
Querying Graph Databases

Pablo Barceló
Dept. of Computer Science, University of Chile

pbarcelo@dcc.uchile.cl

ABSTRACT

Graph databases have gained renewed interest in the last years, due
to their applications in areas such as the Semantic Web and So-
cial Networks Analysis. We study the problem of querying graph
databases, and, in particular, the expressiveness and complexity
of evaluation for several general-purpose navigational query lan-
guages, such as the regular path queries and its extensions with con-
junctions and inverses. We distinguish between two semantics for
these languages. The first one, based on simple paths, easily leads
to intractability in data complexity, while the second one, based on
arbitrary paths, allows tractable evaluation for an expressive family
of languages.

We also study two recent extensions of these languages that have
been motivated by modern applications of graph databases. The
first one allows to treat paths as first-class citizens, while the second
one permits to express queries that combine the topology of the
graph with its underlying data.

Categories and Subject Descriptors

H.2.3 [Database Management]: Languages—Query Languages

Keywords

Graph databases, conjunctive regular path queries, query evalua-
tion, expressiveness, containment.

1. INTRODUCTION
Graph databases are crucial for many applications in which the

topology of the data is as important as the data itself. While early
interest in graph databases could be explained by their applications
in hypertext systems [33], or their connections with semistructured
data [3, 24] and object databases [54], new application domains
have taken the field by storm in the last decade, including the
Semantic Web [10], social networks analysis [42], biological net-
works [63], data provenance [7], and several others.

In their simplest form, graph databases are finite, directed, edge-
labeled graphs. We study the problem of querying those graph
databases. An obvious question one faces regarding this problem is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2066-5/13/06 ...$15.00.

whether it could be tackled applying existing relational technology;
that is, by first representing each graph database G as a relational
databaseD(G) (in a standard way), and then queryingD(G) (using
a relational language) instead of G. The drawback of this approach
is that many graph database queries are navigational (e.g., regu-

lar path queries [36], that check the existence of a path between
two nodes whose label satisfies a regular condition), and, thus, they
cannot be easily expressed by relational languages, such as SQL,
which allow limited recursion.

On the other hand, several navigational languages for graph
databases can be embedded into the relational language Datalog
[2], which is the recursive extension of the class of unions of con-
junctive queries. Nevertheless, this translation is not really fruit-
ful: While data complexity of Datalog is PTIME-complete (and,
thus, not parallelizable under widely-held complexity assumptions
[51]), the data complexity of many languages we study along the
paper falls into the parallelizable class NLOGSPACE. Moreover,
while some basic static analysis tasks for Datalog are undecidable
(e.g. containment [2]), they are decidable for several expressive
languages that we study in this article.

The needs of different graph database applications have led to a
variety of navigational query languages. This includes languages
for querying: (a) Graph-based object databases (e.g., GraphDB
[53], GOOD [54] and G-Log [73]), (b) heterogeneous and unstruc-
tured data (e.g., Lorel [3], StruQL [43], and UnQL [26]), (c) social
networks (e.g., SoQL [76], BiQL [40], and SNQL [78]), etc. Our
study deals only with the most basic navigational query languages,
and, in particular, those that express a common set of useful fea-
tures for different graph database applications. This includes the
regular path queries, as introduced above, and some languages that
express the existence of patterns in a graph database satisfying a
set of regular constraints (e.g., the conjunctive regular path queries
[36, 34]). These two features, which form the core of most of the
languages mentioned above, have been the topic of a vast amount
of research over the last 25 years [36, 34, 69, 46, 27, 13, 16, 18].

Main problems we study The languages presented in the pa-
per are studied with respect to expressiveness, complexity of query
evaluation and the containment problem, as described below:

Expressiveness We study the limits of what can be expressed in a
language. Obviously, there is a trade-off between the expressive
power of a query language and the cost of query evaluation, as
defined next.

Complexity of evaluation Given a query language L, we study the
cost of query evaluation in L, i.e., the complexity of the problem
L-EVAL defined as follows: Given a graph database G, a query
Q ∈ L, and a tuple t̄ of objects (e.g., nodes, symbols, paths, etc)
of the right type for L, does t̄ belong to the evaluation JQKG of Q
on G? The complexity is thus measured in terms of |G| and |Q|,

the lengths of reasonable encodings of G and Q, respectively. Note
that the input to L-EVAL consists of a graph database and a query,
and, thus, in terms of Vardi’s taxonomy, it measures the combined

complexity of the evaluation problem [80].
In databases one is also interested in the data complexity of the

evaluation problem [80], which is measured only in terms of the
size of the graph database (i.e., the queryQ is assumed to be fixed).
We denote by EVAL(Q) the evaluation problem for a fixed query
Q. If C is a complexity class, we say that L-EVAL is in C in data
complexity, if EVAL(Q) is in C for each query Q in L. Moreover,
L-EVAL is C-hard in data complexity, if there is a query Q in L
such that EVAL(Q) is C-hard. Finally, L-EVAL is C-complete in
data complexity, if it is in C and it is C-hard in data complexity.

Containment problem Containment is a crucial problem in query
processing and optimization [2]. We study its complexity for sev-
eral query languages. Formally, if L is a query language, the prob-
lem L-CONT is defined as follows: Given queries Q,Q′ ∈ L, is
JQKG ⊆ JQ′KG for each graph database G?

Contents of the paper and organization Section 2 presents the
basics of graph databases. The study of query languages starts in
Section 3, where we present a simple pattern language for graph
databases, called G, which was introduced in the late 80s by Cruz,
Mendelzon and Wood [36]. The importance of this language is,
of course, historical – it was one of the earliest graph database
languages ever introduced – but also methodological – it identi-
fied for the first time a simple set of features that were common to
many navigational graph query languages, and that required more
detailed theoretical study. This language is also worth presentat-
ing due to its semantics based on simple paths, which has almost
completely disappeared from modern query languages for graph
databases due to its inherently high computational complexity.

In turn, modern navigational languages for graph databases im-
plement a semantics based on arbitrary (as opposed to simple)
paths. This semantics allows for tractable evaluation in data com-
plexity for a family of languages that are based on G. This includes
the regular path queries (RPQs), and their extensions with con-
junction (CRPQs) [36, 34], inverses (C2RPQs) [27], and unions
(UC2RPQs). Some relevant restrictions of these classes, with
tractable combined complexity, can also be identified. This in-
cludes the class of acyclic C2RPQs [13, 18] and the nested regular
expressions [17]. We study these languages in detail in Section 4.

In Section 5 we study some recently proposed languages for
graph databases – namely, the extended CRPQs, or ECRPQs [13,
12] – that treat paths as first-class citizens. In particular, ECR-
PQs extend CRPQs with the ability to output and compare paths.
These features are motivated by some modern applications of graph
databases, such as the Semantic Web, biological networks and
provenance, for which the ability to verify and output complex se-
mantic associations between nodes is crucial [8, 62, 52, 58]. No-
tably, the importance of including paths in the output was already
foreseen by Abiteboul et al. in the 90s, and included as a feature in
the language Lorel [3].

As is to be expected, the data complexity of ECRPQ evaluation
depends on the language that we allow for expressing path compar-
isons. We study two such languages; the regular and the rational

relations [41, 49, 20]. Regular relations are a simple formalism that
extends the class of regular languages to relations of arbitrary arity
over words, while rational relations are a powerful formalism that
properly extends the regular relations. While the evaluation prob-
lem for ECRPQs with regular relations is tractable in data com-
plexity, it becomes undecidable, or highly intractable, for queries
that combine regular relations with some practically relevant ra-

tional relations such as the subword or subsequence relations. We
identify, however, an important syntactic restriction of the class of
ECRPQs with rational relations that is tractable in data complexity.

Most of the existing studies of navigational languages for graph
databases have centered around queries that exploit the topology of
the graph. On the other hand, the study of languages that combine
the topology with the underlying data has been almost completely
overlooked. We present some recent developments that go in the
direction of overcoming this deficiency. In particular, we study the
problem of querying graph databases in which each node contains
a piece of data. We concentrate on data path queries, which check
for the existence of a path whose label together with its underly-
ing data values satisfy a given condition. It is shown that allow-
ing queries that freely combine these two features easily leads to
intractability in data complexity, but that there is a relevant class
of queries – namely, the regular expressions with memory [65] –
whose evaluation problem for fixed queries is tractable.

Finally, in Section 7 we present the concluding remarks and a list
of big challenges for graph databases in the future.

What is not included The sheer volume of graph database liter-
ature, plus some space constraints, have forced us not to include
several query languages we would have liked to. Notable omis-
sions are the extensions of the query languages we study in Section
4 with aggregation [35], a family of query languages based on rela-
tion algebra that has been recently studied with respect to relative
expressiveness [45], the powerfuk Walk Logic, which has been pro-
posed as an alternative to ECRPQs for expressing path properties
of graph databases [57], and the deep study of view-based query
answering for views specified as (C)2RPQs [28, 29]. We expect to
present each one of them in full detail in a full version of the paper.

Proviso We assume familiarity with regular expressions and au-
tomata. Throughout the paper we do not distinguish between a reg-
ular expression and the regular language it defines (e.g., we write
w ∈ R to express that the word w belongs to the regular language
defined by regular expression R). We also assume familiarity with
usual query languages for relational databases, such as conjunctive
queries (CQs), first-order logic (FO) and Datalog, and with usual
complexity classes, such as NLOGSPACE, NP, PSPACE, and others.

2. GRAPH DATABASES
Different applications impose different constraints on its under-

lying graph data model, which has given rise to a myriad of dif-
ferent models for graph databases (see [5] for a survey). We study
here the simplest possible such model: that of finite, directed and
edge-labeled graphs. The reason is twofold; first, this model is
flexible enough to express many interesting graph database scenar-
ios, and, second, the most fundamental theoretical issues related to
graph databases already appear in full force for it. We formalize
this model below.

Let V be a countably infinite set of node ids. Given a finite al-
phabet Σ, a graph database G over Σ is a pair (V,E), where V is a
finite set of node ids (i.e., V ⊆ V) andE ⊆ V ×Σ×V . Thus, each
edge in G is a triple (v, a, v′) ∈ V × Σ× V , whose interpretation
is an a-labeled edge from v to v′ in G. When Σ is clear from the
context, we shall speak simply of a graph database.

Notice that each graph database G = (V,E) over Σ can be nat-
urally seen as a non-deterministic finite automaton (NFA) over the
alphabet Σ, without initial and final states. Its states are the nodes
in V and its transitions are the edges in E.

A path in a graph database G = (V,E) is a sequence

ρ = v0a0v1a1v2 · · · vk−1ak−1vk, (k ≥ 0),

such that (vi−1, ai−1, vi) ∈ E, for each i with 1 ≤ i ≤ k. The
label of ρ, denoted λ(ρ), is the string a0a1 · · · ak−1 in Σ∗. Notice
that the definition of a path includes the empty path v, for each
v ∈ V . The label of such path is the empty string ǫ. The path ρ is
simple if it does not go through the same node twice, i.e., vi 6= vj
for each i, j with 0 ≤ i < j ≤ k.

3. THE LANGUAGE G AND THE SIMPLE

PATH SEMANTICS
Since the early days, graph databases and query languages were

not thought as competitors of their relational counterparts, but as
suitable complements for data that could be more naturally repre-
sented in the form of a graph (in particular, semistructured data). In
such context, Cruz, Mendelzon and Wood designed in 1987 one of
the earliest (and, also, most influential) navigational languages for
edge-labeled graph-structured data, that was simply called G [36].

We present the syntax and semantics of G in the context of the
graph data model studied here. We leave out some syntactic sugar
and intricacies in the definition of the semantics that complicate the
presentation without being essential to the query language.

The language G uses a semantics based on simple paths, mo-
tivated by early applications of graph databases for which simple
paths were more meaningful than arbitrary ones. As we see in the
present section, this causes intractability of query evaluation for the
language even in data complexity.

Syntax Queries in G are unions of graph patterns, which are
graph databases extended with three new features: (1) node vari-

ables, (2) label variables, and (3) regular expressions as labels for
edges. Thus, a graph pattern over Σ is a graph database in which
each node is either a node id in V or a node variable, and each edge
is labeled with a regular expression over the alphabet that extends
Σ with all label variables. We formalize this below.

Let Vnode and Vlabel be two disjoint and countably infinite sets of
node and label variables, respectively, which are pairwise disjoint
from the set V of node ids. Given a (not necessarily finite) alphabet
Γ, we denote by REG(Γ) the set of regular expressions over Γ. A
graph pattern π over the finite alphabet Σ is a pair (N,A), where
N is a finite set of nodes ids and node variables (that is, N ⊆
V∪Vnode), andA ⊆ V ×REG(Σ∪Vlabel)×V is the set of edges
labeled with regular expressions over the alphabet that extends Σ
with the label variables in Vlabel.

In order to view a graph pattern as a query, it is necessary to spec-
ify which variables in the graph pattern are projected in the output.
As such, we assume that each graph pattern π = (N,A) has an as-
sociated pair (x̄, X̄) of free variables, where x̄ is an ordered tuple
of node variables in N and X̄ is an ordered tuple of label variables
occuring in A. We write π(x̄, X̄) to specify that (x̄, X̄) are the
free variables of π. If both x̄ and X̄ are the empty tuple, we follow
usual terminology and say that π is Boolean.

DEFINITION 1 (G LANGUAGE [36]). A query Π of the lan-

guage G over Σ is an expression of the form
⋃

1≤i≤k
πi (k ≥ 1),

where each πi (1 ≤ i ≤ k) is a graph pattern over Σ.

Semantics The semantics of G queries depends on the semantics
of graph patterns, which is, in turn, based on a refined notion of
homeomorphism. These are mappings that match node variables
into node ids in V , label variables into elements of Σ, and each
edge labeled by regular expressionR into a simple path in the graph
database that is labeled with a word in R.

Since variables appear both in nodes and edges of patterns, it
will be convenient to define homeomorphisms as pairs of map-
pings. Formally, given a graph pattern π = (N,A) and a graph

X · X∗

x
AA LAN

y

x

NY

π2:

π1:

NY

Figure 1: Patterns π1 and π2 used in Example 1.

database G = (V,E), both over Σ, a homeomorphism from π to G
is a pair of mappings (ν1, ν2), such that:

• ν1 maps nodes in π to node ids in V , and ν2 maps label
variables used in A to symbols in Σ; that is, ν1 : N → V ,
and if X is the set of label variables occuring in A, then ν2 :
X → Σ;

• ν1 is the identitity on node ids; that is, ν1(v) = v, for each
node id v in N (i.e., for each v ∈ N ∩ V);1

• each edge labeled by a regular expression R is mapped to a
simple path labeled by a word in R, after label variables are
replaced according to ν2.

Formally, for each (p, L, q) ∈ A, where p, q ∈ N and
L ∈ REG(Σ ∪ Vlabel), there is a simple path ρ from ν1(p)
to ν1(q) in G such that λ(ρ) ∈ ν2(L), where ν2(L) is the
regular language over Σ that is obtained from L by replacing
each occurence of a symbol X ∈ X with ν2(X).

The evaluation JπKsG of a graph pattern π(x̄, X̄) on G is the set
of ordered tuples of the form (ν1(x̄), ν2(X̄)), for each homeomor-
phism (ν1, ν2) from π to G. We use the superscript s in JπKsG to
stress the fact that we are using a semantics based on simple paths
(which is not the case for the rest of the languages we study in the
paper). If π is Boolean, i.e., x̄ and X̄ are the empty tuple, then the
answer true is, as usual, modeled by the set containing the empty
tuple, and the answer false by the empty set.

Finally, if Π =
⋃

1≤i≤k
πi is a G query, then JΠKsG =

⋃

1≤i≤k
JπiK

s

G , for each graph database G = (V,E).

EXAMPLE 1. We present a toy example based on ideas from
[36]. Let Σ be the set of airlines and G = (V,E) be the graph
database over Σ such that the node ids in V represent cities and
there is an edge in E from city c to city c′ labeled with airline A iff
A has a direct flight from c to c′.

Figure 1 shows the graphical depiction of a G query Π composed
by the union of two patterns π1(x, y) and π2(x,X). We assume all
node and label variables to be free. Then Jπ1K

s

G is the set of pairs
(c, c′) of cities such that there is a flight from c to NY with AA and
a flight from NY to c′ with LAN. On the other hand, Jπ2K

s

G is the
set of tuples of the form (c, A), where c is a city and A is an airline,
such that there is a (nonempty) sequence of flights from c to NY
with the same airline A. Finally, JΠKsG = Jπ1K

s

G ∪ Jπ2K
s

G . ✷

The previous example illustrates why the simple path semantics
might be useful in some cases. In fact, if we are looking for flights
connecting two cities under certain regular conditions, we are only
interested in those that do not stop twice in the same city. As we
will see next, this choice has an important cost in the complexity of
query evaluation.

1In the original definition of the semantics of G, the mapping ν1 is
also forced to be a 1-1 mapping; i.e., different node variables have
to be mapped to different node ids. We have relaxed this condition
to allow a uniform treatment with other query languages presented
in the article. This modification is inessential to the complexity of
query evaluation for the language.

3.1 Complexity of evaluation of G queries
The evaluation problem G-EVAL is as follows: Given a query Π

in G, a graph database G = (V,E), a tuple v̄ of node ids in V and
a tuple Ā of symbols in Σ, determine whether (v̄, Ā) ∈ JΠKsG . It is
not hard to see that this problem can be solved in NP.

PROPOSITION 1. G-EVAL is in NP.

The intuition behind this fact is as follows. In order to check
whether (v̄, Ā) ∈ JΠKsG , we only have to guess a graph pattern
π(x̄, X̄) in Π and a homeomorphism (ν1, ν2) from π to G such
that ν1(x̄) = v̄ and ν2(X̄) = Ā. To verify that (ν1, ν2) is indeed
a homeomorphism, we have to check that for each edge (p, L, q)
there is a simple path in G from ν1(p) to ν1(q) whose label belongs
to ν2(L). But the length of each simple path in G is bounded by
|V |, and hence this fact admits a polynomial size witness.

We show next that the query evaluation problem for G is NP-
complete. Surprisingly, this holds already in data complexity for a
very simple class of queries.

Finding regular simple paths In order to understand the precise
complexity of query evaluation for G, and, in particular, the im-
pact of the simple path semantics, Mendelzon and Wood decided
to study the evaluation problem for a simple class of G queries,
often known as regular path queries (RPQs) [69]. These are graph
patterns that consist of a single edge of the form (x, L, y), where x
and y are differerent node variables and L is a regular expression
over Σ (i.e., L contains no label variables). Thus, the query evalua-
tion problem for RPQs boils down to the problem of finding regular
simple paths in a graph database, as follows:

PROBLEM: REGULARSIMPLEPATH

INPUT: A graph database G, nodes v, v′ in G,
a regular expression L.

QUESTION: Is there a simple path ρ from
v to v′ in G such that λ(ρ) ∈ L?

When the input consists of G and v, v′ only (i.e., whenL is fixed)
we refer to this problem as FIXEDREGULARSIMPLEPATH(L). We
state below that for a big class of regular expressions this problem
is NP-complete, which immediately implies that G-EVAL is NP-
complete in data complexity.

THEOREM 1 ([69]). Let Σ be a finite alphabet

and w be a string in Σ∗ of length at least 2. Then

FIXEDREGULARSIMPLEPATH(w∗) is NP-complete.

Consider, for instance, the simplest possible case Σ = {0}
and w = 00. Then FIXEDREGULARSIMPLEPATH((00)∗) checks
whether there is a simple path of even length from node v to v′ in
a directed graph G, which is an NP-complete problem [64].

The problem FIXEDREGULARSIMPLEPATH(L) is also NP-
complete for some simple languages that do not follow the pat-
tern in Theorem 1, such as L = 0∗10∗ [69]. On the other hand,
FIXEDREGULARSIMPLEPATH(L) can be solved in PTIME for each
L that defines a finite language (e.g., each L that does not make use
of the Kleene-star ∗). However, this restriction does not lead to
tractability in combined complexity:

PROPOSITION 2. REGULARSIMPLEPATH is NP-complete,

even if restricted to the class of regular expressions that do not use

the Kleene-star.

Tractable cases of the problem REGULARSIMPLEPATH can be
found by restricting the shape of graph databases (e.g., DAGs) or

the class of regular languages allowed in RPQs (e.g., closed under
removal of symbols from a word) [69].

Final remarks The intractability of G in data complexity is bad
news, as it implies that the language is impractical. In order to cope
with this problem, the graph database community has opted for a
different semantics, based on arbitrary paths, that allows to evaluate
full-fledged recursive queries with low data complexity.

In the last few years we have witnessed a revival of the simple
path semantics, due to its application in early versions of SPARQL
1.1 [56], the standard for navigational querying of the Semantic
Web data model RDF. It has been shown in [11, 67] that this easily
leads to intractability in data complexity.

4. BASIC LANGUAGES UNDER THE AR-

BITRARY PATH SEMANTICS
In this section, we study the basics of modern navigational lan-

guages for graph databases. Its building blocks are clearly rooted
on G, but there are three important differences:

1. First, the semantics of current query languages for graph
databases is based on arbitrary (instead of simple) paths.
The choice of the new semantics is justified by two facts:
(a) It leads to tractable combined complexity for RPQs and
tractable data complexity for a family of expressive lan-
guages. (b) Several graph-based applications only care about
connectivity of the data under regular constraints, and, thus,
simple paths do not seem to be essential.

2. Second, label variables have mostly disappeared from mod-
ern graph query languages. We have not found an explana-
tion for this, but provide here a plausible one: Although label
variables do not increase data complexity for usual query lan-
guages, its inclusion in even the most basic language (RPQs)
leads to intractability in combined complexity. As we argue
in Section 4.3, this complicates the evaluation of the most ba-
sic queries with variables over modern applications of graph
databases that store massive amounts of data.

3. Third, current query languages allow to traverse edges in the
graph database in both directions. This allows an important
increase in expressive power without having an impact on
complexity.

For simplicity of presentation, we leave out constants (node ids)
from queries, but they can be easily incorporated at no computa-
tional cost.

4.1 Regular path queries
RPQs (i.e., queries of the form (x, L, y), for L a regular lan-

guage) are the basic navigational mechanism for graph databases.
From now on, we use the shorthandL for the RPQ (x, L, y). Under
the semantics we study in this section, the evaluation JLKG of the
RPQ L on a graph database G = (V,E) consists of the set of pairs
(v, v′) of node ids in V such that there is a (not necessarily simple)
path ρ in G from v to v′ whose label λ(ρ) belongs to L. Notice that
we have removed the superscript s from JLKG , as we are no longer
using a simple paths semantics.

We show in this section that RPQs (and even its extension with
inverses) can be evaluated efficiently under the arbitrary path se-
mantics. However, this is no longer the case if RPQs are extended
with label variables.

RPQs with inverse RPQs are often extended to traverse edges in
both directions (a feature that was absent in G). This defines the

:Ronald_FagininPods:83

:John_E._HopcroftinFocs:FOCS8

conf:pods

journal:jacm Jacm:HopcroftT74 :Robert_E_Tarjan

:Jeffrey_Ullman

conf:focs Focs:HopU67a

:Moshe_Y._Vardi

series

series

journal

partOf

partOf

creator

creator

creator

creator

cr
ea
to
r

creator

Pods:FaginUV83
creator

creator
:Leonid_Libkin

partOf

creator

cr
ea
to
r

:Limsoon_Wong
journal

creator
Pods:Ullman89inPods:89

partOf

se
ri
es

Pods:Libkin95

IPL:LibkinW95

partOf creator
inPods:95

journal:IPL

series

Pods:Vardi95

Figure 2: An abstraction of a fragment of the RDF representation of DBLP available at http://dblp.l3s.de/d2r/

notion of RPQs with inverse, or 2RPQs [27, 28]. A 2RPQ over Σ
is an RPQ over the alphabet Σ± which extends Σ with the symbol
a−, for each a ∈ Σ. While evaluation of 2RPQs can be easily
reduced to evaluation of RPQs by extending the underlying graph
database with inverses of edges (something that we properly define
in the next paragraph), the presence of inverses complicates the
static analysis of queries, e.g., with respect to containment [30, 18].

To define the semantics of 2RPQs we use the notion of the com-

pletion of a graph database G, denoted by G±. This is the graph
database over Σ± that is obtained from G = (V,E) by adding the
edge (u, a−, v), for each (v, a, u) ∈ E. We define the evaluation
JLKG of the 2RPQ L over G to be JLKG± (the latter is well-defined
since L is an RPQ over Σ±). Notice that the 2RPQ a− defines on
a graph database G = (V,E) precisely the inverse of the RPQ a;
that is, Ja−KG = {(u, v) | (v, a, u) ∈ E}.

EXAMPLE 2. Let G be the graph database over Σ =
{creator, partOf, series} in Figure 2. This graph contains an
abstraction of a fragment of the RDF Linked Data representation
of DBLP [37] (and it is based on an example by Arenas and Pérez
in an earlier PODS tutorial [10]). The following is a simple 2RPQ
that matches all pairs (x, y) such that x is an author that published
a paper in conference y:

L = creator
− · partOf · series

For example, the pairs (:Jeffrey_D._Ullman, conf:focs) and
(:Ronald_Fagin, conf:pods) are in JLKG . We can conclude that
2RPQs are more expressive than RPQs: For no RPQ L′ over Σ it
is the case that JLKG = JL′KG . ✷

2RPQs have particularly good properties: They can be evaluated
linearly in both the size of the data and the expression.

THEOREM 2 (SEE E.G., [69]). 2RPQ-EVAL can be solved in

time O(|G| · |L|), for G a graph database and L a 2RPQ.

Proof (Sketch): We check whether (u, v) ∈ JLKG , for a pair (u, v)
of node ids in G, as follows. First, we compute G± from G in time
O(|G|), and then an NFA AL that defines the same language than
L in time O(|L|). Let G±(u, v) be the NFA that is obtained from
G± by setting its initial and final states to be u and v, respectively.
Clearly, (u, v) ∈ JLKG iff (u, v) ∈ JLKG± iff there is a word
accepted by both G±(u, v) and AL. The latter is equivalent to
checking the product of G±(u, v) andAL for nonemptiness, which
can be done in time O(|G±| · |AL|). The whole process takes time
O(|G|+ |L|+ |G±| · |AL|), that is, O(|G| · |L|). ✷

It is worth contrasting Theorem 2 with Theorem 1, that states that
RPQ-EVAL under the simple path semantics is intractable in data
complexity. The difference is that checking the existence of an ar-
bitrary path satisfying a regular condition can be efficiently reduced
to a nonemptiness automata problem (see the proof of Theorem 2),
but this is unlikely to be the case for simple paths.

In terms of data complexity, 2RPQs are in NLOGSPACE. Not
only that, the whole set JLKG can be computed in NLOGSPACE for
each fixed 2RPQ L:

PROPOSITION 3 (SEE E.G., [34]). Let L be a fixed 2RPQ.

There is an NLOGSPACE procedure that computes JLKG for each

graph database G.

Proof (Sketch): For each pair (u, v) of node ids in V , we check
whether it belongs to JLKG by following the proof of Proposition
2. Clearly, G± can be constructed in LOGSPACE from G, and AL

in constant time from L (since L is fixed). Nonemptiness of the
product of G±(u, v) and AL can be checked in NLOGSPACE in
|G| using a standard “on-the-fly" algorithm. The whole process can
be carried out in NLOGSPACE (because NLOGSPACE computable
functions are closed under composition). We conclude that JLKG
can be computed in NLOGSPACE for each fixed 2RPQ L. ✷

It is easy to see, on the other hand, that RPQs are NLOGSPACE-
complete in data complexity (under LOGSPACE reductions): If Σ =
{0} the RPQ 0∗ checks, for each pair (u, v) of node ids in G, if
there is a directed path from u to v in G, which is a well-known
NLOGSPACE-complete problem.

RPQs with label variables As we mentioned earlier, label vari-
ables have almost disappeared from modern graph query lan-
guages. We provide a partial explanation to this fact by stating that,
as opposed to the case of RPQs, evaluation of RPQVs is intractable.

RPQs with label variables (RPQVs) are of the form R, for R ∈
REG(Σ∪Vlabel). AssumeX is the set of label variables mentioned
in R. The evaluation JRKG of R on G = (V,E) is the set of pairs
(u, v) of node ids in V such that there is a mapping ν : X → Σ
and a path ρ in G from u to v that satisfies that λ(ρ) ∈ ν(R).

THEOREM 3 ([15]). RPQV-EVAL is NP-complete.

4.2 Conjunctive 2RPQs
Recall that patterns in G are graph databases such that each one

of its edges is an RPQ and some variables are allowed to be pro-
jected in the output. In other words, patterns in G represent the clo-
sure of RPQs under joins and existential quantification. In modern

graph query languages, this idea gives rise to the class of conjunc-

tive 2RPQs, or C2RPQs [34, 1, 27]. We state in this section that
C2RPQs (and even its extension with unions) preserve tractability
in data complexity, but their combined complexity is NP-complete.

Let x̄ = {x1, . . . , xn} and ȳ = {y1, . . . , ym} be (possibly
empty) disjoint sets of node variables. A C2RPQ, with free vari-
ables x̄, over Σ is a rule ϕ(x̄) of the form

Ans(x̄) ←
∧

1≤i≤k

(zi, Li, z
′
i) (1)

where (a) Li is a 2RPQ over Σ, for every i with 1 ≤ i ≤ k,
(b) z1, z

′
1, . . . zk, z

′
k are (not necessarily distinct) variables, and (c)

{z1, z
′
1, . . . , zk, z

′
k} = x̄∪ ȳ. This C2RPQ is Boolean if x̄ = ∅. A

CRPQ is a C2RPQ of the form (1), in which each Li is an RPQ.
The semantics of C2RPQs is defined in terms of homomor-

phisms. Given a graph database G = (V,E), a homomorphism
from a C2RPQ ϕ(x̄) of the form (1) to G is a mapping h : x̄∪ ȳ →
V such that (h(zi), h(z

′
i)) ∈ JLiKG , for each 1 ≤ i ≤ k. Ho-

momorphisms are not to be confused with the homeomorphisms
introduced in Section 3, which define a simple path semantics.

The evaluation Jϕ(x̄)KG of ϕ(x̄) on G is defined as the set of
tuples of the form h(x̄), for each homomorphism h from ϕ(x̄) to
G. Boolean C2RPQs evaluate to true and false, as defined for G.

EXAMPLE 3. Consider the C2RPQ ϕ(x, y):

Ans(x, y)← (x, creator−, u) ∧ (u, partOf, v)∧

(v, series, w) ∧ (u, creator, y).

Its evaluation Jϕ(x, y)KG over the graph database G shown
in Figure 2 consists of the pairs (x, y) of (not neces-
sarily distinct) authors that have a joint conference pa-
per, e.g., (:Jeffrey_D._Ullman, :Ronald_Fagin) and
(:Ronald_Fagin, :Moshe_Y._Vardi) are in Jϕ(x, y)KG . It
is easy to see that this query cannot be expressed as a 2RPQ
over G, that is, for every 2RPQ L over Σ it is the case that
JLKG 6= Jϕ(x, y)KG . ✷

Unions of C2RPQs The language G is closed under unions. Clos-
ing C2RPQs under unions gives rise to the class of UC2RPQs,
which are formulas ψ(x̄) of the form

⋃

1≤i≤k
ϕi(x̄), where ϕi(x̄)

is a C2RPQ for each i with 1 ≤ i ≤ k. We have that Jψ(x̄)KG =
⋃

1≤i≤k
Jϕi(x̄)KG , for each graph database G.

Next proposition shows that the increase in expressiveness from
2RPQs to UC2RPQs has an important cost in the complexity of
evaluation (even for CRPQs). Still, evaluating UC2RPQs is not
more costly than evaluating CQs over relational databases; namely,
NP-complete [32].

PROPOSITION 4 (SEE E.G., [13]). UC2RPQ-EVAL is NP-

complete, even if restricted to Boolean CRPQs.

On the other hand, moving from RPQs to UC2RPQs is free in
data complexity.

PROPOSITION 5 (SEE E.G., [34]). The problem UC2RPQ-

EVAL is in NLOGSPACE in data complexity.

Proof (Sketch): It is sufficient to show that each fixed C2RPQ ϕ
of the form (1) can be evaluated in NLOGSPACE. Let G = (V,E)
be a graph database and v̄ a tuple of node ids in V . To check
whether v̄ ∈ JϕKG , we compute the relational database D that
contains all binary relations Ri := JLiKG , for 1 ≤ i ≤ k. This
can be done in NLOGSPACE using Proposition 3 and the fact that

ϕ is fixed. Clearly, v̄ ∈ JϕKG iff v̄ belongs to the evaluation of the
CQ ∃ȳ

∧

1≤i≤k
Ri(zi, z

′
i) over D. But since evaluation of CQs

is in LOGSPACE in data complexity [2], the whole process can be
carried out in NLOGSPACE. ✷

Again, it is worth contrasting this result with the intractability of
G in data complexity.

Expressive power UC2RPQs can be evaluated in NLOGSPACE

in data complexity, but not every NLOGSPACE property can be ex-
pressed as a UC2RPQ. This is easy to see: While UC2RPQs are
monotone (that is, JQKG ⊆ JQKG′ for every UC2RPQ Q and graph
databases G,G′ such that G′ extends G with new nodes and edges),
there are NLOGSPACE properties that are not monotone (e.g., the
property that the number of nodes in the graph database is even).

More interestingly, there are some simple monotone
NLOGSPACE computable queries that are not expressible as
UC2RPQs. Consider again the C2RPQ ϕ(x, y) in Example 3.
Imagine that we want to express the transitive closure ϕ(x, y)+

of ϕ(x, y); in particular, over the graph database G in Figure 2
the query ϕ(x, y)+ defines the set of pairs (x, y) of authors that
are linked by a conference coauthorship sequence. The syntax of
UC2RPQs does not allow to express ϕ(x, y)+ directly, and, even
more, it can be proved (e.g., using techniques in [17]) that this
query cannot be expressed as a UC2RPQ. This means that there is
no UC2RPQ ϕ′(x, y) such that Jϕ′(x, y)KG = Jϕ(x, y)+KG , for
each graph database G over Σ = {creator, partOf, series}.
Notice that ϕ(x, y)+ is a monotone query and EVAL(ϕ(x, y)+)
can be computed in NLOGSPACE. We thus obtain the following:

PROPOSITION 6 ([17]). There exists a monotone,

NLOGSPACE computable query that is not expressible as a

UC2RPQ.

To overcome this lack of expressiveness, Consens and Mendel-
zon proposed a language, called GraphLog [34], that can be seen
as a natural extension of the class of UC2RPQs that expresses all
NLOGSPACE properties. Intuitively, GraphLog queries are recur-
sive sets of UC2RPQs rules with distinguished outputs – in the style
of a Datalog program – in which the body of a rule is allowed to
use the head (output) V (x̄) of another rule, its negation ¬V (x̄),
its transitive closure V (x̄)+, and the negation of V (x̄)+, with the
expected semantics. For instance, the following simple GraphLog
query defines the conference coauthorship sequence ϕ(x, y)+ pre-
sented earlier: {V (x)← φ(x, y), Ans(x, y)← V (x)+}.

4.3 Low Complexity Queries
UC2RPQs are tractable in data complexity. However, this does

not seem the right measure of complexity for several modern data-
centric applications that store massive amounts of information. For
instance, evaluation of a CRPQ Q over a graph database G is of
the order |G|O(|Q|) [81]. Although this is polynomial in data com-
plexity, it is clearly infeasible for big G even if Q is small. In
this scenario, we thus require query languages that are tractable in
combined complexity, or, at least, fixed-parameter tractable [72].
Recall that the latter means that there exists a computable function
f : N → N, and a constant c ≥ 0, such that the evaluation of each
query Q in the language over a graph database G can be solved in
time O(|G|c · f(|Q|)).

The only query language we have seen with tractable combined
complexity is the class of 2RPQs (in fact, Theorem 2 states that
each 2RPQ L can be evaluated in linear time O(|G| · |L|) over
a graph database G). The mildest extension of RPQs we know,
the CRPQs, does not preserve this good property: Proposition 4

states that CRPQ-EVAL is NP-complete, and, even worst, under
widely-held complexity theoretical assumptions, CRPQs are not
fixed-parameter tractable [72]. We study below two ways in which
the class of 2RPQs can be extended by preserving tractable com-
bined complexity: By restricting the syntactic shape of C2RPQs,
and by extending the navigational features of 2RPQs.

Acyclic C2RPQs In the case of CQs over relational databases, that
are also NP-complete in combined complexity, several syntactic
restrictions have been identified that lead to tractable evaluation.
One of the oldest and most common such restriction is acyclicity.
It was proved by Yannakakis that an acyclic CQQ can be evaluated
over a relational database D in linear time O(|D| · |Q|) [83].

The acyclicity condition can also be applied to find tractable
cases of C2RPQ-EVAL [13]. Acyclicity of a C2RPQ φ =
Ans(x̄) ←

∧

1≤i≤n
(zi, Li, z

′
i) is often defined in terms of the

acyclicity of its underlying CQ [13, 18], but a simpler and equiva-
lent definition can be provided in terms of the underlying graph of

φ: This is the graph Uφ whose nodes are the variables of φ and its
set of edges is {{zi, z

′
i} | 1 ≤ i ≤ n, zi 6= z′i}. Notice that Uφ

is simple (it contains neither loops nor multiedges) and undirected.
The C2RPQ φ is acyclic if Uφ is acyclic. We denote by AC2RPQ
the class of acyclic C2RPQs. It is worth noticing that acyclicity
allows for cycles of length at most 2 in C2RPQs; e.g., the C2RPQ
φ = Ans()← (x, a, x) ∧ (x, a, y) ∧ (y, b, x) is acyclic (since Uφ

consists of a unique edge linking the variables x and y).

THEOREM 4. AC2RPQ-EVAL can be solved in time O(|G|2 ·
|φ|2), for each graph database G and acyclic C2RPQ φ.

Proof (Sketch): Let G = (V,E) be a graph database and
φ(x̄) = Ans(x̄) ←

∧

1≤i≤n
(zi, Li, z

′
i) an acyclic C2RPQ. To

check whether v̄ ∈ JφKG , for v̄ a tuple of node ids in V , we first
compute the relational databaseD that contains all binary relations
Ri := JLiKG , for 1 ≤ i ≤ n. Each Ri can be computed in time
O(|G|2 · |Li|) using Proposition 3, and, thus, D can be computed
in time O(|G|2 · |φ|). Clearly, v̄ ∈ JφKG if and only if v̄ belongs
to the evaluation of the CQ Q = ∃ȳ

∧

1≤i≤n
Ri(zi, z

′
i) over D,

where ȳ is the tuple of variables in φ that are not mentioned in
x̄. It can be proved that Q is an acyclic CQ (since φ is acyclic),
and hence it can be evaluated over D in time O(|D| · |Q|). The
whole process takes time O(|G|2 · |φ|) + O(|D| · |Q|), and, thus,
O(|G|2 · |φ|2) because |Q| is O(|φ|). ✷

In terms of expressive power, the class of AC2RPQs
lies strictly in between 2RPQs and C2RPQs: The C2RPQ
Ans(x, y) ← (x, creator−, u) ∧ (u, partOf, v) ∧
(v, series, w) ∧ (u, creator, y), presented in Exam-
ple 3, is acyclic but it is not expressible as a 2RPQ. On
the other hand, a simple argument proves that the CRPQ
Ans(x, y, z) ← (x, a, y), (y, b, z), (z, c, x), over the alphabet
Σ = {a, b, c}, is not expressible as an AC2RPQ.

The evaluation of AC2RPQs is quadratic in the size of the data,
which might not be ideal for very big graph databases. The question
of whether acyclic C2RPQs (or even acyclic CRPQs) can be evalu-
ated linearly in the size of the data is related to some important open
problems in the area of algorithmic graph theory. For instance, as-
sume that Σ = {a}, then the acyclic CRPQ Ans() ← (x, aaa, x)
checks the existence of a triangle (i.e., a cycle of length 3) in an
undirected simple graph, a problem for which no linear algorithm
is known to date [6].

It is possible to obtain a class of AC2RPQs with linear time
evaluation by further restricting its syntax. The only thing that
we need to do is disallow loops and multiedges. Formally, let

φ(x̄) = Ans(x̄) ←
∧

1≤i≤k
(zi, Li, z

′
i) be an AC2RPQ. Then

φ is strongly acyclic if (a) zi 6= z′i, for each i with 1 ≤ i ≤ k (no
loops), and (b) for each i, j with 1 ≤ i < j ≤ k it is the case that
{zi, z

′
i} 6= {zj , z

′
j} (no multiedges). The class of strongly acyclic

C2RPQs is denoted by SAC2RPQ. Using techniques in [17] one
can prove the following:

PROPOSITION 7. SAC2RPQ-EVAL can be solved in time

O(|G| · |φ|), for each graph database G and SAC2RPQ φ.

Nested regular expressions We can extend the expressive power
of 2RPQs with an existential branching operator 〈·〉 á la PDL [55]
or XPath [38], while retaining good complexity of evaluation. This
gives rise to the class of nested regular expressions (NREs) [17],
that were originally proposed (with a slightly different syntax) for
querying Semantic Web data with an RDFS vocabulary [74].

Formally, given a finite alphabet Σ, the class of NREs n over Σ
is defined by the following grammar:

n := ε | a (a ∈ Σ) | a− (a ∈ Σ) | n+n | n·n | n∗ | 〈n〉

We inductively formalize the semantics of a NRE n over a graph
database G = (V,E) as a binary relation JnKG defined as follows,
where a is a symbol in Σ and n, n1, n2 are arbitrary NREs over Σ:

JεKG = {(u, u) | u ∈ V }

JaKG = {(u, v) | (u, a, v) ∈ E}

Ja−KG = {(u, v) | (v, a, u) ∈ E}

Jn1 + n2KG = Jn1KG ∪ Jn2KG

Jn1 · n2KG = Jn1KG ◦ Jn2KG

Jn∗KG = JεKG ∪ JnKG ∪ Jn · nKG ∪ Jn · n · nKG ∪ · · ·

J〈n〉KG = {(u, u) | there exists v such that (u, v) ∈ JnKG}.

Here, the symbol ◦ denotes the usual composition of binary rela-
tions, that is, Jn1KG ◦ Jn2KG = {(u, v) | there exists w such that
(u,w) ∈ Jn1KG and (w, v) ∈ Jn2KG}. As it is customary, we use
n+ as a shortcut for n · n∗.

Clearly, the class of 2RPQs is contained in the class of NREs,
but the opposite does not hold: We know that the acyclic
C2RPQ Ans(x, y) ← (x, creator−, u) ∧ (u, partOf, v) ∧
(v, series, w) ∧ (u, creator, y), presented in Example 3, can-
not be expressed as a 2RPQ, but it is equivalent to the NRE

n = creator
− · 〈partOf · series〉 · creator.

Although strictly more expressive, NREs retain the good proper-
ties of 2RPQs for query evaluation:

THEOREM 5 (SEE E.G., [74]). NRE-EVAL can be solved in

time O(|G| · |n|), for each graph database G and NRE n.

The expressive power of C2RPQs and NREs can only be com-
pared in terms of binary C2RPQs (since NREs define binary rela-
tions). Interestingly enough, binary C2RPQs and NREs are incom-
parable in terms of their expressive power [17]:

PROPOSITION 8. • There exists a C2RPQ ϕ(x, y) over a

finite alphabet Σ, such that for no NRE n over Σ it is the

case that Jϕ(x, y)KG = JnKG , for each graph database G.

• There exists a NRE n over a finite alphabet Σ, such that for

no C2RPQ ϕ(x, y) over Σ it is the case that Jϕ(x, y)KG =
JnKG , for each graph database G.

The proof of the first part is very simple: NREs are acyclic,
and, thus, they cannot define arbitrary non-acyclic CRPQs such as
Ans(x, y)← (x, a, y), (y, b, z), (z, c, x). The second part is more
interesting. The proof is based on the fact that NREs allow the use
of the Kleene-star ∗ over the branching operator 〈·〉, a feature that
cannot be codified in C2RPQs. For instance, the NRE

n =
(

creator
− · 〈partOf · series〉 · creator

)+

expresses the transitive closure of the conference coauthorship
query in Example 3. This query is not expressible as a C2RPQ.

4.4 Containment
We study the containment problem for some of the languages

presented in this section: 2RPQs, NREs and UC2RPQs. Recall
that the containment problem L-CONT, for query language L, is
defined as follows: Given queries Q and Q′ in L, is it the case that
JQKG ⊆ JQ′KG for every graph database G?

We start with 2RPQs:

THEOREM 6 ([30]). 2RPQ-CONT is PSPACE-complete.

Proving PSPACE-completeness for RPQs is easy. Let L and L′

be RPQs, i.e., regular expressions over Σ. It can be proved that
JLKG ⊆ JL′KG , for each graph database G, iff the regular language
defined by L is contained in the regular language defined by L′,
which is a well-known PSPACE-complete problem [79]. Extending
the PSPACE upper bound to 2RPQs requires more work, as one has
to reason about paths that traverse edges in both directions with
two-way automata, and then check containment for them with only
one exponential blow up [30].

Notably, NREs not only preserve the complexity of evaluation
of 2RPQs, but also the complexity of containment (at the cost of a
more involved proof):

THEOREM 7 ([75]). NRE-CONT is PSPACE-complete.

But moving towards UC2RPQs causes a jump in complexity:

THEOREM 8 ([27]). UC2RPQ-CONT is EXPSPACE-

complete. The problem remains hard even if restricted to

Boolean acyclic CRPQs.

The upper bound in [27] is only proved for C2RPQs, but it is
easy to see that the same techniques extend to UC2RPQs. Those
techniques are based on a clever codification of the problem as a
containment problem for two-way automata of exponential size.
An EXPSPACE upper bound for the containment of CRPQs (i.e.,
no inverses) had been previously obtained in [46] using different
techniques. The lower bound is proved via a reduction from an
EXPSPACE version of the tiling problem [27]. An inspection of the
proof shows that this lower bound holds even for checking contain-
ment of Boolean acyclic CRPQs.

5. PATH QUERIES
The class of UC2RPQs falls short of expressive power for sev-

eral modern applications of graph databases. In many of these ap-
plications a minimal requirement for sufficiently expressive queries
are: (a) the ability to define complex semantic relationships among
paths, and (b) the ability to include paths in the output of a query.
None of these functionalities is provided by UC2RPQs.

There are multiple examples of queries that require these new
capabilities. For instance, several important Semantic Web queries
(as we will see later) can only be expressed by comparing paths
[8, 9], biological sequences are often compared with respect to edit

distance and path similarity [52], route-finding applications need to
compare paths based on length or number of occurences of labels
[19], etc. In addition, including paths in the output has applications
in the Semantic Web [9, 62], provenance of data [58], semantic
search over the Web [82], and others.

For the sake of simplicity, we only consider extensions with the
new capabilities for CRPQs. Fix a countable set of node variables
(typically denoted by x, y, z, . . .), and a countable set of path vari-
ables (denoted by π, ω, χ, . . .). Let S be a set of relations on finite
words, such that each S ∈ S is a relation over some finite alphabet
Σ, and assume that S includes all regular languages. (Examples
of a set S of this kind are the regular and rational relations, as we
define afterwards). The class of S-extended CRPQs (from now on,
ECRPQ(S)) over Σ consists of all rules θ(x̄, χ̄) of the form:

Ans(x̄, χ̄) ←
∧

1≤i≤k

(zi, πi, z
′
i),

∧

1≤j≤t

Sj(ω̄j) (2)

such that the following holds:

• each one of the elements in Z = {z1, z
′
1, . . . , zk, z

′
k} is

a node variable, and each one of the elements in P =
{π1, . . . , πt} is a path variable;

• x̄ is a tuple of node variables among those in Z, and χ̄ is a
tuple of path variables among those in P ;

• each ω̄j (1 ≤ j ≤ t) is a tuple of elements in P ; and

• each Sj (1 ≤ j ≤ t) is a relation in S over Σ, of the same
arity than ω̄j .

Notice that this definition meets our requirements: ECRPQ(S)
queries allow for paths to be compared with respect to the relations
in S, and, in addition, path variables are admitted in the output.

The semantics of a rule θ(x̄, χ̄) of the form (2) is defined in
terms of homomorphisms. A homomorphism from θ to a graph
database G = (V,E) consists of a pair (σ, ν) of mappings such
that σ : {z1, z

′
1, . . . , zk, z

′
k} → V , the mapping ν assigns a path

in G to each path variable πi, 1 ≤ i ≤ k, and the following holds:
(1) ν(πi) is a path from σ(zi) to σ(z′i), for each i with 1 ≤ i ≤ k,
and (2) the tuple λ(ν(ω̄j)) – defined by the labels of the paths in
the tuple ν(ω̄j) – belongs to Sj , for each j with 1 ≤ j ≤ t. We
define Jθ(x̄, χ̄)KG as the set of tuples of the form (σ(x̄), ν(χ̄)), for
each homomorphism (σ, ν) from θ(x̄, χ̄) to G.

We can now justify why the languages are called extended CR-
PQs. Indeed, the class of CRPQs is contained in the class of
ECRPQ(S) queries: the CRPQ Ans(x̄) ←

∧

i
(zi, Li, z

′
i) can

be expressed as the ECRPQ(S) Ans(x̄) ←
∧

i
(zi, πi, z

′
i), Li(πi)

(since we assume that S contains all regular languages).
The expressiveness and complexity of ECRPQs depends, of

course, on the class of relations on words we allow on S. We study
next two important such classes: regular and rational relations.

5.1 Regular relations
Following the idea behind CRPQs, which allow regular condi-

tions on paths, we use regular relations [41, 49, 21] for path com-
parisons in ECRPQs [13]. As we will see next, regular relations
permit a good trade-off between expressiveness and complexity for
ECRPQs based on them.

Regular relations are recognized by synchronous n-ary au-

tomata, that have n input tapes onto which the input strings are
written, followed by an infinite sequence of ⊥ symbols. At each
step the automaton simultaneously reads the next symbol on each
tape, terminating when it reads ⊥ on each tape.

Formally, let ⊥ be a symbol not in Σ. We denote the extended
alphabet (Σ ∪ {⊥}) by Σ⊥. Let s̄ = (s1, . . . , sn) be an n-tuple
of strings over alphabet Σ. We construct a string [s̄] over alphabet
(Σ⊥)

n, whose length is the maximum of the sj’s, and whose i-th
symbol is a tuple (c1, . . . , cn), where each ck is the i-th symbol
of sk, if the length of sk is at least i, or ⊥ otherwise. In other
words, we pad shorter strings with the symbol ⊥, and then view
the n strings as one string over the alphabet of n-tuples of letters.

An n-ary relation S on Σ∗ is regular, if the set {[s̄] | s̄ ∈ S} of
strings over alphabet (Σ⊥)

n is regular (i.e., accepted by an automa-
ton over (Σ⊥)

n, or given by a regular expression over (Σ⊥)
n). We

denote by Reg the set of all regular relations.
Clearly, the regular relations of arity 1 are exactly the regular

languages. Examples of binary regular relations on words w1 and
w2 are: (a) path equality: w1 = w2; (b) length comparisons:
|w1| = |w2| (and likewise for < and ≤); (c) prefix: w1 is a prefix
of w2; (d) small edit distance: edit distance between w1 and w2

is at most k, for a fixed k. On the other hand, several interesting
relations on words are not regular; e.g., the binary relation�ss, that
consists of all pairs (w1, w2) such that w1 is a subsequence of w2

(i.e., w1 can be obtained by deleting some letters, perhaps none,
from w2), and the binary subword relation �sw that contains all
pairs (w1, w2) such that w3w1w4 = w2, for words w3, w4.

Thus, an ECRPQ(Reg) query over Σ is an expression of the form
Ans(x̄, χ̄) ←

∧

i
(zi, πi, z

′
i),

∧

j
Rj(ω̄j), where each Rj is a reg-

ular relation over Σ. While ECRPQ(Reg) contains all CRPQs, it
can be proved, on the contrary, that the containment is proper: As-
sume that el is the binary regular relation that checks whether two
words have the same length. The ECRPQ(Reg) query

Ans(x, y)← (x, π1, z)∧(z, π2, y)∧a
∗(π1)∧b

∗(π2)∧el(π1, π2)

computes all nodes in a graph database over Σ = {a, b} that are
linked by a path labeled in {anbn | n ≥ 0}. A pumping argument
shows that this query is not expressible as a CRPQ [13, 48].

EXAMPLE 4. The ECRPQ(Reg) Ans(x, y, z) ← (x, π1, z) ∧
(y, π2, z) ∧ el(π1, π2) defines the tuples (x, y, z) of nodes such
that z can be reached from both x and y following paths of the
same length. This query might be of interest, e.g., in route-finding
applications. If we replace el with the binary relation that checks
whether the edit distance between the labels of π1 and π2 is at most
k, we have a similarity query motivated by sequence alignment in
biological networks.

In a query language for RDF introduced in [8], paths can be com-
pared based on specific semantic associations. Edges correspond
to RDF properties and paths to property sequences. A property a
can be declared to be a subproperty of property b, which we denote
by a ≺ b. Two property sequences u and v are called ρ-isomorphic
iff u = u1 · · ·un and v = v1 · · · vn, for some n, and ui ≺ vi or
vi ≺ ui for every i ≤ n. Nodes x and y are ρ-isoAssociated iff x
and y are the origins of two ρ-isomorphic property sequences.

Finding nodes which are ρ-isoAssociated cannot be done in a
query language supporting only conventional regular expressions,
not least because doing so requires checking that two paths are of
equal length. However, pairs of ρ-isomorphic sequences can be ex-
pressed using the regular relation R given by the following regular
expression: (

⋃

a,b∈Σ: (a≺b∨b≺a)(a, b))
∗. Then an ECRPQ(Reg)

returning pairs of nodes x and y that are ρ-isoAssociated, and the
respective paths, can be written as follows: Ans(x, y, π1, π2) ←
(x, π1, z1) ∧ (y, π2, z2) ∧R(π1, π2). ✷

Complexity and containment ECRPQ(Reg) extends the class of
CRPQs, but is there an associated complexity cost? Recall that

ECRPQ(Reg)-EVAL is the problem of, given a graph database G =
(V,E), an ECRPQ(Reg) query θ(x̄, χ̄), a tuple v̄ of nodes in V
and a tuple ρ̄ of paths in G, does (v̄, ρ̄) belong to Jθ(x̄, χ̄)KG?

THEOREM 9 ([13]). ECRPQ(Reg)-EVAL is PSPACE-

complete, and NLOGSPACE-complete in data complexity.

Thus, extending CRPQs with regular relations is free in data
complexity, but combined complexity goes up from NP to PSPACE

(which is, in any case, the same as the complexity of evaluation of
FO over relational databases [2]).

Since ECRPQ(Reg) queries can return paths, the evaluation of a
query might be infinite (for example, if there is a cycle in the graph
database, then we have infinitely many paths). In such cases it is
possible to return a compact representation of the answer. In fact,
for each graph database G, ECRPQ(Reg) query θ(x̄, χ̄), and tuple
v̄ of node ids, the set {ρ̄ | (v̄, ρ̄) ∈ JθKG} is a regular relation, and
an automaton defining exactly this relation can be constructed in
exponential time (and in polynomial time if θ is fixed) [13].

The precise complexity of evaluation for several extensions and
restrictions of the class ECRPQ(Reg) is studied in [13]. The ex-
pressive power of the class is also by now well understood [48].

Let us consider finally the containment problem for
ECRPQ(Reg). While this problem is decidable for CRPQs
(Theorem 8), adding regular relations to compare paths dramati-
cally changes the situation.

THEOREM 10 ([13]). ECRPQ(Reg)-CONT is undecidable,

even for Boolean queries over a fixed alphabet.

The proof follows by a codification of the containment problem
for pattern languages [77], which is undecidable [60, 47].

5.2 Rational relations
ECRPQ(Reg) queries are still short of the expressiveness needed

in many applications. For instance, associations between paths
used in RDF or biological networks often deal with subwords or
subsequences, but these relations are not regular. They are rational
[20]: they are still accepted by automata, but those whose heads
move asynchronously.

Adding rational relations to a query language must be done with
extreme care: simply replacing regular relations with rational in
ECRPQs makes query evaluation undecidable or impractical. In
fact, as we show below this happens even if the class ECRPQ(Reg)
is extended with no more than the subword (or subsequence) re-
lation to compare path labels. On the other hand, we can achieve
tractable data complexity (and reasonable combined complexity)
by restricting the syntactic shape of queries and disallowing ratio-
nal relations of arity three or more.

Rational relations can be defined by means of asynchronous n-
tape automata, that have n heads for the tapes and one additional
control; at every step, based on the state and the letters it is read-
ing, the automaton can enter a new state and move some (but not
necessarily all) tape heads. Alternatively, n-ary rational relations
can be defined as regular expressions over the alphabet (Σ∪{ǫ})n,
where ǫ denotes the empty symbol [20]. We use the notation Rat

to denote the class of all rational relations.
Clearly, Reg ⊆ Rat. Furthermore, Reg = Rat for relations of

arity 1 (both define exactly the class of regular languages). On the
other hand, Rat 6⊆ Reg for relations of arity bigger than 1: The
binary subsequence and subword relations – �ss and �sw, respec-
tively, as defined in Section 5.1 – are not regular but they can easily
be proved to be rational.

An ECRPQ(Rat) query over Σ is thus an expression of the form
Ans(x̄, χ̄)←

∧

i
(zi, πi, z

′
i),

∧

j
Sj(ω̄j), where each Sj is a ratio-

nal relation over Σ. For instance, the ECRPQ(Rat) query

Ans(x, y)← (x, π1, z) ∧ (y, π2, w)∧ �ss (π1, π2)

defines the pairs (x, y) of nodes such that x is the starting point of
the path π1, y is the starting point of the path π2, and λ(π1) is a
subsequence of λ(π2).

Complexity It follows easily from the undecidability of the inter-
section problem for rational relations [20] that ECRPQ(Rat)-EVAL

is undecidable. However, we are not interested here in arbitrary
rational relations but only on those that are useful in practice, e.g.,
�sw and �ss. Unfortunately, none of these relations can be added
to the class ECRPQ(Reg) without imposing further conditions:

THEOREM 11 ([12]). 1. There exists an ECRPQ(Reg ∪
{�sw}) query Q such that EVAL(Q) is undecidable.

2. ECRPQ(Reg ∪ {�ss})-EVAL is decidable, but there exists

an ECRPQ(Reg ∪ {�ss}) query Q such that EVAL(Q) is

nonelementary.

Theorem 11 rules out the applicability of query languages for
graph databases that freely combine regular relations with some of
the most common rational relations. In order to obtain acceptable
complexity bounds, we thus need to further restrict the syntactic
shape of queries. We study next a robust class of queries, with
a simple syntactic definition, that yields tractable data complexity
and reasonable combined complexity for queries defined by arbi-
trary rational relations of arity at most 2. The intuitive idea behind
this restriction is forbidding features in ECRPQ(Rat) that allow to
codify the intersection of rational relations, since it is known that
this leads to undecidability of query evaluation.

Let Rat≤2 be the class of unary and binary rational relations.
We can assume without loss of generality that an ECRPQ(Rat≤2)
query is an ECRPQ(Rat) expression of the form:

Ans(x̄, χ̄) ←
∧

1≤i≤k

(zi, πi, z
′
i), Si(πi),

∧

1≤j≤t

S
′
j(ω

1
j , ω

2
j),

such that the Si’s are regular languages, the S′
j’s are binary ra-

tional relations, and each ω1
j and ω2

j is a path variable among
{π1, . . . , πk}. This query is intersection-free if the following
holds:

1. For each 1 ≤ i ≤ k it is the case that ω1
i 6= ω2

i , and for each
1 ≤ i < j ≤ t it is the case that {ω1

i , ω
2
i } 6= {ω

1
j , ω

2
j }.

The first condition disallows the codification of the inter-
section of binary rational relations in an atom Si(ω

1
i , ω

2
i),

and the second one over two different atoms S′
i(ω

1
i , ω

2
i) and

S′
j(ω

1
j , ω

2
j).

2. Let I be the subset of {1, . . . , k} × {1, . . . , k} such that
(i1, i2) ∈ I (1 ≤ i1, i2 ≤ k) if and only if for some
1 ≤ j ≤ t it is the case that ω1

j = πi1 and ω2
j = πi2 . We

require that the undirected graph defined by I on {1, . . . , k}
is acyclic. The reason is that intersection of binary rational
relations can be codified in the query using cycles in I .

As an example, the following Boolean query is intersection-free
(we have omitted the head predicate Ans()):

∧

1≤i≤4

(xi, πi, y)∧ �ss (π1, π2)∧ �ss (π2, π3)∧ �sw (π2, π4).

Intersection-free ECRPQ(Rat≤2) queries have been studied in
the literature under the name of acyclic queries [12]. We decided
to change its name here since a different and important notion of
acyclicity was already introduced in Section 4.3 for CRPQs.

Intersection-free ECRPQ(Rat≤2) queries allow for tractable
evaluation in data complexity, and its complexity coincides with
that of ECRPQ(Reg) queries:

THEOREM 12 ([12]). Let F be the class of intersection-free

ECRPQ(Rat≤2) queries. Then F -EVAL is PSPACE-complete, and

NLOGSPACE-complete in data complexity.

Notably, the conditions imposed by intersection-free queries are,
in a sense, optimal: Removing either condition (1) or (2) from its
definition leads to undecidability [12]. The same happens if we
allow relations of arity 3 or more in queries, even under strong ex-
tensions of conditions (1) and (2). On the other hand, the acyclicity
condition (2) can be removed at the cost of restricting the rational
relations allowed in queries. Results of this kind for several binary
rational relations of interest (e.g., the subsequence or suffix rela-
tions) can be found in [12].

6. QUERIES ON GRAPHS WITH DATA
All query languages we have studied so far concentrate on the

topological properties of the graph database, but do not talk much
about the data itself. However, it is clear that graph databases con-
tain data; e,g. in social networks nodes represent persons, and these
persons have associated attributes such as name, age, location, etc.
In addition, queries that combine topology and data are relevant in
practice. Think, for instance, of the query that asks for pairs of
persons of the same age that are connected via profesional links in
a social network, or the query that asks for authors in DBLP that
have papers in at least 3 different conferences.

We show in this section that languages that freely compare data
values along a path easily become intractable in data complexity,
but that there is a nice class of path queries, with tractable data com-
plexity, that expresses relevant topological properties of the data.

Data model Let D be a countably infinite set of data values. A
data graph is a graph database in which each node stores a data
value from D. Formally, given a finite alphabet Σ, a data graph G

over Σ is a tuple (V,E, κ), such that (V,E) is a graph database
over Σ and κ is a mapping that assigns a data value in D to each
node v ∈ V . Notice that graph databases in which nodes are
labeled with more than one data value can be represented in this
model: We simply add extra edges to nodes with those data values.

Query languages over data graphs talk about data paths, which
are obtained from paths by replacing each node by its data value.
Formally, let G = (V,E, κ) be a data graph. With each path ρ =
v0a0v1 · · · vk−1ak−1vk in (V,E) there is an associated data path
ρD = κ(v0)a0κ(v1) · · ·κ(vk−1)ak−1κ(vk) in G.

Query languages Data paths are very close to an object that
has received considerable attention in the XML community: Data

words [23], which are words over the infinite alphabet Σ × D. In
fact, one can represent each data path as a data word with an extra
data value in the end. The importance of this is that one can eas-
ily adapt the multiple formalisms that have been developed in the
literature to query data words to express queries about data paths.
These formalisms include FO extended with a binary relation ∼
that stores pairs of nodes with the same data value [22], pebble
automata [71], register automata [61] and some versions of XPath.

Nevertheless, choosing the right formalism for querying data
graphs has to be done with care. This is because checking even
some simple data path properties is an intractable problem:

THEOREM 13 ([65]). The following problem is NP-

complete: Given a data graph G = (V,E, κ) and two nodes

v, v′ ∈ V , determine if there is a data path ρD in G from v to v′

such that all data values in ρD are different.

Thus, any query language for data graphs that expresses this sim-
ple property will be NP-complete in data complexity, and, thus, im-
practical. This rules out all formalisms mentioned before, except
register automata. Libkin and Vrgoč studied the class of register
automata as a querying formalism for data paths, and established
some of its good properties [65]. But, as they argue, expressing
properties of data paths with register automata is not simple. This
motivated them to introduce the class of regular expressions with

memory (REMs), that is based on register automata, but allows a
more natural specification of queries over data graphs. We present
this formalism below.

REMs REMs allow us to specify when data values are remem-
bered and used. Data values are stored in k registers, represented
by variables x1, . . . , xk. At any point we can compare a data value
with one previously stored in the registers. As an example, consider
the REM ↓ x.a+[x=]. It can be read as follows: Store the current
data value in x, and then check that after reading a word in a+ we
see the same data value again (condition [x=]). We formally define
the class of REMs below.

Let x1, . . . , xk be variables. The set of conditions over
{x1, . . . , xk} is recursively defined as: c := x=i | c ∧ c | ¬c,
for 1 ≤ i ≤ k. Satisfaction of conditions is defined with respect to
a data value d ∈ D and a tuple τ = (d1, . . . , dk) ∈ D

k as follows
(we omit Boolean conditions): (d, τ) |= x=i iff d = di.

The class of REMs over Σ and {x1, . . . , xk} is given by the
grammar:

e := ε | a | e ∪ e | e · e | e+ | e[c] | ↓ x̄.e

where a ranges over symbols in Σ, c over conditions over
{x1, . . . , xk}, and x̄ over tuples of elements in {x1, . . . , xk}. We
need to rule out some pathological cases if we want to have a clear
semantics for REMs. In order to do that, we assume the following:
(1) Subexpressions of the form e+, e[c] and ↓ x̄.e are not allowed,
for each e that reduces to ε. The expression e reduces to ε if e = ǫ,
or e is of the form e1∪e2 or e1 ·e2 or e+1 or e1[c] or ↓ x̄.e1, where e1
(and e2) reduce to ε. (2) No variable appears in a condition before
it has been mentioned in ↓ x̄.

REMs are used as analogs of RPQs for data graphs. As such,
they define pairs of nodes linked by data paths satisfying the con-
ditions expressed in the REM. To define the evaluation JeKG of
a REM e over a data graph G = (V,E, κ), we use a relation
(e, ρD, λ) ⊢ λ′, for e a REM, ρD a data path, and λ, λ′ two k-
tuples over D ∪ {⊥} (the symbol ⊥ represents that the variable
has not been assigned a data value yet). The intuition behind the
relation (e, ρD, λ) ⊢ λ

′ is the following: The data path ρD can be
parsed according to e, with λ being the initial assignment of the
variables, in such a way that the final assignment is λ′. We then
define JeKG as the pairs (u, v) of node ids in V , such that there
is a data path ρD in G from u to v for which it is the case that
(e, ρD,⊥

k) ⊢ λ, for some k-tuple λ over D ∪ {⊥}.
We inductively define the relation (e, ρD, λ) ⊢ λ

′ below. But
before, we need to introduce some extra terminology. We as-
sume that λx̄=d is the tuple obtained from λ by setting all vari-
ables in x̄ to be d. Also, the concatenation of two data paths of
the form d0a0d1 · · · dk−1ak−1dk and dkakdk+1 · · · dn−1an−1dn
is defined as d0a0d1 · · · dk−1ak−1dkakdk+1 · · · dn−1an−1dn. If
ρD is obtained by concatenating the data paths ρ1D, ρ

2
D, . . . , ρ

ℓ
D ,

i.e., ρD = ρ1Dρ
2
D · · · ρ

ℓ
D , then we say that there is a splitting of ρD

into ρ1Dρ
2
D · · · ρ

ℓ
D . Then:

• (ε, ρD, λ) ⊢ λ
′ iff ρD = d, for some d ∈ D, and λ = λ′.

• (a, ρD, λ) ⊢ λ
′ iff ρD = d1ad2 and λ = λ′.

• (e1∪e2, ρD, λ) ⊢ λ
′ iff (e1, ρD, λ) ⊢ λ

′ or (e2, ρD, λ) ⊢ λ
′.

• (e1 · e2, ρD, λ) ⊢ λ
′ iff there is a splitting ρ1Dρ

2
D of ρD and

a k-tuple λ′′ over D ∪ {⊥}, such that (e1, ρ
1
D, λ) ⊢ λ

′′ and
(e2, ρ

2
D, λ

′′) ⊢ λ′.

• (e+, ρD, λ) ⊢ λ
′) iff there is a splitting ρ1Dρ

2
D · · · ρ

ℓ
D of ρD

and k-tuples λ = λ0, λ1, . . . , λm = λ′ over D ∪ {⊥}, such
that (e, ρiD, λi−1) ⊢ λi, for all i with 1 ≤ i ≤ ℓ.

• (e[c], ρD, λ) ⊢ λ
′ iff (e, ρD, λ) ⊢ λ

′ and (d, λ′) |= c, where
d is the last data value of ρD .

• (↓ x̄.e, ρD, λ) ⊢ λ
′ iff (e, ρD, λx̄=d) ⊢ λ

′, where d is the
first data value of ρD .

EXAMPLE 5. The REM Σ∗ ·(↓x.Σ+[x=])·Σ∗ defines the pairs
of nodes that are linked by a data path in which two data values are
the same. Notice that the complement of this query defines pre-
cisely the NP-complete property in Theorem 13, which is not ex-
pressible as a REM [65] (in particular, REMs are not closed under
complementation). The REM ↓ x.(a[¬x=])+ defines the pairs of
nodes that are linked by a data path labeled in a, such that its first
data value is different from all other data values. ✷

REMs are tractable in data complexity and have no worst com-
bined complexity than FO over relational databases:

THEOREM 14 ([65]). REM-EVAL is PSPACE-complete, and

NLOGSPACE-complete in data complexity.

It is easy to see that this behavior extends to the class of conjunc-

tive REMs, that can be defined analogously to CRPQs but assuming
that basic atoms are REMs. Tractable cases of REM evaluation in
combined complexity can be obtained by restricting the data com-
parison power of the expressions [65]. Different query languages
for data graphs with tractable combined complexity have been de-
signed using XPath features [66].

Finally, containment of REMs is undecidable. This follows from
undecidability of containment for register automata [71].

THEOREM 15. REM-CONT is undecidable.

7. CONCLUSIONS AND FUTURE CHAL-

LENGES
Figure 3 summarizes the complexity of evaluation and contain-

ment for most of the query languages studied in the paper. This
includes traditional query languages for graph databases, such as
G, 2RPQs, and C2RPQs. For the first one, even data complexity
is intractable due to the simple path semantics. Allowing a seman-
tics based on arbitrary paths yields tractable data complexity for
C2RPQs. Combined complexity of C2RPQs is intractable, which
has motivated the search for expressive fragments with good eval-
uation properties. This includes the classes of acyclic C2RPQs and
NREs, that can be evaluated in quadratic and linear time in the size
of the data, respectively. The containment problem for C2RPQs is
in EXPSPACE, but for 2RPQs and NREs it is in PSPACE.

We also studied expressive languages for path queries. The class
ECRPQ(Reg) preserves good data complexity, but fails to retain

Combined complexity Data complexity Containment

G NP-complete NP-complete ?

2RPQs O(|G| · |L|) NLOGSPACE-complete PSPACE-complete

C2RPQs NP-complete NLOGSPACE-complete EXPSPACE-complete

AC2RPQs O(|G|2 · |φ|2) NLOGSPACE-complete EXPSPACE-complete

NREs O(|G| · |n|) NLOGSPACE-complete PSPACE-complete

ECRPQ(Reg) PSPACE-complete NLOGSPACE-complete undecidable

ECRPQ(Reg ∪ {�sw}) undecidable undecidable undecidable

ECRPQ(Reg ∪ {�ss}) nonelementary nonelementary undecidable

Intersection-free ECRPQ(Rat≤2) PSPACE-complete NLOGSPACE-complete undecidable

REMs PSPACE-complete NLOGSPACE-complete undecidable

Figure 3: Combined complexity, data complexity, and complexity of containment for several languages studied in the paper.

decidability for containment. Adding some natural non-rational re-
lations (such as subword or subsequence) to ECRPQ(Reg) leads to
either undecidability or high complexity of evaluation (even for a
fixed query). However, intersection-free ECRPQ(Rat≤2) queries,
that allow arbitrary rational relations of arity at most 2 but restrict
the syntactic shape of queries, preserve the evaluation properties of
ECRPQ(Reg). Finally, we studied languages for graph databases
with data values. Even some simple data path properties are in-
tractable in data complexity, but an expressive language, that is also
tractable, was identified; namely, REMs.

The study of graph databases is at an early stage of development,
and many crucial questions about them remain unanswered:

Optimization: Most of the work on optimization has dealt with
the containment and equivalence problem for 2RPQs and C2RPQs.
Almost nothing is known about decidable cases of these problems
for path or data queries. Furthermore, the study of heuristics based
on optimization rules that help determining the most efficient way
to execute a query has received not much attention.

Recently, a new notion of approximate optimization has been in-
troduced in the context of CQ evaluation over relational databases
[16], and subsequently studied for UC2RPQs over graph databases
[18]. This notion is motivated by the scenarios of big graph
databases, in which tractable combined complexity of evaluation is
crucial. The basic idea is, given a UC2RPQ Q and a tractable class
C of UC2RPQs (e.g. unions of AC2RPQs), find a query Q′ ∈ C
(the approximation) that is “as close as possible" to C, and then run
the fast query Q′ over the underlying data. Approximations stud-
ied so far have several good properties, but are a bit coarse in some
cases. The introduction of more informative notions of approxima-
tions in graph databases is a challenging open problem.

Constraints: Graph database constraints received a good amount of
attention about 10 years ago, particularly in relationship with the
containment problem [4, 50, 39, 25]. On the other hand, query op-
timization in the presence of constraints is almost unexplored (save
for simple queries, such as RPQs [44]), and the topic of dependen-
cies over data graphs has not been studied. Furthermore, research
on general purpose languages that allow to express the kind of de-
pendencies that modern graph database applications (e.g. social or
biological networks) require is completely open.

A practical query language: Current systems for graph databases,
such as Dex [68], Neo4j [70], InfiniteGraph [59], and others, lack a
language with clear syntax and semantics. This difficults the accu-
rate evaluation of the expressive power and the computational cost
of the queries they permit. We believe that the time is ripe for the
theoretical community to interact with the graph database vendors,
and design a core query language for graph databases that allows

to express a common set of queries for different domains, and that
can be evaluated at a reasonable computational cost.

Acknowledgements I am very grateful to Marcelo Arenas, Gaelle
Fontaine, Miguel Romero and Juan Reutter for carefully reading an ear-
lier version of the article and providing me with comments. The author is
funded by Fondecyt grant 1130104.

8. REFERENCES
[1] S. Abiteboul, P. Buneman, D. Suciu. Data on the Web: From

Relations to Semistructured Data and XML. Morgan Kauffman,
1999.

[2] S. Abiteboul, R. Hull, V. Vianu. Foundations of databases.
Addison-Wesley, 1995.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. L. Wiener. The
Lorel query language for semistructured data. Int. J. on Digital

Libraries 1(1), pages 68-88, 1997.

[4] S. Abiteboul, V. Vianu. Regular path queries with constraints. JCSS

58(3), pages 428-452, 1999.

[5] R. Angles, C. Gutiérrez. Survey of graph database models. ACM

Comput. Surv. 40(1), 2008.

[6] N. Alon, R. Yuster, U. Zwick. Finding and counting given length
cycles (Extended abstract). In ESA 1994, pages 354-364.

[7] M. K. Anand, S. Bowers, B. Ludäscher. Techniques for efficiently
querying scientific workflow provenance graphs. In EDBT 2010,
pages 287-298.

[8] K. Anyanwu, A. P. Sheth. ρ-queries: enabling querying for semantic
associations on the semantic web. In WWW 2003, pages 690-699.

[9] K. Anyanwu, A. Maduko, A. P. Sheth. SPARQ2L: towards support
for subgraph extraction queries in RDF databases. In WWW 2007,
pages 797-806.

[10] M. Arenas, J. Pérez. Querying semantic web data with SPARQL. In
PODS 2011, pages 305-316.

[11] M. Arenas, S. Conca, J. Pérez. Counting beyond a Yottabyte, or how
SPARQL 1.1 property paths will prevent adoption of the standard. In
WWW 2012, pages 629-638.

[12] P. Barceló, D. Figueira, L. Libkin. Graph-logics with rational
relations and the generalized intersection problem. In LICS 2012,
pages 115-124.

[13] P. Barceló, L. Libkin, A. W. Lin, P. T. Wood. Expressive languages
for path queries over graph-structured Data. TODS 37(4), 2012.

[14] P. Barceló, L. Libkin, J. Reutter. Querying graph patterns. In PODS

2011, pages 199-210.

[15] P. Barceló, L. Libkin, J. Reutter. Parameterized regular expressions
and their languages. TCS 474, pages 21-45, 2013.

[16] P. Barceló, L. Libkin, M. Romero. Efficient approximations of
conjunctive queries. In PODS, pages 249-260, 2012.

[17] P. Barceló, J. Reutter, J. Pérez. Relative expressiveness of nested
regular expressions. In AMW 2012, pages 180-195.

[18] P. Barceló, M. Romero, M. Y. Vardi. Semantic acyclicity on graph
databases. In PODS 2013.

[19] C.L. Barrett, R. Jacob, M.V. Marathe. Formal-language-constrained
path problems. SIAM J. on Comp., 30(3), pages 809–837, 2000.

[20] J.M. Berstel. Transductions and Context-Free Languages.
B. G. Teubner, 1979.

[21] A. Blumensath, E. Grädel. Automatic structures. In LICS 2000, pages
51-62.

[22] M. Bojanczyk, A. Muscholl, Th. Schwentick, L. Segoufin.
Two-variable logic on data trees and XML reasoning. JACM 56(3),
2009.

[23] M. Bojanczyk. Automata for data words and data trees. In RTA, 2010.

[24] P. Buneman. Semistructured data. In PODS 1997, pages 117-121.

[25] P. Buneman, W. Fan, S. Weinstein. Path constraints in semistructured
databases. JCSS 61(2), pages 146-193, 2000.

[26] P. Buneman, M. F. Fernandez, D. Suciu. UnQL: A query language
and algebra for semistructured data based on structural recursion.
VLDB J. 9(1), pages 76-110, 2000.

[27] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi.
Containment of conjunctive regular path queries with inverse. In KR

2000, pages 176-185.

[28] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Rewriting
of regular expressions and regular path queries. JCSS, 64(3), pages
443-465, 2002.

[29] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi.
View-based query containment. In PODS 2003, pages 56-67.

[30] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Reasoning
on regular path queries. SIGMOD Record 32(4), pages 83-92, 2003.

[31] P. Chambart, Ph. Schnoebelen. Post embedding problem is not
primitive recursive, with applications to channel systems. In FSTTCS

2007, pages 265-276.

[32] A. Chandra and P. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In STOC 1977, pages 77–90.

[33] M. P. Consens, A. O. Mendelzon. Expressing structural hypertext
queries in GraphLog. In Hypertext 1989, pages 269-292.

[34] M. P. Consens, A. O. Mendelzon. GraphLog: a visual formalism for
real life recursion. In PODS 1990, pages 404-416.

[35] M. P. Consens, A. O. Mendelzon. Low complexity aggregation in
graphLog and datalog. TCS 116(1 & 2), pages 95-116, 1993.

[36] I. Cruz, A. Mendelzon, P. Wood. A graphical query language
supporting recursion. In SIGMOD 1987, pages 323-330.

[37] L3S dblp bibliography DB: http://dblp.l3s.de/d2r/.

[38] S. DeRose. J. Clark. Xml path language (xpath). W3C
Recommendation, November 1999, http://www.w3.org/TR/xpath.

[39] A. Deutsch, V. Tannen. Optimization properties for classes of
conjunctive regular path queries. In DBPL 2001, pages 21-39.

[40] A. Dries, S. Nijssen, L. De Raedt. A query language for analyzing
networks. In CIKM 2009, pages 485-494.

[41] C. Elgot, J. Mezei. On relations defined by generalized finite
automata. IBM Journal of Research and Development, 9(1), pages
47-68, 1965.

[42] W. Fan. Graph pattern matching revised for social network analysis.
In ICDT 2012, pages 8-21.

[43] M. F. Fernández, D. Florescu, A. Y. Levy, D. Suciu. Declarative
specification of web sites with Strudel. VLDB J. 9(1), pages 38-55,
2000.

[44] M. F. Fernandez, D. Suciu. Optimizing regular path expressions
using graph schemas. In ICDE 1998, pages 14-23.

[45] G. H. L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D.
Van Gucht, S. Vansummeren, Y. Wu. Relative expressive power of
navigational querying on graphs. In ICDT 2011, pages 197-207.

[46] D. Florescu, A. Y. Levy, D. Suciu. Query containment for conjunctive
queries with regular expressions. In PODS 1998, pages 139-148.

[47] D. D. Freydenberger, D. Reidenbach. Bad news on decision problems
for patterns. Inf. Comput. 208(1), pages 83-96, 2010.

[48] D. D. Freydenberger, N. Schweikardt. Expressiveness and static
analysis of extended conjunctive regular path queries. In AMW 2011.

[49] Ch. Frougny, J. Sakarovitch. Rational relations with bounded delay.
In STACS 1991, pages 50-63.

[50] G. Grahne, A. Thomo. Query containment and rewriting using views
for regular path queries under constraints. In PODS 2003, pages
111-122.

[51] R. Greenlaw, J. Hoover, W. Ruzzo. Limits to parallel computation:

P-completeness theory. Oxford University Press, 1995.

[52] D. Gusfield. Algorithms on strings, trees and sequences: Computer

science and computational biology. Cambridge University Press,
1997.

[53] R. H. Güting. GraphDB: Modeling and querying graphs in databases.
In VLDB 1994, pages 297-308.

[54] M. Gyssens, J. Paredaens, J. Van den Bussche, D. Van Gucht. A
graph-oriented object database model. IEEE Trans. Knowl. Data

Eng. 6(4), pages 572-586, 1994.

[55] D. Harel, D. Kozen, J. Tiuryn. Dynamic Logic. MIT Press, 2000.

[56] S. Harris, A. Seaborne. SPARQL 1.1 query language. W3C working
draft. http://www.w3.org/TR/sparql11-query/, July

2012.

[57] J. Hellings, B. Kuijpers, J. Van den Bussche, X. Zhang. Walk logic as
a framework for path query languages on graph databases. In ICDT

2013, pages 117-128.

[58] D.A. Holland, U. Braun, D. Maclean, K.K. Muniswamy-Reddy, M.I.
Seltzer. Choosing a data model and query language for provenance.
In IPAW 2008, pages 98-115.

[59] Infinite graph. http://objectivity.com

[60] T. Jiang, A. Salomaa, K. Salomaa, S. Yu. Decision problems for
patterns. JCSS 50(1), pages 53-63, 1995.

[61] M. Kaminski, N. Francez. Finite memory automata. TCS, 134(2),
pages 329-363, 1994.

[62] K. Kochut, M. Janik. SPARQLeR: Extended Sparql for semantic
association discovery. In ESWC 2007, pages 145-159.

[63] Z. Lacroix, H. Murthy, F. Naumann, L. Raschid. Links and paths
through life sciences data Sources. In DILS 2004, pages 203-211.

[64] A. LaPaugh, Ch. Papadimitriou. The even path problem for graphs
and digraphs. Networks 14(4), pages 507-513, 1984.

[65] L. Libkin, D. Vrgoč. Regular path queries on graphs with data. In
ICDT 2012, pages 74-85.

[66] L. Libkin, W. Martens, D. Vrgoč. Querying graph databases with
XPath. In ICDT 2013.

[67] K. Losemann, W. Martens. The complexity of evaluating path
expressions in SPARQL. In PODS 2012, pages 101-112.

[68] N. Martínez-Bazan, V. Muntés-Mulero, S. Gomez-Villamor, J. Nin,
M. Sánchez-Martínez, J. L. Larriba-Pey. Dex: high-performance
exploration on large graphs for information retrieval. In CIKM 2007,
pages 573-582.

[69] A. Mendelzon, P. Wood. Finding regular simple paths in graph
databases. SIAM J. Comput. 24(6), pages 1235-1258, 1995.

[70] Neo4j. http://www.neo4j.org/

[71] F. Neven, Th. Schwentick, V. Vianu. Finite state machines for strings
over infinite alphabets. ACM TOCL 5(3), pages 403-435, 2004.

[72] Ch. Papadimitriou, M. Yannakakis. On the complexity of database
queries. In PODS 1997, pages 12-19.

[73] J. Paredaens, P. Peelman, L. Tanca. G-Log: A graph-based query
language. IEEE Trans. Knowl. Data Eng. 7(3), pages 436-453, 1995.

[74] J. Pérez, M. Arenas, C. Gutierrez. nSPARQL: A navigational
language for RDF. Journal of Web Semantics 8(4), pages 255-270,
2010.

[75] J. Reutter. Containment of nested regular expressions.
http://arxiv.org/abs/1304.2637

[76] R. Ronen, O. Shmueli. SoQL: A language for querying and creating
data in social networks. In ICDE 2009, pages 1595-1602.

[77] A. Salomaa. Patterns. Bulletin of the EATCS 54, pages 194-206,
1994.

[78] M. San Martín, C. Gutierrez, P. T. Wood. SNQL: A social networks
query and transformation language. In AMW 2011.

[79] L. J. Stockmeyer, A. R. Meyer. Word problems requiring exponential
time: Preliminary report. In STOC 1973, pages 1-9.

[80] M. Y. Vardi. The complexity of relational query languages. In STOC

1982, pages 137-146.

[81] M.Y. Vardi. On the complexity of bounded variable queries. In PODS

1995, pages 266-276.

[82] G. Weikum, G. Kasneci, M. Ramanath, F. M. Suchanek. Database
and information-retrieval methods for knowledge discovery. CACM

52(4), pages 56-64, 2009.

[83] M. Yannakakis. Algorithms for acyclic database schemes. In VLDB

1981, pages 82-94.

