

Querying about the Past, the Present, and the Future

in Spatio-Temporal Databases

Jimeng Sun‡ Dimitris Papadias† Yufei Tao§ Bin Liu†

‡
Department of Computer Science

Carnegie Mellon University

Pittsburgh, PA, USA

jimeng@cs.cmu.edu

†
Department of Computer Science

Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong

{dimitris, liubin}@cs.ust.hk

§
Department of Computer Science

City University of Hong Kong

Tat Chee Avenue, Hong Kong

taoyf@cs.cityu.edu.hk

Abstract

Moving objects (e.g., vehicles in road networks)
continuously generate large amounts of spatio-temporal
information in the form of data streams. Efficient
management of such streams is a challenging goal due to
the highly dynamic nature of the data and the need for
fast, on-line computations. In this paper we present a
novel approach for approximate query processing about
the present, past, or the future in spatio-temporal
databases. In particular, we first propose an incrementally
updateable, multi-dimensional histogram for present-time
queries. Second, we develop a general architecture for
maintaining and querying historical data. Third, we
implement a stochastic approach for predicting the results
of queries that refer to the future. Finally, we
experimentally prove the effectiveness and efficiency of
our techniques using a realistic simulation.

1. Introduction

Research on spatio-temporal access methods has mainly
focused on two aspects: (i) storage and retrieval of
historical information, (ii) future prediction. Several
indexes [PJT00, KGT+01, TP01], usually based on multi-
version or 3-dimensional variations of R-trees, have been
proposed towards the first goal, aiming at minimization of
the storage requirements and query cost. Methods for
future prediction assume that, in addition to the current
positions, the velocities of moving objects are known. The
goal is to retrieve the objects that satisfy a spatial
condition at a future timestamp (or interval) given their
present motion vectors (e.g., "based on the current
information, find the cars that will be in the city center 10
minutes from now"). The only practical index in this
category is the TPR-tree [SJLL00] and its variations
[SJ02, TPS03] (also based on R-trees). Other, mostly
theoretical, predictive indexes have been proposed in
[KGT99] (applicable only to 1D space) and [AAE00]
(with good asymptotical performance, but inapplicable in
practice due to the large hidden constants).

1.1 Motivation

Despite the large number of methods that focus explicitly
on historical information retrieval or future prediction,
currently there does not exist a single index that can
achieve both goals. Even if such a "universal" structure
existed (e.g., a multi-version TPR-tree keeping all
previous history of each object), it would be inapplicable
for several update-intensive applications, where it is
simply infeasible to continuously update the index and at
the same time process queries. For instance, an update
(i.e., deletion and re-insertion) in a TPR-tree may need to
access more than 100 nodes, which means that by the time
it terminates its result may already be outdated (due to
another update of the same object). Even for a small
number of moving objects and a low update rate, the
TPR-tree (or any other index) cannot "follow" the fast
changes of the underlying data.

Another problem concerns the space requirements. The
incoming data are usually in the form of data streams
(e.g., through sensors embedded on the road network),
which are potentially unbounded in size. Therefore,
materializing all data is unrealistic. Furthermore, even if
all the data were stored, the size of the tree would render
query processing very expensive since any algorithm
would have to access at least a complete path from the
root to the leaf level. Finally, in several applications, such
as traffic control systems, the main focus of query
processing is retrieval of approximate summarized
information about objects that satisfy some spatio-
temporal predicate (e.g., " the number of cars in the city
center 10 minutes from now"), as opposed to exact
information about the qualifying objects (i.e., the car ids),
which may be unavailable, or irrelevant.

1.2 Contributions

Motivated by the above observations, in this paper we
propose a comprehensive method that (i) can
approximately answer aggregate spatio-temporal queries
about the past, the present and the future, (ii) can
continuously follow the (typically, very frequent) changes
in data distribution, (iii) it is efficient and adjustable to the

burden of the system, i.e., it does not strain the system,
especially during periods of intensive workloads, and (iv)
reduces the space consumption by summarizing the data.

Our first contribution is an adaptive multi-dimensional

histogram (AMH), which is used for approximate
processing of present-time queries. AMH utilizes idle
CPU cycles to perform incremental maintenance. Its
precision depends only on the available system resources,
and does not deteriorate with time (meaning the AMH
does not need to be periodically re-built).

The second contribution is a general architecture, called
the historical synopsis, for maintaining and querying
historical data. In this architecture, when a histogram
bucket is updated, the previous version is kept in a main-
memory index. If the available memory is exceeded, part
of the index containing the least recent information
migrates to the disk. As a result, queries referring to the
present and recent past (which are more frequent) can be
answered without any I/O.

Third we present a stochastic approach, based on
exponential smoothing, that answers queries about the
future using observations from the present and the recent
past. Unlike previous approaches for spatio-temporal
prediction, this technique does not assume knowledge of
velocity vectors, which in most cases is unavailable.

Finally, we experimentally evaluate the proposed
techniques under a real-life simulation, where updates and
queries are interleaved with histogram maintenance
operations. We study the effect of the system workload on
the estimation accuracy, and verify the need for
approximation methods that adapt to the available
recourses.

The rest of the paper is organized as follows. Section 2
reviews previous work related to ours. Section 3 provides
the problem definition and an overview of the proposed
methods. Section 4 presents the concrete algorithms of
AMH, while Section 5 describes the historical synopsis.
Section 6 presents the stochastic approach for prediction,
and Section 7 contains the experimental evaluation.
Finally, Section 8 concludes the paper with directions for
future work.

2. Related Work

Because the proposed techniques combine multiple goals,
they relate to a number of different research topics. In
particular, since the core of our method is AMH, in
Section 2.1 we survey related work on multi-dimensional
histograms. Section 2.2 presents methods for updating
such histograms using query feedback. Section 2.3
discusses other multi-dimensional approximation
techniques. Section 2.4 overviews spatio-temporal
prediction techniques and their limitations in several
applications. Finally, Section 2.5 presents methods for
(exact) retrieval of spatio-temporal aggregation
information.

2.1 Static multi-dimensional histograms

Histogram construction techniques split the data space
into buckets, usually based on the assumption that data
within a small region are (almost) uniform. The various
methods differ on the partition policy. The equi-depth
histogram of [MD88] first partitions along one dimension
so that each bucket has the same number (i.e., frequency)
of objects. Then, these buckets are partitioned again along
another dimension. Mhist [PI97] splits on the most
“critical” dimension according to a partitioning metric
(e.g., variance). Minskew [APR99] partitions the space
into a regular grid. Neighboring cells are then grouped
into rectangular, non-overlapping buckets by a greedy
algorithm that tries to minimize the spatial-skew (i.e., the
variance of the cell density in each bucket). Genhist
[GKTD00] allows overlapping buckets. As with Minskew,
it starts with a regular grid and creates buckets for the
cells with high density. Then it removes a percentage of
data from these cells to make the area around them
smoother. Finally it decreases the resolution and repeats
the process recursively. The SQ [AN00] and Euler
histograms [SAA02], in addition to locations, take into
account objects extents, and are more accurate for non-
point data.

All the above histograms apply to spatial or multi-
dimensional databases, where the data are (almost) static.
When the data distribution changes due to updates, the
bucket structure may become outdated, and the histogram
must be re-built. In several spatio-temporal applications,
however, there is simply not enough time to scan the
entire data (possibly several times) in order to build the
histogram from scratch. Furthermore, the new histogram
may already be outdated, due to the changes that occurred
during its re-building.

2.2 Query-adaptive multi-dimensional histograms

Query adaptive histograms avoid re-building by using
query feedback to refine the buckets. STGrid [AC99],
based on the heuristic that “buckets with higher
frequencies contribute more to the estimation error”, splits
buckets with high frequencies and merges buckets with
low frequencies. Restructuring is performed at certain
intervals (a parameter of the histogram) for entire rows or
columns, selected by a split or a merge threshold (also a
parameter). Its structure, however, cannot accurately
capture arbitrary distributions. STHoles [BGC01]
alleviates this problem by allowing nesting of buckets. If
a query identifies large frequency variance within a
bucket, a "hole", i.e., a new bucket, is created inside the
original one. This "drilling" operation replaces the
splitting mechanism of STGrid. SASH [LWV03]
decomposes the multi-dimensional space into sub-spaces
of lower dimensionality. For each subspace a separate
histogram is built and maintained using query feedback
mechanisms.

Query-adaptive histograms are based on the assumption
that the frequency of queries is much higher than the
frequency of updates. Thus, after the data distribution
changes, there is a sufficient number of queries to "train"
(i.e., refine) the histogram. Although the accuracy for
these queries will be low, subsequent queries will be
estimated using the refined histogram, which gradually
becomes very accurate. Clearly, this assumption does not
hold for update-intensive applications, where the number
of queries for each instance of the data is, typically, very
small.

2.3 Other multi-dimensional approximation

methods

Several multi-dimensional methods embed the data into
another domain and summarize the embedded data in
order to provide a compact data representation. The DCT-
based histogram [LKC99] maintains a large number of
small buckets using discrete cosine transform, which
cannot be incrementally maintained. The histogram of
[MVW98] extracts the most descriptive wavelet
coefficients. Although it can be incrementally maintained
[MVW00], its performance degrades with the number of
updates, so that eventually it has to be re-built. Another
technique [TGIK02] compresses the data distribution into
a multi-dimensional sketch; when the query arrives, the
histogram is extracted from the sketch. The main
drawback of this approach is that the extracting process is
expensive and, therefore, not suitable for on-line queries.

[GMP02] incrementally maintains a small sample set
(backing sample) of underlying data and histograms are
then constructed/maintained by the backing sample.
However, it requires scanning the entire data to regenerate
the backing sample when the distribution changes, which
is not possible in our case. Furthermore, some other
applications of sampling-based techniques [GM98,
WAA01] are also questionable, since it is not clear how to
select and effectively maintain a representative multi-
dimensional sample in the presence of very intensive
updates. Finally, all previous methods capture a snapshot
of the data and cannot be used for historical information
retrieval.

2.4 Spatio-temporal prediction methods

Methods for spatio-temporal prediction estimate the
number of objects that will satisfy some spatial condition
during a future interval, based on the current location and
velocity information. Choi and Chung [CC02] and Tao et
al. [TSP03] present probabilistic models for uniform data,
which are then applied to non-uniform distributions using
some conventional multi-dimensional histogram. An
experimental comparison of several techniques can be
found in [HKT03].

All existing methods assume linear movement and that
the velocities of all objects are known (the same
assumptions that hold for the TPR-tree-based indexes

[SJLL00, TPS03]). This restricts their applicability in
several applications because: (i) movement is not always
linear, (ii) even if it is linear, it is not usually known (e.g.,
mobile devices transmit only their location to the base
station), and (iii) even if it is linear and known, it changes
so fast that prediction using velocity information is
meaningless (e.g., cars moving on road networks).

2.5 Spatio-temporal aggregation methods

Several methods (e.g., [PTKZ02, ZTG02]) focus on
spatio-temporal aggregation. Although the target queries
are similar to our historical queries, the context is
different. In particular, they assume a "conventional"
processing framework where every query invokes disk
I/Os and returns an exact answer. Here we sacrifice
accuracy for efficiency and attempt to answer the most
frequent queries using only the main memory.

3. Problem Definition and System Overview

We assume a set of objects moving in the two-
dimensional space and a central server collecting
information about their locations over time. Update data
received by the server contain the previous and the new
location of individual objects, but not their velocity or id.
Moving objects may issue updates in periodic intervals or
based on the deviation from the previous transmitted
position. Static objects do not send information to the
server; until an object transmits a new location it is
assumed to be in the last recorded position.

We adopt a 2D grid that partitions the data space into
w×w (where w is a constant called the resolution) regular
cells with width 1/w on each axis. Each cell c (1≤c≤w

2) is
associated with a frequency Fc, which is the number of
objects (at the present time) in its extent. The frequencies
of all the cells are maintained up-to-date in memory, and
serve as the data of the highest granularity. The resolution
is determined by the number of moving objects in the
system, as well as the desirable trade-off between
accuracy and efficiency.

A spatio-temporal aggregation query q(qR,qT) retrieves the
number of objects that fall in a rectangle region qR at a
timestamp qT. If (i) qT=0 (i.e., the present time), q

constitutes a present timestamp (PT) query; (ii) qT<0, q is
a historical timestamp (HT) query; and (iii) qT>0, q is a
future timestamp (FT) query. When the resolution of the
grid is high, exhaustive examination of all the cells that
are relevant to a query is expensive. AMH (adaptive
multi-dimensional histogram) remedies this problem by
grouping adjacent cells with similar frequencies into a
small number of (rectangular) buckets (similar to other
histograms such as minskew [APR99] and genhist

[GKTD00]). Bucket information is updated as new tuples
arrive, and bucket extents (i.e., grouping of cells)
continuously adapt to the data distribution changes
through incremental maintenance performed during the

idle CPU time (i.e., when there are no incoming data or
queries). A binary partition tree accelerates bucket
maintenance and processing of PT queries.

To support historical retrieval, buckets that are outdated
(due to data or extent changes) are inserted in a main-
memory index (T) optimized for HT queries. Each bucket
is associated with a lifespan denoting the temporal
interval during which the bucket information is valid.
When the size of the index exceeds the available memory,
part of the tree containing the least recent buckets is
migrated to the disk, such that queries about the recent
past can be answered using the memory-resident portion
of the index. This migration occurs in blocks (rather than
individual buckets) at a time, and incurs minimal I/O
overhead. AMH together with index T constitute the
historical synopsis, whose general structure is shown in
Figure 3.1.

Figure 3.1: Historical synopsis

The historical synopsis is directly used for answering PT
and HT queries. On the other hand, FT queries are
processed by an exponential smoothing technique, which
retrieves information about the present and the recent
past, in order to predict the future. Figure 3.2 shows the
abstract query processing mechanism and Table 3.1 lists
the frequently-used symbols. In the rest of the paper we
describe the various components of the architecture,
starting with AMH in Section 4.

Figure 3.2: Query processing

Symbol Description

w resolution
Fc frequency of cell c

(B) n (maximum) number of buckets
Rk bucket extent or area
nk number of cells in bucket bk

fk frequency (i.e., number of objects) in bucket bk

gk average squared frequency of bucket bk
vk frequency variance of bucket bk

Table 3.1: Frequent symbols

4. Adaptive Multi-Dimensional Histogram

Given a regular w×w cell partition, AMH generates n
rectangular buckets whose edges are aligned with the cell
boundaries. For each bucket bk (1≤k≤n), we denote (i) as
nk the number of cells it covers, (ii) as fk the average

frequency of these cells (i.e., fk=(1/nk)Σ(∀ cell in bk)Fc), and

(iii) as vk their variance (i.e., vk=(1/nk)Σ(∀ cell in bk)(Fc−fk)
2).

AMH aims at minimizing the weighted variance sum
(WVS) of all the buckets, or formally:

WVS=∑i=1~n(ni·vi) (4-1)

4.1 AMH structure

Each bucket stores: (i) its rectangular extent R (abusing
the terminology slightly, we also use R to denote its area),
(ii) the average frequency f of all the cells in R, and (iii)
the average of “squared” frequency g of these cells:

g=(1/nk)∑(∀ cell c in R)(Fc)
2. Thus, the number n of cells

covered by a bucket can be represented as R·w
2, where w

is the cell resolution. A bucket’s variance v equals v=g−f
 2,

and as a result, WVS can be computed using R, f, g of all
buckets.

AMH maintains a binary partition tree (BPT), where each
leaf node corresponds to a bucket. An intermediate node
is associated with a rectangular extent R that encloses the
extents of its (two) children. Initially, BPT contains a
single leaf node, and the histogram has one bucket
covering the entire data space. New buckets (leaf nodes)
are created through bucket splits (elaborated shortly), but
the total number n of buckets never exceeds a system
parameter B. As an example, Figure 4.1a shows the
frequencies of 25 cells (i.e., w=5) at timestamp 1, Figure
4.1b demonstrates the extents of 6 buckets, and Figure
4.1c illustrates the corresponding BPT.

5

11

6

2 1

1

5

1

4

3 3

3 4

9

910

11

1 1 1

5

5

5

6

x1 x 2 x3 x4
x5

y1

y2

y 3

y 4

y5

b 1

b 2

b 3

b 4

b 5

b 6

x1 x2 x3 x4
x5

y1

y2

y3

y4

y5

(a) Cell frequency (b) Bucket extents

b1 b2

b3
b4

b6

b5

b7

b8

b9

b10

b
11

[

[b1
x1

node R f g

x2[] y3 y5] 7/6 9/6

v

5/36

b2 [x1 x2] y1 y2] 20/4 102/4 8/16

[b6 [x5 x5] y2 y5]

[b3 [x3 x4] y4 y5] 13/4 43/4 3/16

[b4 [x3 x4] y2 y3] 39/4 383/4 11/16

[b5 [x3 x5] y1 y1] 3/3 3/3 0

21/4 111/4 3/16

WVS=7.08

(c) The BPT (d) Bucket information
Figure 4.1: AMH at time 1

Intermediate node b7, for instance, covers buckets b1, b2,
implying that they were created by splitting b7. Figure
4.1d lists the detailed information of each bucket (v is not
explicitly stored, but computed from f and g).

4.2 AMH information update

A location update contains the old and the new position of
a moving object. When such an update is received, AMH
executes an info-update process to modify the frequencies
of the cells and buckets that cover the corresponding
locations. Particularly, a cell can be identified using a
hash function, while a bucket is located by following a
single path of BPT, guided by the extents of the
intermediate nodes. Assume, for example, that the
frequency of cell (x5,y2) in Figure 4.1a changes from 6 to
10 at time 2, due to concurrent movement of several
objects. After modifying the cell frequency, info-update
obtains the frequency (squared frequency) difference 4
(64) between the new and old values. To complete the
update, it identifies bucket b6 covering the cell (following
the path b11, b10, b9), and updates its f and g as fb

6
= (fb

6
·

nb
6
+4)/nb

6
, gb

6
= (gb

6
· nb

6
+64)/nb

6
, where nb

6
 is the number

of cells covered by b6, and fb
6
 (gb

6
) is their average

(square) frequency. Assuming that BPT is fairly balanced,
the algorithm (shown in Figure 4.2) has average cost
logB, where B is the maximum number of buckets.

Algorithm Info-update (x, y, d)
/* (x,y) are the cell coordinates, d is the frequency difference */
1. find the cell c that contains (x, y) using a hash function
2. ∆f=d ; ∆g= (Fc+d)2 - Fc

2 ; Fc=Fc+d
3. descend BPT to find the bucket b that contains (x,y)
4. fb=(Rb·w

2
·fb+∆f)/(Rb·w

2); gb=(Rb·w
2
·gb+∆g)/(Rb·w

2)
 // Rb is the extent area of b, w is the cell resolution

End Info-update

Figure 4.2: info-update algorithm

Updates may alter the frequency distribution, increasing
the frequency variances and the approximation error.
Figure 4.3a shows the updated cells at time 2, and Figure
4.3b illustrates the information of the corresponding
buckets. Notice that vb

1
, vb

5
 are significantly larger than

those in Figure 4.1d, causing considerable increase of
WVS (from 7.08 in Figure 4.1d to 173.58). To remedy this
problem, AMH performs bucket re-organization when the
CPU is idle (i.e., no data/query is pending), which
involves bucket merging and splitting.

5

101

6

1 9

10

5

1

4

10 9

10 10

9

910

11

1 1 10

11

10

10

10

x1 x2 x3 x4
x5

y1

y2

y3

y4

y5

b2

b1

b3

b4

b5

b6

[

[b1
x1

node R f g

x2[] y3 y5] 32/6 284/6

v

680/36

b2 [x1 x2] y1 y2] 20/4 102/4 8/16

[b6 [x5 x5] y2 y5]

[b3 [x3 x4] y4 y5] 39/4 381/4 3/16

[b4 [x3 x4] y2 y3] 39/4 383/4 11/16

[b5 [x3 x5] y1 y1] 12/3 102/3 162/9

41/4 421/4 3/16

WVS=173.58

(a) Cell frequency (b) Bucket information

Figure 4.3: AMH at time 2

4.3 AMH bucket merge

A merge is performed when the number of buckets has
reached the maximum value B (assumed to be 6 in these
examples), and aims at grouping cells of multiple buckets,
whose frequencies have converged since the last re-
organization, into a single bucket. Towards this, AMH
selects the leaf node of BPT with the lowest merge

penalty (MPen); MPen is defined as the increase of WVS
(see equation 4-1) if the node is merged with its sibling.

Assume, for instance, the cell frequencies in Figure 4.3a,
the bucket information in Figure 4.3b, and the tree in
Figure 4.1c. Merging bucket b3 with its sibling b4 removes
both nodes from BPT and makes b8 a leaf (i.e., a new
bucket in the histogram). The change incurs
n8·v8−(n3·v3+n4·v4) increase in WVS (i.e., the merge
penalty for b3, b4), where ni is the number of cells covered
by node bi, and vi is its frequency variance. A bucket’s
sibling can sometimes be an intermediate node, e.g., the
sibling of bucket b6 is b8, in which case MPen should be
computed as n9·v9−(n3·v3+n4·v4+n6·v6). Notice that,
merging b6 with b8 would reduce the bucket number by 2
(i.e., removing 3 leaf nodes b3, b4, b6, spawning b9).

The leaf node with the lowest merge penalty can be
identified using a single post-order traversal of BPT’s
intermediate nodes (i.e., each intermediate node is
processed after its children). Consider, for example,
Figure 4.1c, where node b7 is the first node processed. We
compute the following information (from its children b1,
b2): (i) the average frequency of all cells in its extent fb

7
 =

(fb
1
·Rb

1
+ fb

2
·Rb

2
)/ Rb

7
, (ii) the average squared frequency gb

7

= (gb
1
·Rb

1
+ gb

2
·Rb

2
)/Rb

7
, (iii) the merge penalty of its

children MPenb
7
 = n7·v7−(n1·v1+n2·v2), where ni=Rb

i
·w

2
,

vi=gb
i
−fb

i

2. Next, similar computations are performed for

b8, b9, b10, b11 (in this order). Note that i) the leaf node b3
(b4, b6) is updated from the corresponding cells; ii) the
computation for b9 (b10) is based on the already-computed
information of intermediate node b8 (b9). Similarly, the
information of b11 is computed by b7 and b10. Finally, the
algorithm merges the children of the node that incurs the
smallest penalty (in this case b9). Figures 4.4a and 4.4b
illustrate the resulting bucket extents and BPT,
respectively. Figure 4.5 shows the pseudo-code of the
bucket-merge algorithm. Its running time is B, since it
visits all nodes of BPT.

b 2
b 5

b 9

x1 x2 x3 x4
x5

y1

y2

y3

y4

y5

b 1

b1 b2

b7

b
11

b9 b5

b10

(a) Buckets after merging (b) BPT after merging

Figure 4.4: Example of bucket merge (cont. Figure 4.1)

Algorithm Bucket-Merge
1. minMPen=∞; newleaf=NULL
2. let b=the first intermediate node in the post-order traversal
3. do
4. if (b has at least one leaf node)
5. compute fb, gb, MPenb from its children
6. if (MPenb<minMPen)
7. minMPen=MPenb; newleaf=b;

8. b=next intermediate node in the post-order traversal
9. until (b=root)
10. merge the children of newleaf
End Bucket-Merge

Figure 4.5: bucket-merge algorithm

4.4 AMH bucket split

A bucket split creates refined partitions in regions where
buckets have large variance. It improves AMH’s
approximation accuracy by (i) reducing the bucket
frequency variance, and (ii) decreasing the bucket extent.
Towards this, the algorithm splits the bucket with the
highest split benefit (SBen), i.e., the maximum decrease
of WVS achieved by splitting this bucket at the “best
position”. Consider, for example, bucket b1 in Figure 4.4a.
Since a split guarantees that the resulting buckets cover an
integer number of cells, there are three possible ways to
split b1 (one on the x-, and two on the y-axes,
respectively). The largest reduction of WVS is achieved by
splitting b1 on the x-dimension, resulting in buckets b12,
b13 (Figure 4.6a) and split benefit n1·v1−(n12·v12+n13·v13).
The split benefits of the other buckets are also computed
and the one with the largest SBen (in this case b1) is split
(at its best split position).

The bucket-split algorithm repeats the split process until
(i) new data/queries arrive, (ii) the number of buckets
reaches the maximum threshold B or (iii) there does not
exist any bucket with positive split benefit, implying that
the current bucket number is sufficient to model the cell
frequency distribution. Continuing the example, bucket-

split computes SBen for the new buckets (b12, b13) and
splits b5 (whose benefit is currently the largest) into b14,
b15. Since the bucket number has reached B (=6), the
algorithm terminates. Figures 4.6a, 4.6b illustrate the final
bucket extents and BPT, respectively.

b 2
b 14

b 9

b 15

x1 x 2
x 3 x4

x5

y 1

y 2

y 3

y 4

y 5

PT
query q

b 12 b 13

b

15

b2

b7

b
11

b9

b10

b12 b13

b1

b14

b5

(a) Final Buckets (b) BPT after splitting

Figure 4.6: After splitting b1, b5 (cont. Figure 4.4)

Figure 4.7 summarizes the bucket-split algorithm. Each
bucket re-organization involves at most one bucket
merging (i.e., if the number of buckets equals B), and a
small number of bucket splits. After its termination, the

process starts again if the CPU is still idle. Compared to
traditional histograms requiring expensive total re-
building, AMH deploys repetitive, simple, interruptible,
partial re-organizations, and, therefore, it is ideal for
dynamic spatio-temporal environments, where
updates/queries may occur in (unpredictable) bursts.

Algorithm Bucket-Split
1. for every bucket
2. compute its split benefit and best split position
3. sort all split benefits in descending order into a list Lsb

4. while (bucket number n <B and no new data/query and
 the first bucket in Lsb has positive split benefit)
5. remove the first bucket b from Lsb

6. split it into b1, b2
7. obtain split benefits and best split positions for b1, b2
8. insert b1, b2 into the appropriate positions in Lsb
9. return
End Bucket-Split

Figure 4.7: bucket-split algorithm

4.5 AMH PT query processing

A present-time query is answered by examining all
buckets whose extents intersect the query region qR. Such
buckets are located by traversing BPT and following the
nodes that overlap qR. For example, the query q in Figure
4.6a intersects only bucket b9, which can be reached by
following the intermediate nodes b11, b10. For each
intersecting bucket bk, we compute the overlap area Rintr
between its extent and qR, and obtain a partial result
fk·Rintr·w

2 (note that Rintr·w
2 equals the number of cells in

bk that are covered by qR). Then, the final result is
computed as the sum of the partial results of all
intersecting buckets, without accessing the underlying
cells.

5. Historical Synopsis

In this section, we discuss HT query processing using the
historical synopsis that consists of (i) a dynamic
histogram maintaining the currently valid buckets (e.g.,
AMH), and (ii) a past index T storing the obsolete
buckets.

5.1 General architecture

A bucket in AMH dies if (i) the frequency in any of its
cells is updated, or (ii) its extent changes due to a split or
merge. In case (i), a new bucket with the same extent, but
different frequency statistics (i.e., f and g) is created. In
case (ii) new bucket(s) are created due to merge or split.
Each bucket contains a lifespan [ls, le), where ls (le) is the
time of creation (death). All the buckets in AMH are
alive, and their le equals “now”. Dead buckets are inserted
into index T and their cell content is discarded.

In Figure 4.1, for example, all the buckets o1,...,o6 are
alive and have lifespans [1,now). Then, in Figures 4.3
buckets b1, b3, b5, b6 die at time 2 because some cells in
their extents change frequencies at this timestamp. This

produces four dead buckets with lifespans [1,2) (which
are inserted into T), and creates four live ones with
lifespans [2,now). At the next timestamp 3, buckets b1, b3,
b4, b5, b6 die (yielding four buckets with lifespans [2,3],
and one b4 with lifespan [1,3)) since b3, b4, b6 are merged
(Figure 4.4) and b1, b5 are split (Figure 4.6). Buckets b9,
b12, b13, b14, b15 that result from these operations are alive
with lifespans [3, now). As shown in Figure 5.1, after
these operations, T contains 9 dead buckets and AMH 6
live ones.

[b1
x1

node R f g

x2[] y3 y5] 7/6 9/6

v

5/36

[b6 [x5 x5] y2 y5]

[b3 [x3 x4] y4 y5] 13/4 43/4 3/16

21/4 111/4 3/16

lifespan

[1,2)

[1,2)

[1,2)
dead

stored in T

stored in AMS
alive

[b3 [x3 x4] y4 y5] 39/4 381/4 3/16

[b4 [x3 x4] y2 y3] 39/4 383/4 11/16

[2,3)

[1,3)

[b6 [x5 x5] y2 y5] 41/4 421/4 3/16 [2,3)

[b1
x1 x2[] y3 y5] 32/6 284/6 680/36 [2,3)

[b5 [x3 x5] y1 y1] 12/3 102/3 162/9 [2,3)

[

o
2 [x 1 x 2] y1 y2] 20/4 102/4 8/16 [1,now)

[3,now)

[3,now)

[3,now)

[3,now)

[3,now)

[

b

12
x1 x1[] y3 y5] 3/3 3/3 0

[b13
x2 x2[] y3 y5] 29/3 281/3 2/3

[b9
x3 x5[] y3 y5] 119

59/12

[b15
x5 x5[] y1 y1] 10/1 100/1 0

[

b

14
x3 x4[] y1 y1] 2/2 2/2 0

12
1185

12

*

*

*

[1,2)[b5
x3 x5[] y1 y1] 3/3 3/3 0

b

Figure 5.1: Buckets at time 3 (cf. Figures 4.1, 4.3, 4.6)

The size of T grows continuously with time and
eventually exceeds the available memory, in which case
part of it migrates to the disk. The migration is performed
in blocks, meaning that we simply move pages of equal
sizes from the memory to the disk. Further, the disk
accesses are sequential except for, possibly, the first page
transferred. Accordingly, pointers to these pages are
modified to the corresponding disk addresses (from their
original main-memory addresses). Each page of T that is
currently in memory is assigned a migration rank, such
that pages are migrated in ascending order of their ranks.
A separate main-memory structure (e.g., priority queue)
can be maintained to select the page with the lowest rank
efficiently. In our implementation, the migration rank of a
page is set to the latest ending timestamp le of all its
entries’ lifespans. In general, pages with low ranks should
contain old buckets, and be less likely accessed by
queries. Finally, pages that are already on the disk may be
eventually (physically) erased or moved to tertiary
storage, when they become completely obsolete.

5.2 Implementation using a packed B-tree

The past index T should support the following operations
efficiently: (i) insertion of a dead bucket, and (ii) selection
of buckets intersecting a HT query. Our first
implementation adopts a packed B-tree, which indexes the
ending time le of the buckets’ lifespans. Specifically, each
leaf entry stores all information of a bucket b (i.e., Rb, fb,
gb, and its life span), while an intermediate entry stores a
lifespan [ls, le), which encloses those of the leaf entries in

its child node. All the nodes in the B-tree are full, except
for the right-most one at each level, which does not have a
minimum utilization requirement. Particularly, we refer to
the right-most leaf node as the active leaf, for which a
special pointer is maintained. Since buckets are inserted
into T in ascending order of their le, each insertion simply
appends the new bucket into the active leaf, and
terminates if the leaf incurs no overflow. Otherwise, a
new active leaf is created with the most recently inserted
bucket, and this change propagates to the parent levels.
The amortized insertion cost is constant. Figure 5.2
illustrates the corresponding packed B-tree for the dead
buckets in Figure 5.1, assuming a capacity of 3 entries per
node.

[1,2)

A B C

D

[1,2)b1 [1,2)b3 [1,2)b6 [2,3)b1 [2,3)b5

[1,3) [2,3)

active leaf

[2,3)b3 [1,3)b4 [2,3)b6

lifespan

[1,2)b5

Figure 5.2: The packed B-tree

In some cases, HT may have to access AMH, if there are
some buckets that were created at the query timestamp,
but still remain alive. Consider, for example, the query
with region qR=[x2,x3][y2,y3] and timestamp qT =1 on the
buckets of Figure 5.1 (the corresponding AMH is shown
in Figure 4.6). The query must visit all the buckets whose
extents (lifespans) intersect qR at time 1, namely, those
marked with “*” in Figure 5.1. The final result is the sum
of the partial results of all such buckets. The partial result
from bucket b2 (which is still alive in AMH), is obtained
by a PT query as discussed in Section 4.5. To locate the
intersecting buckets (i.e., b1 and b4) in the B-tree, the
algorithm accesses the nodes whose lifespans contain qT
(=1), i.e., nodes D, A, B in Figure 5.2. At the leaf level the
partial results of qualifying buckets are obtained in the
same way as PT queries (i.e., by computing the size of the
intersection area with qR). The packed B-tree
implementation contains a simple and very efficient
insertion algorithm, but processes HT queries using only
temporal pruning. In the next section, we describe an
alternative structure that takes advantage of spatial
conditions to accelerate query processing.

5.3 Implementation using a 3D R-tree

Our second implementation is based on a main-memory
adaptation of the 3D R*-tree [BKSS90]. In this structure,
each intermediate entry contains a 3D box which encloses
the extents and lifespans of all the buckets in its sub-tree.
Given a HT q (which can also be regarded as a 2D
rectangle defined by qR at time qT), we only need to visit
those nodes whose 3D boxes intersect that of q.
Compared to the packed B-tree, the 3D R-tree
implementation achieves lower query cost since it utilizes
both spatial and temporal conditions to prune the search
space. On the other hand, it incurs higher update overhead

due to the complex insertion operations of the R-tree
(which are required to achieve spatio-temporal locality).

Both indexes use the same migration mechanism
discussed in Section 5.1, i.e., when the main memory
capacity is reached, the least recent blocks of the index
are transferred to the disk. Thus, their update cost
difference refers to CPU overhead. In summary, the B-
tree method is preferable for very high streaming rates,
while the R-tree for applications with heavy query
workload. The tradeoff between update and query
efficiency is explored in the experimental evaluation.

6. Prediction Model

As discussed in Section 2.4, spatio-temporal prediction
based on current locations and velocities has limited
applicability in the majority of real applications. Consider,
for instance, a traffic supervision scenario, where cars
moving on a road network periodically transmit their
information. The assumption that the velocity will remain
constant between the current and the query time qT is not
realistic, since the cars that reach the end of the road
segment on which they travel, must update their velocity
(i.e., they must turn or stop). As shown in the
experimental evaluation, for typical traffic simulation
settings, up to 95% of the cars may update their velocities
per timestamp, implying that velocity-based prediction is
meaningless even for the next timestamp.

The motivation of our model is that, although the
individual object velocities may change abruptly, the
overall data distribution varies gradually (and slowly)
with time, due to the continuity of movement.
Furthermore, since we keep past and present data, we can
use this information to identify the trend of movement and
estimate the result of a future query. Consider, for
instance, that the current time is 0, and we want to process
the query q(qR,1), that predicts the number of objects in qR
at the next timestamp. The output of q can be represented
as a function of the result of a PT and a set of recent HT
queries with the same region qR.

Exponential smoothing, a well-known forecasting method
in time series analysis [G85], is based on the same
reasoning. According to this method, the estimated result
S'1 of the query (qR,1) can be modeled as a time series
such that:

S'1= αSo+ α(1- α)S-1 + α(1- α)2
S-2 + …+ α(1- α)n

S-n

where (i) S0 is the actual result of the PT query (qR,0) (at
the current time), (i) S-i is the actual result of the HT
query (qR,-i) at the i

th previous timestamp, (iii) n
determines the length of previous history that will be used
for prediction, and (iv) a is the smoothing parameter in
the range (0,1). The formula is based on the idea that
recent timestamps are more important for prediction than
older ones. The relative weight is adjusted by the value of
a: as it approaches 1, the significance of the most recent
timestamps increases.

The model is applicable in our case because the changes
of the query result are smooth, or more specifically, the
series has a locally constant mean which shows some
“drift” over time. If we want to predict the result at a
future timestamp i>1, (i.e., no actual values for S1 to Si-1
are available), we have to use a step-by-step technique,
i.e., first compute S'1, then use this value to estimate S'2
and so on. In general, the value of S'i can be represented
by the following recurrence:

S'i= αSo+ (1-α)S'i-1

where S'i-1 is the predicted value for the query at future
timestamp i-1. Figure 6.1 illustrates the pseudo-code for
the prediction algorithm based on the above discussion. In
our implementation we fix a to 0.25 and n to 6. Although,
these parameters can be set on-the-fly for each individual
query (i.e., the values that give the best estimation for the
current and recent timestamps, since the actual results are
known), we chose to fix global values for all queries in
order to avoid the overhead of tuning. In particular, it has
been suggested [H86] that a = 0.2~0.3 gives accurate
results for a variety of problems, while n = 6 represents a
good trade-off between accuracy and query cost (the
longer we go into the past the higher the cost).

Algorithm Prediction (qr,qt)

/* qr: query region; qt: prediction timestamp;
n: the least recent timestamp taken into account for prediction,
α : smoothing parameter */

1. S0 =PT(qr,0) // compute result of corresponding PT query
2. for i=1 to n

3. S-i= HT(qr,-i) // result of HT at ith previous timestamp
4. t = -n; Scurrent = S-n;
5. while (t ≤ qt)
6. if (t ≤ 0) // present or past
7. Snext= α St+ (1- α) Scurrent

8. else // future
9. Snext = α S0+ (1- α) Scurrent

10. Scurrent= Snext

11. t = t+1

12. return Scurrent // predicted value at qt

End Prediction

Figure 6.1: Algorithm for prediction

7. Experimental Evaluation

This section evaluates the proposed methods, using a
Pentium IV 1.8GHz CPU and 256 MBytes of main
memory. Section 7.1 describes the experimental settings,
Section 7.2 tunes the size of AMH and Section 7.3
evaluates its ability to follow the data distribution
effectively. Section 7.4 compares AMH with the
conventional, total rebuilding approach. Section 7.5
evaluates the approximation error and compares
exponential smoothing with velocity-based prediction.
Finally, Section 7.6 studies the effect of update intensity
on the performance of the historical synopsis and the
approximation error.

7.1 Settings

The first dataset, denoted as spatial, simulates a scenario
involving 50k mobile objects. The initial positions of the
objects are sampled from the real dataset MG, and their
destinations are randomly selected from another real
dataset LB (both available from www.census.gov/geo/
www/tiger/). Each object moves from the initial to the
destination point following a straight line and reports a
fixed number of location changes to the server. After it
reaches its destination, it selects a new random destination
from the initial dataset and this process is repeated for a
total of 5 "round trips". Although the endpoints of each
trip are different, the overall distribution after the
completion of a trip is either MG or LB.

The second dataset, denoted as road, is created by the
spatio-temporal generator of [B02]. The input of the
generator is the road map of Oldenburg (a city in
Germany), containing 6105 nodes and 7035 edges, and
the output is a set of point objects moving on this
network. Each point is represented by its locations at
successive timestamps. The datasets are created by setting
the parameters (see [B02] for their detailed semantics) of
the generator as follows. There are 6 classes of objects
(e.g., cars, pedestrians), so that each class moves with a
particular speed range. The total number of objects (in all
6 classes) at any timestamp is 500,000 (the generator
decides the number of objects per class according to some
function beyond users’ control). At each timestamp 25k
objects disappear (i.e., they reach their destinations),
while 25k new ones appear at random nodes. Given these
settings, on average, 95% of the objects issue updates per
timestamp (i.e., they reach the end of the road segment
that they are on and they turn or stop). The total number
of updates in both road and spatial datasets is 2.5M.

The server maintains a regular partition of the space in
100×100 cells (as discussed in Sections 3 and 4). When a
location update is received from an object, the server (i)
decreases (by 1) the frequency of the cell corresponding
to the old position, and (ii) increases the frequency of the
cell at the new location. The first column of Figure 7.1
shows the density of objects per cell at the initial, median
and ending timestamp in a single trip, for the spatial
dataset. The second column illustrates the corresponding
bucket structure, which continuously follows the data
distribution. Figure 7.2a shows the road network of
Oldenburg and 7.2b the density of the cells at the initial
timestamp. Although the velocity updates for road are
much more frequent than the spatial dataset, the overall
distribution does not change significantly over time
because movement is constrained to the network.

Each query has two parameters: the side length qL and the
query timestamp qT. In all cases, the query extent is a
square with side length qL, uniformly distributed in space.
For HT (FT), queries qT is uniformly distributed in the
past (future) 10 timestamps. An FT query is processed by

issuing 6 HT and 1 PT query with the same extent. The
error rate is measured as: |act−app|/|act|, where act (app)
equals the actual (approximate) answer.

(a) Initial data (MG) (b) Initial histogram

(c) Median data (d) Median histogram

(e) Final data (LB) (f) Final histogram

Figure 7.1: Spatial dataset

(a) Road Network (b) Data on road

Figure 7.2: Road dataset

7.2 Setting the number of buckets

Unlike other multi-dimensional histograms (e.g., genhist)
that require tuning for several parameters, AMH involves
a single parameter B (maximum number of buckets). In
order to tune B, we issue 25k PT queries, distributed in
the whole history with length qL=6% of the spatial
universe. We allow AMH to re-organize every 500
incoming tuples. This re-organization is limited to five

merge operations, each followed by one or more splits
(depending on whether intermediate BPT nodes are
merged).

As expected (and shown in Figure 7.3a), the average error
rate decreases with B. The error is higher for road because
the local uniformity assumption (within each bucket) does
not accurately capture the real object distribution. The
same problem exists for all multi-dimensional histograms
(see Section 2) that decompose the space based on local
uniformity. To the best of our knowledge, there does not
exist any histogram specifically targeting network data.

spatial road

bucket number

error rate

0%

10%

20%

30%

40%

100 300 500 700 900
bucket number

CPU time

sec

0

50

100

150

200

250

100 300 500 700 900

µ

(a) Error rate vs. B (b) Re-organization cost vs. B

Figure 7.3: Tuning B (qL=6%, qT=0)

In order to evaluate the overhead, we use the same
settings and measure the total CPU-time spent on re-
organization operations. Figure 7.3b shows the average
CPU cost per location update as a function of B for the
spatial dataset (the CPU cost for road is about the same
and omitted). The overhead increases linearly with the
maximum number of buckets, since both merge and split
operations examine all buckets. Based on these
experiments, we set B=500, since it provides good
accuracy (average error less than 5% and 20%, for spatial
and road, respectively) with reasonable overhead.

7.3 Robustness with time

The goal of this experiment is to evaluate the robustness
of AMH with time. We fix B=500, apply the same
settings as in Figure 7.3, and issue 25k PT queries,
uniformly distributed in history (qL=6%). Figure 7.4
shows the error rate as a function of the total number of
updates for the spatial dataset. The periodic behaviour of
the error is because the initial and final distributions are
more skewed than the intermediate ones (see Figure 7.1).

0.5M 1M 1.5M 2M 2.5M

number of location updates

error rate

0

4%

8%

12%

16%

5k
Figure 7.4: Error vs. number of updates (spatial)

Figure 7.5 repeats the experiment for the road dataset,
which does not show the periodic effect of spatial,

because the data distribution is constrained by the
underlying road network. In both cases the overall error
rate remains stable as time evolves, indicating that AMH
captures the dynamic data distribution very well through
successive re-organizations.

number of location updates
0

10%

20%

30%

0.5M 1M 1.5M 2M 2.5M5k
Figure 7.5: Error vs. number of updates (road)

7.4 Comparison with conventional histograms

Now, we compare AMH with minskew [APR99] (a
common benchmark in the histogram literature [GKTD00,
WAA01]), constructed using the same 100×100 regular
partition as AMH. Since minskew is a static histogram, we
re-build it every 50k location updates, measure the cost
(about 0.5 seconds) for each re-building and assign a
percentage tp of this cost to re-organization operations in
AMH. For instance, if tp=100%, we use the same amount
of time for both AMH re-organizations and minskew re-
building. The difference is that the re-organization
operations of AMH are uniformly distributed among the
50k location updates.

Figure 7.6a (b) illustrates the average error rate of spatial

and road datasets over 25k uniformly distributed (in
history) PT queries as a function of tp. AMH is much
more accurate than minskew, even when consuming
1/1000 of the CPU resources, because it continuously
adapts to the data distribution using cheap operations. On
the other hand, minskew is accurate only during the short
period after the re-building and its bucket structure soon
becomes outdated.

AMH minskew

time proportion

error rate

0

10%

20%

30%

0.001 0.01 0.1 1
time proportion

error rate

10%

15%

20%

25%

30%

0.001 0.01 0.1 1
(a) spatial (b) road

Figure 7.6: Error rate vs. tp (qL = 6%, qT=0, B=500)

7.5 Evaluation of query and prediction error

In order to evaluate the error of different query types, we
issue 3 query sets, each containing 25k queries of the
same type (HT, PT, or FT). Figure 7.7 shows the error
rate as the function of the query length qL (from 2% to
10% of the spatial universe), respectively. The error of FT
queries (average of predictions for the next 1-10

timestamps) is higher because it also includes the
inaccuracy of prediction. The results for the road dataset
are less accurate, because (as discussed in Figure 7.3) the
local uniformity assumption within each bucket does not
capture well the actual data distribution.

HT PT FT
error rate

q

0%

5%

10%

15%

20%

2% 4% 6% 8% 10%

L q

error rate

0%

5%

10%

15%

20%

25%

30%

35%

2% 4% 6% 8% 10%
L

(a) spatial (b) road

Figure 7.7: Query error comparison (B=500)

Next, we compare our prediction method, ES for
exponential smoothing, with the state-of-the-art model
[TSP03] that uses only information about current location
and velocity. In this model, non-uniform data are handled
by a 4D minskew histogram (2D for spatial, 2D for
velocity). The velocity of an object at timestamp i is
determined by its location at timestamps i and i+1. The
histogram is constructed using 100×100 and 6×6 regular
partitions on the spatial and velocity dimensions,
respectively. The number of buckets is set to 2000 (more
buckets are needed due to the 4D space) and rebuilding
occurs every timestamp (so that the error is due to the
model and not the histogram deterioration). In other
words, both the space consumption and the CPU overhead
are much higher than AMH.

Figure 7.8 shows the error rate for 25k uniformly
distributed FT queries as a function of qT (i.e., future
prediction time), fixing qL to 6% of the spatial universe.
Although in spatial the movement is linear, velocity-
based prediction is less accurate than ES (Figure 7.8a).
Compared to the results reported in [TSP03], the error of
the method is higher, because it now includes the updates
that occur between the current and the query time (in
[TSP03] it is assumed that there are no such updates). For
the road dataset (Figure 7.8b), where updates are much
more intense, the quality of prediction deteriorates fast
with qT, confirming our observations (in Section 6) that
velocity-based prediction is meaningless in such cases.

ES Velocity-based prediction

prediction timestamp

error rate

0

5%

10%

15%

20%

25%

30%

1 3 5 7 9
prediction timestamp

error rate

0

20%

40%

60%

80%

100%

1 3 5 7 9
(a) spatial (b) road

Figure 7.8: Error rate vs. qT (qL = 6%)

7.6 The effect of update intensity

Having demonstrated the accuracy of the proposed
methods, we now test the historical synopsis architecture
in real-time environments involving intensive updates. In
this scenario we assume that updates have higher priority
and, therefore, re-organization is delayed during periods
of high workload. In order to evaluate the behaviour of
the two implementations (packed B-tree and 3D R-tree),
we issue 25k HT, PT and FT queries uniformly
distributed in history. Figure 7.9 shows the error as a
function of the update rate, which varies from 1k to 100k
updates per second. For 1k updates the accuracy of both
implementations is the same, implying that they can both
follow the data distribution effectively. In the other cases,
however, the 3D R-tree incurs higher error, because it
consumes a significant amount of time for insertion
operations (of the dead buckets in the tree). On the other
hand, the efficient insertion algorithms of the packed B-
tree, allow the system to devote more CPU time to
histogram re-organization, leading to lower error. Note
that the error rate of spatial increases faster than that of
the road dataset, because the data distribution varies
significantly with time, implying that if the buckets do not
get re-organized, they will soon become outdated.

However, if a large percentage of the workload consists of
queries, then the 3D R-tree synopsis is preferable, since it
utilizes the spatial condition to effectively prune the
search space. Figure 7.10 shows the average cost of all
query types for the two implementations. In both cases,
PT queries are processed by AMH and have the same
performance. HT (and, consequently, FT) queries incur
almost half the cost in R-trees. For typical settings, we
found that if the query/update ratio in the workload
exceeds 3/7, the 3D R-tree is better (i.e., it allows for
more re-organization operations).

Packed B-tree 3D R-tree
error rate

0%

5%

10%

15%

20%

25%

1k 10k 100k
update rate update rate

error rate

0%

5%

10%

15%

20%

25%

1k 10k 100k

(a) spatial (b) road

Figure 7.9: Error rate vs. update rate (qL = 6%, B=500)
CPU time
msec

0

1

2

3

4

5

PT HT FT
Figure 7.10: Query cost comparison (qL = 6%, B =500)

8. Conclusions

Existing spatio-temporal access methods have several
disadvantages that severely limit their applicability: (i)
they focus explicitly on either historical information
retrieval, or future prediction; (ii) they are very expensive
to update and query on-line, since both types of
operations incur a large number of disk accesses; (iii)
their prediction assumptions are unrealistic for most
practical scenarios. Motivated by these problems, we
present a comprehensive approach for processing queries
that refer to any time in history. Instead of keeping
detailed information about individual objects, the
proposed architecture maintains an incremental multi-
dimensional histogram, which answers present-time
queries. Outdated buckets are stored in a main-memory
index, in order to answer queries about the recent past
without any I/O operations. The "oldest" parts of the
index migrate to the disk in blocks, so that the total I/O
cost of updates is minimized. Finally, future queries are
answered by a stochastic method that uses the recent
history to predict the future, without any assumptions
about velocity. Extensive experiments confirm the
effectiveness of our techniques under realistic settings.

Acknowledgements

This work was supported by grants HKUST 6081/01E
and HKUST 6197/02E from Hong Kong RGC.

References

[AAE00] Agarwal, P., Arge, L., Erickson, J. Indexing Moving
Points. PODS, 2000.

[AC99] Aboulnaga, A., Chaudhuri, S. Self-tuning
Histograms: Building Histograms Without Looking
at Data. SIGMOD, 1999.

[AN00] Aboulnaga, A., Naughton, J. Accurate Estimation of
the Cost of Spatial Selections. ICDE, 2000.

[APR99] Acharya, S., Poosala, V., Ramaswamy, S.
Selectivity Estimation in Spatial Databases.
SIGMOD, 1999.

[B02] Brinkhoff, T. A Framework for Generating
Network-Based Moving Objects. GeoInformatica
6(2), 153-180, 2002.

[BKSS90] Beckmann, N., Kriegel, H., Schneider, R., Seeger,
B. The R*-tree: An Efficient and Robust Access
Method for Points and Rectangles. SIGMOD, 1990.

[BGC01] Bruno, N., Chaudhuri, S., Gravano, L. STHoles: A
Multidimensional Workload-Aware Histogram.
SIGMOD, 2001.

[CC02] Choi, Y., Chung, C. Selectivity Estimation for
Spatio-Temporal Queries to Moving Objects.
SIGMOD, 2002.

[G85] Gardner, E. Exponential Smoothing: The State of
the Art. Journal of Forecasting (4): 1-28, 1985.

[GKTD00] Gunopulos, D., Kollios, G., Tsotras, V.,
Domeniconi, C. Approximating Multi-Dimensional
Aggregate Range Queries over Real Attributes.
SIGMOD, 2000.

[GM98] Gibbons, P., Matias, Y. New Sampling-Based
Summary Statistics for Improving Approximate
Query Answers. SIGMOD, 1998.

[GMP02] Gibbons, P., Matias, Y., Poosala, V. Fast
Incremental Maintenance of Approximate
Histograms. TODS 27(3):261-298, 2002.

[H86] Hunter, J. The Exponentially Weighted Moving
Average, Journal of Quality Technology, 18(4), 203-
207, 1986.

[HKT03] Hadjieleftheriou, M., Kollios, G., Tsotras, V.
Performance Evaluation of Spatio-temporal
Selectivity Estimation Techniques. SSDBM, 2003.

[HKTG02] Hadjieleftheriou, M., Kollios, G., Tsotras, V.,
Gunopulos, D. Efficient Indexing of Spatiotemporal
Objects. EDBT, 2002.

[KGT99] Kollios, G., Gunopulos, D., Tsotras, V. On Indexing
Mobile Objects. PODS, 1999.

[LKC99] Lee, J., Kim, D., Chung, C.. Multi-dimensional
Selectivity Estimation Using Compressed Histogram
Information. SIGMOD, 1999.

[LWV03] Lim, L., Wang, M., Vitter, J. SASH: A Self-
Adaptive Histogram Set for Dynamically Changing
Workloads. VLDB, 2003.

[MD88] Muralikrishna, M., DeWitt, D. Equi-Depth
Histograms For Estimating Selectivity Factors For
Multi-Dimensional Queries. SIGMOD, 1988.

[MVW00] Matias,Y.,Vitter,J,Wang,M., Dynamic Maintenance
of Wavelet-Based Histograms. VLDB, 2000.

[MVW98] Matias, Y., Vitter, J., Wang, M. Wavelet-Based
Histograms for Selectivity Estimation. SIGMOD,
1998.

[PI97] Poosala, V., Ioannidis, Y. Selectivity Estimation
Without the Attribute Value Independence
Assumption. VLDB, 1997.

[PJT00] Pfoser, D., Jensen, C., Theodoridis, Y. Novel
Approaches in Query Processing for Moving Object
Trajectories. VLDB, 2000.

[PTKZ02] Papadias, D., Tao, Y., Kalnis, P., Zhang, J. Indexing
Spatio-Temporal Data Warehouses. ICDE, 2002.

[SAA02] Sun, C., Agrawal, D., Abbadi, A. Exploring Spatial
Datasets with Histograms. ICDE, 2002.

[SJ02] Saltenis, S., Jensen, C. Indexing of Moving Objects
for Location-Based Services. ICDE, 2002.

[SJLL00] Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.
Indexing the Positions of Continuously Moving
Objects. SIGMOD, 2000.

[TGIK02] Thaper, N., Guha, S., Indyk, P., Koudas, N.
Dynamic Multidimensional Histograms. SIGMOD,
2002.

[TP01] Tao, Y., Papadias, D. The MV3R-Tree: A Spatio-
Temporal Access Method for Timestamp and
Interval Queries. VLDB, 2001.

[TPS03] Tao, Y., Papadias, D., Sun, J. The TPR*-Tree: An
Optimized Spatio-Temporal Access Method. VLDB,
2003.

[TSP03] Tao, Y., Sun, J. Papadias, D. Selectivity Estimation
for Predictive Spatio-Temporal Queries. ICDE,
2003.

[WAA01] Wu, Y., Agrawal, D., Abbadi, A. Using the Golden
Rule of Sampling for Query Estimation. SIGMOD,
2001.

[ZTG02] Zhang, D., Tsotras, V., Gunopulos, D. Efficient
Aggregation over Objects with Extents.PODS, 2002.

