
Querying Graph Patterns

Pablo Barcelo
Department of Computer

Science, Universidad de Chile

pbarcelo@dcc.uchile.cl

Leonid Libkin
School of Informatics,

University of Edinburgh

libkin@inf.ed.ac.uk

Juan Reutter
School of Informatics,

University of Edinburgh

juan.reutter@ed.ac.uk

ABSTRACT

Graph data appears in a variety of application do-
mains, and many uses of it, such as querying, match-
ing, and transforming data, naturally result in incom-
pletely specified graph data, i.e., graph patterns. While
queries need to be posed against such data, techniques
for querying patterns are generally lacking, and proper-
ties of such queries are not well understood.

Our goal is to study the basics of querying graph pat-
terns. We first identify key features of patterns, such
as node and label variables and edges specified by reg-
ular expressions, and define a classification of patterns
based on them. We then study standard graph queries
on graph patterns, and give precise characterizations of
both data and combined complexity for each class of
patterns. If complexity is high, we do further analysis
of features that lead to intractability, as well as lower-
complexity restrictions. We introduce a new automata
model for query answering with two modes of accep-
tance: one captures queries returning nodes, and the
other queries returning paths. We study properties of
such automata, and the key computational tasks associ-
ated with them. Finally, we provide additional restric-
tions for tractability, and show that some intractable
cases can be naturally cast as instances of constraint
satisfaction problem.

Categories and Subject Descriptors. H.2.1 [Logical
Design]: Data Models ; F.1.1 [Models of Computa-
tion]: Automata

General Terms. Theory, Languages, Algorithms

Keywords. Graph databases, graph patterns, query
languages, complexity, automata, constraint satisfac-
tion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’11, June 13–15, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0660-7/11/06 ...$10.00.

1. INTRODUCTION

Querying and mining graph-structured data has re-
ceived much attention lately, due to numerous appli-
cations in areas such as biological networks [32, 33, 35],
social networks [37, 38], and the semantic Web [25, 36].
In such applications, the underlying data is naturally
modeled as graphs, in which nodes are objects, and edge
labels define relationships between those objects [2].

A standard way of querying graph data is to look
for reachability patterns. Such patterns specify that
paths satisfying certain conditions should exist between
nodes. Initially proposed in a simple form in [15, 14],
pattern languages have been developed over time and
used in a variety of applications, such as biology, study-
ing network traffic, crime detection, modeling object-
oriented data, querying and searching RDF data, etc.
[20, 21, 25, 26, 32, 33, 34, 36, 37, 38, 39, 40]; see also
the survey [2]. In their simplest form, patterns are just
graphs, whose occurrences in large graphs are of inter-
est. Already in this simple form, they are very impor-
tant in biological applications, where search for network
motifs [33] is a common task. But for applications such
as, for example, crime detection or RDF data, more
complex patterns are needed, as one can look for con-
nections between elements in a network that involve
complex paths via some intermediaries.

The notions of finding matches for complex patterns
also evolved with time, from traditional NP-complete
subgraph isomorphism (used, nonetheless, in practical
applications, e.g., in [12, 39]) to notions based on graph
homeomorphisms (i.e., mapping edges to paths) and
simulation relations between patterns and graphs [20,
21]. Outputs of matching queries are patterns them-
selves: their nodes are those that are involved in the
simulation relation, and relationships between them are
those specified in the pattern. For example, in a crime
detection scenario, a query may output a set of individ-
uals who might be involved in a crime network, together
with descriptions of paths specifying their relationships.
Similar scenarios arise in querying semistructured data
as well, where it is sometimes natural to output in-
complete query results [29]. When such matching and
query results require extracting additional information

(3)

n1 n2

father-in-law
=⇒

n1 n2

x

father spouse

(1)

X

X

Y

Y

B1

B2
n boss

Σ∗·sub·Σ∗·sub·Σ∗
A B

B1 B2A1

(2)

=⇒

A

Figure 1: Examples of (1) node variables, (2) label variables, and (3) regular expressions

from them, one ends up querying patterns rather than
graphs.

There are other scenarios where the need for query-
ing patterns naturally arises. A pattern represents par-
tial information about graph-structured data. Query-
ing partial information is commonly present in integrat-
ing and exchanging (or translating) data [3, 19, 31].
In such applications, one queries the result of apply-
ing some schema mapping rules to source data, which
yields a partially specified database. Partial databases
– whether relational or XML – are typically viewed as
patterns [27, 4, 6]. For graph data, the study of schema
mappings and transformations for data exchange an in-
tegration has started recently [11, 38], but techniques
for querying resulting partially specified graphs are cur-
rently lacking.

Motivated by these considerations, we would like to
study querying partially defined graph data, i.e., graph
patterns. As for other data models [3, 4, 19, 27, 31], one
is looking for answers that are independent of the way
in which the missing parts of patterns are interpreted,
i.e., certain answers.

Based on the examples arising in querying and trans-
forming graph data, we now analyze types of features
that need to be addressed in the study of querying graph
patterns. Recall that in the relational case, one deals
with variables in place of missing data values [27]. In
the case of XML, one may also have missing structural
information [4]. For graph databases, partiality of spec-
ifications mainly arises in the following three ways.

Node variables Similarly to values missing in rela-
tional or XML data, identities of some nodes can be
missing in graph data. For example, in transforming
a social network that has different types of relation-
ship edges, we can split an edge (Name1, father-in-
law, Name2) into two edges (Name1, father, x) and (x,
spouse, Name2), with an unknown identity x. Variables
can also be used to model blank nodes in RDF [36].

Label variables We may also miss the precise relation-
ships between nodes. But even if we do not know them,
we may still know that some of the relationships are
the same. Taking an example from social networks,
consider transforming a network where we have two
‘celebrities’ A and B who have ‘followers’ A1, . . . , An

and B1, . . . , Bm (like on the Twitter network). Sup-
pose we know the relationship between A and B (e.g.,
they like, or dislike each other). We may wish to record
this as a relationship between their followers: for in-
stance, if A hates B and Ai follows A, we may deduce
something about how Ai relates to B. At the time of
transforming a network we may not know the exact na-
ture of such a relationship, but we know there exists
one, and it should be the same for all the followers of
A. Likewise, all the followers of B will be in some re-
lationship with A (but not necessarily the same as the
followers of A with B). So we add edges

(A1, X, B),. . . ,(An, X, B), (B1, Y, A),. . . ,(Bm, Y, A)

where X and Y are edge labels: we do not yet know
what the relationship will be, but want to record that
it is the same among all the followers.

Regular expressions Returning to the example with
crime detection in a network of people, the result of
a matching may contain facts like “there is a path be-
tween x and the boss that goes via at least two interme-
diaries”, which will be expressed by a regular expression
Σ∗ ·sub ·Σ∗ ·sub ·Σ∗, where sub indicates subordinacy in
the hierarchy, and Σ is the set of all labels. In general,
the situation where only regular paths between nodes
can be deduced from a matching is very common [22].
Thus, when we do not have an exact path between two
nodes, we attempt to replace it by an edge (A, e, B),
where e is a regular expression.

These three examples are illustrated in Fig. 1. Once we
have these features added to patterns, we need to de-
fine a query language for them. Most commonly used
query languages for graph databases specify the exis-
tence of paths between nodes, with the restriction that
the labels of such path belong to regular languages [1,
15, 14, 26, 10]. The simplest such queries are known as
regular path queries, or RPQs [15]; those select nodes
connected by a path that belongs to a regular language.
Conjunctive RPQs, or CRPQs, extend them by allowing
intermediate nodes in paths. Dealing with incomplete
data, we often have duality between data and queries.
For example, relational naive tables are tableaux of con-
junctive queries, and in XML, typical query languages
are based on tree patterns, i.e., incomplete descriptions
of documents. We shall see that queries such as RPQs

and CRPQs arise as special cases of graph patterns,
continuing the analogy with the well studied cases.

To sum up, our main goal is to define classes of graph
patterns, study their properties, and query answering
over them. Our main contributions are as follows.

1. We define classes of graph patterns that have the
key features listed above – node variables, label
variables, and edges labeled with regular expres-
sions – and provide a complete classification of
their expressiveness.

2. We study the complexity of query answering (i.e.,
the problem of finding certain answers to queries
over graph patterns). We fully analyze it for CR-
PQs, both for data complexity (which ranges from
NLogspace to coNP) and for combined complex-
ity (which ranges from NP to Expspace). For
classes of high complexity, we do an in-depth anal-
ysis, showing which features lead to intractability.
We also show that upper bounds for CRPQs ex-
tend to more expressive queries.

3. We provide an automaton model for query answer-
ing. Specifically, we define a class of automata,
called incomplete automata, that naturally give
rise to two acceptance notions that precisely cap-
ture certain answers: one of them corresponds to
queries that return nodes, and the other to queries
that return paths. In the latter case, answers
to queries are represented by NFAs. We analyze
the complexity of incomplete automata, and prove
lower bounds on the sizes of NFAs representing
query answers.

4. Returning to the intractable cases for query an-
swering, we look at two ways of reducing complex-
ity: by imposing structural restrictions, and by re-
ducing to problems for which many efficient heuris-
tics are known. Along these lines, we prove that
for several classes of graph patterns, the bounded
treewidth restriction guarantees tractability. We
also show how to cast finding certain answers as
a constraint satisfaction problem, which allows us
to use algorithmic techniques from that field.

Organization In Section 2 we define graph databases
and queries over them. In Section 3 we define graph
patterns and in Section 4 we study their classifications
and structural properties. In Section 5 we analyze both
data and combined complexity of query answering. In
Section 6 we deal with incomplete automata, and relate
them to answering queries over graph patterns. In Sec-
tion 7 we look at tractability restrictions and reduction
to constraint satisfaction.

2. GRAPH DATABASES, RPQS AND CR-
PQS

A graph database [2, 10, 15] is just a finite edge-labeled
graph. Let Σ be a finite alphabet, and N a countably

infinite set of node ids. Then a graph database over
Σ is a pair G = (N, E), where N is the set of nodes
(a finite subset of N), and E is the set of edges, i.e.,
E ⊆ N × Σ × N . That is, we view each edge as a
triple (n, a, n′), whose interpretation, of course, is an
a-labeled edge from n to n′. When Σ is clear from the
context, we shall simply speak of a graph database.

A path ρ from n0 to nm in G is a sequence (n0, a0, n1),
(n1, a1, n2), · · · , (nm−1, am−1, nm), for some m ≥ 0,
where each (ni, ai, ni+1), for i < m, is an edge in E.
In particular, all the ni’s are nodes in N and all the
aj ’s are letters in Σ. The label of ρ, denoted by λ(ρ),
is the word a0 · · · am−1 ∈ Σ∗. We also define the empty
path as (n, ǫ, n) for each n ∈ N ; the label of such path
is the empty word ǫ.

The basic querying mechanism for graph databases is
provided by means of regular path queries, or RPQs [1,
15, 10]. They retrieve pairs of nodes in a graph database
connected by a path whose label belongs to a given reg-
ular language. Formally, an RPQ Q is an expression of
the form (x, L, y) where L ⊆ Σ∗ is a regular language.
We shall assume that syntactically L is given as a regu-
lar expression. Given a graph database G = (N, E) and
an RPQ Q, both over Σ, the answer Q(G), is the set of
all pairs (n, n′) ∈ N such that there is path ρ between
them whose label λ(ρ) is in L.

It has been argued (see, e.g., [1, 15, 14, 7]) that analogs
of conjunctive queries whose atoms are RPQs are much
more useful in practice than simple RPQs. In such
queries, multiple RPQs can be combined, and some
variables can be existentially quantified. Formally, a
conjunctive regular path query, or CRPQ Q over a fi-
nite alphabet Σ is an expression of the form:

Ans(z̄) ←
∧

1≤i≤m

(xi, Li, yi), (1)

such that m > 0, each (xi, Li, yi) is an RPQ, and z̄ is
a tuple of variables among x̄ and ȳ. A query with the
head Ans() (i.e., no variables in the output) is called a
Boolean query.

Intuitively, such a query Q selects tuples z̄ for which
there exist values of the remaining node variables from
x̄ and ȳ such that each RPQ in the body is satisfied.
Formally, given Q of the form (1) and a graph G =
(N, E), a valuation is a map σ :

⋃
1≤i≤m{xi, yi} → N .

We write (G, σ) |= Q if (σ(xi), σ(yi)) is in the answer to
RPQ (xi.Li, yi) in G, i.e., if there is a path ρi in G from
σ(xi) to σ(yi) with λ(ρi) ∈ Li. Then Q(G) is the set of
all tuples σ(z̄) such that (G, σ) |= Q. If Q is Boolean,
we let Q(G) be true if (G, σ) |= Q for some σ (that is,
as usual, the singleton set with the empty tuple models
true, and the empty set models false).

We also allow existentially quantified variables in path
queries. That is, RPQs will be of the form Ans(z̄) ←
(x, L, y), where z̄ contains variables from {x, y}. For
example, Ans() ← (x, L, y) is a Boolean RPQ checking
whether there is a path whose label is in L.

3. GRAPH PATTERNS

As explained in the introduction, the key new features
of graph patterns are the ability to use the following (in
addition to nodes and edge labels of graph databases):

• node variables, i.e., marked nulls for graph nodes;

• label variables, i.e., marked nulls for edge labels;

• regular expressions as labels for edges.

Thus, we shall define graph patterns as graph databases
over constant nodes and node variables, whose edges
will be labeled with regular expressions that may use
label variables. To do this, we shall use the following
(countably infinite) sets:

• Vnode of node variables (normally denoted by
lower-case letters), and

• Vlab of label variables (normally denoted by upper-
case letters).

If Γ is an arbitrary (finite or infinite) set of symbols, we
write REG(Γ) to denote the set of nonempty regular
languages over Γ (if Γ is infinite, then each L ∈ REG(Γ)
only uses finitely many symbols from Γ). Recall that a
graph database over a labeling alphabet Σ was defined
as a labeled graph, (N, E), where N ⊆ N is the set of
nodes and E ⊆ N×Σ×N is the set of labeled edges. We
are now in a position to define graph patterns formally.

Definition 1. A graph pattern over finite alphabet Σ is
a pair π = (N, E) where

• N ⊆ N ∪ Vnode is the finite set of nodes, and

• E ⊆ N ×REG(Σ ∪ Vlab)×N is the set of edges.

Semantics In complete analogy with relational naive
tables or incomplete XML documents, the semantics is
defined via homomorphisms. To define those, we need
extensions of partial functions f : Γ → Γ to languages
L ∈ REG(Γ) defined as f(L) = {f(w) | w ∈ L}, where
f(w) is obtained by replacing each symbol a of a word
w on which f is defined by f(a), and leaving symbols b
on which f is not defined intact.

Since variables can occur at the level of both nodes
and edge labels, homomorphisms will be in fact pairs
of mappings. Given a graph database G = (N, E) and
a pattern π = (N ′, E′), a homomorphism h : π → G is
a pair h = (h1, h2) of mappings h1 : N ′ → N and h2

that maps label variables used in π to labels used in G
such that:

1. h1(n) = n for every node id n ∈ N ; and

2. for every edge (p, L, p′) ∈ E′, there is path between
h1(p) and h1(p

′) in G whose label is in h2(L).

We now write G |= π if there is a homomorphism h :
π → G. The semantics is defined with respect to a
labeling alphabet Σ:

JπKΣ = {G over Σ | G |= π}.

Most often Σ is clear from the context and we write
simply JπK then.

Example 1. An illustration is given in Fig. 2: a ho-
momorphism is defined by letting label variable X be
b, and by mapping both node variables x and y into
n3. The edge (n1, (a|b)(a|b), x) is then mapped into
the path (n1, a, n4), (n4, b, n3) with label ab. The edge
(n1, (ab)∗, y) is mapped into the same path, since ab be-
longs to regular languages denoted by both (a|b)(a|b)
and (ab)∗. The edge (y, a∗X, n2) is mapped into
(n3, b, n2), since b is in the language denoted by a∗b.

Certain answers Consider queries Q that take graph
databases as input and return sets of tuples of their
nodes. For example, RPQs and CRPQs are such
queries. For them, we can define their certain answers
on graph patterns in the standard way:

certainΣ(Q, π) =
⋂
{Q(G) | G ∈ JπKΣ}.

Again, if Σ is clear from the context, we write simply
certain(Q, π).

Example 2. The labeling alphabet can make a differ-
ence in finding certain answers. Consider a pattern
with edges (n1, a, n2), (n2, X, n3), (n3, b, n4), where X is
a label variable. Let Q be the Boolean RPQ Ans() ←
(x, ab, y). Then certain{a,b}(Q, π) = true: whether
X is a or b, there is a path labeled ab. However,
certain{a,b,c}(Q, π) = false (by setting X = c). 2

Graph patterns as queries Graph patterns can nat-
urally be viewed as queries – again in complete anal-
ogy with relational databases (where naive tables are
a natural representation of conjunctive queries, i.e.,
tableaux) and XML documents (where tree patterns
form the basis of tree conjunctive queries [6, 24]). This
view has also been explored in [13].

We adopt the convention that patterns used in queries
are denoted by ξ, and patterns used as data are de-
noted by π. A graph query is a pair Q = (ξ, x̄), where
ξ = (N, E) is a graph pattern, and x̄ is a tuple of
elements from N . For example, a CRPQ Ans(z̄) ←∧

i≤m(xi, Li, yi), can be viewed as a graph query (ξ, z̄),

where ξ simply contains the edges (xi, Li, yi) for i ≤ m.

We now define the semantics of a graph query on graph
databases (later, we shall extend it to graph patterns).
Given a graph database G = (N, E) with N ⊂ N , and
a graph query Q = (ξ, x̄) with |x̄| = k, the answer to Q
on G is Q(G) = {v̄ ∈ Nk | G |= ξ[v̄/x̄]}. Here ξ[v̄/x̄] is
the result of substituting v̄ for x̄ in the pattern ξ.

It is easy to see that when Q is a CRPQ viewed as a
graph query, the result Q(G) coincides with the stan-
dard semantics of CRPQs.

π
n1

n2

X

a∗X

(ab)∗

(a | b)(a | b)

n1

n4

n2y

x

h

h

h

h
b

b

b

n3

a

G

Figure 2: A homomorphism h : π → G

Example 3. Consider again the example in Fig. 2 and
the homomorphism described in Example 1. Let ξ be
the pattern obtained from π by changing X to b, and
replacing n1 and n2 with variables z1 and z2. The re-
sulting pattern can be viewed as a CRPQ (ξ, x, y):

Ans(x, y) ← (z1, (a|b)(a|b), x), (z1, (ab)∗, y),
(y, a∗b, z2), (z2, b, z1)

If it is evaluated in graph G shown in Fig. 2, one tuple
in the output will be (n3, n3), since G |= ξ[n3/x, n3/y],
as witnessed by homomorphism h. 2

4. CLASSIFICATION AND BASIC PROP-
ERTIES

The three key features of graph patterns – node vari-
ables, label variables, and regular expressions – pro-
vide a natural classification of patterns. We shall re-
fer to classes of patterns as P

σ, where σ enumerates
the present features. We use ‘nv’ for node variables,
‘lv’ for label variables, and ‘re’ for regular expressions.
This gives us 8 classes, from P (none of the features is

present) to P
nv,lv,re (all are present).

Of course P is the class of graph databases (N, E) with

N ⊆ N and E ⊆ N×Σ×N , and P
nv,lv,re is the class of

all graph patterns as in Definition 1 with N ⊆ N∪Vnode

and E ⊆ N × REG(Σ ∪ Vlab) × N . We now examine
some others.

P
nv is the class of graphs where nodes could be either

constants, or node variables; all edges are labeled
with alphabet letters, i.e. N ⊆ N ∪ Vnode and
E ⊆ N×Σ×N . These patterns can be represented
by relational naive tables.

P
nv,re is the class of patterns where nodes could be

either constants or node variables, and edges are
labeled with regular expressions over Σ. That is,
N ⊆ N ∪ Vnode and E ⊆ N ×REG(Σ)×N .

These are essentially CRPQs, which are graph
queries (ξ, x̄) where ξ is from P

nv,re and uses only
node variables (without this restriction we have
the class of CRPQs that can mention constants).

P
nv,lv is the class of patterns where nodes could be

either constants or node variables, and edges are
labeled with letters or variables. That is, N ⊆
N ∪Vnode and E ⊆ N × (Σ∪Vlab)×N . The class

P
lv is its restriction when N ⊆ N .

Given multiple features of graph patterns, it is natural
to ask whether all are necessary, or some are expressible
with others. We now show that all three are essential.

Classes of patterns are of the form P
σ, where σ is a

subset of {nv, lv, re}. We write P
σ � P

σ′

if P
σ′

is at
least as expressive as P

σ: for every pattern π ∈ P
σ,

there is a pattern π′ ∈ P
σ′

so that JπK = Jπ′K (i.e.,
JπKΣ = Jπ′KΣ for each Σ containing the labels used in

π). We write P
σ ∼ P

σ′

if P
σ and P

σ′

are equally

expressive (i.e., P
σ � P

σ′

and P
σ′

� P
σ). Finally,

P
σ ≺ P

σ′

means that P
σ′

is strictly more expressive

than P
σ: that is, P

σ � P
σ′

, but they are not equally
expressive.

Theorem 1. Adding each new feature to graph patterns
strictly increases their expressiveness: in other words,

P
σ ≺ P

σ′

iff σ (σ′, and P
σ ∼ P

σ′

iff σ = σ′.

These relationships are visualized in the figure below.

P

P
nv

P
lv

P
re

P
nv,lv

P
nv,re

P
lv,re

P
nv,lv,re

In both relational and XML patterns it is common to
consider a restriction in which variables cannot be re-
peated. In relations, these are Codd tables [27] that

model SQL’s nulls. We say that a graph pattern is a
Codd pattern if every variable – node or label – occurs at
most once in it. In other words, Codd patterns do not
allow us to express equality between unknown entities.

If σ contains nv or lv, we shall write P
σ
Codd for the Codd

patterns in P
σ. We next show that Codd patterns are

strictly weaker than the usual ones, and describe classes
of patterns for which adding variables under Codd in-
terpretation increases expressiveness.

Proposition 1. • Codd patterns are strictly less ex-
pressive: P

σ
Codd ≺ P

σ when σ contains nv or lv.

• Adding variables under Codd interpretation makes
patterns more expressive except adding label vari-
ables to regular expressions. That is, if σ′ (σ and

σ−σ′ contains either nv or lv, then P
σ′

≺ P
σ
Codd

except one case: P
re ∼ P

lv,re
Codd.

5. QUERY ANSWERING

The goal of this section is to study the complexity
– both data and combined – of query answering over
graph patterns. Recall that for queries Q returning tu-
ples of nodes, we want to find certain answers defined
as certain(Q, π) =

⋂
{Q(G) | G ∈ JπK}. More precisely,

one needs to find certainΣ(Q, π), with G ranging over
graph databases with edges labeled in Σ; it will be clear
from the proofs, however, that the complexity of query
answering does not depend on the labeling alphabet.

Since each class of patterns gives rise to a class of graph
queries Q = (ξ, x̄), one could potentially ask for the
exact bounds on combined and data complexity for all
these classes of queries on all the classes of patterns. Of
course we are not going to consider all the resulting 128
cases. Instead, we do the following.

As our benchmark language we use CRPQs, and provide
exact complexity bounds for CRPQs over all classes of
patterns. Recall that CRPQs can be viewed as graph
queries (ξ, x̄) with ξ ∈ P

nv,re. We then show that the
upper bounds for CRPQs extend to the most expres-
sive patterns from P

nv,lv,re. After that, we delve further
into intractable cases, and analyze what really causes in-
tractability. In such cases, we consider restricted classes
of queries based on simpler graph patterns. We shall
discuss lower bounds for more expressive patterns in
the full version of the paper.

Certain answers as pattern implication It is a
standard and yet useful observation that the problem of
computing certain answers can be cast as the problem of
implication of patterns. Recall that pattern implication
is defined as follows: if π1 and π2 are two patterns,
then we say that π1 implies π2, and write π1 |= π2 if
Jπ1K ⊆ Jπ2K. In other words, π1 |= π2 if G |= π entails
G |= π2 for every graph database G. The following is
now immediate from the definitions.

Lemma 1. Given a graph pattern π = (N, E) and a
graph query Q = (ξ, x̄) with |x̄| = k,

certain(Q, π) = {v̄ ∈ Nk | π |= ξ[v̄/x̄]}.

For Boolean graph queries Q = (ξ, ()) with the empty
tuple of output variables (i.e., true/false queries),
Lemma 1 states that certain(Q, π) = true iff π |= ξ.
This simple connection with the implication problem
will let us use known results on containment of CR-
PQs [7] to obtain some of the bounds for the combined
complexity of query answering.

Remark: using naive evaluation Some classes of
patterns can be represented as naive tables, perhaps
with constraints. For example, patterns from P

nv can
be stored as naive tables, and patterns without regu-
lar expressions (from P

nv,lv) are represented as rela-
tional naive tables with an additional constraint that
the interpretation for label variables must come from
the labeling alphabet Σ. This can easily be coded as an
inclusion constraint.

Since CRPQs can be expressed in datalog, such a repre-
sentation gives us good tractable bounds for data com-
plexity for P

nv patterns. But for combined complexity,
and for data complexity for other classes, we cannot use
known results to get tight bounds. For example, even
evaluating conjunctive queries over naive tables with
inclusion constraints is known to be Pspace-hard [28],
and we shall see better bounds obtained for CRPQs
over P

nv,lv patterns.

5.1 Combined complexity

The problem we are dealing with is as follows:

Input: a pattern π = (N, E),
a graph query Q = (ξ, x̄) with |x̄| = k,
a tuple v̄ ∈ Nk.

Question: Is v̄ ∈ certain(Q, π) ?

Checking v̄ ∈ certain(Q, π) amounts to checking π |=
ξ[v̄/x̄], and the problem is known to be Expspace-
complete when both π and ξ are in P

nv,re [7]. We now
provide a complete analysis of the complexity.

Theorem 2. The combined complexity of answering
CRPQs over classes of graph patterns is as shown in
Figure 3.

The abbreviation ‘-c.’ in the figure means, of course,
complete for the class. The combined complexity of CR-
PQs on usual graph databases is the same as the com-
bined complexity of conjunctive queries over the usual
relational database, i.e., NP-complete. Thus, adding
node variables comes with no cost, while adding both
node and label variables carries a small cost in terms of
combined complexity (jumping up one level in the poly-
nomial hierarchy). Adding regular expressions comes at
a significant cost (jumping up an exponential).

P: NP-c.

P
nv: NP-c. P

lv:Πp
2-c. P

re: Expspace-c.

P
nv,lv:Πp

2-c. P
nv,re:Expspace-c. P

lv,re: Expspace-c.

P
nv,lv,re: Expspace-c.

Figure 3: Combined complexity for CRPQs over
graph patterns

Using essentially the same techniques as in [7], we can
prove that the previous upper bound extends beyond
CRPQs.

Proposition 2. The combined complexity of arbitrary
graph queries on arbitrary patterns is in Expspace.

The next question is whether we can lower the Ex-
pspace bound for patterns in P

re. There are two natu-
ral ways of looking for better behaved subclasses: by re-
stricting queries, or restricting patterns. Restrictions on
queries by means of simplifying regular languages were
studied in [17]. For example, it showed that for regu-
lar languages built with concatenation and the Kleene
star, the combined complexity drops to Πp

2-complete.
Another possibility is to restrict to RPQs; then, using
techniques similar to [7], we can prove a Pspace bound,
matching the combined complexity of relational calcu-
lus. It also follows from [7] that restricting the class of
patterns does not help lower the combined complexity.

Proposition 3. • The combined complexity of an-
swering CRPQs on patterns π ∈ P

re is
Expspace-hard even for patterns π that contain
a single edge.

• The combined complexity of answering RPQs on
graph patterns from P

nv,lv,re is Pspace-complete.
The problem remains Pspace-hard even for an-
swering RPQs on patterns π ∈ P

re that contain a
single edge.

5.2 Data complexity

We now turn to data complexity, i.e. the complexity
of query answering when the query is fixed. In what
follows, Q refers to a graph query (ξ, x̄) with |x̄| = k.

Problem: Data complexity(Q)
Input: a pattern π = (N, E), a tuple v̄ ∈ Nk.
Question: Is v̄ ∈ certain(Q, π) ?

P :NLogspace-c.

P
nv:NLogspace-c. P

lv:coNP-c. P
re:coNP-c.

P
nv,lv:coNP-c. P

nv,re:coNP-c. P
lv,re:coNP-c.

P
nv,lv,re:coNP-c.

Figure 4: Data complexity for CRPQs over
graph patterns

This too can be viewed as a pattern-implication prob-
lem π |= ξ[v̄/x̄] but for a fixed pattern ξ.

As already mentioned, some cases are simple: for ex-
ample, patterns in P are graphs, and thus due to
the monotonicity of CRPQs, computing certain an-
swers is the same as evaluating CRPQs on graphs, i.e.,
NLogspace-complete. Similarly, since P

nv patterns
can be represented as a naive table, and since CRPQ
queries can be translated into datalog, we retain an
NLogspace bound. For other cases, as it turns out,
the complexity is intractable.

Theorem 3. The data complexity of answering CRPQs
over classes of graph patterns is as shown in Figure 4.

Proof sketch. The coNP upper bound follows from a
more general result presented in Proposition 4.

We have already explained how to obtain the
NLogspace upper bounds, thus we only need to show
coNP-hardness for P

re and P
lv. We now present a

simple hardness proof for P
re. It will be tightened sig-

nificantly (and extended to P
lv) in the remainder of the

section.

For P
re, we use reduction to non-3-colorability. As-

sume we have an arbitrary undirected graph G; we rep-
resent it as a labeled graph where between two nodes
n1 and n2 connected by an edge we have two edges la-
beled a, i.e., (n1, a, n2) and (n2, a, n1). Now we turn
it into a P

re pattern πG over the alphabet {a, r, g, b}
by adding edges (n, rr|gg|bb, n) for each node n. That
is, in every graph represented by this pattern, associ-
ated with each node n there is another node n′ and
edges (n, ℓ, n′), (n′, ℓ, n) where ℓ is one of r, g, b. It is
now easy to see that the certain answer to the Boolean
RPQ Ans() ← (x, rar|gag|bab, y) over πG is true iff G
is not 3-colorable. 2

The upper bound again extends to arbitrary queries.
In order to prove this, we apply similar techniques to

those used in [8] to show that the data complexity of the
problem of answering RPQs using views is in coNP.

Proposition 4. Data complexity of arbitrary graph
queries over arbitrary graph patterns is in coNP.

Looking at Figure 4, we see that there are two features
that cause coNP-hardness: label variables, and regular
expressions. We now analyze their role in causing the
high complexity of query answering. In both cases, we
need to investigate two ways of lowering the complexity:
by restricting queries, and by restricting their inputs.

The role of label variables For restrictions on
queries, we shall look at simple RPQs. To define re-
strictions on inputs, we use the notion of the under-
lying graph Gπ of a pattern π = (N, E): this is sim-
ply the graph obtained by erasing labels on edges, i.e.
Gπ = (N, {(v1, v2) | (v1, L, v2) ∈ E).

We now show that the coNP-hardness result is very
robust. Recall that P

σ
Codd stands for class of Codd pat-

terns in P
σ, i.e., patterns that use each variable once.

Theorem 4. • There is a Boolean RPQ Q such that
Data complexity(Q) is coNP-hard even over

input patterns in P
lv whose underlying graph is a

path. Moreover, the regular language in Q is built
using only concatenation and the Kleene star.

• There is a Boolean RPQ Q of the form Ans() ←
(x, w, y), where w is a word in {0, 1}∗, such that
Data complexity(Q) is coNP-hard even over

P
lv
Codd patterns whose underlying graph is a DAG.

The only possibility for a polynomial-time query an-
swering algorithm left open by this result appears to be
Codd patterns in P

lv with very nice underlying graphs.
We shall see in Section 7, when we study tractable re-
strictions, that there is indeed a tractable class obtained
along these lines.

The role of regular expressions In the case of pat-
terns from P

re we have an additional parameter to vary:
the regular expressions used in patterns. Nevertheless,
we shall see that coNP-hardness is already witnessed
by very simple regular expressions.

Theorem 5. • There exists a Boolean RPQ Q of the
form Ans() ← (x, w, y), where w is a single word
over Σ = {0, 1}, such that Data complexity(Q)
is coNP-hard even over input patterns in P

re over
Σ whose underlying graph is a DAG. It remains
coNP-hard even if each regular expression used
in input patterns is 0|1.

• There exists a Boolean RPQ Q such that Data
complexity(Q) is coNP-hard even over input
patterns in P

re that only use regular expressions
of the form a, for a ∈ Σ, or a∗

1 . . . a∗
n, where the

ai’s are distinct letters in Σ.

Like the case of patterns with label variables, this leaves
open the possibility that more restrictive underlying

graphs may lead to tractability. Indeed, we shall prove
such results in Section 7.

6. INCOMPLETE AUTOMATA FOR
QUERYING PATTERNS

Notice that graph databases can be viewed as finite au-
tomata. Graph patterns in turn can be viewed as in-
complete automata. We now define those, and show
that they naturally generate two notions of acceptance.
These notions correspond to certain answers: one for
certain answers as we defined them, and the other for
certain answers for queries that can output paths.

Extensions of CRPQs outputting paths have been de-
fined in [5]. We shall present this notion for RPQs (for
CRPQs, it includes the concept of synchronizing paths,
which will complicate the presentation). An RPQ with
a path output is a query of the form

Ans(z̄, ρ) ← (x, ρ : L, y)

where, on top of the usual RPQ Ans(z̄)← (x, L, y), one
is allowed to name the path ρ witnessing the query, and
to output its label. Of course the number of L-paths
between two nodes could be infinite, but one easily ob-
serves that for every nodes n1, n2 in a graph database,
the set of labels of L-paths between them is regular, and
thus can be represented by a finite automaton.

Assume we have an RPQ Q with a path variable, as
above, and a graph pattern π. Let n1, n2 be two nodes
from N that occur in π. We say that a word ρ ∈ Σ∗

is a certain path between n1 and n2 with respect to Q
if for every G ∈ JπK, there is an L-path between n1

and n2 with label ρ. The set of such certain paths will
be denoted by certainpath(Q; π, n1, n2). We shall write

certainpath
Σ when Σ is not clear from the context.

The following example illustrates this concept.

Example 4. For m > 0, consider the pattern πm over
Σ = {0, 1} shown in the figure below.

Xm

0|1 0|1

X1 X2

n0 n1 nm

Notice that each G ∈ JπmK will contain a path from
node n0 to node nm. In particular, (n0, nm) is a certain
answer to the RPQ Q given by (x, ρ : (0|1)∗, y).
However, one can see that every word in

certainpath
Σ (Q; π, n0, nm) must contain, as subwords,

all the 2m words of length m over {0, 1} since the
Xis can be instantiated arbitrarily. Due to the
presence of the loops, the converse also holds, and

certainpath
Σ (Q; π, n0, nm) consists precisely of the words

that contain all the 2m subwords of length m. In
particular, the smallest certain paths are precisely the
non-circular De Bruijn sequences of order m, and thus

have length 2m + m− 1. One can also easily show that

any NFA accepting certainpath
Σ (Q; π, n0, nm) will have

exponentially many states (in m). 2

This example suggests that the problem of computing
the certain paths is inherently different from the prob-
lem of computing certain answers for graph patterns,
and thus we need to develop new tools for solving this
problem. This is what we do next.

6.1 Incomplete automata and certain answers

For convenience, we shall assume that NFAs can have
edges labeled by words. That is, NFAs will be of the
form A = (Q, Σ, q0, F, δ), where Q is the set of states,
Σ is the alphabet, q0 is the initial state, F is the set
of final states, and the transition relation δ is a finite
subset of Q×Σ∗×Q. The notion of acceptance extends
to such an automaton in the standard way: if there is a
transition (q, w, q′), the automaton is in state q, then, if
w is a subword that starts in the current position, the
automaton skips it and moves to the state q′. When all
the w’s used in transitions are single letters, this is the
standard notion of NFAs; in that case we shall refer to
them as standard NFAs.

The language accepted by an NFA is denoted by L(A).
Note that for each NFA, one can construct, in polyno-
mial time, a standard NFA A′ such that L(A) = L(A′).
This is done by converting each word in a transition into
a DFA (in polynomial time) and plugging it in place of
the transition. Hence, using extended transitions is in-
deed just a matter of convenience.

Definition 2. An incomplete automaton A is a tuple
A = (Q, Σ,W , q0, F, δ), where W is a finite set of la-
bel variables from Vlab, and δ ⊆ Q×REG(Σ∪W)×Q.

Thus, an incomplete automaton is really just a graph
pattern from P

nv,lv,re with a distinguished node corre-
sponding to the initial state, and a set of nodes corre-
sponding to the final states.

To define acceptance by these automata, we need the
notion of valuation. For an incomplete automaton A =
(Q, Σ,W , q0, F, δ), a valuation is a pair ν = (η, θ), where
η : W → Σ maps label variables in W to Σ, and θ :
(Q×REG(Σ∪W)×Q) → (Q×Σ∗×Q) assigns to each
transition (q, L, q′) ∈ δ a transition (q, w, q′), where w
is a word that belongs to η(L). Thus, a valuation ν =
(η, θ) for an incomplete automaton A defines an NFA
ν(A) = (Q, Σ, q0, F, θ(δ)).

We now consider two notions of acceptance. Weak ac-
ceptance refers to the consistency of a language with the
automaton, regardless of the interpretation of variables,
and strong acceptance refers to the consistency of a word
and an automaton.

Definition 3. • A regular language L ⊆ Σ∗ is weakly
accepted by an incomplete automaton A if L ∩
L(ν(A)) 6= ∅ for every valuation ν.

• A word w ∈ Σ∗ is strongly accepted by an in-
complete automaton A if w ∈ L(ν(A)) for every
valuation ν.

We write Lw(A) for the set of languages weakly accepted
by A, and Ls(A) for the set of words strongly accepted
by A. Note that Lw(A) ⊆ 2Σ∗

while Ls(A) ⊆ Σ∗.

While not immediately obvious from the definition, we
can show the following.

Proposition 5. For an incomplete automaton A, the
language Ls(A) of words strongly accepted by A is reg-
ular. An NFA accepting Ls(A) can be constructed in
doubly exponential time.

We shall see later (Theorem 8) that the bound is tight.

Given a graph pattern π = (N, E) ∈ P
nv,lv,re

over Σ that uses label variables W , and two nodes
n1, n2 from N ∩ N (i.e., nodes which are not vari-
ables), we let Aπ(n1, n2) be the incomplete automaton
(N, Σ,W , n1, {n2}, E).

Theorem 6. Let Ans(x, y, ρ)← (x, ρ : L, y) be an RPQ,
π = (N, E) a graph pattern, and n1, n2 two of its nodes
from N . Then

1. (n1, n2) ∈ certain(Q, π) iff L is weakly accepted by
Aπ(n1, n2).

2. w ∈ certainpath(Q; π, n1, n2) iff w ∈ L and w is
strongly accepted by Aπ(n1, n2).

Thus, the query evaluation problem, for both nodes
and paths, can be stated in purely automata-theoretic
terms. In particular, the set certainpath(Q; π, n1, n2) is
regular for every RPQ. Thus, our next goal is to study
properties of incomplete automata.

6.2 Computational problems for incomplete automata

Theorem 6 suggests studying computational problems
for incomplete automata related to query evaluation.
Results for weak acceptance have, in essence, been es-
tablished earlier, so we are interested in strong accep-
tance, which accounts for having paths in the output.

For weak acceptance, membership (i.e., given incom-
plete automaton A and a regular language L, presented
as a regular expression or as an NFA, does L belong to
Lw(A)?) is the problem of finding certain answers to
RPQs. Hence, we have

Corollary 1 . The membership problem for incomplete
automata under weak acceptance is Pspace-complete,
and coNP-complete if the language L is fixed.

It can also be easily seen that the emptiness problem
under weak acceptance, i.e., whether Lw(A) 6= ∅, is
solvable in polynomial time.

Now we address the case of strong acceptance, which, by
Theorem 6, gives us complexity bounds for computing

paths that are returned with certainty. There are three
versions of the problem we consider:

• Checking whether the query output is not empty.
In automata-theoretic terms, this is the emptiness
problem under strong acceptance: given an incom-
plete automaton A, check whether Ls(A) 6= ∅.

• Checking whether a specific path belongs to the
output, i.e., whether w ∈ certainpath(Q; π, n1, n2).
In automata-theoretic terms, we are interested in
the membership problem under strong acceptance,
i.e., given an incomplete automaton A and a word
w, check whether w ∈ Ls(A).

• Computing certainpath(Q; π, n1, n2). As this set is
regular, in automata-theoretic terms, we study the
following problem: For an incomplete automaton
A, construct an NFA A′ so that L(A′) = Ls(A).

As we analyze these problems, we shall see that hard-
ness results will be witnessed by an especially simple
kind of incomplete automata: namely, wildcard au-
tomata, in which all regular languages used in transi-
tions are single letters (alphabet letters or variables).
Formally, a wildcard automaton A is (Q, Σ,W , q0, F, δ),
where δ ⊆ Q× (Σ ∪W)×Q.

We now show that problems related to computing cer-
tain paths are computationally hard as long as regular
expressions or label variables are present in the edges.
The following does not appear to follow from known
Expspace-completeness results for graph databases [7,
5], and requires a new and quite involved proof.

Theorem 7. The emptiness problem under strong ac-
ceptance is Expspace-complete. It remains Expspace-
hard for wildcard automata, as well as for incomplete
automata that do not use any label variables.

We now consider problems related to query answer-
ing. The first is finding certain paths, or, in automata-
theoretic terms, the membership problem under strong
acceptance.

Proposition 6. The membership problem under strong
acceptance for incomplete automata is coNP-complete.
It remains coNP-hard for wildcard automata and for
incomplete automata that do not use any label variables.

The next question is about the size of automata defining
Ls(A). Normally large size bounds are easy to obtain
for deterministic automata, while NFAs could be ex-
ponentially smaller. Here we use techniques from [23]
to show that even the smallest NFAs capturing certain
paths in the answer to an RPQ could be doubly expo-
nential, matching the upper bound of Proposition 5.

Theorem 8. There exists a polynomial p and a family
{An}n∈N of wildcard automata such each An is of size
at most p(n) and uses n wildcards, and every NFA A′

n

satisfying L(A′
n) = Ls(An) has 22Ω(n)

states.

There also exists a family of incomplete automata with-
out label variables with the same property.

This gives a lower bound on the size of automata for
representing certain paths in answers to RPQs.

Corollary 2 . There exists a polynomial p, a family
{πn}n∈N of P

lv graph patterns, each with two distin-
guished nodes n1 and n2, and an RPQ Q such that
the size of πn is at most p(n), and every NFA defin-

ing certainpath(Q; πn, n1, n2) has 22Ω(n)

states.

The same holds for P
re patterns.

Note there is an exponential gap between the complex-
ity of the membership problem and the size of a repre-
sentation of all words strongly accepted by an incom-
plete automaton. There is no contradiction, of course,
between Theorem 8 and Proposition 6 as smallest NFAs
accepting even finite languages L can be of size expo-
nential in the maximum length of a word in L.

Remark: Theorems 7 and 8, Proposition 6, and Corol-
lary 2 remain true even for the Codd interpretation of
patterns and wildcard automata (i.e., each label vari-
able is used in at most one transition).

7. TRACTABILITY RESTRICTIONS AND
HEURISTICS

While many results of Sections 5 and 6 point to a rather
high complexity of query answering, they still leave a
few routes for finding tractable classes, or providing
heuristics that – at least based on the experience of
other areas – may be useful.

If we look at data complexity, results of Subsection 5.2
show that one possibility of getting tractable cases is
to impose further restrictions on underlying graphs of
patterns. Being DAGs, as we saw, is not enough, which
suggests trees. We shall in fact get a more general re-
sult, replacing trees with graphs of bounded treewidth.

Combined complexity results in Subsection 5.1 point
to P

nv,lv as the largest class with acceptable com-
bined complexity (i.e., not exceeding that of FO; in
fact staying in the 2nd level of the polynomial hier-
archy). The data complexity for the class, although
intractable, drops to the 1st level of the polynomial hi-
erarchy. This suggests using techniques from a field
that has achieved great success in solving problems
of this complexity, namely constraint satisfaction [16,
30]. The field has identified many tractable restrictions
and, what is equally important, provided many practi-
cal heuristics that help solve intractable problems. The
connection between RPQs on graph databases and con-
straint satisfaction was already established in [9]. As
the second contribution of this section, we show how to
cast the query answering problem for RPQs over graph
patterns as a constraint satisfaction problem, with a
particularly simple translation for several classes.

7.1 Tractability restrictions

Recall the standard definition of tree decompositions
and treewidth of a graph G = (N, E), with E ⊆ N ×N
(see, e.g., [18]). A tree decomposition is a pair (T, f)
where T is a tree and f : T → 2N assigns to each node
t in T a set of nodes f(t) of G such that every edge
of G is contained in one of the sets f(t), and each set
{t | n ∈ f(t)} is a connected subset of T for all n ∈ N .
The width of such a decomposition is maxt |f(t)| − 1.
The treewidth of G is the minimum width of a tree de-
composition of G. The treewidth of a connected graph
G equals 1 iff G is a tree.

A class of graph patterns is of bounded treewidth if there
is a fixed k ∈ N so that for every pattern π in the class,
the treewidth of its underlying graph Gπ is at most k.

We saw that label variables and regular expressions lead
to intractable data complexity of query answering. We
now show that bounded treewidth guarantees tractabil-
ity for large classes of patterns with these features.

Theorem 9. The data complexity of finding certain an-
swers to CRPQs over classes of graph patterns of

bounded treewidth in P
nv,re and P

nv,lv
Codd is in Ptime.

The Codd interpretation of label variables is essential,
since without it the problem is already coNP-hard for
treewidth 1 (see Theorem 4). For P

re patterns, coNP-
hardness results of Theorem 5 used classes of DAGs of
unbounded treewidth.

7.2 Certain answers via constraint satisfaction

We now demonstrate the potential of using techniques
from constraint satisfaction for answering queries over
graph patterns, in the spirit of [9]. We shall con-

sider patterns in P
nv,lv, for which data complexity is in

coNP. Of course pure complexity-theoretic argument
tells us that (the complement of) query answering can
be cast as a constraint satisfaction problem; what we
show here is that the translation for RPQs is very trans-
parent, opening up the possibility of bringing the huge
arsenal of tools from constraint satisfaction [16].

We adopt the standard view of the constraint satisfac-
tion problem (CSP) as checking for the existence of a
homomorphism from a relational structure M1 to an-
other structure M2 of the same vocabulary [30], re-
ferring to this problem as CSP(M1,M2). Often this
problem is considered withM2 fixed, in which case one
refers to non-uniform CSP.

Consider a pattern π = (N, E) in P
nv,lv, i.e., E ⊆

N × (Σ ∪W) ×N for a finite set W of label variables.
Let Q be an RPQ given by Ans(x, y)← (x, L, y), where
L ⊆ Σ∗ is a regular language. We now define logical
structuresMπ(n, n′) andMQ over vocabulary

(Nodes, Expr, (Laba)a∈Σ, Src, Sink, Edge),

where Edge is a ternary relation and other relations are
unary. Here n and n′ are two node ids of π.

Structure Mπ(n, n′) The domain is the disjoint union
of N , Σ, and W , the set of label variables used in π.
The interpretation of the predicates is as follows:

Nodes := N Edge := E
Laba := {a} Src := {n}
Expr := W Sink := {n′}

Structure MQ Assume that L is recognized by an
NFA (S, Σ, q0, F, δ) with δ : S × Σ → 2S (extended,
as usual, to a transition function on sets δ(S′, a) =⋃

s∈S′ δ(s, a)). The domain ofMQ is the disjoint union

of 2S and Σ. The interpretation of the predicates is:

Nodes := 2S Edge := {(S′, a, S′′) ∈ 2S × Σ× 2S |
δ(S′, a) ⊆ S′′}

Laba := {a} Src := {S′ ∈ 2S | q0 ∈ S′}
Expr := Σ Sink := 2S−F

Theorem 10. For patterns π ∈ P
nv,lv, under the above

translations, (n, n′) ∈ certain(Q, π) iff there is no solu-
tion to CSP(Mπ(n, n′),MQ).

Many algorithmic techniques for constraint satisfaction
for CSP(M1,M2) are based on exploiting properties of
the structureM1, so the extremely simple construction
ofMπ(n, n′) indeed opens up the possibility of using a
large body of heuristics developed in that area.

The case of data complexity corresponds to the non-
uniform version of CSP, with MQ fixed. In that case
one can immediately conclude (using known results
on CSP [16, 30]) that if we have a class of patterns

π ∈ P
nv,lv which, when viewed as ternary relations

E, has bounded treewidth, then the data complexity
of RPQs over such a class is in Ptime (note that this
is incompatible with Theorem 9 which gives a Ptime
result for a larger class of queries, but under the restric-
tion of the Codd interpretation of label variables).

An analog of Theorem 10 for patterns in P
nv,re was

shown in [9]. Combining both techniques we can ex-

tend the result to all patterns in P
nv,lv,re, but at the

cost of much more complex definitions of the structures
Mπ(n, n′) and MQ compared to those we used here.
We shall discuss this in the full version of the paper.

8. CONCLUSIONS

We studied structural properties and querying of graph
patters. We looked at three main features of patterns:
node variables, label variables, and regular expressions
specifying paths. We showed that each of these fea-
tures strictly increases the expressiveness of patters. We
looked at data and combined complexity of answering
CRPQs and other queries (both extensions and restric-
tions of CRPQs). We developed a model of automata

that capture query answering, both for returning nodes
and paths, and studied their properties. Finally, we
identified tractable restrictions, as well as classes of rea-
sonable combined complexity for which query answering
is naturally viewed as a constraint satisfaction property.

The main conclusion is that, without carefully chosen
restrictions, querying graph patterns is computation-
ally harder than querying relational or XML patterns.
In particular, this has implications for ongoing work on
defining schema mappings as well as integration and
exchange techniques for graph-structured data. How-
ever, we can identify rather robust classes with either
tractable query answering, or for which one can hope
to find good heuristics by using techniques from other
fields. Developing such techniques is a natural contin-
uation of this work. Another line for further work is
to study tractable restrictions for integrating and ex-
changing graph data.

Acknowledgments We thank Wenfei Fan and Peter Wood for

their comments. Partial support provided by Fondecyt grant

1110171, EPSRC grant G049165 and FET-Open Project FoX,

grant agreement 233599. Part of this work was done when the

first author visited Edinburgh, and the second and the third au-

thor visited Santiago.

9. References

[1] S. Abiteboul, P. Buneman, D. Suciu. Data on the Web:
From Relations to Semistructured Data and XML. Morgan
Kauffman, 1999.

[2] R. Angles, C. Gutiérrez. Survey of graph database models.
ACM Comput. Surv. 40(1): (2008).

[3] M. Arenas, P. Barceló, L. Libkin, F. Murlak. Relational
and XML Data Exchange. Morgan & Claypool, 2010.

[4] P. Barceló, L. Libkin, A. Poggi, C. Sirangelo. XML with
incomplete information. J. ACM 58(1): 1–62 (2010).

[5] P. Barceló, C. Hurtado, L. Libkin, P. Wood. Expressive
languages for path queries over graph-structured data. In
PODS, pages 3-14, 2010.

[6] H. Björklund, W. Martens, and T. Schwentick. Conjunctive
query containment over trees. In DBPL’07, pages 66–80.

[7] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi.
Containment of conjunctive regular path queries with
inverse. In KR’00, pages 176–185.

[8] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi.
Answering regular path queries using views. In ICDE,
pages 389-398, 2000.

[9] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi.
View-based query processing and constraint satisfaction. In
LICS, pages 361-371, 2000.

[10] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi.
Rewriting of regular expressions and regular path queries.
JCSS, 64(3):443–465, 2002.

[11] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi.
Simplifying schema mappings. In ICDT 2011, to appear.

[12] J. Cheng, J. X. Yu, B. Ding, P. S. Yu, and H. Wang. Fast
graph pattern matching. In ICDE 2008, pages 913–922.

[13] S. Cohen and Y. Sagiv. An abstract framework for
generating maximal answers to queries. In ICDT 2005,
pages 129–143.

[14] M. P. Consens, A. O. Mendelzon. GraphLog: a visual
formalism for real life recursion. In PODS’90, pages
404–416.

[15] I. Cruz, A. Mendelzon, P. Wood. A graphical query
language supporting recursion. In SIGMOD’87, pages
323-330.

[16] R. Dechter. Constraint Processing. Morgan Kaufmann,
2003.

[17] A. Deutsch, V. Tannen. Optimization properties for classes
of conjunctive regular path queries. DBPL’01, pages 21–39.

[18] R. Diestel. Graph Theory. Springer, 2005.

[19] R. Fagin, Ph. Kolaitis, R. Miller, and L. Popa. Data
exchange: semantics and query answering. TCS,
336(1):89–124, 2005.

[20] W. Fan, J. Li, S. Ma, H. Wang, Y. Wu. Homomorphism
revisited for graph matching. PVLDB 3(1): 1161-1172
(2010).

[21] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu. Graph pattern
matching: from intractable to polynomial time. PVLDB
3(1): 264-275 (2010).

[22] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu. Adding regular
expressions to graph reachability and pattern queries. In
ICDE 2011, to appear.

[23] I. Glaister, J. Shallit. A lower bound technique for the size
of nondeterministic finite automata. IPL 59:75-77, 1996.

[24] G. Gottlob, C. Koch, K. Schulz. Conjunctive queries over
trees. J. ACM 53(2) (2006), 238-272.

[25] C. Gutierrez, C. Hurtado, A. Mendelzon. Foundations of
semantic web databases. In PODS 2004, pages 95–106.

[26] M. Gyssens, J. Paredaens, J. Van den Bussche, D. Van
Gucht. A graph-oriented object database model. IEEE
TKDE 6(4) (1994), 572–586.

[27] T. Imielinski, W. Lipski. Incomplete information in
relational databases. J. ACM 31 (1984), 761–791.

[28] D. Johnson, A. Klug. Testing containment of conjunctive
queries under functional and inclusion dependencies. JCSS,
28(1) (1984), pages 167-189.

[29] Y. Kanza, W. Nutt, Y. Sagiv. Querying incomplete
information in semistructured data. JCSS 64 (3) (2002),
655–693.

[30] P. Kolaitis and M. Vardi. A logical approach to constraint
satisfaction. In Finite Model Theory and Its Applications,
Springer 2007, pages 339–370.

[31] M. Lenzerini. Data integration: a theoretical perspective.
In PODS’02, pages 233–246.

[32] U. Leser. A query language for biological networks.
Bioinformatics 21 (suppl 2) (2005), ii33–ii39.

[33] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, U. Alon. Network motifs: simple building
blocks of complex networks. Science 298(5594) (2002),
824–827.

[34] M. Natarajan. Understanding the structure of a drug
trafficking organization: a conversational analysis. Crime
Prevention Studies 11 (2000), 273–298.

[35] F. Olken. Graph data management for molecular biology.
OMICS 7(1): 75-78 (2003).

[36] J. Pérez, M. Arenas, C. Gutierrez. Semantics and
complexity of SPARQL. ACM TODS 34(3): 2009.

[37] R. Ronen and O. Shmueli. SoQL: a language for querying
and creating data in social networks. In ICDE 2009.

[38] M. San Mart́ın, C. Gutierrez. Representing, querying and
transforming social networks with RDF/SPARQL. In
ESWC 2009, pages 293–307.

[39] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad.
Fast best-effort pattern matching in large attributed
graphs. In KDD 2007.

[40] G. Weikum, G. Kasneci, M. Ramanath, F. Suchanek.
Database and information-retrieval methods for knowledge
discovery. CACM 52(4):56-64 (2009).

