
Querying Combined Cloud-Based
and Relational Databases

Minpeng Zhu and Tore Risch
Department of Information Technology, Uppsala University, Sweden

Minpeng.Zhu@it.uu.se Tore.Risch@it.uu.se

Abstract—An increasing amount of data is stored in cloud
repositories, which provide high availability, accessibility, and
scalability. However, for security reasons enterprises often need
to store the core proprietary data in their own relational
databases, while common data to be widely available can be
stored in a cloud data repository. For example, the subsidiaries of
a global enterprise are located in different geographic places
where each subsidiary is likely to maintain its own local database.
In such a scenario, data integration among the local databases
and the cloud-based data is inevitable. We have developed a
system called BigIntegrator to enable general queries that
combine data in cloud-based data stores with relational
databases. We present the design and working principle of the
system. A scenario of querying data from both kinds of data
sources is used as illustration. The system is general and
extensible to integrate data from different kinds of data sources.
A particular challenge being addressed is the limited query
capabilities of cloud data stores. BigIntegrator utilizes knowledge
of those limitations to produce efficient query execution.

Keywords: cloud data repository; relational database; data
integration; Bigtable;

I. INTRODUCTION
Cloud based repositories such as Google’s Bigtable [1]

allow widely accessible distributed data stores to be queried by
the query language GQL [7]. This is done by web-based
applications managed by the Google App Engine (GAE) [10].
GAE provides an application environment and query language
to manage data stored in Google’s cloud. It is easy to write
web-based applications that access and update these cloud-
based databases.

Cloud repositories such as Google’s Bigtable are
particularly useful to store data that has to be globally
available. For example, in industrial settings, machines such as
engines, trucks, cutting tools, etc., produce many different
kinds of data and the machines are often geographically widely
distributed and maintained locally. To check that distributed
equipment works properly, it is crucial to analyze its working
status by searching the data produced by the equipment. Since
the equipment is widely distributed, properties about the
equipment should be stored in an environment that provides
high availability and universal access, such as a cloud-based
data store.

Relational database systems (RDBMSs) have the limitation
that they must run in some central server site and therefore
require substantial maintenance efforts to provide high
availability. As an alternative approach, we propose to store
common data, for instance equipment properties, in a cloud-
based data store, such as Bigtable. By using such a cloud
service the data becomes universally available and can easily
be maintained. However, the data stored in the cloud often
needs to be combined with data stored in regular databases. For
example, cloud-based data is used for finding the locations of a
particular machine, while the information about the machines’
operating environments is stored in local relational databases.
A maintenance engineer may wish to make queries combining
relational data with the cloud-based data. To enable this, there
is need for a system supporting queries combining cloud-based
data and data in relational databases. We have developed such
a system, BigIntegrator, to transparently process queries
combining data stored in Bigtable data stores and data stored in
relational databases.

BigIntegrator utilizes a novel query processing mechanism
to provide easy extension of data integration from different
kinds of data sources. The mechanism is based on plug-ins
called absorbers and finalizers. The limited expressiveness of
GQL has to be taken into account by BigIntergrator’s query
processor, which is the challenge being addressed by the
absorbers and finalizers.

GQL has some similarities with SQL but has very limited
query expressions in order to provide for scalable processing.
BigIntegrator can process queries to such data sources with
limited back-end query languages support. The absorber and
finalizer for Bigtable data sources know the limitations of GQL
and will pre and post-process those operations that cannot be
processed by the data sources. For this, BigIntegrator generates
integrating execution plans containing calls to relational
databases, Bigtable data stores, and local operators.

In summary the contributions of our work are:

• The BigIntegrator system provides query capabilities
over combined cloud-based and relational databases.

• A novel query processing mechanism based on plug-
ins for absorbers and finalizers is developed to allow
easy extensions for each new kind of data source that
provide a restricted query language.

cwu
Text Box
2011 International Conference on Cloud and Service Computing

cwu
Text Box
978-1-4577-1637-9/11/$26.00 ©2011 IEEE

cwu
Text Box
330

Machine(Model, Name, Manufacturer)
MachineInstallation(MID, Model, SID)

Site(SID, Name, Country, Region)

Operator(PID, Name, Skill, Operates)

SID Name Country Region
1 Uppsala Sweden Uppland
2 Chengdu China Si Chuan
3 Campinas Brazil Sao Paulo
4 Chapaevsk Russia Samara
5 Monki Poland Bialystok

Site table

PID Name Skill Operates
1 John Operation 1
2 Oliver Operation 2
3 Bruce Operation 3
4 Carl Operation 4
5 Thomas Operation 5
6 Jens Operation 6
7 Lucas Operation 7
8 Alex Operation 8
9 Ryan Operation 9

10 Wes Operation 10
Local table Operator

Model Name Manufacturer
 1 M1 Volvo
 2 M2 Volvo
3 M3 Volvo
4 M4 Volvo
5 M5 Volvo

Machine table

MID Model SID
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 1 1
7 2 2
8 3 3
9 4 4

10 5 5
MachineInstallation table

select i.Mid, o.Name
from Machine_A m, MachineInstallation_A i, Site_A s, Operator_B o
where m.Name = ‘M1’ and
 m.Manufacturer like ‘V%’ and
 s.Region = ‘Uppland’ and
 s.Sid = 1 and
 m.Model = i.Model and
 i.Sid = s.Sid and
 i.Mid = o.Operates

• A client-server architecture for scalable querying of
Bigtable data repositories is developed.

The rest of the paper is organized as follows: Section II
discusses related work. Section III illustrates the system by
a scenario from an industrial equipment point of view.
Section IV overviews the BigIntegrator system architecture
and describes its query processing. Conclusions and future
work are described in section V.

II. RELATED WORK
There are several cloud-based storage systems available,

such as Dynamo [8], PNUTS [5], and Bigtable [1]. These
systems have very limited query languages as a compromise
for very high scalability. The restricted queries do not allow
joins and there are restrictions on how to specify the query
conditions. In contrast, the BigIntegrator pushes as much
query processing as possible to the data sources and
compensates the lacking query capability of a data source by
doing post-query processing with its own query engine. Similar
approaches can be applied on [8, 5] as well.

Some cloud-based storage systems such as Cloudy [3]
provide rather complete SQL capabilities. It offers key-value,
SQL, and XQuery interfaces to manipulate its cloud data.
Microsoft SQL Azure [2] offers full SQL language support for
its cloud-based relational database. Unlike Cloudy and SQL
Azure, the purpose of BigIntegrator is to allow joining of data
from a restricted cloud-based data store such as Bigtable with
relational databases, by generating execution plans that
combine queries sent to the data sources.

Unlike classical work on mediator/wrapper techniques over
conventional databases such as [4], BigIntegrator provides data
integration between cloud-based data repositories and
relational DBMSs. Furthermore, a novel query plug-in
mechanism based on absorbers and finalizers is developed to
provide easy extensions for new kinds of data sources
providing restricted query languages.

To conclude, most work on cloud-based databases
concentrates on providing scalability, availability and
consistency as storage services inside a cloud. No other system
addresses the problem of integrating data from cloud-based
databases having restricted query languages with relational
databases. We show the extensibility of the system and the
advantages of its novel query plug-in mechanisms.

III. SCENARIO
In this section, we present a scenario combining data from

Bigtable and a local relational database. An enterprise is
responsible for maintaining geographically widely distributed
industrial equipment. Some generally available data about the
equipment is stored in a cloud repository, while data about
local personnel is in relational databases. BigIntegrator enables
queries combining these databases.

The database schema for the cloud based database is shown
in Fig. 1 and for the relational one in Fig. 2. The cloud table
Machine(Model, Name, Manufacturer) stores general data
about industrial machines such as its model identifier, name,

and manufacturer. The table Site(SID, Name, Country, Region)
stores information about each site such as site ID, its name, and
the country and region where it is located. The table
MachineInstallation(MID, Model, SID) stores information
about each installation of a machine at some site, i.e the
identifier of the machine, its model, and the identifier of the
site where it is located (SID). The attribute Model is foreign
key from MachineInstallation to Machine and the attribute SID
is foreign key from MachineInstallation to Site. The tables
Machine, Machineinstallation, and Site provide globally
accessible common data and are therefore stored in the cloud.

A country maintains its local personnel database in the
relational database in Fig. 2. The table Operator(PID, Name,
Skill, Operates) stores the identifier of a machine operator
along with his name, specialty, and the machine he is currently
operating. The attribute Operates is foreign key from the local
database table Operator to the cloud database table
MachineInstallation. Fig. 3 shows all the tables in this
scenario with populated data.

Figure 1. Cloud database schema

Figure 2. Relational database schema

Figure 3. Scenario database schema

The following is an SQL query to BigIntegrator that
combines data from the cloud-based tables at a data source
named A (the Bigtable data source) and the relational database
table at data source named B (the country’s local data source):

cwu
Text Box
331

1, John
6, Jens

The query retrieves identities of machines of model “M1”
along with the operators’ names, where the machines’
manufacturer names starts with “V”, the machines are installed
in the region “Uppland”, and the site code is equal to one.

Every time a data source is accessed the system
automatically generates a set of relations called the source
predicates representing the collections inside the source. The
source predicates are references as tables in the SQL queries. In
the example there are the source predicates Machine_A,
MachineInstallation_A, Site_A, and Operator_B. The name of
each collection in a source named X is suffixed by “_X”. After
the query is executed, BigIntegrator returns the following query
result:

IV. SYSTEM OVERVIEW
The BigIntegrator system architecture is shown in Fig. 4.

The system contains two sub-systems: The RDBMS wrapper
and the Bigtable wrapper. A wrapper needs to be implemented
for each kind of data source to be queried from the
BigIntegrator system. The RDBMS wrapper generates SQL
queries sent to a back-end RDBMS, while the Bigtable wrapper
generates GQL queries to data stored in Bigtable.

The system receives SQL queries, which are processed to
generate a query execution plan that contains calls to the
underlying relational and Bigtable databases. The wrapper
modules have plug-ins that know how to generate queries to
each kind of data source.

Figure 4. BigIntegrator architecture

A. BigIntegrator Wrappers
Fig. 5 shows the components of a wrapper definition for a

BigIntegrator data source.

Figure 5. The wrapper components

For each new kind of data source the components importer,
absorber, finalizer, and interface function have to be
developed. Once a wrapper is defined any data source of that
kind can be wrapped by creating a source identifier id for the
source and then calling a system procedure import(id,location),
which accesses the location and imports system catalog data to
the local meta-database. When a data source is wrapped it can
be used in SQL queries and joined with other wrapped data
sources.

Each data source can contain many collections presented to
the system as source predicates. The importer creates the
source predicates and stores them in the local meta-database.
Each wrapper has one absorber, which is a plug-in that from a
user query extracts a subquery, called the access filter. It
selects data from a particular source predicate, based on the
capabilities of the source. Each wrapper also has a finalizer,
which is a plug-in that translates each access filter in the plan
to an algebra operator called an interface function, specific for
each kind of source. The interface function sends a query to the
data source (i.e. a GQL or SQL query).

B. The BigIntegrator query processor
The steps of the query processor in BigIntegrator are shown

in Fig. 6.

Figure 6. Query processing in BigIntegrator

The parser translates the SQL query into a parse tree,
which the calculus generator transforms into a Datalog [6]
query. The Datalog query will contain both source predicates
and non source predicates (NSPs). The absorber manager
takes the Datalog query and, for each source predicate
referenced in the query, calls the corresponding absorber of its
wrapper. In order to replace the source predicate with an access
filter, the absorber collects from the query the source predicates
and the possible other predicates, based on the capabilities of
the data source. The query optimizer reorders the access filters
and other predicates to produce an algebra expression
containing calls to both access filters and NSP operators. The

Interface
function

Access
filter

&NSPs

Source
predicate
&NSPs

User query

Calculus
generator

parser

Execution
engine

Interface
functions Data sources

Query
optimizer

Absorber
manager

GQL
absorber GQL

finalizer

Other
absorbers Other

finalizers

Plug-ins Plug-ins

RDBMS
absorber

RDBMS
finalizer

Finalizer
manager

Id, location extract

attach

attach

Wrapper components

Plug in

Plug in

Absorber

Finalizer

Data
source

Meta-
database

BigInt
egrator

Source predicates

Access filters
Importer

 Interface Functions

GQL SQL

SQL query

RDBMS

Query result

RDBMS
Wrapper

BigIntegrator

Bigtable
Wrapper

Google cloud

Bigtable

cwu
Text Box
332

finalizer manager takes the algebra expression and, for each
access filter operator referenced in the algebra expression, calls
the corresponding finalizer of its wrapper. The finalizer
transforms the access filters into interface function calls. To
access the different data sources, the execution engine
interprets the finalized algebra expression calling the interface
functions.

The example query is transformed by the parser and
calculus generator into the following Datalog query:

Query1(mid, name3) :-

Machine_A(model,name1,manufacturer) AND

MachineInstallation_A(mid,model,sid)AND

Site_A(sid, name2, country, region) AND

Operator_B(pid,name3,skill,operates)AND

name1 = ‘M1’ AND

manufacturer like ‘V%’ AND

region = ‘Uppland’ AND sid = 1

The NSPs are in bold phase. Unique variable names are
generated when needed, e.g. name1, name2 and name3.

In this example, the GQL absorber for the source predicate
Machine_A(model, name1, manufacturer) will absorb name1 =
‘M1’ since the predicate = can be handled by a GQL data
source and both predicates share the same parameter name1.

The capabilities of a data source can vary widely, e.g. joins
are allowed in RDBMS data sources but not in Bigtable data
sources. If joins are allowed, as in SQL, an access filter is
formed as a conjunction of all relational source predicates and
supported NSPs. If joins are not allowed, as for Bigtable
sources, each source predicate forms its own access filter based
on GQL language constraints.

The access filters are represented as Datalog rules. In the
example there will be one access filter created for each of the
source predicates Machine_A (filter F1),
MachineInstallation_A (filter F2), Site_A (filter F3), and
Operator_B (filter F4):
F1(model,name1,manufacturer):-
 Machine_A(model,name1,manufacturer) AND
 name1=’M1’

F2(mid,model,sid):-
 MachineInstallation_A(mid,model,sid)AND
 sid = 1

F3(sid,name2,country,region):-
 Site_A(sid,name2,country,region) AND
 region =’Uppland’ AND sid =1

F4(pid,name3,skill,operates):-
Operator_B(pid, name3, skill, operates)

Query1(mid,name3):-
F1(model,name1,manufacturer) AND
F2(mid,model,sid) AND
F3(sid,name2,country,region) AND

F4(pid,name3,skill,operates) AND
manufacturer like ‘V%’

The possible NSPs are placed in all the access filters for
which they have a shared source predicate parameter. For
example, Sid = 1 is placed in both F2 and F3. In other word,
the NSPs can be absorbed into one or several access filters.

If an NSP cannot be placed in any access filter, it will
remain as a separate predicate in the query and post-processed
by BigIntegrator. In the example, Manufacturer like ‘V%’
remains as a separate predicate even though it shares variable
manufacturer with the GQL access filter F1, since GQL does
not support like predicates. An absorber contains rules about
what NSPs can be absorbed into the access filter according to
the query capability of the data source. GQL queries have the
following restrictions [7]:

Accordingly, we define the following heuristic algorithm
for the GQL absorber:

1. Absorb all equalities having one variable in common
with the source predicate while the other parameter
is known.

2. Absorb the first inequality having one variable in
common with the source predicate also having the
other parameter known.

3. If an inequality is absorbed in 2. then also absorb the
first inverse inequality for the same variable.

Unlike GQL, SQL can handle joins. Therefore, the absorber
for the RDBMS wrapper absorbs several source predicates to
produce joins. This is not elaborated here.

The access filters (F1, F2, F3 and F4) and the NSPs that
cannot be absorbed into any access filter, are combined into a
conjunctive form and sent to the query optimizer for
optimization. A greedy query optimization method [6] is
employed to find an optimized plan fast.

The finalizer manager takes the optimized algebra
expression and, for each access filter referenced in the algebra
expression, calls the finalizer of the access filter’s wrapper. The
finalizer translates the access filter into an interface function
call to the source.

In the final plan, BigIntegrator’s query execution engine
calls the interface functions. An interface function sends the
query to a data source for execution. For the example query,
the finalizer manager finalizes the query execution plan shown
in Fig. 7. Bind joins [12] in this example combine each result
tuple of F3 and F5 as the input for F2.

Suppose A, B, and C are attributes names of a table in a GQL data
source, and x, y, a, and z are constants or strings. Then the following
where clauses of a GQL query are allowed:
where A = x
where A < x
where A > x and A < y
where A > x and A < y and B = z
where A > x and A < y and B = z and C = a etc

cwu
Text Box
333

Figure 7. Example query execution plan

The execution plan contains several algebra expression
with calls to the apply operator γ [11].

The interface function gql is an interface function with the
signature:

gql(Charstring dsn, Charstring query, Tuple params) ->
Stream result

The gql function sends a parameterized GQL query with
parameter params to the Bigtable data source dsn for execution
and returns a stream of tuples, result. The “?” in a GQL string
is substituted with a corresponding parameter value.

Analogously the interface function sql has the signature:

sql(Relational ds, Charstring query, Vector params) ->
Stream result

The function sql sends a parameterized SQL query with
parameter params to RDBMS data source ds for execution and
returns a stream of tuples, result.

In the execution plan the interface function call gql(“A”,
"select * from Site where Region=? and Sid=?", (Region,Sid))
returns a stream of tuples (Sid). The interface function gql(“A”,
"select * from Machine where Name=?", Name) returns a
stream of tuples (Model, Name, Manufacturer). The like
operator returns the filtered stream of tuples (Model). Each
combination of tuples from (Model, Sid) is input for the
interface function call gql(“A”, "select * from
MachineInstallation where Model=? and Sid=?", (Model,
Sid)), producing a stream of tuples (Operates), which is fed to
the interface function call sql(B, "select NAME from
OPERATOR where Operates = ?", Operates), producing the
final result.

The BigIntegrator automatically generates algebra
operators for the NSPs that can’t be absorbed into any access
filter to post-process them by its query engine. For example,

like(‘V*’, Manufacturer). This compensates for the lack of a
like function in GQL.

C. The Bigtable wrapper
1) Architecture

The Bigtable wrapper includes the server and client
components shown in Fig. 8.

Figure 8. Bigtable wrapper architecture

The Bigtable wrapper server is a web application written in
Python served by GAE. It manages the requests from the
Bigtable wrapper client. The http protocol is used for the
communication between the client and the server. The interface
function sends a query request to the server, which forwards
the GQL query to Bigtable using the Python Datastore API [9].
The Bigtable wrapper server then sends back the query result to
the Bigtable wrapper client.

GAE limits the size of a query result. This is a problem
when a GQL query returns a large result. Another problem is
that there is a 30 seconds limit on the response time for a
request. This is a problem if the server is running longer time
than the limit or returns a too large result. Therefore the server
delivers the query results in chunks. This is implemented
through the cursor facility of the Python Datastore API. Fig. 9
illustrates the Bigtable wrapper client and server
communication.

Figure 9. Bigtable wrapper client-server communication

For a given gql interface function call, the client sends the
GQL query, the cursor information, and the chunk size to the
server. The Bigtable wrapper server retrieves the chunks one
by one by several next requests from the Bigtable wrapper
client until the entire result is transmitted to the client. To be
able to separate cursors from different queries the cursor handle
is shipped back with each result and used in the next calls to
move the cursor forward.

2) The Bigtable wrapper client and server components
Fig. 10 illustrates the Bigtable wrapper client and server

components.

.

.

Partial query result +
cursor

Query + cursor +
chunk size gql

interface
function

call

Bigtable
wrapper
Client

Bigtable
wrapper
Server

Bigtable wrapper

Bigtable
wrapper
Client Bigtable

GoogleApp Engine

Bigtable wrapper Server (Model, Name, Manufacturer)

 γ like(‘V*’, Manufacturer)

(MID, Name)

γ sql(B, "select NAME from OPERATOR where
Operates = ?", Operates)

(Operates)
γ gql(“A”, "select * from MachineInstallation where

Model=? and Sid=?", (Model, Sid))

(Model)

γ gql(“A”, "select * from Machine
where Name=?", Name)

 (Name)
(Sid)

 (Region)

γ gql(“A”, "select * from Site where Region=? and
Sid=?", (Region, Sid))

Translated
F3

Translated
F1

Translated
F2

Translated
F4

 (Sid)

F5

cwu
Text Box
334

Figure 10. Bigtable wrapper client and server components

Every web application in GAE has its own application
identifier (e.g. http://application-id.appspot.com/), which is
specified when the application is created. A Bigtable wrapper
server is a GAE web application and therefore has a unique
URL. The location (URL) is used by the importer of the
Bigtable wrapper client to establish an http connection to the
Bigtable wrapper server. The importer first sends a request to
the Bigtable wrapper server to collect the meta-data of the
Bigtable database. The request handler routes the request to the
meta-data handler. The retrieved meta-data is sent back to the
importer by the request handler. The importer stores the meta-
data (e.g. source predicate definitions) in the client’s meta-
database. The request handler passes query requests to the
query execution handler, which calls the Python Datastore API
to execute the GQL query. The query results are then sent back
to the client through the request handler.

V. CONCLUSIONS AND FUTURE WORK
We presented the BigIntegrator system, which enables SQL

queries joining data stored in a Bigtable data repository and in
local relational databases. A novel query processing
mechanism based on plug-ins for absorbers and finalizers
implements extensions for each new kind of data source having
limited query capabilities. We presented the architecture of the
system. The Bigtable wrapper provides communication

between a client computer running the BigIntegrator engine
and a Bigtable wrapper server managed by GAE running in a
cloud. A communication mechanism provides streamed
communication between the Bigintegrator system and the
Bigtable wrapper server.

As future work, we plan to evaluate the scalability of the
system and develop strategies to improve the system’s
performance by parallelization.

ACKNOWLEDGMENT
This work is supported by the Swedish Foundation for

Strategic Research under contract RIT08-0041.

REFERENCES
[1] F. Chang et al, “Bigtable: A distributed storage system for structured

data,” in OSDI, 2006, pp. 205-218.
[2] D. Campbell, G. Kakivaya and N. Ellis, “Extreme scale with full SQL

language support in Microsoft SQL Azure,” in SIGMOD, 2010.
[3] D. Kossmann, T. Kraska, S. Loesing, S. Merkli, R. Mittal, and F.

Pfaffhauser, “Cloudy: A modular cloud storage system,” in Proc. VLDB
2010, Vol. 3, No. 2.

[4] V. Josifovski, P. Schwarz, L. Haas, and E. Lin, “Garlic: A new flavor of
federated query processing for DB2,” in ACM SIGMOD, 2002.

[5] B. F. Cooper et al, “PNUTS: Yahoo!’s hosted data serving platform,” in
VLDB, 2008.

[6] W. Litwin and T. Risch, “Main memory oriented optimization of OO
queries using type data log with foreign predicates,” in IEEE
Transactions on Knowledge and Data engineering, 1992, pp. 517-528.

[7] The GQL reference web page, published online
http://code.google.com/appengine/docs/python/datastore/gqlreference.ht
ml

[8] G. DeCandia et al, “Dynamo: amazon's highly available key-value
store,” in SOSP, 2007.

[9] The Python Datastore API reference web page, published online
http://code.google.com/appengine/docs/python/datastore/

[10] Google App Engine, published online
http://code.google.com/appengine/docs/whatisgoogleappengine.html

[11] G. Fahl and T. Risch, “Query processing over object views of relational
data,” The VLDB Journal, Vol. 6 No.4, November 1997, pp. 261-281.

[12] L. Haas, D. Kossmann, E.Wimmers, and J. Yang, “Optimizing queries
across diverse data source,” in Proc. VLDB 1997, Athens, Greece.

Bigtable wrapper client Bigtable wrapper server

Results Call

 Id, location

Importer

meta-database

Interface
functions

Bigtable

Request
handler

Meta-data
handler

Query execution
handler

Data source

cwu
Text Box
335

