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ABSTRACT
Community detection which discovers densely connected structures
in a network has been studied a lot. In this paper, we study on-
line community search which is practically useful but less studied
in the literature. Given a query vertex in a graph, the problem is to
find meaningful communities that the vertex belongs to in an online
manner. We propose a novel community model based on the k-truss
concept, which brings nice structural and computational properties.
We design a compact and elegant index structure which supports
the efficient search of k-truss communities with a linear cost with
respect to the community size. In addition, we investigate the k-
truss community search problem in a dynamic graph setting with
frequent insertions and deletions of graph vertices and edges. Ex-
tensive experiments on large real-world networks demonstrate the
effectiveness and efficiency of our community model and search
algorithms.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications—
Data mining; G.2.2 [DISCRETE MATHEMATICS]: Graph The-
ory—Graph algorithms

Keywords
k-truss; community search; dynamic graph

1. INTRODUCTION
Community structure exists in many real-world networks, for ex-

ample, social networks and biological networks. Community de-
tection, which is to find communities in a network, has been stud-
ied a lot in the literature [15, 16, 17, 1, 25]. A different but related
problem is online community search, which finds communities con-
taining a query vertex in an online manner. These two tasks have
different goals: community detection targets all communities in the
entire network and usually applies a global criterion to find quali-
fied communities. In contrast, online community search provides
personalized community detection for a query vertex. As the com-
munities for different vertices in a network may have very differ-
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ent characteristics, this user-centered personalized search is more
meaningful. Furthermore, as the communities a user participates in
represent the social contexts of the user, online community search
provides a useful tool for other analytical tasks, such as social circle
discovery [14] and social contagion modeling [20]. In this paper,
we study the modeling and querying of the communities of a query
vertex.

A recent study by Cui et al. [9] has proposed a novel approach for
online overlapping community search. A new community model
was defined as an α-adjacency-γ-quasi-k-clique. A γ-quasi-k-clique

is a k-node graph with at least �γ k(k−1)
2

� edges. Another param-
eter α is imposed to union two γ-quasi-k-cliques if they share at
least α vertices. Given a query vertex q, the problem is to find all
α-adjacency-γ-quasi-k-cliques containing q. However, there are
several limitations in this community model.

1. γ as an average density measure, may not necessarily guar-
antee a cohesive community structure. Consider the graph in
Figure 1 which is a 0.8-quasi-7-clique containing query ver-
tex q. However, q is only connected with one vertex in the
community, thus it is not a cohesive community for q obvi-
ously.

2. There are three parameters α, γ, k in this model, the setting
of which may vary significantly for different query vertices.
For example, in a research collaboration network, the com-
munities of a famous scholar and a junior scholar can be dra-
matically different in terms of the community size and den-
sity. Thus it is difficult to choose proper values for the three
parameters given a query vertex.

3. Finding α-adjacency-γ-quasi-k-clique has been proven to be
NP-hard [9], which imposes a severe computational bottle-
neck. The approximate algorithms for clique enumeration
and expansion [9] reduce the complexity, but cannot give a
theoretic guarantee of the approximation quality.
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Figure 1: A 0.8-quasi-7-clique containing q

Considering these limitations, we propose a novel community
model based on the k-truss concept. Given a graph G, the k-truss of
G is the largest subgraph in which every edge is contained in at least
(k − 2) triangles within the subgraph [7]. The k-truss is a type of
cohesive subgraph defined based on triangle which models the sta-
ble relationship among three nodes. However, the k-truss subgraph
may be disconnected, for example, the two shaded regions form the
4-truss subgraph in Figure 2(a) which is obviously disconnected.
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So the k-truss subgraph may not correspond to a meaningful com-
munity. On top of the k-truss, we impose an edge connectivity
constraint, that is, any two edges in a community either belong to
the same triangle, or are reachable from each other through a series
of adjacent triangles. Here two triangles are defined as adjacent if
they share a common edge. The edge connectivity requirement en-
sures that a discovered community is connected and cohesive. This
defines our novel k-truss community model. To the best of our
knowledge, this is the first work that proposes the k-truss commu-
nity. Compared with the α-adjacency-γ-quasi-k-clique model, our
community model has the following advantages.

1. Cohesive community. The k-truss community has cohesive
structure according to our analysis in Section 2. For exam-
ple, the graph in Figure 1 is not a valid k-truss community
containing q for k ≥ 3, as the edge (q, s4) is not in any of
the triangles.

2. Fewer parameter. Our community model only needs to
specify the trussness value k. In addition, a (k + 1)-truss
community is contained in a k-truss community. Thus by
using different k values for community query, we can get a
hierarchical community structure of a query vertex.

3. Polynomial time algorithm. There exist polynomial time
algorithms for computing the k-truss subgraphs [7, 21], which
make the k-truss community model computationally tractable
and efficient.

Simply searching k-truss community by its definition may incur
a large number of wasteful edge accesses as shown in Section 3.2.
Thus the key to efficient k-truss community query processing is
to design an effective index. Towards this goal, we first apply an
efficient truss decomposition algorithm [21] on a graph G which
computes the k-truss subgraphs for all k values. Then we design
a novel and elegant index structure, called TCP-Index, to index
the pre-computed k-truss subgraphs. The TCP-Index preserves the
trussness value and the triangle adjacency relationship in a compact
tree-shape index, and supports the query of k-truss community in
linear time with respect to the community size, which is optimal.

We further study k-truss community search in dynamic graphs,
where graph vertices and edges can be frequently inserted or deleted.
We present a theoretical analysis to identify the scope in a graph
that is affected by edge insertion/deletion. Specifically, we derive a
tight upper bound of the trussness for a newly inserted edge, which
allows us to precisely identify the affected region with a light cost.
Then we design efficient algorithms to update the trussness value
and the TCP-Index in the affected region. The incremental up-
date algorithms effectively support querying k-truss community in
highly dynamic graphs.

We conduct extensive experimental studies on large real-world
networks and have the following findings. First, the k-truss com-
munity search using the TCP-Index is highly efficient in all net-
works. The query time is from one millisecond for the low de-
gree query vertex to a few seconds for the high degree query ver-
tex which has large and dense communities. The TCP-Index is
very compact and can be constructed very efficiently. Second, the
TCP-Index can be updated in milliseconds given an edge inser-
tion/deletion. Thus it is highly efficient to support the k-truss com-
munity search in dynamic graphs. Last, we evaluate the quality of
the discovered communities on two social networks with ground-
truth communities and a scientific collaboration network. The re-
sults show that our community model can find cohesive and mean-
ingful communities of a query vertex.

The rest of this paper is organized as follows. We formulate the
k-truss community search problem in Section 2. We design a novel
TCP-Index and an efficient k-truss community search algorithm
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Figure 2: K-truss community example

in a static graph in Section 3. We further study how to maintain
the TCP-Index for query processing in a dynamic graph in Section
4. Extensive experimental results on large real-world networks are
reported in Section 5. We discuss related work in Section 6 and
conclude this paper in Section 7.

2. K-TRUSS COMMUNITY

2.1 Problem Definition
We consider an undirected, unweighted simple graph G = (V,E)

with n = |V | vertices and m = |E| edges. We denote the set of
neighbors of a vertex v by N(v), i.e., N(v) = {u ∈ V : (v, u) ∈
E}, and the degree of v by d(v) = |N(v)|. We use dmax to denote
the maximum vertex degree in G.

A triangle in G is a cycle of length 3. Let u, v, w ∈ V be the
three vertices on the cycle, and we denote this triangle by �uvw.
Then the support of an edge is defined as follows.

DEFINITION 1 (SUPPORT). The support of an edge e(u, v) ∈
E in G, denoted by sup(e,G), is defined as |{�uvw : w ∈ V }|.
When the context is obvious, we replace sup(e,G) by sup(e).

If an edge e is contained in a triangle �, we denote it by e ∈
�. Now we give the definitions of triangle adjacency and triangle
connectivity below.

DEFINITION 2 (TRIANGLE ADJACENCY). Given two trian-
gles �1,�2 in G, they are adjacent if �1 and �2 share a common
edge, which is denoted by �1 ∩ �2 �= ∅.

DEFINITION 3 (TRIANGLE CONNECTIVITY). Given two tri-
angles �s,�t in G, �s and �t are triangle connected, if there
exist a series of triangles �1, . . . ,�n in G, where n ≥ 2, such
that �1 = �s, �n = �t and for 1 ≤ i < n, �i ∩ �i+1 �= ∅.

For the graph G in Figure 2(a), e(q, p4) is contained in �qp3p4

and �qp2p4 , thus its support sup(e(q, p4)) = 2. �qp3p4 and
�qp2p4 are triangle adjacent as they share a common edge e(q, p4).
�tp3p4 and �qp2p4 are triangle connected through �qp3p4 in G.

On the basis of the definitions of support and triangle connectiv-
ity, we define the k-truss community as follows.

DEFINITION 4 (K-TRUSS COMMUNITY). Given a graph G
and an integer k ≥ 2, G′ is a k-truss community, if G′ satisfies the
following three conditions:
(1) K-Truss. G′ is a subgraph of G, denoted as G′ ⊆ G, such that

∀e ∈ E(G′), sup(e,G′) ≥ (k − 2);

(2) Edge Connectivity. ∀e1, e2 ∈ E(G′), ∃�1,�2 in G′ such
that e1 ∈ �1, e2 ∈ �2, then either �1 = �2, or �1 is
triangle connected with �2 in G′;

(3) Maximal Subgraph. G′ is a maximal subgraph satisfying con-
ditions (1) and (2). That is, �G′′ ⊆ G, such that G′ ⊂ G′′,
and G′′ satisfies conditions (1) and (2).

Actually the largest subgraph that satisfies condition (1) is ex-
actly the k-truss definition used in the literature [7, 21]. However,
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the k-truss condition itself is insufficient to define a cohesive and
meaningful community due to the following two reasons. First, a
k-truss subgraph can be disconnected, thus does not represent a co-
hesive community. For example, the two shaded regions in Figure
2(a) form the 4-truss subgraph of G, which is obviously discon-
nected. So this 4-truss subgraph does not correspond to a meaning-
ful community. Second, for a fixed k value, any vertex can belong
to at most one k-truss subgraph. This cannot deal with a common
scenario that a user can participate in multiple communities.

With these considerations, we impose the edge connectivity re-
quirement in condition (2) to ensure the discovered communities
are connected and cohesive. The rationale is that, a triangle rep-
resents the strong and stable relationship among three vertices. If
any two edges in a subgraph are reachable from each other through
a series of adjacent triangles, the subgraph must be connected, and
have a cohesive structure among all involved vertices. This defini-
tion also allows a vertex to participate in multiple communities.

Example 1: Two 4-truss communities containing vertex q are shown
in Figure 2(b) as C1 and C2, respectively. We can verify that ev-
ery edge in C1 is contained in at least two triangles in C1, any
two edges in C1 are reachable through adjacent triangles, and C1

is maximal. Thus C1 is a 4-truss community. These properties also
hold for another 4-truss community C2. As the edges in C1 can-
not reach the edges in C2 through adjacent triangles, C1 and C2

cannot merge as one large community. This is very reasonable, as
there is no connection between the two vertex sets {p1, p2, p3, p4}
and {r1, r2, r3}. In addition, we can see that vertices q and t par-
ticipate in both communities. �

Problem Definition. The problem of k-truss community search
studied in this paper is defined as follows. Given a graph G(V,E),
a query vertex vq ∈ V and an integer k ≥ 2, find all k-truss com-
munities containing vq . In addition, we study k-truss community
search in dynamic graphs, where vertices and edges are frequently
inserted or deleted.

2.2 Why K-Truss Community?
Compared with the latest α-adjacency-γ-quasi-k-clique [9] com-

munity model, the k-truss community model has three significant
advantages: stronger guarantee on cohesive structure, fewer param-
eters and lower computational cost. These nice properties, which
are inherited from the k-truss subgraph [7], not only lead to the
discovery of more cohesive and meaningful communities, but also
enable the design of more efficient, scalable and easier-to-use al-
gorithms for community search. We present these properties in the
following.

Bounded Diameter in K-Truss Community. The diameter of a k-

truss community C with |C| vertices is no larger than � 2|C|−2
k

� [7].
This property guarantees that the shortest distance between any two
vertices in a community is bounded, which has been considered as
an important feature of a good community in [10].

Consider the 4-truss community C1 in Figure 2(b) as an example.
The diameter of C1 is 2, which is the same as the diameter upper
bound � 2×6−2

4
� = 2.

(K-1)-Edge-Connected Graph. A graph is (k−1)-edge-connected
if it remains connected whenever fewer than k − 1 edges are re-
moved [11]. A k-truss community is (k − 1)-edge-connected [7].
This property ensures the high connectivity of a community, which
has been proposed as a criterion of a good community in [13].

In contrast, the γ-quasi-k-clique is not (k − 1)-edge-connected
for γ < 1. The 0.8-quasi-7-clique in Figure 1 becomes discon-
nected when one edge is removed.

Fewer Parameter. In the k-truss community model, we only need
to specify the trussness value k, which controls or affects the diam-
eter, the edge connectivity, and the edge support in a community.
In contrast, the α-adjacency-γ-quasi-k-clique model uses three pa-
rameters, the adjacency parameter α, the density γ and the clique
size k. Although having more parameters may give more leverage
on the properties of the community, it is much more difficult to
choose proper values for different parameters.

Polynomial Time Complexity. There exist polynomial time algo-
rithms [7, 21] for computing k-truss subgraphs. By applying such
algorithm, we can compute the k-truss subgraphs for all k. The
pre-computed results enable us to design compact index structures
and efficient algorithms for querying k-truss communities. In con-
trast, finding γ-quasi-k-cliques has been proven to be NP-hard [9],
which imposes a severe computational bottleneck.

2.3 Variations of K-Truss Community
The k-truss community can be extended to several interesting

variants.

Densest K-Truss Community. It is interesting to discover the
densest k-truss community containing a user q, that is, a k-truss
community containing q that maximizes the trussness value k.

Most Diverse Communities. It is interesting to know how di-
verse the social contexts of a user q are, where a community repre-
sents a distinct social context. For a set of k-truss communities
containing q as {C1, . . . , Cl}, the community diversity is mea-
sured by the entropy of the community vertex size distribution:

Div(q, k) = −∑
1≤i≤l

|Ci|∑
1≤j≤l |Cj | log

|Ci|∑
1≤j≤l |Cj | . By choos-

ing k which maximizes the diversity, i.e., k = argmaxk Div(q, k),
we can find the most diverse communities.

Other Community Models. The community model can be gen-
eralized using other dense subgraph definitions, such as the k-core
community, and k-edge-connected component community.

The proposed techniques for k-truss community search in this
paper can be extended to solve the above variant forms.

3. QUERYING K-TRUSS COMMUNITY
In this section, we study how to process a k-truss community

query on a graph. We first design a simple k-truss index which is
then proven to incur unnecessary computational overhead for query
processing. Then we design a compact and elegant structure, called
Triangle Connectivity Preserved Index (TCP-Index), and a highly
efficient algorithm to process a k-truss community query.

3.1 Subgraph and Edge Trussness
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Figure 3: An example graph for k-truss community search

We define the trussness of a subgraph and an edge as follows.

DEFINITION 5 (SUBGRAPH TRUSSNESS). The trussness of a
subgraph H ⊆ G is the minimum support of an edge in H , denoted
by τ(H) = min{sup(e,H) : e ∈ E(H)}.

DEFINITION 6 (EDGE TRUSSNESS). The trussness of an edge
e ∈ E(G) is defined as τ(e) = maxH⊆G{τ(H) : e ∈ E(H)}.
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Algorithm 1 Truss Decomposition

Input: G = (V,E)
Output: τ(e) for each e ∈ E

1: k ← 2;
2: compute sup(e) for each edge e ∈ E;
3: sort all the edges in ascending order of their support;
4: while(∃e such that sup(e) ≤ (k − 2))
5: let e = (u, v) be the edge with the lowest support;
6: assume, w.l.o.g, deg(u) ≤ deg(v);
7: for each w ∈ N(u) and (v, w) ∈ E do
8: sup((u,w)) ← sup((u,w))− 1;

sup((v, w)) ← sup((v, w))− 1;
9: reorder (u,w) and (v, w) according to their new support;

10: τ(e) ← k, remove e from G;
11: if(not all edges in G are removed)
12: k ← k + 1;
13: goto Step 4;
14: return {τ(e)|e ∈ E};

Such a subgraph H which defines τ(e) is denoted as He. It
follows that τ(He) = τ(e). For an edge e and 2 ≤ k ≤ τ(e), we
denote the k-truss community containing e as He

k , which is unique
in the sense that no other k-truss community contains e. We use
kgmax to denote the maximum trussness of any edge in G.

Consider the graph in Figure 3 as an example. The trussness of
the edge e(s1, s2) is τ(e) = 5, and the subgraph He is the 5-clique
on the vertex set {q, s1, s2, s3, s4}.

3.2 A Simple K-Truss Index
We first design a simple k-truss index and propose an algorithm

for k-truss community search based on the index.

K-Truss Index Construction. We first apply a truss decomposi-
tion algorithm [21] on the graph G, which computes the trussness
of each edge. For the self-completeness of this paper, the truss de-
composition algorithm [21] is outlined in Algorithm 1. After the
initialization, for each k starting from k = 2, the algorithm itera-
tively removes a lowest support edge e(u, v) if sup(e) ≤ k − 2.
We assign the trussness of the removed edge as τ(e) = k. Upon
the removal of e, we also decrement the support of all other edges
that form a triangle with e, and reorder them according to their new
support. This process continues until all edges with support less
than or equal to (k − 2) are removed. In this way, we compute the
trussness of all edges in G.

For each vertex v ∈ V , we sort its neighbors N(v) in descend-
ing order of the edge trussness τ(e(u, v)) for u ∈ N(v). For each
distinct trussness value k ≥ 2, we mark the position of the first
vertex u in the sorted adjacency list where τ(e(u, v)) = k. This
supports efficient retrieval of v’s incident edges with a certain truss-
ness value. We also use a hashtable to keep all the edges and their
trussness values. This is the simple k-truss index.

Query Processing. Algorithm 2 outlines the procedure to process
a k-truss community query based on the simple index. Given an in-
teger k and a query vertex vq , the algorithm checks every incident
edge on vq to search k-truss communities. If there exists an un-
visited edge (vq, u) with τ((vq, u)) ≥ k, (vq, u) is the seed edge
to form a new community Cl. By definition, all the other edges in
Cl can be reached from (vq, u) through adjacent triangles. So we
push (vq, u) into a queue Q and perform a BFS traversal to search
for other edges for expanding Cl, i.e., edges which have trussness
no less than k and form triangles with edges already in Cl (line 6-
13). When Q becomes empty, all edges in Cl have been found.
Then the algorithm checks the next unvisited incident edge of vq

Algorithm 2 Query Processing Using K-Truss Index

Input: G = (V,E), an integer k, query vertex vq
Output: k-truss communities containing vq

1: visited ← ∅; l ← 0;
2: for u ∈ N(vq) do
3: if τ((vq , u)) ≥ k and (vq , u) /∈ visited
4: l ← l + 1; Cl ← ∅; Q ← ∅;
5: Q.push((vq , u)); visited ← visited ∪ {(vq , u)};
6: while Q 	= ∅
7: (x, y) ← Q.pop(); Cl ← Cl ∪ {(x, y)};
8: for z ∈ N(x) ∩N(y) do
9: if τ((x, z)) ≥ k and τ((y, z)) ≥ k

10: if (x, z) /∈ visited
11: Q.push((x, z)); visited ← visited ∪ {(x, z)};
12: if (y, z) /∈ visited
13: Q.push((y, z)); visited ← visited ∪ {(y, z)};
14: return {C1, . . . , Cl};

for forming a new community Cl+1. This process iterates until all
incident edges of vq have been processed. Finally a set of k-truss
communities containing vq are returned.

The correctness of Algorithm 2 is apparent since the algorithm
essentially computes k-truss communities by definition, that is, ex-
ploring triangle connected edges with trussness no less than k in a
BFS manner. We show the complexity of the simple k-truss index
construction and query processing by Algorithm 2 as follows.

THEOREM 1. The construction of the simple k-truss index takes
O(

∑
(u,v)∈E min{d(u), d(v)}) time and O(m) space. The index

size is O(m). Algorithm 2 takes O(dAmax|Ans|) time to process
one query, where Ans = C1∪ . . .∪Cl is the union of the produced
k-truss communities, |Ans| is the edge number in Ans and dAmax

is the maximum vertex degree in Ans.

PROOF. The truss decomposition algorithm (Algorithm 1) takes
O(

∑
(u,v)∈E min{d(u), d(v)}) time and O(m) space for com-

puting the trussness of all edges. Sorting the adjacency lists of
all vertices in G takes O(m) time and O(m) space. Building an
edge hashtable costs O(m) time and O(m) space. Thus, the con-
struction of the k-truss index takes O(

∑
(u,v)∈E min{d(u), d(v)})

time and O(m) space. The index size is O(m).
In k-truss community search, for each edge (u, v) in the gener-

ated communities, Algorithm 2 accesses the common neighbors of
u and v, i.e., N(u) ∩ N(v) (line 7-9), whose size is bounded by
dAmax. Thus the query time complexity is O(dAmax|Ans|).

Example 2: Suppose we want to query the 4-truss communities
containing vertex q in the graph in Figure 3. Algorithm 2 first visits
edge (q, s1) with τ((q, s1)) = 5 ≥ 4, and adds it into Q. The algo-
rithm pops (q, s1) from Q and inserts it into a new community C1.
Then the algorithm checks the common neighbors of q and s1 and
the edges between them. Consider a common neighbor s2 as an ex-
ample. As τ((q, s2)) ≥ 4 and τ((s1, s2)) ≥ 4, both edges (q, s2)
and (s1, s2) are then inserted into C1 and also pushed into Q for
further expansion. This BFS expansion process continues until Q
is empty and the 4-truss community C1 is the induced subgraph by
the vertex set {q, s1, s2, s3, s4, x1, x2, x3, x4}. �

3.3 A Novel TCP-Index
3.3.1 Limitations of Simple K-Truss Index

Algorithm 2 has two drawbacks in its query processing mecha-
nism by using the simple k-truss index. Specifically, in line 8-13,
for any edge (x, y) that has already been included in Cl, the al-
gorithm needs to access adjacent edges (x, z) and (y, z) for each
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common neighbor z of x and y. The following two cases lead to
unnecessary and excessive computational overhead.

1. Unnecessary access of disqualified edges: If τ((x, z)) < k
or τ((y, z)) < k, (x, z), (y, z) will not be included in Cl,
thus accessing and checking such disqualified edges become
a waste.

2. Repeated access of qualified edges: For each edge (u, v) in
Cl, it is accessed at least 2(k−2) times in the BFS traversal,
which is a huge waste. This is because τ((u, v)) ≥ k, (u, v)
is contained in at least (k − 2) triangles by definition. For
each such triangle denoted as �uvw, (u, v) will be accessed
twice when we do BFS expansion from the other two edges
(u,w), (v, w). It follows that the query time of Algorithm 2
is lower bounded by Ω(k|Ans|).

Considering these two drawbacks, we design a novel Triangle
Connectivity Preserved Index, or TCP-Index in short, which avoids
the computational problems in Algorithm 2. Remarkably, the TCP-
Index supports the k-truss community query in O(|Ans|) time,
which is essentially optimal. Meanwhile, the TCP-Index can be
constructed in O(

∑
(u,v)∈E min{d(u), d(v)}) time and stored in

O(m) space, which has exactly the same complexity as the simple
k-truss index.

3.3.2 TCP-Index Construction
We first make some observations from the example in Figure 3.

Observation 1: Consider �pqs3 in which the three edge trussness
values are 5, 3, and 3. Then �pqs3 can appear in a 3-truss com-
munity, but not in 4- or 5-truss communities, due to the two 3-truss
edges. To generalize, a triangle �xyz can appear only in k-truss
communities where k ≤ min{τ((x, y)), τ((x, z)), τ((y, z))}.

Observation 2: Consider a subgraph in Figure 4(a) which is ex-
tracted from Figure 3. By definition, vertices x1, x2, x3 belong to
the same 5-truss community containing q, as each involved edge
is 5-truss, and �qx1x2 and �qx1x3 are adjacent via edge (q, x1).
Thus we can use a compact representation for vertex q as depicted
in solid line in Figure 4(b), which preserves the trussness and adja-
cency information for community search. Note that there is no need
to include edge (x2, x3), as the tree-shape structure clearly indi-
cates that x2, x3 belong to the same 5-truss community by triangle
adjacency.
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Figure 4: Compact representation of a community with q

Observation 3: From Figure 3, we can see the two 5-truss commu-
nities {q, x1, x2, x3, x4}, {q, s1, s2, s3, s4} involving vertex q are
contained in the 4-truss community {q, x1, x2, x3, x4, s1, s2, s3, s4},
which is in turn contained in the 3-truss community, which is the
whole graph.

Based on the above observations, we are ready to construct the
TCP-Index using Algorithm 3. For each vertex x ∈ V , we build a
graph Gx, where V (Gx) = N(x), and E(Gx) = {(y, z)|(y, z) ∈
E(G), y, z ∈ N(x)}. For each edge (y, z) ∈ E(Gx), we assign
a weight w(y, z) = min{τ((x, y)), τ((x, z)), τ((y, z))}, which
indicates that �xyz can appear only in k-truss community where
k ≤ w(y, z) based on Observation 1. The TCP-Index for vertex x
is a tree structure, denoted as Tx, which is initialized to be the node
set N(x). Then in line 8-12, for each k from the largest weight
kmax to 2, we iteratively collect the set of edges Sk ⊆ E(Gk)

Algorithm 3 TCP-Index Construction

Input: G = (V,E)
Output: TCP-Index Tx for each x ∈ V

1: Perform truss decomposition for G;
2: for x ∈ V do
3: Gx ← {(y, z)|y, z ∈ N(x), (y, z) ∈ E};
4: for (y, z) ∈ E(Gx) do
5: w(y, z) ← min{τ((x, y)), τ((x, z)), τ((y, z))};
6: Tx ← N(x);
7: kmax ← max{w(y, z)|(y, z) ∈ E(Gx)} ;
8: for k ← kmax to 2 do
9: Sk ← {(y, z)|(y, z) ∈ E(Gx), w(y, z) = k};

10: for (y, z) ∈ Sk do
11: if y and z are in different connected components in Tx
12: add (y, z) with weight w(y, z) in Tx;
13: return {Tx|x ∈ V };
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Figure 5: TCP-Index construction of vertex q

whose weight is k. For each (y, z) ∈ Sk, if y, z are still in different
components of Tx, we add (y, z) with a weight w(y, z) into Tx.
Essentially, Tx is the maximum spanning forest of Gx. The trees
Tx for all x ∈ V form the TCP-Index of graph G.

Example 3: Figure 5 shows the TCP-Index for vertex q in the
graph in Figure 3. Tq is initialized to be N(q). Figure 5(a) shows
the tree structure when we add edges whose weights are 5. Ac-
cording to Observation 2, when the edges (x1, x2) and (x1, x3)
are added into Tq , the edge (x2, x3) will not be added into Tq , as
x2, x3 are already connected in Tq and we know that x2, x3 belong
to the same 5-truss community by triangle adjacency. This is essen-
tial to keep Tq as a compact forest. The complete TCP-Index for
q is shown in Figure 5(c). According to the community contain-
ment relationship in Observation 3, it is sufficient to use a single
structure Tq for all trussness levels from kmax to 2. �

THEOREM 2. The TCP-Index of graph G can be constructed
in O(

∑
(u,v)∈E min{d(u), d(v)}) time and O(m) space by Algo-

rithm 3. The index size is O(m).

PROOF. The first step costs O(
∑

(u,v)∈E min{d(u), d(v)}) time.

For a vertex x ∈ V , it takes O(
∑

y∈N(x) min{d(x), d(y)}) time
to list all triangles containing x to obtain Gx in line 3. The edge
number |E(Gx)| is bounded by O(

∑
y∈N(x) min{d(x), d(y)}),

thus Tx can be computed in O(
∑

y∈N(x) min{d(x), d(y)}) time

by Kruskal’s algorithm. For all vertices in V , it takes O(
∑

x∈V∑
y∈N(x) min{d(x), d(y)}) time in total to build the TCP-Index.

Thus the time cost of Algorithm 3 is O(
∑

(u,v)∈E min{d(u), d(v)}).
For a vertex x ∈ V , Gx, as a subgraph of G, takes O(m) space,

which can be released after obtaining Tx. Tx, as a spanning forest
on the vertex set N(x), takes O(|N(x)|) space. Thus the TCP-
Index size for all vertices is O(

∑
x∈V |N(x)|) = O(m).

REMARK 1. According to [6], O(
∑

(u,v)∈E min{d(u), d(v)})
⊆O(ρm) where ρ is the arboricity of a graph G. ρ≤min {�√m �,
dmax} holds for any graph. Thus the TCP-Index construction time
is O(

∑
(u,v)∈E min{d(u), d(v)}) ⊆ O(ρm) ⊆ O(m1.5).
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3.3.3 Query Processing Using TCP-Index
We first illustrate query processing through an example, before

we formally present the algorithm. According to the design of the
TCP-Index, if two vertices are connected through a series of edges
with weight ≥ k in Tx for x ∈ V , these two vertices belong to
the same k-truss community via adjacent triangles. Consider Tq

in Figure 5(c). As x2, x3 are connected through two edges with
weight 5, they belong to the same 5-truss community. Thus we first
define the k-level connected vertex set on a tree Tx to find all such
vertices that belong to a k-truss community.

DEFINITION 7 (K-LEVEL CONNECTED VERTEX SET). For
x ∈ V and y ∈ N(x), we use Vk(x, y) to denote the set of vertices
which are connected with y through edges of weight ≥ k in Tx. We
regard y also belongs to this set, i.e., y ∈ Vk(x, y).

Example 4: If we want to query 5-truss communities containing q,
we first visit an incident edge on q, (q, x1) where τ((q, x1)) = 5.
From Tq we retrieve the vertex set V5(q, x1) = {x1, x2, x3, x4}
as they are connected through edges with weight 5. According to
Observation 2, these four vertices belong to the same 5-truss com-
munity with q. As V5(q, x1) ⊂ N(q), we can construct part of the
community as shown in Figure 6(a).

At this stage, we still miss the edges between the four vertices,
for example, (x2, x3), (x3, x4), etc. This is because Tq which is
a spanning forest does not keep all the edges between the vertices.
To fully recover all the edges in the 5-truss community, for each
vertex xi ∈ V5(q, x1), we “reverse” the edge (q, xi) to (xi, q), then
further expand the community in xi’s neighborhood. Take vertex
x2 as an example. We reverse (q, x2) to (x2, q) and then query
x2’s index Tx2 to get the vertex set V5(x2, q) = {q, x1, x3, x4},
as x1, x3, x4 are connected with q in Tx2 . Then we can obtain
the edges between x2 and every vertex in V5(x2, q). After this,
the community is shown in Figure 6(b). Similarly, we perform the
reverse operation for each vertex x1, x3, x4 and get the complete 5-
truss community in Figure 6(c). We can observe that in this search
process, each edge in a community is accessed exactly twice, for
example, accessing (q, x2) from Tq and (x2, q) from Tx2 . �
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Figure 6: 5-truss community query on q using TCP-Index

Algorithm 4 outlines the procedure of query processing using
the TCP-Index. Similar to Algorithm 2, Algorithm 4 computes
the k-truss communities for a query vertex vq by expanding from
each incident edge on vq in a BFS manner. If there exists an un-
visited edge (vq, u) with τ((vq, u)) ≥ k, (vq, u) is the seed edge
to form a new community Cl (line 2-4). Then the algorithm per-
forms a BFS traversal using a queue Q in line 5-13. For an unvis-
ited edge (x, y), it searches the vertex set Vk(x, y) from Tx. The
procedure of computing Vk(x, y) is listed in line 15-16. For each
z ∈ Vk(x, y), the edge (x, z) is added into Cl. Then we perform
the reverse operation, i.e., if (z, x) is not visited yet, it is pushed
into Q for z-centered community expansion using Tz . Note that
(z, x) and (x, z) are considered different here. When Q becomes
empty, all edges in Cl have been found. The process iterates un-
til all incident edges of vq have been processed. Finally a set of
k-truss communities containing vq are returned.

We prove the correctness of Algorithm 4 as follows.

Algorithm 4 Query Processing Using TCP-Index

Input: G = (V,E), an integer k, query vertex vq
Output: k-truss communities containing vq

1: visited ← ∅; l ← 0;
2: for u ∈ N(vq) do
3: if τ((vq , u)) ≥ k and (vq , u) /∈ visited
4: l ← l + 1; Cl ← ∅; Q ← ∅;
5: Q.push((vq , u));
6: while Q 	= ∅
7: (x, y) ← Q.pop();
8: if (x, y) /∈ visited
9: compute Vk(x, y);

10: for z ∈ Vk(x, y) do
11: visited ← visited∪{(x, z)}; Cl ← Cl∪{(x, z)};
12: if the reversed edge (z, x) /∈ visited
13: Q.push((z, x));
14: return {C1, · · · , Cl};

15: Procedure compute Vk(x, y)
16: return {z|z is connected with y in Tx through edges of weight ≥ k};

LEMMA 1. Given a query vertex x ∈ V and an integer k, Al-
gorithm 4 correctly computes all k-truss communities containing
x.

PROOF. First, for an edge (y, z) in Tx, according to the defini-
tion w(y, z) = min{τ((x, y)), τ((x, z)), τ((y, z))}, if w(y, z) ≥
k, �xyz is included in a k-truss community of x.

Second, for two adjacent edges (y, z1), (y, z2) in Tx, it means
�xyz1 ,�xyz2 are adjacent via edge (x, y).

Third, Vk(x, y) contains the set of vertices which are connected
with y through edges of weight ≥ k in Tx. Based on the above two
points, it leads to the discovery of all the triangles with weight ≥ k
that can reach edge (x, y) in x’s neighborhood. These connected
triangles appear in the same k-truss community containing x.

Last, for an edge (x, z) where z ∈ Vk(x, y), the same operation
on its reverse edge (z, x) will further expand the k-truss commu-
nity in z’s neighborhood via Tz . Thus the k-truss community is
expanded via adjacent triangles in a BFS manner.

Based on the above points, we have established the correctness
of Algorithm 4.

THEOREM 3. The time complexity of Algorithm 4 is O(|Ans|),
where Ans = C1 ∪ . . . ∪ Cl is the union of the produced k-truss
communities and |Ans| is the number of edges in Ans.

PROOF. Each edge (x, y) in the generated communities is ac-
cessed exactly twice: accessing (x, y) from Tx and (y, x) from Ty .
Thus the time complexity of Algorithm 4 is O(|Ans|).
Complexity Comparison. By using the TCP-Index and the sim-
ple k-truss index, each edge in a k-truss community is accessed
exactly twice versus at least 2(k − 2) times. In addition, the TCP-
Index successfully avoids the unnecessary access of disqualified
edges whose trussness is less than k. These are the key reasons to
explain the query time difference between Algorithms 4 and 2, i.e.,
O(|Ans|) versus O(dAmax|Ans|). Meanwhile, the TCP-Index
construction has exactly the same time and space complexity as the
simple k-truss index.

4. QUERYING K-TRUSS COMMUNITY IN
DYNAMIC GRAPHS

In this section, we study k-truss community search in dynamic
graphs where vertices and edges are inserted or deleted. We mainly
focus on edge insertion and deletion, because vertex insertion/deletion
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can be regarded as a sequence of edge insertions/deletions pre-
ceded/followed by the insertion/deletion of an isolated vertex.

Consider the insertion of edge e0(x, y) into G which leads to a
set of new triangles {�xyz : z ∈ N(x) ∩ N(y)}. Due to a new
�xyz , the support of both edges (x, z), (y, z) increases by 1. This
may increase the subgraph trussness, τ(H), for H ⊆ G which
contains �xyz since τ(H) = min{sup(e,H) : e ∈ E(H)}. It
may in turn increase the trussness of those edges contained in H ,
as τ(e) = maxH⊆G{τ(H) : e ∈ E(H)}, however, such edges
may not necessarily be incident on vertices x or y. Edge deletion
has a similar effect on decreasing edge trussness. To handle the
edge trussness update efficiently, the key is to identify the affected
region in the graph precisely. Thus, in Section 4.1 we present a the-
oretical analysis to define the scope that an edge insertion/deletion
may affect. We design algorithms for updating the edge trussness
and the TCP-Index in Sections 4.2 and 4.3, respectively.

4.1 Scope of Affected Edges
We use τ(e) and τ̂(e) to represent the trussness of an edge e

before and after an edge insertion/deletion respectively. We have
the following three properties.

Rule 1: If e0 is inserted into G with τ̂(e0) = l, then ∀e ∈ E(G)
with τ(e) ≥ l, τ̂(e) = τ(e) holds.

Rule 2: If e0 is deleted from G with τ(e0) = l, then ∀e ∈ E(G)\
{e0} with τ(e) > l, τ̂(e) = τ(e) holds.

Rule 3: ∀e ∈ E(G) \ {e0}, |τ̂(e)− τ(e)| ≤ 1 holds.

The rationale of Rules 1 and 2 is that e0 is not included in a
(l + 1)-truss subgraph. Rule 3 holds since the support of any edge
changes by at most 1 with an edge insertion/deletion. These three
properties can be rigorously proved, but the proof is omitted due to
the space limit. In order to apply Rule 1, we need to obtain τ̂(e0)
first. However, computing τ̂(e0) itself is costly. So we resort to an
alternative, that is, we estimate an upper bound of τ̂(e0), denoted

as τ̂(e0), with a light cost, and apply Rule 1’ instead of Rule 1.

Rule 1’: If e0 is inserted into G, then ∀e ∈ E(G) with τ(e) ≥
τ̂(e0) ≥ τ̂(e0), τ̂(e) = τ(e) holds.

To estimate τ̂(e0), we define the k-level triangles of an edge.

DEFINITION 8 (K-LEVEL TRIANGLES). For an edge e(u, v)
and k ≥ 2, we denote the k-level triangles containing e by �k

(u,v) =
{�uvw : min{τ((u,w)), τ((v, w))} ≥ k}. The number of trian-
gles in �k

(u,v) is denoted by |�k
(u,v)|.

Lemma 2 gives the lower and upper bound of τ̂(e0).

LEMMA 2. If an edge e0(u, v) is inserted into a graph, then
τ̂(e0) satisfies k1 ≤ τ̂(e0) ≤ k2 and k2 − k1 ≤ 1, where k1
= maxk{k : |�k

e0 | ≥ k − 2}, k2 = maxk{k : |�k−1
e0 | ≥ k − 2}.

PROOF. We first prove τ̂(e0) ≥ k1. Since k1 = maxk{k :
|�k

e0 | ≥ k − 2}, we can find triangles �uvw1 , . . . ,�uvwk1−2 in
which all edges have trussness no less than k1 except for e0. Each
of such edges (u,w1), (v, w1), . . . , (u,wk1−2), (v, wk1−2) corre-

sponds to a unique k1-truss community as H
(u,w1)
k1

, H
(v,w1)
k1

, . . . ,

H
(u,wk1−2)

k1
, H

(v,wk1−2)

k1
. Then we union all these k1-truss com-

munities with edge e0 to form a connected subgraph H which
becomes a seed of k1-truss community by definition. Thus, for
e0 ∈ H , τ̂(e0) ≥ k1 is true.

Next we prove τ̂(e0) ≤ k2 by contradiction. Suppose to the
contrary that τ̂(e0) = l > k2, then there exists an l-truss commu-
nity He0

l in which edges have trussness no less than l, and have
l − 2 triangles containing e0 by definition. Since the trussness of
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Figure 7: An example graph with edge insertion

all edges except e0 increases by at most 1 after insertion by Rule 3,
we have |�l−1

e0 | ≥ l− 2 before insertion and then derive k2 ≥ l by
the definition of k2, which is a contradiction.

Finally, we prove k2 − k1 ≤ 1. By the definition of k2, we have
|�k2−1

e0 | ≥ k2 − 2 ≥ k2 − 3, and derive k1 ≥ k2 − 1 by the
definition of k1. Thus k2 − k1 ≤ 1 is true.

COROLLARY 1. τ̂(e0) = maxk{k : |�k−1
e0 | ≥ k − 2} is an

upper bound of τ̂(e0) .

The upper bound in Corollary 1 is extremely tight, as it may
be larger than the real trussness by at most 1. For example, if we
insert edge (p, r1) into the graph in Figure 7(a), we have �3

(p,r1)
=

{�qpr1} and k1 = k2 = 3 by Lemma 2. So we get τ̂((p, r1)) = 3.
If we insert another edge (s2, x2), we have �4

(s2,x2)
= {�s2x2q,

�s2x2x1 , �s2x2x4}, k1 = 4, k2 = 5 by Lemma 2.
Due to the insertion/deletion of edge e0, there are two reasons

for edge e ∈ E(G) \ {e0} to change trussness, i.e., τ̂(e) �= τ(e):
(1) e forms/breaks a triangle with e0 when e0 is inserted/deleted;
or (2) the edges of the triangles in which e lies have changed their
trussness. We study the insertion case in Lemma 3.

LEMMA 3. If an edge e0 is inserted into a graph, we first assign
τ(e0) = maxk{k : |�k

e0 | ≥ k − 2}. Then for e(x, y) ∈ E(G) ∪
{e0} with τ(e) = l < τ̂(e0), e may have τ̂(e) = l+ 1 only in two
cases:

(1) A new triangle with edges e, e0 and another e′ is formed, and
min{τ(e0), τ(e′)} ≥ l holds; or

(2) For e(x, y), ∃z ∈ N(x)∩N(y), min{τ((x, z)), τ((y, z))} =
l holds.

PROOF. An edge may increase the trussness by at most 1 with
an insertion by Rule 3. For e(x, y), assume τ(e) = l, τ̂(e) = l+1.

This implies |�l+1
(x,y)| < l + 1 before insertion, and |�̂l+1

(x,y)| ≥
l + 1 after insertion, where �̂l+1

(x,y) = {�xyz : min{τ̂((x, z)),
τ̂((y, z))} ≥ l + 1}. Then we prove cases (1) and (2) may lead to
the increased trussness of e.

For case (1), the trussness of e0 or e′ may increase due to the
edge insertion, thus it is possible to have min{τ̂(e0), τ̂(e′)} ≥
l + 1, and |�̂l+1

(x,y)| ≥ l + 1.

For case (2), as min{τ((x, z)), τ((y, z))} = l, we know �xyz

/∈�l+1
(x,y). With an edge insertion, it is possible to have min{τ̂((x, z)),

τ̂((y, z))} ≥ l + 1, and |�̂l+1
(x,y)| ≥ l + 1.

Next consider any edge e(x, y) ∈ E(G) ∪ {e0} with τ(e) = l,
if it does not satisfy case (1), there is no new triangle containing
e formed to account for trussness increase. Thus it is impossible
to have τ̂(e) = l + 1. If it does not satisfy case (2), then the ex-
isting triangle �xyz is with either min{τ((x, z)), τ((y, z))} < l
or min{τ((x, z)), τ((y, z))} ≥ l + 1. After insertion we respec-
tively have min{τ̂((x, z)), τ̂((y, z))} < l + 1 or min{τ̂((x, z)),
τ̂((y, z))} ≥ l + 1. For either situation, we can derive |�̂l+1

(x,y)| =
|�l+1

(x,y)| < l + 1. Thus if e satisfies neither case (1) nor (2), it is

impossible to have the trussness increase as τ̂(e) = l + 1.
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According to Lemma 3, we summarize the affected edge truss-
ness due to edge insertion/deletion.

Scope of Affected Edges. We define the weight of a triangle by the
minimum edge trussness in the triangle. Then the insertion/deletion
of an edge e0 may lead to the following trussness update.

(1) Insertion case. For e ∈ E(G) ∪ {e0} with τ(e) < τ̂(e0),
if e, e0 and another e′ form a new triangle with weight τ(e), or e is
connected with e0 through a series of adjacent triangles each with
weight τ(e), then e may have τ̂(e) = τ(e) + 1.

(2) Deletion case. For e ∈ E(G) \ {e0} with τ(e) ≤ τ(e0),
if e, e0 belong to a triangle with weight τ(e), or e is connected
with e0 through a series of adjacent triangles each with weight τ(e)
before deletion, then e may have τ̂(e) = τ(e)− 1.

4.2 Updating Edge Trussness
In this section, we propose an algorithm to update the edge truss-

ness when an edge e0 is inserted. The algorithm to handle edge
deletion is similar and thus omitted. From Section 4.1 we know
that only edges which have τ(e) < τ̂(e0), and are either in the
same triangle with e0 or connected to e0 through adjacent triangles
at the same trussness level may increase their trussness. Thus we
first collect all edges in case (1) of Lemma 3 as candidates, then
expand the candidate edges and examine their edge trussness level
by level according to case (2). Finally, we use a variant of truss
decomposition algorithm to finalize the trussness update.

The procedure to update edge trussness given an inserted edge e0
is outlined in Algorithm 5. We first insert the edge e0 and compute
the range of τ̂(e0) as [k1, k2] by Lemma 2. Then the algorithm sets
τ(e0) = k1 and the maximum edge trussness kmax = k2 − 1 by
Rule 1’. In line 4-9, by case (1) of Lemma 3, we collect every edge
which forms a triangle with e0, and has the minimum trussness in
the triangle with τ(e) = k ≤ kmax. These edges are inserted
into Lk. Then in line 10-30, for each k from kmax to 2, the al-
gorithm updates the trussness of edges with τ(e) = k using three
steps, namely, edge expansion (line 11-20), edge eviction (line 21-
28), and trussness update (line 29-30). In the edge expansion step,
the algorithm expands Lk by finding all edges with trussness k us-
ing breadth-first search through adjacent triangles with weight k
by case (2) of Lemma 3 (line 14-20). Meanwhile, it computes the
number of k-level triangles |�k

e | as s[e] (line 16). In the edge evic-
tion step, the algorithm iteratively evicts edges with s[e] ≤ k − 2
from Lk (line 22) until no such edges exist. After evicting an edge
e, for each edge e′ ∈ Lk that forms a triangle of weight k with e,
s[e′] is decreased by 1 (line 24-28). In the trussness update step,
each edge e ∈ Lk has s[e] ≥ k − 1 and gets trussness update
τ̂(e) = k + 1 (line 29-30). The three steps can be further opti-
mized by pushing the edge eviction operation (line 21-28) into the
edge expansion step (line 11-20) after each s[(x, y)] is calculated,
in order to avoid expanding useless edges in an early stage. The
technique is similar to the early node eviction technique proposed
in [18] for k-core update. Thus, we omit the detailed discussion on
this heuristic due to space limitation.

Example 5: We update the edge trussness with the insertion of
e0(s2, x2) in the graph shown in Figure 7(a). We first compute
k1 = 4, k2 = 5, and assign τ(e0) = 4 and kmax = 4. Since
τ(e0) = kmax which indicates that e0 may increase its trussness,
we add (s2, x2) into L4. Then the algorithm checks the edges
forming new triangles with e0 as shown in Figure 7(b), and adds
(s2, x1) and (s2, x4) into L4. Next the algorithm uses BFS to find
the edges connected with those in L4 through adjacent triangles
with weight 4. As there is no such edge satisfying this condition,
L4 remains unchanged. Meanwhile, for each e ∈ L4, it computes

Algorithm 5 Trussness Update with Edge Insertion

Input: G = (V,E), the inserted edge e0 = (u, v)
Output: Updated trussness τ̂(e) for e ∈ E(G) ∪ {e0}

1: G.insert(e0);
2: compute [k1, k2] for τ̂(e0) by Lemma 2;
3: τ(e0) ← k1; kmax ← k2 − 1;
4: for k ← 2 to kmax do Lk ← ∅;
5: for w ∈ N(u) ∩N(v) do
6: k ← min{τ((w, u)), τ((w, v))};
7: if k ≤ kmax then
8: if τ((w, u)) = k then Lk ← Lk ∪ {(w, u)};
9: if τ((w, v)) = k then Lk ← Lk ∪ {(w, v)};

10: for k ← kmax to 2 do
11: Q ← ∅; Q.push(Lk);
12: while Q 	= ∅
13: (x, y) ← Q.pop(); s[(x, y)] ← 0;
14: for z ∈ N(x) ∩N(y) do
15: if τ((z, x)) < k or τ((z, y)) < k then continue;
16: s[(x, y)] ← s[(x, y)] + 1;
17: if τ((z, x)) = k and (z, x) /∈ Lk then
18: Q.push((z, x)); Lk ← Lk ∪ {(z, x)};
19: if τ((z, y)) = k and (z, y) /∈ Lk then
20: Q.push((z, y)); Lk ← Lk ∪ {(z, y)};
21: while ∃s[(x, y)] ≤ k − 2 in Lk

22: Lk ← Lk \ {(x, y)};
23: for z ∈ N(x) ∩N(y) do
24: if τ((x, z)) < k or τ((y, z)) < k then continue;
25: if τ((x, z)) = k and (x, z) /∈ Lk then continue;
26: if τ((y, z)) = k and (y, z) /∈ Lk then continue;
27: if (x, z) ∈ Lk then s[(x, z)] ← s[(x, z)]− 1;
28: if (y, z) ∈ Lk then s[(y, z)] ← s[(y, z)]− 1;
29: for (x, y) ∈ Lk do
30: τ̂((x, y)) ← k + 1;

|�4
e| as s[e], that is, s[(s2, x2)] = s[(s2, x1)] = s[(s2, x4)] = 3

(shown in Figure 7(a)). As the three edges have s[e] > 2, the algo-
rithm updates τ̂(s2, x2) = τ̂(s2, x1) = τ̂(s2, x4) = 5. �

4.3 Updating TCP-Index
We study updating the TCP-Index. Recall that, for x ∈ V ,

the index Tx is the maximum spanning forest of x’s neighborhood
graph Gx, where V (Gx) = N(x), and E(Gx) = {(y, z)|(y, z) ∈
E(G), y, z ∈ N(x)}. Thus the key problem is how to update the
maximum spanning forest of Gx given an edge insertion/deletion
and the consequent edge trussness update.
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Figure 8: Updating TCP-Index

4.3.1 Updating TCP-Index With Edge Insertion

Index Update with Edge Insertion. With an inserted edge e0(u, v),
we first consider how to update Tu and Tv . Take vertex u as an ex-
ample. Gu now includes a new vertex v and a set of new edges
{(v, w)|w ∈ N(u)∩N(v)}. Then we update the maximum span-
ning forest Tu with the new vertex and edges in Gu. The time cost
is O(|N(u)|+ |N(u) ∩N(v)|) ⊆ O(|N(u)|).

For example, consider the insertion of (s2, x2) in Figure 7(a).
The index Tx2 before insertion is shown in Figure 8(a). Now vertex
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s2 and three edges (s2, q), (s2, x1), (s2, x4) all with weight 5 are
inserted into Gx2 . So the updated Tx2 is shown in Figure 8(b).

Now we consider how to update Tw for w ∈ N(u)∩N(v). Gw

includes a new edge (u, v). We first compute the weight w(u, v) =
min{τ̂((u, v)), τ̂((u,w)), τ̂((v, w))}. If u, v are in different com-
ponents of Tw, we add the edge (u, v) with weight w(u, v) into
Tw; otherwise, we can find a unique path P between u and v
in Tw. Then we compute the minimum weight on P as w∗ =
mine∈P w(e). If w∗ ≥ w(u, v), Tw remains unchanged; if w∗ <
w(u, v), the corresponding edge is replaced by (u, v) in Tw. The
time cost is O(|N(w)|).

Continue with the above example. With the insertion of (s2, x2),
their common neighbor q’s index before insertion is shown in Fig-
ure 8(e). There is a path (s2, x4, x1, x2) with a minimum weight
4. So we replace (s2, x4) by (s2, x2) with weight 5 in Figure 8(f).

Index Update with Trussness Increase. Besides the above cases,
we also need to consider the index maintenance for an existing edge
e(x, y) which has trussness update τ̂(e) = τ(e) + 1 due to the in-
sertion of e0. We discuss the update of Tx (and similarly Ty). For
every triangle �xyz , we denote wxyz = min{τ((x, y)), τ((x, z)),
τ((y, z))}, and ŵxyz = min{τ̂((x, y)), τ̂((x, z)), τ̂((y, z))}. If
ŵxyz = wxyz , Tx remains unchanged. Otherwise, for ŵxyz =
wxyz + 1, if (y, z) ∈ Tx, we update the edge weight w(y, z) =
ŵxyz in Tx; if (y, z) /∈ Tx, we find the unique path P between y
and z in Tx and update P with the new weight w(y, z) in a simi-
lar process as described above for updating Tw. For the neighbor
vertex z ∈ N(x) ∩N(y), the index Tz can be updated similarly.

Continue with the above example. With the insertion of (s2, x2),
we have τ̂((s2, x4)) = τ((s2, x4)) + 1, and ŵs2x4x1 = 5. The
index Tx4 before insertion is shown in Figure 8(c). We use (s2, x1)
with weight 5 to replace (s2, q) with weight 4 in Figure 8(d).

4.3.2 Updating TCP-Index With Edge Deletion

Index Update with Edge Deletion. With a deleted edge e0(u, v),
we first consider how to update Tu and Tv . Take vertex u as an
example. We first delete vertex v and edges {(v, w)|(v, w) ∈ Tu}
from Tu. Then we update the maximum spanning forest Tu with
the available edges in E(Gu).

Now we consider how to update Tw for w ∈ N(u) ∩ N(v).
If (u, v) ∈ Tw, we try to find an edge (u′, v′) ∈ E(Gw) where
u′ ∈ V2(w, u), v′ ∈ V2(w, v) with the maximum weight to replace
(u, v) in Tw. If no such replacement edge exists, we simply remove
(u, v). On the other hand, if (u, v) /∈ Tw, Tw remains unchanged.

Index Update with Trussness Decrease. Besides the above cases,
we also need to consider the index maintenance for an existing edge
e(x, y) which has trussness update τ̂(e) = τ(e)−1 due to the edge
deletion. We discuss the update of Tx (and similarly Ty). For every
�xyz , we denote wxyz = min{τ((x, y)), τ((x, z)), τ((y, z))},
and ŵxyz = min{τ̂((x, y)), τ̂((x, z)), τ̂((y, z))}. If ŵxyz =
wxyz , Tx remains unchanged. Otherwise, for ŵxyz = wxyz − 1,
if (y, z) /∈ Tx, Tx remains unchanged; if (y, z) ∈ Tx, we try
to find an edge (y′, z′) ∈ E(Gx) where y′ ∈ Vwxyz (x, y), z

′ ∈
Vwxyz (x, z) and w(y′, z′) = wxyz to replace (y, z) in Tx. If no
such replacement edge exists, we just update w(y, z) = ŵxyz . For
the neighbor vertex z ∈ N(x)∩N(y), the index Tz can be updated
in a similar way.

5. EXPERIMENTS
We evaluate the efficiency and effectiveness of our proposed al-

gorithms on real-world networks. All algorithms are implemented
in C++ and all the experiments are conducted on Windows Server
with 2.67GHz six-core CPU and 100GB main memory.

Datasets. We use 6 publicly available real-world networks to eval-
uate the algorithms. The network statistics are shown in Table 1.
Except for Wise1 (a micro-blogging network from WISE 2012 Chal-
lenge) and UK20022 (a web graph from a 2002 crawl of the .uk
domain), all the other datasets are downloaded from the Stanford
Network Analysis Project3. All networks are treated as undirected
in the experiments.

Table 1: Network statistics (K = 103 and M = 106)
Network |VG| |EG| dmax kgmax

WikiTalk 2.4M 5M 100029 53

Flickr 80K 11.8M 5706 308

LiveJournal 4.8M 69M 20333 362

Orkut 3.1M 117.2M 33313 78

Wise 58.6M 265.1M 278489 80

UK2002 18.6M 298.1M 194955 944

5.1 Query Processing
We evaluate and compare the performance of the two k-truss

community query algorithms: Algorithm 2 that uses the simple k-
truss index and Algorithm 4 that uses the TCP-Index.

In the first experiment, we select query vertices with different
degrees to test the query processing time. For each network, we
sort the vertices in descending order of their degrees and partition
them into 10 equal-sized buckets. We randomly select 100 vertices
from each bucket for query. The average query processing time for
each degree group is reported in Figure 9. We fix k = 10 for all
networks except for WikiTalk and Wise which use k = 4, because
the edges in these two networks have smaller trussness. As we can
see, for the high degree query vertices which usually have larger
and denser k-truss communities, the TCP-Index based method is
two orders of magnitude faster than the k-truss index based method;
whereas for the low degree query vertices which have smaller and
sparser k-truss communities for the same k, the query time of the
two methods is very close and is around a few milliseconds. This
shows the superiority of the TCP-Index based query processing,
especially for high degree query vertices.

In the second experiment, we vary the parameter k to test the
query time for k-truss community search. For each network, we
randomly generate two test sets: a set of 100 high degree query ver-
tices (degree in top 30%) and another set of 100 low degree query
vertices (degree in the remaining 70%). We denote the two query
methods on the high/low degree test sets as Truss-H/Truss-L and
TCP-H/TCP-L, respectively. Figure 10 shows the average query
processing time of each method when we vary the parameter k.
As we can see, for the high degree query vertices, the TCP-Index
based method is two to three orders of magnitude faster than the k-
truss based method for all k values; while for the low degree query
vertices, the TCP-Index based method is still one to two orders
of magnitude faster in most networks especially when k is small.
Finally we can see that the query processing time decreases when
k increases, because the discovered communities become smaller
when k increases. This experiment again demonstrates the advan-
tage of the TCP-Index based query processing and conforms with
the time complexity analysis of the two query methods.

5.2 Index Construction
In this experiment, we compare the two indexing schemes: the

simple k-truss index and the TCP-Index in terms of index size and
index construction time in Table 2. Note that the index is main-

1http://www.wise2012.cs.ucy.ac.cy/challenge.html
2http://law.di.unimi.it/datasets.php
3snap.stanford.edu
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Figure 9: Query time (in seconds) of different algorithms for query vertices in different degree percentile groups
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Figure 10: Query time (in seconds) of different algorithms for different k

tained in memory for both schemes. The reported index time in-
cludes the truss decomposition time and index construction time.

We can observe that the size of the TCP-Index is about 3 times
that of the k-truss index, and 4.3 times of the original graph size.
This confirms that both indexing schemes have O(m) space com-
plexity and are very compact. In addition, the index construction
is very efficient for both schemes. The index time of the TCP-
Index is around 1.4–3.4 times that of the k-truss index. The longest
TCP-Index time is 1.9 hours on Wise. The TCP-Index costs more
time and space than the k-truss index for building the maximum
spanning forest structure.

Table 2: Comparison of index size (in Megabytes) and index
construction time (wall-clock time in seconds)

Network
Graph Index Size Index Time
Size K-Truss TCP-Index K-Truss TCP-Index

WikiTalk 80 118 296 41 138

Flickr 90 135 485 690 1326

LiveJournal 672 1003 3174 1176 1686

Orkut 1792 2662 8714 2291 3342

Wise 4209 5960 11049 3078 6997

UK2002 4055 5980 21238 1374 2860

5.3 Updating TCP-Index in Dynamic Graphs
In this experiment, we evaluate the performance of incremen-

tal update of the TCP-Index when the input network is updated.
For each network, we randomly insert/delete 1K edges, and up-
date the edge trussness and the TCP-Index after each edge inser-
tion/deletion. The average update time, including the edge truss-
ness update time and the index update time, is reported in Table
3. In addition, we report the batch update time for the 1K edge
insertions/deletions. All the experiments are repeated for 20 times,
and the average performance is reported. For comparison, we also
report the time for constructing the TCP-Index from scratch when
the network is updated with an edge insertion/deletion.

Table 3: TCP-Index update time (wall-clock time in millisec-
onds)

Network
Insertion Insertion Deletion Deletion Computing
Per Edge 1K Edges Per Edge 1K Edges from scratch

WikiTalk 0.2 125 3.9 2509 138000

Flickr 10.2 6344 58 33763 1326000

LiveJournal 0.7 693 3.9 1891 1686000

Orkut 16.1 17190 29.6 21351 3342000

Wise 7.8 3902 38.8 31282 6997000

UK2002 3.9 4065 12.2 12326 2860000

The results in Table 3 show that the update time per edge inser-
tion ranges from 0.2 to 16.1 milliseconds. The batch update for
1K edge insertions can achieve further performance improvement,
compared with the instant update which handles the inserted edges
one by one. Thus, handling edge insertion is highly efficient.

For the deletion case, the update time per edge deletion ranges
from 3.9 to 38.8 milliseconds. The batch update for 1K edge dele-
tions also achieves further performance improvement. Compared
with the insertion case, handling edge deletion is a little more costly,
as it has a larger search space for finding a replacement edge in the
TCP-Index.

We can see that the incremental update approach is several orders
of magnitude faster than constructing the TCP-Index from scratch
when a network is updated. This demonstrates the superiority of
our proposed incremental update algorithms.

In addition, we also compare our edge trussness update method
(Algorithm 5) with the update method for triangle k-core [26],
which has the same definition with k-truss. The average update
time upon an edge insertion/deletion is reported in Table 4. Our
method takes 15 milliseconds or less for updating trussness in all
networks. It is two to three orders of magnitude faster than the
update method in [26]. The poor efficiency of [26] is due to its
mechanism which updates the trussness by inserting/deleting trian-
gles one by one for an edge insertion/deletion. Processing k-core
triangles is very costly especially in dense graphs such as Flickr
and Orkut.

Table 4: Edge trussness update time (wall-clock time in mil-
liseconds)

Network
Insertion Per Edge Deletion Per Edge

Triangle k-core Our method Triangle k-core Our method

WikiTalk 0.21 0.07 40.43 0.19

Flickr 16700 5.99 17224 6.11

LiveJournal 1.75 0.54 60.45 0.63

Orkut 2453 15.13 179.2 1.67

Wise 5.59 3.21 18.33 1.32

UK2002 68.2 3.14 1445 2.76

5.4 Quality Evaluation

5.4.1 Social Networks with Ground-truth Communi-
ties

To evaluate the effectiveness of the k-truss community model,
we use two social networks: Facebook and Twitter from the Stan-
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Figure 12: Five 5-truss communities containing Jiawei Han

ford Network Analysis Project3, both of which contain ground-
truth communities for individual nodes. The Facebook network
contains 4,039 vertices, 88,234 edges, and 10 query vertices with
ground-truth communities in their neighborhood. The Twitter net-
work contains 81,306 vertices, 1,768,149 edges, and 973 query ver-
tices with ground-truth communities in their neighborhood. For a
query, we denote the discovered communities as C = {C1, . . . , Ci},
and the ground-truth communities as C = {C1, . . . , Cj}. We use
the F1 score to measure the alignment between a discovered com-
munity C and a ground-truth community C. Since we do not know
the correspondence between communities in C and C, we compute
the optimal match via linear assignment [14] by maximizing

max
f :C→C

1

|f |
∑

C∈dom(f)

F1(C, f(C)), (1)

where f is a (partial) correspondence between C and C.
We compare the F1 score of our k-truss community model and

the α-adjacency-γ-quasi-k-clique model [9] using the executable
program provided by the authors with a time limit of 60 seconds
for a query. For our model, we vary the trussness parameter k; for
the quasi-clique model, we follow the experimental setting in [9] to
use the (k − 1, 1)-OCS model (α = k − 1, γ = 1) and vary the
clique size k. Figure 11(a) and (c) show the F1 score of the detected
communities by both methods versus their respective parameter k
on Facebook and Twitter. Although the parameter k has different
meanings in the two models, the results still show a comprehensive
performance comparison of our model and [9] over a broad range
of parameter values. On both networks, we observe that our k-truss
model has a very stable performance when we vary the trussness k.
The (k − 1, 1)-OCS model is consistently worse than our method.
For the quasi-clique model, we also tried other α and γ values.
However, when we set α < k − 1 or γ < 1, the program cannot
output all communities within the time limit set in the executable
program due to the expensive quasi-clique enumeration.

Figure 11(b) and (d) report the average query time of our method
and [9]. Our method is clearly more efficient than the (k − 1, 1)-
OCS model.

5.4.2 Case Study on DBLP
We build a collaboration network from the DBLP data set4 for

case study. A vertex represents an author and an edge is added
between two authors if they have co-authored 3 times or more. The
network contains 234,879 vertices and 541,814 edges.

We query the 5-truss community containing ‘Jiawei Han’ which
is shown in Figure 12. For comparison, we follow the case study

4http://dblp.uni-trier.de/xml/
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Figure 13: Eleven 4-adjacency-1.0-quasi-5-clique communities
containing Jiawei Han

in [9] which uses the (k − 1, 1)-OCS model to query ‘Jiawei Han’
by setting k = 5, α = 4, γ = 1, which produces communities
at a similar scale as shown in Figure 13. Note that we duplicate
some authors who participate in more than one community in Fig-
ure 13, e.g., ‘Jian Pei’, ‘Jian Pei_1’ and ‘Jian Pei_2’, for a better
visualization effect. We have the following observations.

(1) Our model generates 5 communities containing ‘Jiawei Han’,
among which the 4 smaller ones are also found by the (k − 1, 1)-
OCS model and depicted using the same color in Figure 13.

(2) The largest 5-truss community depicted in blue in Figure 12,
however, is decomposed into 7 smaller communities by the (k −
1, 1)-OCS model in Figure 13. This phenomenon can be explained
by the different mechanisms of the two community models. The
(k− 1, 1)-OCS model tends to find the small, clique-based “paper
communities”, in which all the involved scholars appear in the same
paper. For example, a paper community is formed by ‘Jiawei Han’,
‘Philip S. Yu’, ‘Chen Chen’, ‘Xifeng Yan’, and ‘Feida Zhu’. In
contrast, such small paper communities can be merged into a larger
dense one by the triangle adjacency condition in our k-truss model.
For example, two small paper communities can be merged if they
share a common edge as (‘Jiawei Han’, ‘Philip S. Yu’) and form a
5-truss graph after being merged.

(3) A less restrictive community criterion can be realized by tun-
ing α and γ in [9]. But in our experiment, if we set α < k − 1 or
γ < 1, it cannot output all communities within the time limit set in
the executable program due to the expensive quasi-clique enumer-
ation.

(4) Finally, we observe a community containing ‘Guozhu Dong’
and 5 other authors (depicted in purple) in Figure 13 is completely
subsumed by another bigger community (depicted in black) in the
same figure. Such duplicate output, which is not desired, may be
explained by the approximate heuristics for clique enumeration and
expansion in [9].

6. RELATED WORK
The related work to our study include community search and

detection, and dense subgraph mining.

Community Search and Detection. Cui et al. [9] have recently
studied the problem of online search of overlapping communities
for a query vertex by designing a new α-adjacency γ-quasi-k-clique
model. It is the most related work to ours and has been discussed
in detail in Section 2 and compared empirically in Section 5. A
different but related problem is community detection, which iden-
tifies communities in the entire network. There are two major cat-
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Figure 11: Quality evaluation on social networks

egories: non-overlapping community detection [15, 17] and over-
lapping community detection [16, 1, 25].

Dense Subgraph Mining. There are different definitions of dense
subgraph patterns, including clique [3, 5, 22, 24], quasi-clique [19],
k-core [2, 4], k-truss [7, 21, 26], dense neighborhood graph [23],
dense bipartite subgraph [12], etc.

Clique and quasi-clique enumeration methods include the clas-
sical algorithm [3], the external-memory H∗-graph algorithm [5],
redundancy-aware clique enumeration [22], maximum clique com-
putation in MapReduce [24], and optimal quasi-clique mining [19].

Core decomposition and truss decomposition have been stud-
ied in various settings, including in-memory algorithms [2, 7, 26],
external-memory algorithms [4, 21], and MapReduce algorithm
[8]. Sarıyüce et al. [18] proposed the first incremental k-core de-
composition algorithms for graph stream. Zhang and Parthasarathy
[26] designed an incremental algorithm for updating triangle k-core
(equivalent to k-truss) with edge insertions/deletions. In our work,
our focus is to update the TCP-Index in a dynamic setting, which
relies on the incremental update of the edge trussness. We have also
compared with [26] experimentally in updating edge trussness, and
our updating method is two to three orders of magnitude faster.

Wang et al. [23] defined a dense neighborhood graph based on
the common neighbors. Gibson et al. [12] studied mining dense
bipartite subgraphs.

7. CONCLUSIONS
In this paper, we study the online community search problem in

a network. We propose a novel k-truss community model based
on the k-truss concept which is shown to have cohesive and hier-
archical community structure. To support the efficient search of k-
truss community, we design a novel and compact tree-shape index,
called the TCP-Index, which preserves the edge trussness and the
triangle adjacency relationship, and supports community search in
linear time with respect to the community size. We further study the
k-truss community search in dynamic graphs and propose efficient
incremental algorithms to update the index. We conduct extensive
experiments on large real-world networks, and the results demon-
strate the effectiveness and efficiency of the proposed algorithms.
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