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Abstract—An increasing amount of data is stored in cloud 
repositories, which provide high availability, accessibility, and 
scalability. However, for security reasons enterprises often need 
to store the core proprietary data in their own relational 
databases, while common data to be widely available can be 
stored in a cloud data repository. For example, the subsidiaries of 
a global enterprise are located in different geographic places 
where each subsidiary is likely to maintain its own local database. 
In such a scenario, data integration among the local databases 
and the cloud-based data is inevitable. We have developed a 
system called BigIntegrator to enable general queries that 
combine data in cloud-based data stores with relational 
databases. We present the design and working principle of the 
system. A scenario of querying data from both kinds of data 
sources is used as illustration. The system is general and 
extensible to integrate data from different kinds of data sources. 
A particular challenge being addressed is the limited query 
capabilities of cloud data stores. BigIntegrator utilizes knowledge 
of those limitations to produce efficient query execution. 

Keywords: cloud data repository; relational database; data 
integration;  Bigtable; 

I.  INTRODUCTION 
Cloud based repositories such as Google’s Bigtable [1] 

allow widely accessible distributed data stores to be queried by 
the query language GQL [7]. This is done by web-based 
applications managed by the Google App Engine (GAE) [10]. 
GAE provides an application environment and query language 
to manage data stored in Google’s cloud. It is easy to write 
web-based applications that access and update these cloud-
based databases.  

Cloud repositories such as Google’s Bigtable are 
particularly useful to store data that has to be globally 
available. For example, in industrial settings, machines such as 
engines, trucks, cutting tools, etc., produce many different 
kinds of data and the machines are often geographically widely 
distributed and maintained locally. To check that distributed 
equipment works properly, it is crucial to analyze its working 
status by searching the data produced by the equipment. Since 
the equipment is widely distributed, properties about the 
equipment should be stored in an environment that provides 
high availability and universal access, such as a cloud-based 
data store.  

Relational database systems (RDBMSs) have the limitation 
that they must run in some central server site and therefore 
require substantial maintenance efforts to provide high 
availability. As an alternative approach, we propose to store 
common data, for instance equipment properties, in a cloud-
based data store, such as Bigtable. By using such a cloud 
service the data becomes universally available and can easily 
be maintained. However, the data stored in the cloud often 
needs to be combined with data stored in regular databases. For 
example, cloud-based data is used for finding the locations of a 
particular machine, while the information about the machines’ 
operating environments is stored in local relational databases. 
A maintenance engineer may wish to make queries combining 
relational data with the cloud-based data. To enable this, there 
is need for a system supporting queries combining cloud-based 
data and data in relational databases. We have developed such 
a system, BigIntegrator, to transparently process queries 
combining data stored in Bigtable data stores and data stored in 
relational databases.  

BigIntegrator utilizes a novel query processing mechanism 
to provide easy extension of data integration from different 
kinds of data sources. The mechanism is based on plug-ins 
called absorbers and finalizers. The limited expressiveness of 
GQL has to be taken into account by BigIntergrator’s query 
processor, which is the challenge being addressed by the 
absorbers and finalizers. 

GQL has some similarities with SQL but has very limited 
query expressions in order to provide for scalable processing. 
BigIntegrator can process queries to such data sources with 
limited back-end query languages support. The absorber and 
finalizer for Bigtable data sources know the limitations of GQL 
and will pre and post-process those operations that cannot be 
processed by the data sources. For this, BigIntegrator generates 
integrating execution plans containing calls to relational 
databases, Bigtable data stores, and local operators.  

In summary the contributions of our work are: 

• The BigIntegrator system provides query capabilities 
over combined cloud-based and relational databases.  

• A novel query processing mechanism based on plug-
ins for absorbers and finalizers is developed to allow 
easy extensions for each new kind of data source that 
provide a restricted query language. 
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Machine(Model, Name, Manufacturer) 
MachineInstallation(MID, Model, SID) 

Site(SID, Name, Country, Region) 

Operator(PID, Name, Skill, Operates)

SID Name Country Region 
1 Uppsala Sweden Uppland 
2 Chengdu China Si Chuan 
3 Campinas Brazil Sao Paulo 
4 Chapaevsk Russia Samara 
5 Monki Poland Bialystok 

Site table 
 

PID Name Skill Operates 
1 John Operation 1 
2 Oliver Operation 2 
3 Bruce Operation 3 
4 Carl Operation 4 
5 Thomas Operation 5 
6 Jens Operation 6 
7 Lucas Operation 7 
8 Alex Operation 8 
9 Ryan Operation 9 

10 Wes Operation 10 
Local table Operator 

Model Name Manufacturer 
 1 M1 Volvo 
 2 M2 Volvo 
3 M3 Volvo 
4 M4 Volvo 
5 M5 Volvo 

Machine table 
 

MID Model SID 
1 1 1 
2 2 2 
3 3 3 
4 4 4 
5 5 5 
6 1 1 
7 2 2 
8 3 3 
9 4 4 

10 5 5 
MachineInstallation table 

select i.Mid, o.Name  
from Machine_A m, MachineInstallation_A i, Site_A s, Operator_B o  
where m.Name = ‘M1’ and 
           m.Manufacturer like ‘V%’ and 
           s.Region = ‘Uppland’ and 
           s.Sid = 1 and 
           m.Model = i.Model and 
           i.Sid = s.Sid and 
           i.Mid = o.Operates 

• A client-server architecture for scalable querying of 
Bigtable data repositories is developed. 

The rest of the paper is organized as follows: Section II 
discusses related work. Section III illustrates the system by 
a scenario from an industrial equipment point of view. 
Section IV overviews the BigIntegrator system architecture 
and describes its query processing. Conclusions and future 
work are described in section V. 

II. RELATED WORK 
There are several cloud-based storage systems available, 

such as Dynamo [8], PNUTS [5], and Bigtable [1].  These 
systems have very limited query languages as a compromise 
for very high scalability. The restricted queries do not allow 
joins and there are restrictions on how to specify the query 
conditions.  In contrast, the BigIntegrator pushes as much 
query processing as possible to the data sources and 
compensates the lacking query capability of a data source by 
doing post-query processing with its own query engine. Similar 
approaches can be applied on [8, 5] as well. 

Some cloud-based storage systems such as Cloudy [3] 
provide rather complete SQL capabilities. It offers key-value, 
SQL, and XQuery interfaces to manipulate its cloud data. 
Microsoft SQL Azure [2] offers full SQL language support for 
its cloud-based relational database. Unlike Cloudy and SQL 
Azure, the purpose of BigIntegrator is to allow joining of data 
from a restricted cloud-based data store such as Bigtable with 
relational databases, by generating execution plans that 
combine queries sent to the data sources.  

Unlike classical work on mediator/wrapper techniques over 
conventional databases such as [4], BigIntegrator provides data 
integration between cloud-based data repositories and 
relational DBMSs. Furthermore, a novel query plug-in 
mechanism based on absorbers and finalizers is developed to 
provide easy extensions for new kinds of data sources 
providing restricted query languages.  

To conclude, most work on cloud-based databases 
concentrates on providing scalability, availability and 
consistency as storage services inside a cloud. No other system 
addresses the problem of integrating data from cloud-based 
databases having restricted query languages with relational 
databases. We show the extensibility of the system and the 
advantages of its novel query plug-in mechanisms. 

III. SCENARIO 
In this section, we present a scenario combining data from 

Bigtable and a local relational database.  An enterprise is 
responsible for maintaining geographically widely distributed 
industrial equipment. Some generally available data about the 
equipment is stored in a cloud repository, while data about 
local personnel is in relational databases. BigIntegrator enables 
queries combining these databases.  

The database schema for the cloud based database is shown 
in Fig. 1 and for the relational one in Fig. 2. The cloud table 
Machine(Model, Name, Manufacturer) stores general data 
about industrial machines such as its model identifier, name, 

and manufacturer. The table Site(SID, Name, Country, Region) 
stores information about each site such as site ID, its name, and 
the country and region where it is located. The table 
MachineInstallation(MID, Model, SID) stores information 
about each installation of a machine at some site, i.e the 
identifier of the machine, its model, and the identifier of the 
site where it is located (SID). The attribute Model is foreign 
key from MachineInstallation to Machine and the attribute SID 
is foreign key from MachineInstallation to Site. The tables 
Machine, Machineinstallation, and Site provide globally 
accessible common data and are therefore stored in the cloud.  

A country maintains its local personnel database in the 
relational database in Fig. 2. The table Operator(PID, Name, 
Skill, Operates) stores the identifier of a machine operator 
along with his name, specialty, and the machine he is currently 
operating. The attribute Operates is foreign key from the local 
database table Operator to the cloud database table 
MachineInstallation.  Fig. 3 shows all the tables in this 
scenario with populated data. 

Figure 1.  Cloud database schema 

Figure 2.  Relational database schema 

Figure 3.  Scenario database schema 

The following is an SQL query to BigIntegrator that 
combines data from the cloud-based tables at a data source 
named A (the Bigtable data source) and the relational database 
table at data source named B (the country’s local data source): 
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1, John 
6, Jens 

The query retrieves identities of machines of model “M1” 
along with the operators’ names, where the machines’ 
manufacturer names starts with “V”, the machines are installed 
in the region “Uppland”, and the site code is equal to one. 

Every time a data source is accessed the system 
automatically generates a set of relations called the source 
predicates representing the collections inside the source. The 
source predicates are references as tables in the SQL queries. In 
the example there are the source predicates Machine_A, 
MachineInstallation_A, Site_A, and Operator_B. The name of 
each collection in a source named X is suffixed by “_X”. After 
the query is executed, BigIntegrator returns the following query 
result: 

 

IV. SYSTEM OVERVIEW 
The BigIntegrator system architecture is shown in Fig. 4. 

The system contains two sub-systems: The RDBMS wrapper 
and the Bigtable wrapper. A wrapper needs to be implemented 
for each kind of data source to be queried from the 
BigIntegrator system. The RDBMS wrapper generates SQL 
queries sent to a back-end RDBMS, while the Bigtable wrapper 
generates GQL queries to data stored in Bigtable.  

The system receives SQL queries, which are processed to 
generate a query execution plan that contains calls to the 
underlying relational and Bigtable databases. The wrapper 
modules have plug-ins that know how to generate queries to 
each kind of data source.  

 

Figure 4.  BigIntegrator architecture 

A. BigIntegrator Wrappers 
Fig. 5 shows the components of a wrapper definition for a 

BigIntegrator data source.  

 

Figure 5.  The wrapper components 

For each new kind of data source the components importer, 
absorber, finalizer, and interface function have to be 
developed. Once a wrapper is defined any data source of that 
kind can be wrapped by creating a source identifier id for the 
source and then calling a system procedure import(id,location), 
which accesses the location and imports system catalog data to 
the local meta-database. When a data source is wrapped it can 
be used in SQL queries and joined with other wrapped data 
sources. 

Each data source can contain many collections presented to 
the system as source predicates.  The importer creates the 
source predicates and stores them in the local meta-database. 
Each wrapper has one absorber, which is a plug-in that from a 
user query extracts a subquery, called the access filter. It 
selects data from a particular source predicate, based on the 
capabilities of the source. Each wrapper also has a finalizer, 
which is a plug-in that translates each access filter in the plan 
to an algebra operator called an interface function, specific for 
each kind of source. The interface function sends a query to the 
data source (i.e. a GQL or SQL query).   

B. The BigIntegrator query processor 
The steps of the query processor in BigIntegrator are shown 

in Fig. 6. 

 

Figure 6.  Query processing in BigIntegrator  

The parser translates the SQL query into a parse tree, 
which the calculus generator transforms into a Datalog [6] 
query. The Datalog query will contain both source predicates 
and non source predicates (NSPs). The absorber manager 
takes the Datalog query and, for each source predicate 
referenced in the query, calls the corresponding absorber of its 
wrapper. In order to replace the source predicate with an access 
filter, the absorber collects from the query the source predicates 
and the possible other predicates, based on the capabilities of 
the data source. The query optimizer reorders the access filters 
and other predicates to produce an algebra expression 
containing calls to both access filters and NSP operators. The 
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finalizer manager takes the algebra expression and, for each 
access filter operator referenced in the algebra expression, calls 
the corresponding finalizer of its wrapper. The finalizer 
transforms the access filters into interface function calls. To 
access the different data sources, the execution engine 
interprets the finalized algebra expression calling the interface 
functions. 

The example query is transformed by the parser and 
calculus generator into the following Datalog query: 

Query1(mid, name3) :- 

Machine_A(model,name1,manufacturer) AND 

MachineInstallation_A(mid,model,sid)AND 

Site_A(sid, name2, country, region) AND 

Operator_B(pid,name3,skill,operates)AND 

name1 = ‘M1’ AND 

manufacturer like ‘V%’ AND 

region = ‘Uppland’ AND sid = 1 

The NSPs are in bold phase. Unique variable names are 
generated when needed, e.g. name1, name2 and name3. 

In this example, the GQL absorber for the source predicate 
Machine_A(model, name1, manufacturer) will absorb name1 = 
‘M1’ since the predicate = can be handled by a GQL data 
source and both predicates share the same parameter name1.  

The capabilities of a data source can vary widely, e.g. joins 
are allowed in RDBMS data sources but not in Bigtable data 
sources. If joins are allowed, as in SQL, an access filter is 
formed as a conjunction of all relational source predicates and 
supported NSPs. If joins are not allowed, as for Bigtable 
sources, each source predicate forms its own access filter based 
on GQL language constraints.  

The access filters are represented as Datalog rules. In the 
example there will be one access filter created for each of the 
source predicates Machine_A (filter F1), 
MachineInstallation_A (filter F2), Site_A (filter F3), and 
Operator_B (filter F4):  
F1(model,name1,manufacturer):- 
  Machine_A(model,name1,manufacturer) AND  
  name1=’M1’ 

F2(mid,model,sid):- 
  MachineInstallation_A(mid,model,sid)AND 
  sid = 1     

F3(sid,name2,country,region):- 
 Site_A(sid,name2,country,region) AND 
 region =’Uppland’ AND sid =1 

F4(pid,name3,skill,operates):- 
Operator_B(pid, name3, skill, operates)  

Query1(mid,name3):- 
F1(model,name1,manufacturer) AND  
F2(mid,model,sid) AND 
F3(sid,name2,country,region) AND 

F4(pid,name3,skill,operates) AND 
manufacturer like ‘V%’                         

The possible NSPs are placed in all the access filters for 
which they have a shared source predicate parameter. For 
example, Sid = 1 is placed in both F2 and F3. In other word, 
the NSPs can be absorbed into one or several access filters.  

If an NSP cannot be placed in any access filter, it will 
remain as a separate predicate in the query and post-processed 
by BigIntegrator. In the example, Manufacturer like ‘V%’ 
remains as a separate predicate even though it shares variable 
manufacturer with the GQL access filter F1, since GQL does 
not support like predicates. An absorber contains rules about 
what NSPs can be absorbed into the access filter according to 
the query capability of the data source. GQL queries have the 
following restrictions [7]:  

 

 

 

 

 

Accordingly, we define the following heuristic algorithm 
for the GQL absorber: 

1.   Absorb all equalities having one variable in common 
with the source predicate while the other parameter 
is known. 

2.   Absorb the first inequality having one variable in 
common with the source predicate also having the 
other parameter known. 

3.   If an inequality is absorbed in 2. then also absorb the 
first inverse inequality for the same variable. 

Unlike GQL, SQL can handle joins. Therefore, the absorber 
for the RDBMS wrapper absorbs several source predicates to 
produce joins. This is not elaborated here.  

The access filters (F1, F2, F3 and F4) and the NSPs that 
cannot be absorbed into any access filter, are combined into a 
conjunctive form and sent to the query optimizer for 
optimization. A greedy query optimization method [6] is 
employed to find an optimized plan fast.  

The finalizer manager takes the optimized algebra 
expression and, for each access filter referenced in the algebra 
expression, calls the finalizer of the access filter’s wrapper. The 
finalizer translates the access filter into an interface function 
call to the source.  

In the final plan, BigIntegrator’s query execution engine 
calls the interface functions. An interface function sends the 
query to a data source for execution. For the example query, 
the finalizer manager finalizes the query execution plan shown 
in Fig. 7. Bind joins [12] in this example combine each result 
tuple of F3 and F5 as the input for F2. 

Suppose A, B, and C are attributes names of a table in a GQL data 
source, and x, y, a, and z are constants or strings. Then the following 
where clauses of a GQL query are allowed: 
where A = x 
where A < x 
where A > x and A < y 
where A > x and A < y and B = z 
where A > x and A < y and B = z and C = a etc 
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Figure 7.  Example query execution plan 

The execution plan contains several algebra expression 
with calls to the apply operator γ [11].  

The interface function gql is an interface function with the 
signature: 

gql(Charstring dsn, Charstring query, Tuple params) -> 
Stream result 

The gql function sends a parameterized GQL query with 
parameter params to the Bigtable data source dsn for execution 
and returns a stream of tuples, result. The “?” in a GQL string 
is substituted with a corresponding parameter value. 

Analogously the interface function sql has the signature: 

sql(Relational ds, Charstring query, Vector params) -> 
Stream result 

The function sql sends a parameterized SQL query with 
parameter params to RDBMS data source ds for execution and 
returns a stream of tuples, result.  

In the execution plan the interface function call gql(“A”, 
"select * from Site where Region=? and Sid=?", (Region,Sid))  
returns a stream of tuples (Sid). The interface function gql(“A”, 
"select * from Machine where Name=?", Name) returns a 
stream of tuples (Model, Name, Manufacturer). The like 
operator returns the filtered stream of tuples (Model). Each 
combination of tuples from (Model, Sid) is input for the 
interface function call gql(“A”, "select * from 
MachineInstallation where Model=? and Sid=?", (Model, 
Sid)), producing a stream of tuples (Operates), which is fed to 
the interface function call sql(B, "select NAME from 
OPERATOR where Operates = ?", Operates), producing the 
final result.   

The BigIntegrator automatically generates algebra 
operators for the NSPs that can’t be absorbed into any access 
filter to post-process them by its query engine. For example, 

like(‘V*’, Manufacturer). This compensates for the lack of a 
like function in GQL. 

C. The Bigtable wrapper 
1) Architecture 

The Bigtable wrapper includes the server and client 
components shown in Fig. 8.  

 

Figure 8.  Bigtable wrapper architecture 

The Bigtable wrapper server is a web application written in 
Python served by GAE. It manages the requests from the 
Bigtable wrapper client. The http protocol is used for the 
communication between the client and the server. The interface 
function sends a query request to the server, which forwards 
the GQL query to Bigtable using the Python Datastore API [9]. 
The Bigtable wrapper server then sends back the query result to 
the Bigtable wrapper client. 

GAE limits the size of a query result. This is a problem 
when a GQL query returns a large result. Another problem is 
that there is a 30 seconds limit on the response time for a 
request. This is a problem if the server is running longer time 
than the limit or returns a too large result. Therefore the server 
delivers the query results in chunks. This is implemented 
through the cursor facility of the Python Datastore API. Fig. 9 
illustrates the Bigtable wrapper client and server 
communication.  

 

Figure 9.  Bigtable wrapper client-server communication 

For a given gql interface function call, the client sends the 
GQL query, the cursor information, and the chunk size to the 
server. The Bigtable wrapper server retrieves the chunks one 
by one by several next requests from the Bigtable wrapper 
client until the entire result is transmitted to the client. To be 
able to separate cursors from different queries the cursor handle 
is shipped back with each result and used in the next calls to 
move the cursor forward. 

2) The Bigtable wrapper client and server components 
Fig. 10 illustrates the Bigtable wrapper client and server 

components.  
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Figure 10.  Bigtable wrapper client and server components 

Every web application in GAE has its own application 
identifier (e.g. http://application-id.appspot.com/), which is 
specified when the application is created. A Bigtable wrapper 
server is a GAE web application and therefore has a unique 
URL. The location (URL) is used by the importer of the 
Bigtable wrapper client to establish an http connection to the 
Bigtable wrapper server. The importer first sends a request to 
the Bigtable wrapper server to collect the meta-data of the 
Bigtable database. The request handler routes the request to the 
meta-data handler. The retrieved meta-data is sent back to the 
importer by the request handler. The importer stores the meta-
data (e.g. source predicate definitions) in the client’s meta-
database. The request handler passes query requests to the 
query execution handler, which calls the Python Datastore API 
to execute the GQL query. The query results are then sent back 
to the client through the request handler.  

V. CONCLUSIONS AND FUTURE WORK 
We presented the BigIntegrator system, which enables SQL 

queries joining data stored in a Bigtable data repository and in 
local relational databases. A novel query processing 
mechanism based on plug-ins for absorbers and finalizers 
implements extensions for each new kind of data source having 
limited query capabilities. We presented the architecture of the 
system. The Bigtable wrapper provides communication 

between a client computer running the BigIntegrator engine 
and a Bigtable wrapper server managed by GAE running in a 
cloud. A communication mechanism provides streamed 
communication between the Bigintegrator system and the 
Bigtable wrapper server. 

As future work, we plan to evaluate the scalability of the 
system and develop strategies to improve the system’s 
performance by parallelization.  
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