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« Introduction & Motivation
- Stream computation model, Applications

» Basic stream synopses computation
- Samples, Equi-depth histograms, Wavelets

*  Mining data streams
- Decision trees, clustering, association rules
» Sketch-based computation techniques

- Self-joins, Joins, Wavelets, V-optimal histograms

- Advanced techniques

- Sliding windows, Distinct values, Hot lists

- Future directions & Conclusions
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Processing Data Streams: Motivation... ms. O

A growing number of applications generate streams of data

- Performance measurements in network monitoring and traffic
management

- Call detail records in telecommunications

- Transactions in retail chains, ATM operations in banks
- Log records generated by Web Servers

- Sensor network data
Application characteristics

- Massive volumes of data (several terabytes)

- Records arrive at a rapid rate

Goal: Mine patterns, process queries and compute statistics on data
streams in real-time
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Data Streams: Computation Mode| e 6

A data stream is a (massive) sequence of elements:e ..., e

n

Synopsis in Memory

Data Streams I

Processing Answer
Engine

L
- \ Sy (Approximate)

Stream processing requirements
- Single pass: Each record is examined at most once

- Bounded storage: Limited Memory (M) for storing synopsis
- Real-time: Per record processing time (to maintain synopsis) must be

IOW Garofalakis, Gehrke, Rastogi, VLDB’02 #4




Network Management Application e O

Network Management involves monitoring and configuring network
hardware and software to ensure smooth operation

- Monitor link bandwidth usage, estimate traffic demands
- Quickly detect faults, congestion and isolate root cause
- Load balancing, improve utilization of network resources

Network Operations
Measurements Center

Alarms T

~
—

Network -
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+ IP session data (collected using Cisco NetFlow)

IP Network Measurement Data

Source Destination | Duration Bytes | Protocol
10.1.0.2 16.2.3.7 12 20K http
18.6.7.1 12.4.0.3 16 24K http
13.9.4.3 11.6.8.2 15 20K http
15.2.2.9 17.1.2.1 19 40K http
12.4.3.8 14.8.7.4 26 58K http
10.5.1.3 13.0.0.1 27 100K ftp
11.1.0.6 10.3.4.5 32 300K ftp
19.7.1.2 16.5.5.8 18 80K ftp

+ ATA&T collects 100 6Bs of NetFlow data each day!
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Network Data Processing i 6

Traffic estimation
- How many bytes were sent between a pair of IP addresses?

- What fraction network IP addresses are active?

- List the top 100 IP addresses in terms of traffic
Traffic analysis

- What is the average duration of an IP session?

- What is the median of the number of bytes in each IP session?
Fraud detection

- List all sessions that transmitted more than 1000 bytes

- Identify all sessions whose duration was more than twice the normal
Security/Denial of Service

- List all IP addresses that have witnessed a sudden spike in traffic

- Identify IP addresses involved in more than 1000 sessions

Garofalakis, Gehrke, Rastogi, VLDB’02 #7



Data Stream Processing ...
Algorithms

Generally, algorithms compute approximate answers

- Difficult to compute answers accurately with limited memory

Approximate answers - Deterministic bounds
- Algorithms only compute an approximate answer, but bounds on
error
Approximate answers - Probabilistic bounds
- Algorithms compute an approximate answer with high probability
* With probability at least 1- ¢, the computed answer is within a
factor € of the actual answer

Single-pass algorithms for processing streams also
applicable to (massive) terabyte databases!

Garofalakis, Gehrke, Rastogi, VLDB’02 #38
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- Introduction & Motivation

Basic stream synopses computation
- Samples: Answering queries using samples, Reservoir sampling

- Histograms: Equi-depth histograms, On-line quantile computation

- Wavelets: Haar-wavelet histogram construction & maintenance

Mining data streams

Sketch-based computation techniques

Advanced techniques

Future directions & Conclusions
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Sampling: Basics LS.

+ Idea: A small random sample S of the data often well-
represents all the data
- For a fast approx answer, apply "modified” query to S

- Example: select agg from R where R.e is odd
Datastream:|9 3 5 2 7 1 6 5 8 4 9 1 (n=12)

Sample S:;{9 5 1 8

- If agqg is avg, return average of odd elements in S | answer: 5

- If agq is count, return average over all elements e in S of
* nif eis odd
* O if eis even

answer: 12*3/4 =9

Unbiased: For expressions involving count, sum, avg: the estimator

is unbiased, i.e., the expected value of the answer is the actual answer
Garofalakis, Gehrke, Rastogi, VLDB’02 # 10



Probabilistic Guarantees W— ...

Example: Actual answer is within 5+ 1 with prob >0.9

Use Tail Inequalities to give probabilistic bounds on returned answer
- Markov Inequality

- Chebyshev's Inequality

- Hoeffding's Inequality

- Chernoff Bound

Garofalakis, Gehrke, Rastogi, VLDB'02 #11



Tail Inequalities LS.

General bounds on tai/ probability of a random variable (that is,

probability that a random variable deviates far from its expectation)

Probability
distribution

Tail probability

< LI >ﬂ< 1IE >
Basic Thequalities: Let X be a random variable with expectation 4 and

variance Var[X]. Then for any £ >0

Markov: Pr(X >¢)< “
£
Var| X |

282

Chebyshev: Pr(| X —u [> pe) <
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Tail Inequalities for Sums W— ...

Possible to derive stronger bounds on tail probabilities for the sum of
independent random variables

Hoeffding's Inequality: Let X1, ..., Xm be independent random variables
with 0<=Xi<=r. Let )?:iziXi and [ be the expectation of X . Then,
for any £>0, "

—2me*
Pr(| X —ul>e)<2exp =

Application to avg queries:

- mis size of subset of sample S satisfying predicate (3 in example)
- ris range of element values in sample (8 in example)
Application to count queries:
- mis size of sample S (4 in example)
- ris number of elements n in stream (12 in example)

More details in [HHW97]
Garofalakis, Gehrke, Rastogi, VLDB’02 #13



Tail Inequalities for Sums e O 8
(Con’rd )

Possible to derive even stronger bounds on tail probabilities for the sum
of independent Bernoulli trials

Chernoff Bound: Let X1, ..., Xm be independent Bernoulli trials such that
Pr[Xi=1] = p (Pr[Xi=0] = 1-p). Let x =>_ X,and H{ =MPp be the
expectation of X . Then, for any £ >0,

Pr(| X —u > ue)<2exp 2

Application to count queries:
- mis size of sample S (4 in example)
- pis fraction of odd elements in stream (2/3 in example)

Remark: Chernoff bound results in tighter bounds for count queries
compared to Hoeffding's inequality
Garofalakis, Gehrke, Rastogi, VLDB’02 #14



Computing Stream Sample ez O [l

Reservoir Sampling [Vit85]: Maintains a sample S of a fixed-size M

- Add each new element to S with probability M/n, where n is the
current number of stream elements

- If add an element, evict a random element from S

- Instead of flipping a coin for each element, determine the number of
elements to skip before the next to be added to S

Concise sampling [GM98]1: Duplicates in sample S stored as <value, count>
pairs (thus, potentially boosting actual sample size)

- Add each new element to S with probability 1/T (simply increment
count if element already in S)

- If sample size exceeds M
- Select new threshold T'> T

» Evict each element (decrement count) from S with probability 1-
T/T

- Add subsequent elements to S with probability 1/T

Garofalakis, Gehrke, Rastogi, VLDB’02 #15




Counting Samples [GM98] e ]....

Effective for answering hot list queries (k most frequent values)
- Sample S is a set of <value, count> pairs
- For each new stream element
+ If element value in S, increment its count
* Otherwise, add to S with probability 1/T
- If size of sample S exceeds M, select new threshold T'> T

* For each value (with count C) in S, decrement count in repeated
tries until C tries or a try in which count is not decremented

- First try, decrement count with probability 1- T/T
- Subsequent tries, decrement count with probability 1-1/T

- Subject each subsequent stream element to higher threshold T

Estimate of frequency for value in S: count in S + 0.418*T

Garofalakis, Gehrke, Rastogi, VLDB’02 #16



Histograms - 6

Histograms approximate the frequency distribution of

element values in a stream

A histogram (typically) consists of
- A partitioning of element domain values into buckets

- A count C; per bucket B (of the number of elements in B)

» Long history of use for selectivity estimation within a query
optimizer [Koo80], [PSC84], etc.

[PIH96] [Po097] introduced a taxonomy, algorithms, etc.

Garofalakis, Gehrke, Rastogi, VLDB’02 #17



Types of Histograms —z==e Ol
» Equi-Depth Histograms

- Idea: Select buckets such that counts per bucket are equal

Count for
bucket

L0 A0 - -l
123

456789101112131415161718 1920 Domain values

- V-Optimal Histograms [IP95] [JKM98]

- Idea: Select buckets to minimize frequency variance within buckets

minimize » > _(f, —% ’

B

A

Count for

bucket HH
v 00 Nald — 0l
123

456789101112131415161718 1920 Domain values
Garofalakis, Gehrke, Rastogi, VLDB’02 #18




Answering Queries using Histograms.... ... O
[IP99]

* (Implicitly) map the histogram back to an approximate

relation, & apply the query to the approximate relation
- Example: select count(*) from R where 4 <= R.e <= 15

Count spread

Nnn ] snn sl evenly among
12 34567801011121314151617181920  oucketvalues
<

>

4<Re<15

answer: 3.5 * C,

For equi-depth histograms, maximum error: +2*C,

Garofalakis, Gehrke, Rastogi, VLDB’02 #19



Equi-Depth Histogram Construction e O

For histogram with b buckets, compute elements with rank n/b, 2n/b, ...,
(b-1)n/b
Example: (n=12, b=4)

Datastream:|9 3 5 2 7 1 6 5 8 4 9 1

J

Aftersort:f1 1 213 4 5|5 6 718 9 9

T |

rank = 3 rank = 9
(.25-quantile) (.75-quantile)
rank = 6
(.5-quantile)

Garofalakis, Gehrke, Rastogi, VLDB’02 #20



Computing Approximate Quantiles ... 9.
Using Samples

Problem: Compute element with rank r in stream

Simple sampling-based algorithm
- Sort sample S of stream and return element in position rs/n in
sample (s is sample size)
- With sample of size O(gl—zlog(%)), possible o show that rank of
returned element is in [r —en,r + en] with probability at least1-6

* Hoeffding's Inequality: probability that S contains greater than rs/n
elements from S”is ho more than exp‘zs‘82

o | |
Stream - N
S r—-en r r4+é&n
Sample S: | | *I |
rs/n

[CMN98][GMP97] propose additional sampling-based methods

Garofalakis, Gehrke, Rastogi, VLDB’02 #21



Algorithms for Computing R O
Approximate Quantiles

+ [MRL98],[MRL99],[GKO1] propose sophisticated algorithms
for computing stream element with rank in [» —é&n,r +&n]

- Space complexity proportional to é instead of %

- [MRL98], [MRL99]
- Probabilistic algorithm with space complexity O(?ng(é‘n))
- Combined with sampling, space complexity becomes O(llogz(llog(%)))
E E

+ [GKO1]

- Deterministic algorithm with space complexity O% log(&n))

Garofalakis, Gehrke, Rastogi, VLDB’02 #22



Single-Pass Quantile — O
Computation Algorithm [MRL 98]

Split memory M into b buffers of size k (M = bk)
For each successive set of k elements in stream

- If free buffer B exists
- insert k elements into B, set level of B 10 O

- Else
 merge two buffers B and B’ at same level |

- output result of merge into B', set level of B to I+1
- insert k elements into B, set level of Bto O
Output element in position r after making 2! copies of each element in
final buffer and sorting them
Merge operation (input buffers B and B' at level |)
- Make 2’ copies of each element in B and B’
- Sort copies
- Qutput elements in positions j21+1 + 2" in sorted sequence, j=0, ..., k-1

Garofalakis, Gehrke, Rastogi, VLDB’02 #23



Single-Pass Algorithm (Example}~=== O

M=9, b=3, k=3, r =10

1{1]1 1 3[3]5 5 7|7|ls 8 |1 3 7 level = 2
11213|5|7]|9 1 3 7 1 5 8 level = 1
9 3 5 2 7 1 6 5 8 4 9 1| level=0

Computed quantile (r=10)
111133337|7\77

Garofalakis, Gehrke, Rastogi, VLDB’02 #24




Analysis of Algorithm .-

b

AWAN

< >
2b—l
Number of elements that are neither definitely small, nor definately

large: (h—2)2""
Algorithm returns element with rank r', where

r—(b=2)2"7 < <r+(b-2)2""

b—1
Choose Sma”eST b SUCh ThaT k2 2 n and bk = %'ofalakis, Gehrke, Rastogi, VLDB’02 #25



Computing Approximate Quantiles ... O
[GKO1]

Synopsis structure S: sequence of tuples f1,,7,,....,t,

t t t, t

1

(vLguA) = = & |(v,g ,AL) (v.,2,A) = " = (angoAv

N

. Sorted
Foin (Vist) r..(v,) r..w.) r. (v) sequence

< > < >

8i A,

1

Foin (V) T (V) min/max rank of v,
g,: humber of stream elements covered by ¢,

mm(v) Z]<lg]9 rmax(vi)zzjgigj+Ai
Garofalakis, Gehrke, Rastogi, VLDB’02 #26
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Computing Quantile from Synopsis = O

Theorem: Let i be the max index such that 7...(vi.) <r+é&n . Then,

r—en<rank(v, ,)<r+é&n

t, t t, t

l S

LgeA) = = = ,g A |0bg.A) s = m |(V,g.A

A 7y >
rmm (Vz 1 ) rmin (vi) rmax (Vi—l ) rmax (vi )
< % >
r=en e <1, O,
v

r. (v, )2r—én

min

Garofalakis, Gehrke, Rastogi, VLDB’02 #27




Inserting a Stream Element into ... O
the Synopsis

Let v be the value of the n+1” stream element, and ¢, and ¢, be tuples

in S such that v, <v<v,
Inserted fuple

t, { ’ﬁt with value v {

i—1 S

ogh) = = = [oga A 0129 [GeA) = = = [veg.A,

>
rmin (vi—l) rmin (V) rmin (vi) rmax (V) rmax (Vi )
<T> — ] 1
< >
g +A < Lsz

Maintains invariants

gi = rrnin (vi) — rmin (vi—l) Ai — rmax (vi) _ rmin (Vi)
1
2e elements per A value

- A, for a tuple is never modified, after it is inserted
Garofalakis, Gehrke, Rastogi, VLDB’02 #28



Overview of Algorithm & Analysis st O

Partition the A, values into log(2en) "bands”

- Remember: we need to maintain g; +A; <2&n => tuples in higher bands have
more capacity (= max. no. of observations that can be counted in g;)

Periodically (every L observations) compress the quantile synopsis in a
right-to-left pass
- Collapse ti into t(i+1) if: (a) t(i+1) is at a higher A -band than ti, and
(b) g +8u +A, <2&n <4——Maintain our error invariant

tl tl+1 S: tl tzooocct]t]+1 ..... tl_ltl AR EEEREE tS
(V2808 (V128112 A1) /
\ / >
rrnin (Vj) rmin (vi) rmin (vi+l)
ti+1 < > < >
(vi+19gi +gi+]9Ai+]) Z 8, + &g T+ Ai+1 <2&n
Theorem: Maximum number of “alive” tuples from each A -band is ;
E

: 11
- Overall space complexity: —log(2&n)
2E Garofalakis, Gehrke, Rastogi, VLDB'02 #29
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» A, values split into log(2en) bands

size of band o < 2% (adjusted as n increases)

A

Bands: log(2en) log(2¢en) -1 o 21
| | | [ [0

A 012 | 2en |

1

Higher bands have higher capacities (due to smaller A values)
Maximum value of A, in band a: (2&n— 271 e

Number of elements covered by tuples with bands in [O, ..., 0] —

E
- ZL elements per A value
E

Garofalakis, Gehrke, Rastogi, VLDB’02 #30



Tree Representation of Synopsis e O

Parent of tuple ti: closest tuple tj (j>i) with band(tj) > band(#i)

root
St fityed b
4+—>
Longest sequence of tuples t,
with band less than band(ti)
—>
Lipeeendi

Properties:
- Descendants of ti have smaller band values than ti (larger A. values)
- Descendants of ti form a contiguous segment in S
- Number of elements covered by ti (with band &) and descendants:

g*¥<2%/¢e
* Note: gi* is sum of gi values of ti and its descendants
Collapse each tuple with parent or sibling in tree

Garofalakis, Gehrke, Rastogi, VLDB’02 #31




Compressing the Synopsis e

- Every 2i elements, compress synopsis
E

For i from s-1 down to 1
-1f (band(¢#,) <band(?,,)and g, *+g,,, + A
© & =& 8
+ delete ti and all its descendants from S

< 2é&n)

i+1

root

l.

1

§ St ttyed ttatil e d,
/ >

Foin (Vi) Tain (V) T (Vi)

< >« >

%
l. [ooeee ti—l 8i 8+l

j+

. . . . <
MG'”TG'”S anC(I"IC(nTS: Ei +A’ - 281’ Fnin (V ) Finin (Vi—l)

O

Garofalakis, Gehrke, Rastogi, VLDB’02 #32
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Lemma: Both insert and compress preserve the invariant g, + A, <2én

Theorem: Let i be the max index in S such that 7w (Vi) Sr+én Then,

r—én<rank(v,_ )<r+é&n

Lemma: Synopsis S contains at most L ’ruples from each band «
- For each tuple tiin S, & *+& A ‘é 2¢n
- Also, g *<2%/g and A <(2en—2%")

: : 11
Theorem: Total number of tuples in S is at most Elog(z,sn)
- Number of bands: log(2&n)

Garofalakis, Gehrke, Rastogi, VLDB’02 #33



One-Dimensional Haar Wavelets ocont g O

- Wavelets: Mathematical tool for hierarchical decomposition
of functions/signals

* Haar wavelets: Simplest wavelet basis, easy to understand
and implement
- Recursive pairwise averaging and differencing at different

resolutions
Resolution Averages Detail Coefficients
3 [2,2,0,2,3,5, 4, 4]
2 [2, 1, 4, 4] [0, -1, -1, O]
1 [1.5, 4] [0.5, O]
0 < [2.75] 1 [-1.25]

\A / —_— . e -
Haar wavelet decomposition: [2.75, -1.25, 0.5, 0, 0, -1, -1, 0]

Garofalakis, Gehrke, Rastogi, VLDB’02 #34




Haar Wavelet Coefficients R O

» Hierarchical decomposition structure
(a.k.a. “error tree")

Coefficient “Supports”
2.75 +

125 LT

Original frequency distribution 0 +

Garofalakis, Gehrke, Rastogi, VLDB’02 #35



Wavelet-based Histograms [MVW98 ] e o).

* Problem: Range-query selectivity estimation

» Key idea: Use a compact subset of Haar/linear wavelet
coefficients for approximating frequency distribution
- Steps
- Compute cumulative frequency distribution C
- Compute Haar (or linear) wavelet transform of C
- Coefficient thresholding: only m«n coefficients can be kept

+ Take largest coefficients in absolute normalized value
- Haar basis: divide coefficients at resolution j by \/?
- Optimal in terms of the overall Mean Squared (L2) Error
» Greedy heuristic methods
- Retain coefficients leading to large error reduction
- Throw away coefficients that give small increase in error

Garofalakis, Gehrke, Rastogi, VLDB’02 #36



Using Wavelet-based Histograms <tz O

Selectivity estimation: count(a<= R.e<= b) = C'[b] - C'[a-1]
- C'is the (approximate) "reconstructed” cumulative distribution

- Time: O(min{m, logN}), where m = size of wavelet synopsis (humber
of coefficients), N= size of domain

+ At most logN+1 coefficients are
b needed to reconstruct any C' value

C'[a]

Empirical results over synthetic data
- Improvements over random sampling and histograms

Garofalakis, Gehrke, Rastogi, VLDB’02 #3'7




Dynamic Maintenance of Wavelet- .- O
based Histograms [MVWQO0]

Build Haar-wavelet synopses on the original frequency distribution
- Similar accuracy with CDF, makes maintenance simpler
Key issues with dynamic wavelet maintenance

- Change in single distribution value can affect the values of many
coefficients (path to the root of the decomposition tree)

% Change propagates
up to the root
6 b :> b coefficient
\

N
f f,+A

- As distribution changes, "most significant” (e.g., largest) coefficients
can also change!

* Important coefficients can become unimportant, and vice-versa
Garofalakis, Gehrke, Rastogi, VLDB’02 #38




Effect of Distribution Updates B O

Key observation: for each coefficient ¢ in the Haar
decomposition tree
- ¢ = ( AVG(leftChildSubtree(c)) - AVG(rightChildSubtree(c)) )/ 2

Only coefficients on
path(v) are affected and
each can be updated in
constant time

Garofalakis, Gehrke, Rastogi, VLDB’02 #39



Maintenance Algorithm [MWVOO] - oo O
Simplified Version

Histogram H: Top m wavelet coefficients
For each new stream element (with value v)
- For each coefficient ¢ on path(v) and with “height” h
- If cisin H, update c (by adding or substracting 1/2")
- For each coefficient ¢ on path(v) and not in H

- Insert c into H with probability proportional to 1/(min(H)*2")
(Probabilistic Counting [FM85])
- Initial value of c: min(H), the minimum coefficient in H
» If H contains more than m coefficients

- Delete minimum coefficient in H

Garofalakis, Gehrke, Rastogi, VLDB’02 #40



O UT I : Lucent Technologies 6
l n e Bell Labs Innovations "

* Introduction & motivation
- Stream computation model, Applications

Basic stream synopses computation
- Samples, Equi-depth histograms, Wavelets

Mining data streams

- Decision trees, clustering

Sketch-based computation techniques

- Self-joins, Joins, Wavelets, V-optimal histograms

Advanced techniques

- Sliding windows, Distinct values, Hot lists

¢ FUTU r'e dlr‘ec*lons & CO“CIUS'O”S Garofalakis, Gehrke, Rastogi, VLDB’02 #41



Clustering Data Streams [GMMQQ] | e 6

K-median problem definition:

Data stream with points from metric space

Find k centers in the stream such that the sum of distances from
data points to their closest center is minimized.

Previous work: Constant-factor approximation algorithms

Two-step algorithm:
STEP 1: For each set of M records, S, find O(k) centers in S, ..., S
- Local clustering: Assign each point in S;to its closest center

STEP 2: Let S' be centers for S, ..., S, with each center weighted by
number of points assigned to it. Cluster S' to find k centers

Algorithm forms a building block for more sophisticated algorithms
(see paper).

Garofalakis, Gehrke, Rastogi, VLDB’02 #42



One-Pass Algorithm - First

Phase (Example)

Lucent Technologies 6
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« M= 3, k=1, Data Strean:

@

@

Garofalakis, Gehrke, Rastogi, VLDB’02 #43



One-Pass Algorithm - Second

Lucent Technologies 6
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Phase (Example)

« M= 3, k=1, Data Strean:

@

@

Garofalakis, Gehrke, Rastogi, VLDB’02 #44
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Observation 1: Given dataset D and solution with cost C
where medians do not belong to D, then there is a solution
with cost 2C where the medians belong to D.

@

@ B
Argument: Let m be the old median. Consider m' in D closest
to the m, and a point p.

- If pis closest to the median: DONE.
- If is not closest to the median: d(p,m’) <= d(p,m) + d(m,m’) <= 2*d(p,m)

Garofalakis, Gehrke, Rastogi, VLDB’02 #45



Analysis: First Phase

Lucent Technologies 6
Bell Labs Innovations .

» Observation 2: The sum of the optimal solution costs for
the k-median problem for Sy, ..., S, is at most twice the

cost of the optimal solution for S

@

@
@

Data Stream

Garofalakis, Gehrke, Rastogi, VLDB’02 #46



AﬂGlYSiSZ Second Phase Lucent Technologies O

- Observation 3: Cluster weighted medians S

- Consider point x with median m* in S and median m in S..
Let m belong to median m' in S’
Cost due to x in S' = d(m,m’)
Note that d(m,m”) <= d(m,x) + d(x,m")
Optimal cost (with medians m* in S) <= sum cost(Si) + cost(S)

cost Si @

cost S@

- Use Observation 1 to construct solution for medians m' in S' with additional

factor 2.
Garofalakis, Gehrke, Rastogi, VLDB’02 #47



Overall Analysis of Algorithm === O

Final Result:
Cost of final solution is at most the sum of costs of S'and Sy, ..., 5,
which is at most a constant times (8) cost of S

@ JROTE
0 @ costS,* T~ 0TS
~ \\\ :2
@ @----n __I:%
® cost S2 \\\ ®
® ®
Data Stream S'

If constant factor approximation algorithm is used to cluster S, ..., S
then simple algorithm yields constant factor approximation

Algorithm can be extended to cluster in more than 2 phases

Garofalakis, Gehrke, Rastogi, VLDB’02 #48



Lucent Technologies 0
Bell Labs Innovations -

Decision Trees

Minivar
>=30 YES
Sports, YES
YES Truck
NO
I i | >
0 30 60 Age

Garofalakis, Gehrke, Rastogi, VLDB’02 #49



Decision Tree Construction et o O

Top-down tree construction schema:

- Examine training database and find best splitting predicate for the root
hode

- Partition training database

- Recurse on each child node

BuildTree(Node 1, Training database D, Split Selection Method S)
(1) Apply S to D to find splitting criterion
(2) if (t is not a leaf node)

(3) Create children nodes of t

(4) Partition D into children partitions
(5) Recurse on each partition

(6) endif
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Decision Tree Construction (cont.) == ORE

* Three algorithmic components:
- Split selection (CART, C4.5, QUEST, CHAID, CRUISE, ..)

- Pruning (direct stopping rule, test dataset pruning, cost-complexity
pruning, statistical tests, bootstrapping)

- Data access (CLOUDS, SLIQ, SPRINT, RainForest, BOAT, UnPivot
operator)

- Split selection
- Multitude of split selection methods in the literature
- Impurity-based split selection: C4.5
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Intuition: Impurity Function
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Impurity Function W— ...

Let p(j|t) be the proportion of class j training records at node
t. Then the node impurity measure at node t:
i(t) = phi(p(1]1), ..., p(J|1)) [estimated by empirical prob.]

Properties:

- phi is symmetric, maximum value at arguments (J-, .., J1),
phi(1,0,..,0) = .. =phi(0,..,0,1) =0

The reduction in impurity through splitting predicate s on attribute X:
A(s X.1) = phi(t) - py phi(t)) - pg phi(te)
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Split Selection e O [l

Select split attribute and predicate:

For each categorical attribute X, consider making one child node per
category

For each numerical or ordered attribute X, consider all binary splits s of
the form X <= x, where x in dom(X)

Age | Yes| No

At a node 1, select split s* such that 0 | 15]15
: : 5 [ 15]15

A(s* X*,1) is maximal over all o 515
s,X considered O |I5]15
Estimation of empirical probabilities: Car | Yes| No
- i Spat | 20 | 20

Use sufficient statistics T o0
Minivan | 20 | 20
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VEDT/CVFDT [DHOODHO1] === O [

VFDT:

- Constructs model from data stream instead of static database

- Assumes the data arrives iid

- With high probability, constructs the identical model that a
traditional (greedy) method would learn

CVFDT: Extension to time changing data
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VEDT (Contd.) ez O [l

Initialize T to root node with counts O

For each record in stream
- Traverse T to determine appropriate leaf L for record

- Update (attribute, class) counts in L and compute best split function
A(s* X L) for each attribute X

- If thereexistsi: A(s*, X,L)- A(s*XL)> € forall X.negX --(1)
- split L using attribute X
Compute value for € using Hoeffding Bound

- Hoeffding Bound: If A(s X.L) takes values in range R, and L contains m
records, then with probability 1-3, the computed value of A(s,X.L) (using m
records in L) differs from the true value by at most ¢

g:JRﬁmua)

2m
- Hoeffding Bound guarantees that if (1) holds, then X is correct choice for

SillT with if‘ObilllTi 1-8 Garofalakis, Gehrke, Rastogi, VLDB’02 #56




Single-Pass Algorithm (Example)—=== O &

Packets > 10 Data Stream

yes no

Protocol = http

A(Bytes)- A(Packets)> ¢ @

Packets > 10/

Data Stream

yes no

Bytes > 6OK

i

Protocol = ftp

Protocol = http

Garofalakis, Gehrke, Rastogi, VLDB’02 #57




Analysis of Algorithm .-

Result: Expected probability that constructed decision tree

classifies a record differently from conventional tree is less
than &/p

- Here p is probability that a record is assigned to a leaf at each level

Garofalakis, Gehrke, Rastogi, VLDB’02 #58



Comparison ez O [l

- Approach to decision trees:

Use inherent partially incremental offline construction of
the data mining model to extend it to the data stream model
- Construct tree in the same way, but wait for significant differences

- Instead of re-reading dataset, use new data from the stream

- "Online aggregation model”

- Approach to clustering:

Use offline construction as a building block

- Build larger model out of smaller building blocks

- Argue that composition does not loose too much accuracy
- "Composing approximate query operators"?

Garofalakis, Gehrke, Rastogi, VLDB’02 #59



O UT I : Lucent Technologies 6
l n e Bell Labs Innovations "

» Introduction & motivation
- Stream computation model, Applications

- Basic stream synopses computation
- Samples, Equi-depth histograms, Wavelets

* Mining data streams

- Decision trees, clustering, association rules
- Sketch-based computation techniques

- Self-joins, Joins, Wavelets, V-optimal histograms
- Advanced techniques

- Distinct values, Sliding windows, Hot lists

- Future directions & Conclusions
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Query Processing over Data Streams. o O

Stream-query processing arises naturally in Network Management
- Data tuples arrive continuously from different parts of the network
- Archival storage is often of f-site (expensive access)

- Queries can only look at the tuples once, in the fixed order of arrival
and with /im/ted available memory

Network Operations Data-Stream Join Query:
Center (NOC) SELECT COUNT(*)
—e——— ROM R1, R2, R3
Mec:t;em";e"‘fs WHERE R1A=R2.B=R3.C

E\
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Data Stream Processing Model e — 6

Approximate query answers often suffice (e.g., trend/pattern analyses)
- Build small synopses of the data streams online
- Use synopses to provide (good-quality) approximate answers

Stream Synopses
(in memory)

Data Streams I

Processing |—»
: Answer
Engine

|
- \ SR (Approximate)

Requirements for stream synopses
- Single Pass: Each tuple is examined at most once, in fixed (arrival) order
- Small Space: Log or poly-log in data stream size

- Real-time: Per-record processing time (fo maintain synopsis) must be low
Garofalakis, Gehrke, Rastogi, VLDB’02 # 62



Stream Data Synopses p——l...

» Conventional data summaries fall short
- Quantiles and 1-d histograms: Cannot capture attribute correlations
- Samples (e.g., using Reservoir Sampling) perform poorly for joins

- Multi-d histograms/wavelets: Construction requires multiple passes over the
data

Different approach: Randomized sketch synopses
- Only logarithmic space
- Probabilistic guarantees on the quality of the approximate answer

- Qverview
- Basic technique
- Extension to relational query processing over streams
- Extracting wavelets and histograms from sketches
- Extensions (stable distributions, distinct values, quantiles)
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Randomized Sketch Synopses for Streams-wmose O

Goal: Build small-space summary for distribution vector f(i) (i=0,..., N-1)
seen as a stream of i-values 2___2
1

1 1

Data stream:|2, 0, 1, 3, 1, 2, 4, ... >

f(0) (1) f(2) f(3) f(4)

Basic Construct: Randomized Linear Projection of f() = inner/dot
product of f-vector

_ : where &= vector of random values from an
</ 5 ~= Zf (i )51 appr'opr'ife distribution

- Simple to compute over the stream: Add fi whenever the i-th value is seen

Data stream:| 2, O, 1, 3, 1, 2, 4, ... > "fo +2§1 +2§2 +§3 +§4

- Generate {fi‘s in small space using pseudo-random generators
- Tunable probabilistic guarantees on approximation error

Used for low-distortion vector-space embeddings [JL84]

- Applicability to bounded-space stream computation in [AMS96]
Garofalakis, Gehrke, Rastogi, VLDB’02 #64



Sketches for 2nd Moment Estimation e pmoose O
over Streams [AMS96]

* Problem: Tuples of relation R are streaming in -- compute

the 2nd frequency moment of attribute R.A, i.e.,

F,(R.A)= NZ_I[f(i)]z, where f(i) = frequency( i-th value of R.A)

F,(R.4)= COUNT(RPLIR)  (size of the se/f-joinon R.A)

» Exact solution: too expensive, requires O(N) spacel!l
- How do we do it in small (O(logN)) space??
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Sketches for 2nd Moment Estimation ... O
over Streams [AMS96] (cont.) s S

Key Intuition: Use randomized linear projections of f() to define a
random variable X such that
- X is easily computed over the stream (in small space)

- EIXI=F2 (unbiased estimate) mm Frobabilistic Error Guarantees
- Var[X]is small

Technigue
- Define a family of 4-wise independent {-1, +1} random

variables (£ :1=0,.,N-1}

+ P[ 6=1] = P[ 6i=-1] = 1/2
© Any 4-tuple {C.. & .G, .6, },i# j # k #1 is mutually independent
- Generate é:, values on the fly . pseudo-random generator using
only O(logN) space (for seeding)!
Garofalakis, Gehrke, Rastogi, VLDB 02 #66




Sketches for 2nd Moment Estimation .o O
over Streams [AMS96] (cont.)

Technigue (cont.)

- Compute the random variable Z = < f,¢ >= Z F @),

- Simple linear projection: just add é:l to Z whenever the i-th
value is observed in the R.A stream

- Define X = 7’

- Using 4-wise independence, show that
- E[X]= F, and Var[X] <2.F;

2

* By Chebyshev: P[|X—F,|>¢& F,]< [ <
E
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Sketches for 2nd Moment Estimation .o O
over Streams [AMS96] (cont.)

Boosting Accuracy and Confidence
- Build several /independent, identically distributed (iid) copies of X
- Use averaging and median-selection operations

- Y = average of s, = 16/82 iid copies of X (=> Var[Y]= Var[X]/s1)
. : 1
By Chebyshev Pl|Y-F,[>¢ F,]< g
- W = median of s,=2-log(l/0) iid copies of ¥

“failure”, Prob < 1/8
CZ (1-epsilon) + F.Z + F2 (1+epsilm

Each Y = Binomial trial "success”

P[|W —F, |>&-F,]= Prob[ # failures in s2 trials >s2/2 = (1+3) s2/8]

< O (by Chernoff bounds)

Garofalakis, Gehrke, Rastogi, VLDB’02 # 68



Sketches for 2nd Moment EStimation s O
over Streams [AMS96] (cont.) |

Total space = O(s1*s2*logN)
- Remember: O(logN) space for "seeding” the construction of each X

Main Theorem

- Construct approximation to F2 within a relative error of € with
probability >1—¢6 using only 0(10gN-10g(1/5)/82) space

* [AMS96] also gives results for other moments and space-complexity
lower bounds (communication complexity)

- Results for F2 approximation are space-optimal (up to a constant
factor)

Garofalakis, Gehrke, Rastogi, VLDB’02 # 69



Sketches for Stream Joins and Multi- . ieoroeme O

Joins [AGM99, DGGO2] N1 3]
SELECT COUNT(*)/ SUM(E) COUNT= %" %" f,(i) /2,30, )) f5())
FROM R1,R2,R3 i=0 j=0
WHERE R1.A = R2.B,R2.C = R3.D ( fk() denotes frequencies in Rk )

4-wise independent {-1,+1} families
(generated independently)

R1 R2 R3
at L& i=0,. , N-1y e e 6, j=0,. M -1}
o e —— S —— e e —— S ——

1@

—

N—-1 M-

Z, = Z fi()¢, Z,=> > 1,0, )0, Zy = ng,(j)é’j

i=0

J
Update:| R2-tuple with (B,C) = (ij) = Z2+ — é‘iej

* Define X = 21Z223 -- E[X]= COUNT (unbiased), O(logN+logM) space
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Sketches for Stream Joins and Multi- o O
Joins [AGM99, DGG02] (cont.)

SELECT COUNT(*) * Define X = Z122Z3 ., E[X]=COUNT

FROM R1, R2,R3 X
WHERE R1A=R2B R2C=R3.D * Unfortunately, Var[X] increases

with the number of joinsl!

Var[X] = O(I Iself-join sizes) = O( F,(R,.A)F,(R,.B,R,.C)F,(R,.D))

By Chebyshev: Space needed to guarantee high (constant) relative error
probability for X is O(Var[ X]/COUNT?)

- Strong guarantees in limited space only for joins that are “large”
(wrt self-join sizes)!

Proposed solution: Sketfch Partitioning [DGGO2]

Garofalakis, Gehrke, Rastogi, VLDB’02 #771



Overview of Sketch Partitioning [DGG0O2 Juue seomoes O

ell Labs Innovation:

Key Intuition: Exploit coarse statistics on the data stream to intelligently
partition the join-attribute space and the sketching problem in a way that
provably tightens our error guarantees

- Coarse historical statistics on the stream or collected over an initial pass

- Build independent sketches for each partition ( Estimate = Zparﬁ‘rion
sketches, Variance = Zpar’ri‘rion variances)

10 10

self-join(R1.A)*self-join(R2.B) = 205*205 = 42K

dom(R1.A)
10 10

self-join(R1.A)*self-join(R2.B) +
self-join(R1.A)*self-join(R2.B) = 200*5 +200*5 = 2K

2

d0m| R2.B | Garofalakis, Gehrke, Rastogi, VLDB’02 #72
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Overview of Sketch Partitioning [DGG0O2]............ O

(cont.) —_—

SELECT COUNT(*) > i
FROM R1 R2 R3 {51-3:‘9?} '.0;
WHERE R1.A = R2.B,R2.C=R3.D - {é — i ‘\I dependent
dom(R2.C) X1 X2 nFilr::weilr;e:n
1 1 2 2
{é:i’ej} & ’91}1/
dom(R2.B) N

Maintenance: Incoming tuples are mapped to the appropriate
partition(s) and the corresponding sketch(es) are updated

- Space = O(k(logN+logM)) (k=4= no. of partitions)
Final estimate X = X1+X2+X3+X4 -- Unbiased, Var[X]-= Z Var[Xi]
Improved error guarantees

- Var[X] is smaller (by /intelligent domain partitioning)
- "Variance-aware" boosting

* More space for iid sketch copies to regions of high expected variance
(SCIf"JOin Pr'OdUCT) Garofalakis, Gehrke, Rastogi, VLDB’02 #73



Overview of Sketch Partitioning [DGG02 Juc oo O
(cont.)

Space allocation among partitions: Easy to solve optimally once the
domain partitioning is fixed

Optimal domain partitioning: Given a K, find a K-partitioning that

minimizes . .
Z\/ Var[X;] = Z\/ H size(selfJoin)

1 1

Can solve optimally for single-join gueries (using Dynamic Programming)
NP-hard for queries with > 2 joins!

Proposed an efficient DP heuristic (optimal if join attributes in each
relation are independent)

More details in the paper . . ©
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Stream Wavelet Approximation Using  wewseese O
Sketches [GKMO1]

Single-join approximation with sketches [AGM99]

- Construct approximation to |R1P>IR2| = Zfl(l)fz (I) withina
relative error of & with probability >1—-¢§ using space

O(log N -log(1/6)/(€* %)) , where

PRIV (UYAU)
I 5200 26

Observation: |R1DR2| = Zfl(i)fz (D) =< fi, [, > = inner product!!

- General result for inner-product approximation using sketches

= |[R1XIR2]| / Sqri( Hself—join sizes)

Other inner products of interest: Haar wavelet coefficients!

- Haar wavelet decomposition = inner products of signal/distribution with
specialized (wavelet basis) vectors

Garofalakis, Gehrke, Rastogi, VLDB’02 #75



Haar Wavelet Decomposition S O ...
- Wavelets: mathematical tool for hierarchical decomposition of
functions/signals

Haar wavelets: simplest wavelet basis, easy to understand and
implement

- Recursive pairwise averaging and differencing at different resolutions

Resolution Averages Detail Coefficients
3 D=1[220,23,5,4,4]
2 [21 1/ 4/ 4] [OI _11 _11 O]
1 [1.5, 4] [0.5, 0]
0 < [2.75] A [-1.25]
. 7 v K

Haar wavelet decomposition: [2.75, -1.25, 0.5, 0, 0, -1, -1, 0]

Compression by ignoring small coefficients

Garofalakis, Gehrke, Rastogi, VLDB’02 #76



Haar Wavelet Coefficients e 6

Hierarchical decomposition structure ( a.k.a. Error Tree )

Reconstruct data values d(i) +
- d(i) :Z(+/-1) * (coefficient on path)

Original data | 2 2 0 2 3 5 4 4

Coefficient thresholding: only B« |D| coefficients can be kept
- B is determined by the available synopsis space
- B largest coefficients in absolute normalized value

- Provably optimal in terms of the overall Sum Squared (L2) Error
Garofalakis, Gehrke, Rastogi, VLDB'02 #'77



Stream Wavelet Approximation using Lucont egcogie O
Sketches [GKMO1] (cont.)

Each (normalized) coefficient ci in the Haar decomposition tree

- ¢i = NORMi * ( AVG(leftChildSubtree(ci)) - AVG(rightChildSubtree(ci)) )/ 2
Overall average cO = <f, wO> = <f , (1/N, ..., 1/N)>
1/N

wO =

ci = <f, wi>

Wi

()

Use sketches of f() and wavelet-basis vectors to extract “large” coefficients

Key: “Small-B Property” = Most of f()'s “energy” = || f||5= Zfz (i) is
concentrated in a small number B of large Haar coefficients

Garofalakis, Gehrke, Rastogi, VLDB’02 #7738



Stream Wavelet Approximation USING e reomsone 6
Ske’rches [GKMO1]: The Method |

Input: "Stream of tuples” rendering of a distribution f() that has a B-
Haar coefficient representation with energy >7-|| 11|

Build sufficient sketches on f() to accurately (within &,5) estimate a//
Haar coefficients ci = <f, wi> such that |ci| >./en/B | |
- By the single-join result (with A4 = JEN/B) the space heeded is
O(log N -log(N/8)- B/(’n))
- N/J comes from “union bound” (need a// coefficients with probability 1 -6 )

Keep largest B estimated coefficients with absolute value > \/en/B || f |I;

Theorem: The resulting approximate represen’rahon of (at most) B Haar
coefficients has energy =(1-&)17-|| f |5 with probability >1-6

First provable guarantees for Haar wavelet computation over data
streams

Garofalakis, Gehrke, Rastogi, VLDB’02 #79



Multi-d Histograms over Streams p——l...

usmq Sketches [TGIOZ2] B
Multi-dimensional histograms: Approximate joint data distribution over
multiple attributes  §iciribution D

Histogram H
B B
vl vb
v2
A A

"Break" multi-d space into Ayper-rectangles (buckets) & use a single
frequency parameter (e.g., average frequency) for each

- Piecewise constant approximation

- Useful for query estimation/optimization, approximate answers, etc.

Wan’r a hls‘rogram H that minimizes L2 error in approximation,
= (d;—h,)* for a given number of buckets (V-Optimal)

- Bunld over a stream of data tuples??

Garofalakis, Gehrke, Rastogi, VLDB’02 # 80




Multi-d Histograms over Streams s ot O
using Sketches [TGIO2] (cont.) |

View diksTribu’rion and histograms over {O,...N-1}x...x{0,... N-1}
as IV'-dimensional vectors

> | | | | !

Use sketching to reduce vector dimensionality from N"k to (small) d

D (N"k entries) _ _ d entries
<D,& > | (sketches of D)

x - = D= |

[1]

Johnson-Lindenstrauss LemmalJL84]: Using d=O(bklogN/€*) guarantees
that L2 distances with any b-bucket histogram H are approximately preserved
with high probability; that is, |Z-D—-Z-H ||, is within a relative error of &

from || D—H ||, for any b-bucket H

Garofalakis, Gehrke, Rastogi, VLDB’02 #381




Multi-d Histograms over Streams USing e mmose O
Sketches [TGIO2] (cont.)

Algorithm
- Maintain sketch Z-D of the distribution D on-line
- Use the sketch to find histogram H such that [E-D-E-H |, is minimized
- Start with H= ¢ and choose buckets one-by-one greedily
+ At each step, select the bucket [ that minimizes [|E-D-E-(HUB)],

Resulting histogram H: Provably near-optimal wrt minimizing || D—H |,
(with high probability)
- Key:L2 distances are approximately preserved (by [JL84])

Various heuristics to improve running time
- Restrict possible bucket hyper-rectangles
- Look for "good enough” buckets

Garofalakis, Gehrke, Rastogi, VLDB’02 # 82



Extensions: Sketching with Stable N O
DISTI"IbUTIOHS [IndOO]

Idea: Sketch the incoming stream of values rendering the distribution
f() using random vectors & from “special” distributions

p-stable distribution A

+ If X1,..., Xn are iid with distribution A, al,..., an are any real numbers

+ Then, Y a,X, has the same distribution as (Z\ a, |’ )l/p , where X
has distribution A

Known to exist for any p€ (0,2]
- p=1: Cauchy distribution
- p=2: Gaussian (Normal) distribution
For p-stable & : Know the exact distribution of < f6>= Zf (i),
* Basically, sample from (Z| f@)|” )l/pX where X = p-stable random var.

- Stronger than reasoning with just expectation and variance!

- NOTE: (Y| £G)|”)” =l £, the Lp norm of £()

Garofalakis, Gehrke, Rastogi, VLDB’02 #83



Extensions: Sketching with Stable P O
Distributions [Ind00] (cont.)
Use O(log(1/8)/€”) independent sketches with p-stable &'s to
approximate the Lp norm of the f()-stream ( ||/ [l,) within € with
probability >1-§
- Use the samples of | f ||p A 1o estimate || f ||p
- Works for any p&(0,2] (extends [AMS96], where p=2)
- Describe pseudo-random generator for the p-stable &'s

[CDIO2] uses the same basic technique to estimate the Hamming (LO)
horm over a stream
- Hamming norm = number of distinct values in the stream
* Hard estimation problem!
- Key observation: Lp norm with p->0 gives good approximation fo Hamming
- Use p-stable sketches with very small p (e.g., 0.02)

Garofalakis, Gehrke, Rastogi, VLDB’02 #2384



Key Benefit of Linear-Projection ... 9.
Summaries: Deletions!

Straightforward to handle /tem deletions in the stream

- To delete element i ( f(i) = f(i) -1 ) simply subtract fi from the running
randomized linear projection estimate

- Applies to all techniques described earlier

[6KMO2] use randomized linear projections for quantile estimation

- First method to provide guaranteed-error quantiles in small space in the
presence of general fransactions (inserts + deletes)

- Earlier techniques
- Cannot be extended to handle deletions, or
* Require re-scanning the data to obtain fresh sample

Garofalakis, Gehrke, Rastogi, VLDB’02 #85



Random-Subset-Sums (RSSs) for S O
Quantile Estimation [6KMO2] |

Key Idea: Maintain frequency sums for random subsets of intervals at
multiple resolutions

f(U) = N = total element count

Points at different levels correspond
to dyadic intervals: [k2"i, (k+1)27i)

1+log|U| levels
0 U-1

Random-Subset-Sum (RSS) Synopsis
For each level j

- Pick a random subset S of points (intervals): each point is chosen w/ prob. 3
- Maintain the sum of all frequencies in S's intervals: f(S) =Zf(I)

- Repeat to boost accuracy & confidence les§
Garofalakis, Gehrke, Rastogi, VLDB’02 # 86



Random-Subset-Sums (RSSs) for S O
Quantile Estimation [GKMO2] (cont.) --

Each RSS is a randomized linear projection of the frequency vector f()

- fi = 1if i belongs in the union of intervals in S; 0 otherwise

Maintenance: Insert/Delete element i
- Find dyadic intervals containing i ( check high-order bits of binary(i) )
- Update (+1/-1) all RSSs whose subsets contain these intervals

Making it work in small space & time
- Cannot explicitly maintain the random subsets S ( O(|U|) space! )

- Instead, use a O(log|U|) size seed and a pseudo-random function to
determine each random subset S

* pairwise independence amongst the members of S is sufficient
* Membership can be tested in only O(log|U|) time

Garofalakis, Gehrke, Rastogi, VLDB’02 #8'7



Random-Subset-Sums (RSSs) for et et O
Quantile Estimation [GKMO2] (cont.) R
Estimating f(I). I = interval

For a dyadic interval I. Go to the appropriate level, and use the RSSs

to compute the conditional expectation E[ f(S) |/ € S]

- Only use the maintained RSSs whose subset contains S (about half the
RSSs at that level) 1 1 N

- Notethat:  EL/(S)| 1€ S1= /(1) +—fU=D)=— f()+~

- Use this expression to obtain an estimate for f(I)

For an arbitrary interval I: Write I as the disjoint union of at most
O(log|U|) dyadic intervals

- Add up the estimates for all dyadic-interval components

- Variance of the estimate increases by O(log|U|)

Use averaging and median-selection over iid copies (as in [AMS96]) to
bOOST accuracy Gnd Confidence Garofalakis, Gehrke, Rastogi, VLDB’02 #3838



Random-Subset-Sums (RSSs) for S O
Quantile Estimation [GKMO2] (cont.) --

Estimating approximate guantiles
Want a value v such that: f([0..v])€ @N £ &N

- Use f(I) estimates in a binary search over the domain [0..U-1]

Theorem: The RSS method computes an E£-approximate quantile over a
stream of insertions/deletions with probability =21—0 using space of

O(log’ |U |-log(log |U |/6)/€?)

First technique to deal with general transaction streams

RSS synopses are composable

- Can be computed independently over different parts of the stream (e.g., ina
distributed setting)

- RSSs for the entire stream can be composed by simple summation

- Another benefit of linear projections!!
Garofalakis, Gehrke, Rastogi, VLDB’02 #89



More work on Sketches... et Tl O

Low-distortion vector-space embeddings (JL Lemma) [IndO1] and
applications

- E.g., approximate nearest neighbors [IM98]

Discovering patterns and periodicities in time-series databases
[IKMOO, CIKO02]

Maintaining fop-k item frequencies over a stream [CCF02]

Data cleaning [DIMO2]

Other sketching references
- Histogram/wavelet extraction [6GI02, GIMO2]
- Stream norm computation [FKS99]
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» Introduction & motivation
- Stream computation model, Applications

- Basic stream synopses computation
- Samples, Equi-depth histograms, Wavelets

* Mining data streams

- Decision trees, clustering
» Sketch-based computation techniques

- Self-joins, Joins, Wavelets, V-optimal histograms
- Advanced techniques

- Distinct values, Sliding windows

- Future directions & Conclusions
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Distinct Value Estimation p——l...

- Problem: Find the number of distinct values in a stream of
values with domain [O,...,N-1]

- Zeroth frequency moment £, , LO (Hamming) stream norm
- Statistics: number of species or classes in a population
- Important for query optimizers

- Network monitoring: distinct destination IP addresses,
source/destination pairs, requested URLs, etc.

Example (N=8)
Data stream:|3 0 5 3 01 7 5 1 0 3 7

Number of distinct values: 5
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Distinct Value Estimation RS ...

Uniform Sampling-based approaches

- Collect and store uniform random sample, apply an appropriate
estimator

- Extensive literature (see, e.g., [CCMOOQ]) - hard problem for
sampling!!
* Many estimators proposed, but estimates are often inaccurate

+ [CCMOOQ] proved must examine (sample) almost the entire table
to guarantee the estimate is within a factor of 10 with
probability > 1/2, regardless of the function used!

One-pass approaches (single scan + incremental maintenance)

- Hash functions to map domain values values to bit positions in a
bitmap [FM85, AMS96]

- Extension to handle predicates (“distinct values queries”) [Gib01]
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Distinct Value Estimation Using N O
Hashing [FM85] '

Assume a hash function h(x) that maps incoming values x in [O,..., N-1]
uniformly across [0O,..., 27L-1], where L = O(logN)

Let r(y) denote the position of the least-significant 1 bit in the binary
representation of y

- A value x is mapped to r(h(x))

We maintain a BITMAP array of L bits, initialized to O

- For each incoming value x, set BITMAP[ r(h(x)) 1=1
BITMAP

4 3 2 1 0
x =5 = h(x) = 101100—> r(h(x)) = 2 |_?) 0 O‘I‘O 0
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Distinct Value Estimation Using N O
Hashing [FM85] (cont.)

By uniformity through h(x): Prob[ BITMAP[k]=1]= Prob[10° ] = 2k+1
- Assuming d distinct values: expect d/2 to map fo BITMAP[O], d/4 to

map to BITMAP[1], ... BITMAP
L-1 0
0000‘0‘0‘101] f1‘1 T EHEE
" _J S
Y fringe of O/ls o
position > log(d) around log(d) position << log(d)

Let R = position of rightmost zero in BITMAP
- Use as indicator of log(d)

[FM85] prove that E[R] = log(&d) ., where ¢ =.7735
- Estimate d= 2R/¢

- Averaging over several iid instances (different hash functions) fo reduce

estimator variance
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Distinct Value Estimation ocont g O

[FM85] assume “ideal” hash functions h(x) (N-wise independence)

- [AMS96] prove a similar result using simple linear hash functions (only
pairwise independence)

« h(x)= (a-x+b)mod N |, where g, b are random binary vectors in
[0,...,27L-1]

[CDIO2] Hamming norm estimation using p-stable sketching with p->0
- Based on randomized linear projections —> can readily handle deletions
- Also, composable: Hamming norm estimation over mul/tip/e streams

* E.g., number of positions where two streams differ
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Generalization: Distinct Values P O
Queries

+ SELECT COUNT( DISTINCT target-attr)
+ FROM relation Template
- WHERE predicate

+ SELECT COUNT( DISTINCT o_custkey )
- FROM orders

TPC-H example
- WHERE o_orderdate >= '2002-01-01'

- "How many distinct customers have placed orders this year?"
- Predicate not necessarily only on the DISTINCT target attribute

*  Approximate answers with error guarantees over a stream
of tuples?
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Distinct Sampling [6ibO1] e
Key Ideas

Use FM-like technique to collect a specially-tailored sample over the
distinct values in the stream

- Uniform random sample of the distinct values

- Very different from traditional URS: each distinct value is chosen uniformly
regardless of its frequency

- DISTINCT query answers: simply scale up sample answer by sampling rate

To handle additional predicates
- Reservoir sampling of tuples for each distinct value in the sample

- Use reservoir sample to evaluate predicates
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Building a Distinct Sample [GibO1] e O

Use FM-like hash furic’rion h() for each streaming value x

- Problh(x)=k]=

Key Invariant: "All values with h(x)>= level (and only these) are in the
distinct sample”

DistinctSampling( B , r)
// B = space bound, r = tuple-reservoir size for each distinct value
level = 0; S =¢
for each new tuple t do
let x = value of DISTINCT target attribute in t
if h(x)>=level then // x belongs in the distinct sample
use t to update the reservoir sample of tuples for x
if |S|>=Bthen //outof space
evict from S all tuples with h(target-attribute-value) = level

set level = level + 1
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Using the Distinct Sample [6ib01] sz O

If level =1 for our sample, then we have selected all distinct values x
such that h(x) >=|
- Prob[ h(x)»>=11]= %
- By h()'s randomizing properties, we have uniformly sampled fraction
of the distinct values in our stream

Our sampling rate!

Query Answering: Run distinct-values query on the distinct sample and
scale the result up by 2’

Distinct-value estimation: Guarantee € relative error with probability
1-8 using O(log(1/8)/e"2) space
- For q% selectivity predicates the space goes up inversely with q

Experimental results: 0-107% error vs. 50-250% error for previous best
apprOGChesl US|n9 0'20/0 TO ]'Oo/o synopses Garofalakis, Gehrke, Rastogi, VLDB’02 #100



Distinct Sampling Example e O]....

B=3, N=8 (r = O to simplify example)
Data stream:|]3 0 5 3 0 1 7 5 1 0 3 7

0|1 5| 7

. 3
hash: T To 110

Da’ras’rr'eam:1|7 510 3 7

S={3,0,5}, level=0

U

S={15}, level=1

CO m p u Ted va l ue : 4 Garofalakis, Gehrke, Rastogi, VLDB’02 #101



Sliding Window Model e O]....

- Model

- At every time t, a data record arrives

- The record "expires” at time 1+N (N is the window length)

* Whenis it useful?
- Make decisions based on "recently observed” data
- Stock data

- Sensor networks
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Remark: Data Stream Models === O

Tuples arrive X;, X5, X3, ..., X;, ...
Function f(X,t,NOW)
- Input at time t: f(X,1,1), f(X,.2,1). £(X5,3,1), ..., f(X,,1.1)
- Input at time t+1: f(X,,1,t+1), f(X,,2,1+). f(X5,3,1+1), ..., f(X,,;,1+1,1+1)
Full history: F == identity
Partial history: Decay
- Exponential decay: f(X,t, NOW) = 2-(NOW-t)*X
» Input at time t: 2-(0-D*X,, 2-(-2*X,, ., 5% X, 1 X,
+ Input at time t+1: 27X, 2-0-0%X,,, .., 1/4 * X4, 7 *X; Xy
- Sliding window (special type of decay):
- f(X, 1, NOW) = X if NOW-t <N
- f(X,+ NOW) = 0, otherwise
» Input at time t: X, X5, X5, ..., X,

* Input at time t+1: X,, X5, ..., X; Xy,
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Simple Example: Maintain Max e O]....

Problem: Maintain the maximum value over the last N
numbers.

Consider all non-decreasing arrangements of N numbers
(Domain size R):
- There are ((N+R) choose N) arrangement

- Lower bound on memory required:
log(N+R choose N) >= N*log(R/N)

- So if R=poly(N), then lower bound says that we have to store the last
N elements (£2(N log N) memory)
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Statistics Over Sliding Windows—=== O &

Bitstream: Count the number of ones [DGIMO2]
- Exact solution: ©(N) bits
- Algorithm BasicCounting:

* 1+ ¢ approximation (relative errorl!)

- Space: O(1/¢ (log®N)) bits

- Time: O(log N) worst case, O(1) amortized per record
- Lower Bound:

- Space: ()(1/¢ (log®N)) bits
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Approach 1: Temporal Histogram—===O i

Example: .. 01101010011111110110 0101 ...
Equi-width histogram:
.. 0110 1010 O111 1111 O110 0101 ...

-+ Issues:
- Error is in the last (leftmost) bucket.
- Bucket counts (left to right): C,..C,. 1, ....C,.C;
- Absolute error <= C,_/2.
- Answer >= C,_+..+C,+Ci+1,
- Relative error <= C,_/2(C, _i+..+C,+C;+1).
- Maintain: C,./2(C, +..+C,+C+1) <= € (=1/k).
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Naive: Equi-Width Histograms e O

* Goal: Maintain C,./2 <= € (C,_+..+C,+C;+1)
Problem case:
.. 0110 1010 0111 1111 0110 1111 OO0O0 OOOO OOOO OOOO ...

* Note:
- Every Bucket will be the last bucket sometimel

- New records may be all zeros &
For every bucket i, require C./2 <= ¢ (C,_+..+C,+C+1)
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Exponential Histograms .-

* Data structure invariant:
- Bucket sizes are non-decreasing powers of 2
- For every bucket other than the last bucket, there are at least k/2
and at most k/2+1 buckets of that size
- Example: k=4:(1,12,2,2,44,4,88,.)

* Invariant implies:
- Case 1: C, > C-1: C;=2), C, =2i
C. +.+C+C+1 5= K*(Z(1+2+4+ +2i1)) >= k*2i >= k*C,
- Case 2: C, = C-1: C=2], C. =2
C. +.+C,+Ci+1 >= K*(Z(1+2+4+ +21 1)) + 2i>= k*2i/2 >= k*C./2
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Complexity p——l...

* Number of buckets m:

- m <= [# of buckets of size j]*[# of different bucket sizes]
<= (k/2 +1) * ((log(2N/k)+1) = O(k* log(N))

» Each bucket requires O(log N) bits.

» Total memory:
O(k log? N) = O(1/¢ * log® N) bits

» Invariant maintains error guaranteel
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Algorithm s g O

Data structures:
For each bucket: timestamp of most recent 1, size
LAST: size of the last bucket
TOTAL: Total size of the buckets

New element arrives at time t
® If last bucket expired, update LAST and TOTAL

® If(element==1)
Create new bucket with size 1; update TOTAL

®  Merge buckets if there are more than k/2+2 buckets of the same size
® Update LAST if changed

Anytime estimate: TOTAL - (LAST/2)
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Example Run Lucnt achnclogies O

® If last bucket expired, update LAST and TOTAL

® If(element==1)
Create new bucket with size 1; update TOTAL

®  Merge buckets if there are more than k/2+2 buckets of the same size
® Update LAST if changed

32,16884,4,21,1
32,168,84,42,2,1
32,1688,442.21,
32,16,16,84,2,1
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Lower Bound p——l...

Argument: Count number of different arrangements that
the algorithm needs to distinguish

- log(N/B) blocks of sizes B,2B,4B,...,2'B from right to left.

- Block i is subdivided into B blocks of size 2 each.

- For each block (independently) choose k/4 sub-blocks and fill them
with 1.

Within each block: (B choose k/4) ways to place the 1s
+ (B choose k/4)loaN/B) distinct arrangements
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Lower Bound (Continued) sz )

Example:

Show: An algorithm has to distinguish between any such
two arrangements
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Lower Bound (Continued) sz )

Assume we do not distinguish two arrangements:
- Differ at block d, sub-block b

Consider time when b expires
- We have c full sub-blocks in A1, and c+1 full sub-blocks in A2 [note: c+1<=k/4]
- Al c2d9+suml to d-1 k/4*(1+2+4+. +24-1)
= c29+k/2*(24-1)
- A2:  (c+1)29+k/4*(29-1)
- Absolute error: 29-1
- Relative error for A2:
291/[(c+1)29+k/4*(24-1)]>= 1/k = €
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Lower Bound (cont.) —e ...

A2

Al

Calculation:
- Al c29+suml to d-1 k/4*(1+2+4+..+241)
= c2d+k/2%(24-1)
- A2 (c+1)29+k/4*(24-1)
- Absolute error: 241

- Relative error:
24-1/ >=

241/ =1/k=¢€
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More Sliding Window Results st o]

Maintain the sum of last N positive integers in range
{0....R}.

Results:

- 1+ ¢ approximation.

- 1/¢(log N) (log N + log R) bits.

- O(log R/log N) amortized, (log N + log R) worst case.
Lower Bound:

- 1/¢(logN)(log N + log R) bits.

Variance

Clusters
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»  Introduction & motivation
- Stream computation model, Applications

- Basic stream synopses computation
- Samples, Equi-depth histograms, Wavelets

* Mining data streams
- Decision trees, clustering
- Sketch-based computation techniques
- Self-joins, Joins, Wavelets, V-optimal histograms

- Advanced techniques

- Distinct values, Sliding windows

Future directions & Conclusions

Garofalakis, Gehrke, Rastogi, VLDB’02 #117



Future Research Directions e s O

Three favorite problems; generic laundry list follows:

Appropriate “stream algebra” (operators + composition rules)
- Progress: Aurora, Telegraph, STREAM

Lower bounds & tradeoffs for data-streaming problems
- E.g., no.of passes vs. space requirements (“p passes =) f(N,p) space")

Making sketches ready for prime-time

- Approximating sef-valued query results

- Multiple standing queries

- Beyond relational tuples and numeric attributes

- Most appropriate sketching technique for incorporation in DBMSs?
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Data Streaming - Future ...
Research Laundry List

Stream processing system architectures

Memory management for stream processing

* Integration of stream processing and databases
Stream indexing, searching, and similarity matching
Exploiting prior knowledge for stream computation

User-interface issues
- Exposing approximation model to the user

+ Content-based routing, filtering, and correlation of XML
data streams

* Novel stream processing applications

- Sensor networks, financial analysis, etc.
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Concl usions ...

Querying and finding patterns in massive streams is a real problem with
many “real-world" applications

Fundamentally rethink data-management issues under stringent
constraints
- Single-pass algorithms with limited memory resources
A lot of progress in the last few years
- Algorithms, system models & architectures
- Aurora (Brandeis/Brown/MIT)
* Niagara (Wisconsin)
+ STREAM (Stanford)
+ Telegraph (Berkeley)
Commercial acceptance still lagging, but will most probably grow in
coming years
- Specialized systems (e.g., fraud detection), but still far from "DSMSs"

Great Promise: Still lots of interesting research to be done!ll
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Thank you!

* Updated slides & references available from

http://www.bell-labs.com/~{minos, rastogi}
http://www.cs.cornell.edu/johannes/
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