of different query types, we 
issue 3 query sets, each containing 25k queries of the 
same type (HT, PT, or FT). Figure 7.7 shows the error 
rate as the function of the query length qL (from 2% to 
10% of the spatial universe), respectively. The error of FT 
queries (average of predictions for the next 1-10 



timestamps) is higher because it also includes the 
inaccuracy of prediction. The results for the road dataset 
are less accurate, because (as discussed in Figure 7.3) the 
local uniformity assumption within each bucket does not 
capture well the actual data distribution. 
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Figure 7.7:  Query error comparison (B=500) 

Next, we compare our prediction method, ES for 
exponential smoothing, with the state-of-the-art model 
[TSP03] that uses only information about current location 
and velocity. In this model, non-uniform data are handled 
by a 4D minskew histogram (2D for spatial, 2D for 
velocity). The velocity of an object at timestamp i is 
determined by its location at timestamps i and i+1. The 
histogram is constructed using 100×100 and 6×6 regular 
partitions on the spatial and velocity dimensions, 
respectively. The number of buckets is set to 2000 (more 
buckets are needed due to the 4D space) and rebuilding 
occurs every timestamp (so that the error is due to the 
model and not the histogram deterioration). In other 
words, both the space consumption and the CPU overhead 
are much higher than AMH.  

Figure 7.8 shows the error rate for 25k uniformly 
distributed FT queries as a function of qT (i.e., future 
prediction time), fixing qL to 6% of the spatial universe. 
Although in spatial the movement is linear, velocity-
based prediction is less accurate than ES (Figure 7.8a). 
Compared to the results reported in [TSP03], the error of 
the method is higher, because it now includes the updates 
that occur between the current and the query time (in 
[TSP03] it is assumed that there are no such updates). For 
the road dataset (Figure 7.8b), where updates are much 
more intense, the quality of prediction deteriorates fast 
with qT, confirming our observations (in Section 6) that 
velocity-based prediction is meaningless in such cases. 
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Figure 7.8: Error rate vs. qT (qL = 6%) 

7.6 The effect of update intensity 

Having demonstrated the accuracy of the proposed 
methods, we now test the historical synopsis architecture 
in real-time environments involving intensive updates. In 
this scenario we assume that updates have higher priority 
and, therefore, re-organization is delayed during periods 
of high workload. In order to evaluate the behaviour of 
the two implementations (packed B-tree and 3D R-tree), 
we issue 25k HT, PT and FT queries uniformly 
distributed in history. Figure 7.9 shows the error as a 
function of the update rate, which varies from 1k to 100k 
updates per second. For 1k updates the accuracy of both 
implementations is the same, implying that they can both 
follow the data distribution effectively. In the other cases, 
however, the 3D R-tree incurs higher error, because it 
consumes a significant amount of time for insertion 
operations (of the dead buckets in the tree). On the other 
hand, the efficient insertion algorithms of the packed B-
tree, allow the system to devote more CPU time to 
histogram re-organization, leading to lower error. Note 
that the error rate of spatial increases faster than that of 
the road dataset, because the data distribution varies 
significantly with time, implying that if the buckets do not 
get re-organized, they will soon become outdated. 

However, if a large percentage of the workload consists of 
queries, then the 3D R-tree synopsis is preferable, since it 
utilizes the spatial condition to effectively prune the 
search space. Figure 7.10 shows the average cost of all 
query types for the two implementations. In both cases, 
PT queries are processed by AMH and have the same 
performance. HT (and, consequently, FT) queries incur 
almost half the cost in R-trees. For typical settings, we 
found that if the query/update ratio in the workload 
exceeds 3/7, the 3D R-tree is better (i.e., it allows for 
more re-organization operations).     
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Figure 7.9: Error rate vs. update rate (qL = 6%, B=500) 
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8. Conclusions 

Existing spatio-temporal access methods have several 
disadvantages that severely limit their applicability: (i) 
they focus explicitly on either historical information 
retrieval, or future prediction; (ii) they are very expensive 
to update and query on-line, since both types of 
operations incur a large number of disk accesses; (iii) 
their prediction assumptions are unrealistic for most 
practical scenarios. Motivated by these problems, we 
present a comprehensive approach for processing queries 
that refer to any time in history. Instead of keeping 
detailed information about individual objects, the 
proposed architecture maintains an incremental multi-
dimensional histogram, which answers present-time 
queries. Outdated buckets are stored in a main-memory 
index, in order to answer queries about the recent past 
without any I/O operations. The "oldest" parts of the 
index migrate to the disk in blocks, so that the total I/O 
cost of updates is minimized. Finally, future queries are 
answered by a stochastic method that uses the recent 
history to predict the future, without any assumptions 
about velocity. Extensive experiments confirm the 
effectiveness of our techniques under realistic settings. 
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