
Querying knowledge graphs in natural
language

Shiqi Liang1*, Kurt Stockinger2, Tarcisio Mendes de Farias3,4, Maria Anisimova2,3 and Manuel Gil2,3

Introduction

Over the past decade knowledge graphs have been increasingly adopted to structure

and describe data in various fields like education, biology [1] or social media [2]. �ese

knowledge graphs are often composed of millions or billions of nodes and edges, and

are published in the Resource Description Framework (RDF). However, querying such

knowledge graphs requires specialized knowledge in query languages such as SPARQL

as well as deep understanding of the underlying structure of these graphs. Hence, a wide

range of end-users without deep knowledge of these technical concepts is excluded from

querying these knowledge graphs effectively.

�is drawback has triggered the design of natural language interfaces to knowledge

graphs to enable non-tech savvy users to query ever more complex data [3–5].

Abstract

Knowledge graphs are a powerful concept for querying large amounts of data. These

knowledge graphs are typically enormous and are often not easily accessible to end-

users because they require specialized knowledge in query languages such as SPARQL.

Moreover, end-users need a deep understanding of the structure of the underlying

data models often based on the Resource Description Framework (RDF). This drawback

has led to the development of Question-Answering (QA) systems that enable end-

users to express their information needs in natural language. While existing systems

simplify user access, there is still room for improvement in the accuracy of these sys-

tems. In this paper we propose a new QA system for translating natural language ques-

tions into SPARQL queries. The key idea is to break up the translation process into 5

smaller, more manageable sub-tasks and use ensemble machine learning methods as

well as Tree-LSTM-based neural network models to automatically learn and translate a

natural language question into a SPARQL query. The performance of our proposed QA

system is empirically evaluated using the two renowned benchmarks-the 7th Ques-

tion Answering over Linked Data Challenge (QALD-7) and the Large-Scale Complex

Question Answering Dataset (LC-QuAD). Experimental results show that our QA system

outperforms the state-of-art systems by 15% on the QALD-7 dataset and by 48% on

the LC-QuAD dataset, respectively. In addition, we make our source code available.

Keywords: Natural language processing, Query processing, Knowledge graphs,

SPARQL

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/.

RESEARCH

Liang et al. J Big Data (2021) 8:3

https://doi.org/10.1186/s40537-020-00383-w

*Correspondence:

shiqi9352@gmail.com
1 ETH Swiss Federal Institute

of Technology, Rämistrasse

101, 8092 Zurich, Switzerland

Full list of author information

is available at the end of the

article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-020-00383-w&domain=pdf

Page 2 of 23Liang et al. J Big Data (2021) 8:3

With the development of the Semantic Web, a large amount of new structured data

has become available in the form of knowledge graphs on the web. Hence, natural lan-

guage interfaces and in particular Question-Answering (QA) systems over knowledge

graphs have gained importance [6].

Even though these QA systems significantly improve the usability of knowledge graphs

for non-technical users, they are far from perfect. Translating from natural language to

SPARQL is a hard problem due to the ambiguity of the natural language. For instance,

the word “Zurich” could refer to the city of Zurich, the canton of Zurich or the company

“Zurich Financial Services”. To provide the correct result, a QA system needs to under-

stand the users’ intention. Moreover, knowledge graphs are typically very complex and

thus exhaustively enumerating all possible answer combinations is often prohibitive.

To extract answers from a given knowledge graph, QA systems usually translate natu-

ral language questions into a formal representation of a query by using techniques from

natural language processing, databases, information retrieval, machine learning and the

Semantic Web [7]. However, the accuracy of these systems still needs to be improved

and a significant amount of work is required to make these systems practical in the real-

world [8].

In order to tackle this hard challenge of translating from natural language to SPARQL,

one approach is to break down the problem into smaller, more manageable sub-prob-

lems. In particular, we can conceptualize the problem as a linear, modular pipeline with

components like Named Entity Recognition (NER), Relation Extraction (RE) and Query

Generation (QG). Consider, for instance, the query “How many people work in Zurich?”.

�e NER-component recognizes “Zurich” as an entity which could have the three mean-

ings as mentioned above. �e RE-component recognizes the relation “works”. Finally, the

QG-component needs to generate a SPARQL query by taking into account the structure

of the knowledge graphs. However, most implementations of QA systems over knowl-

edge graphs are not subdivided into such independent components [9].

Recently, Frankenstein [10] was introduced introduced as a truly modular QA systems.

Frankenstein decomposes the whole task into three sub-tasks, i.e. (1) Named Entity Rec-

ognition and Disambiguation, (2) Relation Extraction, and (3) Query Building. It then

dynamically selects the best performing QA component on each sub-task from a collec-

tion of 29 reusable QA components. Afterwards, the QA pipeline is generated based on

the selected components. �e advantage of Frankenstein is that the components in the

whole pipeline are reusable and exchangeable and therefore this modular approach ena-

bles different research efforts to tackle parts of the overall challenge.

In this paper we provide a novel modular implementation of a QA system. We build on

the modular design of the Frankenstein framework [10] and the SPARQL Query Genera-

tor (SQG) [9]. At the most basic level, our system is structured into two parts: One part

is knowledge graph-dependent and while the other part is knowledge graph-independent

(see Fig. 1). �e basic idea is to break up the task of translation from natural language to

SPARQL in the following components: (1) Question analysis, i.e. syntactic parsing. (2)

Question type classification, i.e. is it a yes/no questions or a count question? (3) Phrase

mapping, i.e. mapping of entities and relationships in the natural language to the cor-

responding entities and relationships in the knowledge graph. (4) Query generation,

i.e. construct a SPARQL query based on the entities and relationships identified in the

Page 3 of 23Liang et al. J Big Data (2021) 8:3

knowledge graph. (5) Query ranking, i.e. rank the most relevant query as the highest.

Details are discussed in "Methods" section.

To sum up, we introduce a novel modular implementation of a QA system based on the

Frankenstein framework [10] and the SPARQL Query Generator (SQG) [9]. �rough a

careful design, including the choice of components, our system outperforms the state-

of-the art, while requiring minimal training data. More specifically, we make the follow-

ing main contributions:

• We subdivide our QA system into knowledge graph dependent and into knowledge

graph independent modules. Like this, our QA system can be easily applied to newly

unseen data domains. In particular, the independent modules (question type classi-

fication model and the query generation model) do not require any domain-specific

knowledge.

• Large and and representative training data sets for RDF graphs are hard to devise

[11]. In our system only the modules for question type classification and query rank-

ing require training. As pointed out above, both modules are knowledge graph inde-

pendent. Consequently, they can be trained on general purpose datasets. A training

set of a few hundreds queries has been shown to be sufficient in our experiments (see

"Results" section).

• In contrast to previous systems we use an ensemble method for phrase mapping.

Moreover, question type classification is performed by a Random Forest Classifier,

which outperforms previous methods.

• We extended the query generation algorithm in [9] to include more complex queries.

Our system includes query ranking with Tree-structured Long Short-Term Memory

(Tree-LSTM) [12] to sort candidate queries according to the similarity between the

syntactic and semantic structure of the input question.

Fig. 1 The architecture of the proposed QA system includes five components for five different tasks

Page 4 of 23Liang et al. J Big Data (2021) 8:3

• We show that our QA system outperforms the state-of-art systems by 15% on the

QALD-7 dataset and by 48% on the LC-QuAD dataset, respectively.

• We make our source code available (see "Results" section).

�e paper is organized as follows. Related work" section gives an overview on the related

work of QA systems on knowledge graphs. "Methods" section shows the architecture

of our proposed system. "Results" section provides a detailed experimental evaluation

including a comparison against state-of-the-art systems. Finally, "Discussion" section

concludes the paper and gives directions for future research.

Related work

Building natural language interfaces to databases has been a long-standing research

challenge for a few decades [13–15]. Early systems used rule-based, pattern-based or

grammar-based approaches to translate from natural language to SQL [5, 7]. �e intro-

duction of the Spider leaderboard in 2018 has triggered a significant interest of several

research groups to tackle the problem with machine learning approaches, in particular

with advanced neural networks [16–19]. However, most of these systems provide solu-

tions for translating from natural language to SQL rather than to SPARQL – which is the

standardized query language for RDF graph databases.

Since our paper proposes a solution for querying knowledge graphs, we will now

review the major work on QA systems over knowledge graphs such as [10, 20–22]. In

particular, we focus our discussions on systems that are most relevant for understanding

the contributions of our proposed QA system. Further comprehensive surveys on natu-

ral language interfaces to databases, including graph databases, were recently reviewed

in [5, 23].

ganswer2 [20] answers natural language questions through a graph data-driven solu-

tion composed of offline and online phases. In the offline phase, the semantic equiv-

alence between relation phrases and predicates is obtained through a graph mining

algorithm. Afterwards a paraphrase dictionary is built to record the obtained seman-

tic equivalence. �e online phase contains question understanding stage and query

evaluation stage. In the question understanding stage, a semantic query graph is built

to represent the user’s intention by extracting semantic relations from the dependency

tree of the natural language question based on the previously built paraphrase diction-

ary. Afterwards, a subgraph of the knowledge graph, which matches the semantic query

graph through subgraph isomorphism, is selected. �e final answer is returned based on

the selected subgraph in the query evaluation stage. In contrast to ganswer2, our pro-

posed system is component based. Our framework can be decomposed into independ-

ent components and therefore the overall accuracy can be improved by enhancing each

component individually. As a result, our proposed system is much more flexible in terms

of adapting to new techniques for question understanding and query evaluation.

WDAqua [21] is a QA component which can answer questions over DBpedia and

Wikidata through both full natural language queries and keyword queries. In addi-

tion, WDAqua supports four different languages over Wikidata, namely English,

French, German and Italian. WDAqua uses a rule-based combinatorial approach

which constructs SPARQL queries based on the semantics encoded in the underlying

Page 5 of 23Liang et al. J Big Data (2021) 8:3

knowledge base. As a result, WDAqua does not use a machine learning algorithm

to translate natural language questions into SPARQL queries. Hence, WDAqua does

not suffer from over-fitting problems. However, due to the limitations of human-

defined transformation rules, the coverage and diversity of the generated SPARQL

queries are limited. For instance, the generated SPARQL queries contain at most two

triple patterns. Moreover, the modifiers in the generated queries are limited to the

‘COUNT’ operator. Adding a new operator in the generated queries would require

significant work in designing the transformation rules. Instead, for machine learn-

ing-based systems, just collecting new question-answer pairs would be enough.

WDAqua-core1 [22] constructs queries in four consecutive steps: question expan-

sion, query construction, query ranking and answer decision. In the first step, all

possible entities, properties and classes in the question are identified through lexi-

calization. Then, a set of queries is constructed based on the combinations of the

previously identified entities, properties and classes in four manually defined pat-

terns. In the third step, the candidate queries are ranked based on five features

including the number of variables and triples in the query, the number of the words

in the question which are covered by the query, the sum of the relevance of the

resources and the edit distance between the resource and the word. In the last step,

logistic regression is used to determine whether the user’s intention is reflected in

the whole candidate list and whether the answer is correct or not. There are mainly

two differences between our proposed system and WDAqua-core1. Firstly, we use an

ensemble method of state-of-the-art entity detection methods instead of using lexi-

calization. Therefore, the coverage of identified intentions is improved enormously.

In addition, we use a Tree-LSTM to compute the similarity between NL questions

and SPARQL queries as the ranking score instead of the five simple features selected

by the authors of [22]. Hence, the final selected query is more likely to express the

true intention of the question and extract the right answer.

Frankenstein [10] decomposes the problem into several QA component tasks and

builds the whole QA pipeline by integrating 29 state-of-the-art QA components.

Frankenstein first extracts features such as question length, answer, type, special

words and part-of-speech (POS) tags from the input questions. Afterwards, a QA

optimization algorithm is implemented in two steps to automatically build the final

QA pipeline by selecting the best performing QA components from the 29 reusable

QA components based on the questions. In the first step, the performance of each

component is predicted based on the question features and then the best perform-

ing QA components are selected based on the predicted performance. In the second

step, the QA pipeline is dynamically generated based on the selected components

and answers are returned by executing the generated QA pipeline. Compared to

Frankenstein, our proposed system uses an ensemble method instead of only select-

ing the best performing QA component. What is more, we use an improved version

of the query construction component [9] other than selecting between the currently

published QA components. ExSQG extends the former SQG to support more query

types [24]. For instance, ExSQG supports ordinal questions such as superlatives,

however it still does not consider a constraint that can be expressed within a filter

clause.

Page 6 of 23Liang et al. J Big Data (2021) 8:3

Methods

Here we describe the details of our proposed QA system. In particular, our system trans-

lates natural language questions to SPARQL queries in five steps (see Fig. 1 in "Introduc-

tion" section). At each step, a relevant task is solved independently by one individual

software component. First, the input question is processed by the question analysis com-

ponent, based solely on syntactic features. Afterwards, the type of the question is identi-

fied and phrases in the question are mapped to corresponding resources and properties

in the underlying RDF knowledge graph. A number of SPARQL queries are generated

based on the mapped resources and properties. A ranking model based on Tree-struc-

tured Long Short-Term Memory (Tree-LSTM) [12] is applied to sort the candidate que-

ries according to the similarity between their syntactic and semantic structure relative to

the input question. Finally, answers are returned to the user by executing the generated

query against the underlying knowledge graph.

In the proposed architecture, only the Phrase Mapping is dependent on the specific

underlying knowledge graph because it requires the concrete resources, properties and

classes. All other components are independent of the underlying knowledge graph and

therefore can be applied to another knowledge domain without being modified.

Question analysis

�e first component of our QA system analyzes natural language questions based solely

on syntactic features. In particular, our system uses syntactic features to tokenize the

question, to determine the proper part of speech tags of theses tokens, to recognize the

named entities, to identify the relations between the tokens and, finally, to determine the

dependency label of each question component [2].

Moreover, the questions are lemmatized and a dependency parse tree is generated.

�e resulting lemma representation and the dependency parse tree are used later for

question classification and query ranking.

�e goal of lemmatization is to reduce the inflectional forms of a word to a common

base form. For instance, a question “Who is the mayor of the capital of French Polyne-

sia?” can be converted to the lemma representation as “Who be the mayor of the capital

of French Polynesia?”.

Dependency parsing is the process of analyzing the syntactic structure of a sentence to

establish semantic relationships between its components. �e dependency parser gener-

ates a dependency parse tree [25] that contains typed labels denoting the grammatical

relationships for each word in the sentence (see Fig. 2 for an example).

Question type classi�cation

In order to process various kinds of questions such as ‘Yes/No’ questions or ‘Count’

questions, the proposed QA system first identifies the type of question and then con-

structs the WHERE clause in the SPARQL query. Our system currently distinguishes

between three question types.

�e first is the ‘List’ question type, to which belong most common questions, according

to our analysis of the available datasets (see "Results" section for details). ‘List’ questions

Page 7 of 23Liang et al. J Big Data (2021) 8:3

usually start with a WH-word or a verb such as “list” or “show”. One example question

could be ‘Who is the wife of Obama?’. �e expected answer to the ‘List’ questions is a list

of resources in the underlying knowledge graph.

�e second type is the ‘Count’ question type, where the keyword ‘COUNT’ exists in

the corresponding SPARQL query. �ese kind of questions usually start with a particu-

lar word such as “how”. One example question could be ‘How many companies were

founded in the same year as Google?’. �e expected answer to a ‘Count’ question is a

number.

Note that sometimes the expected answer to a ‘Count’ question could be directly

extracted as the value of the property in the underlying knowledge graph instead of

being calculated by the ‘COUNT’ SPARQL set function. For example, the answer of the

question ‘How many people live in the capital of Australia?’ is already stored as the value

of http://dbped ia.org/ontol ogy/popul ation Total . As a result, this question is treated as of

the type ‘List’ instead of ‘Count’.

Finally, the ‘Boolean’ question type must contain the keyword “ASK” in the corre-

sponding SPARQL query. For example: ‘Is there a video game called Battle Chess?’. �e

expected answer is of a Boolean value - either True or False.

We use a machine learning method instead of heuristic rules to classify question types

because it is hard to correctly capture all the various question formulations. For example,

consider the question ‘How many people live in Zurich?’, which starts with ‘How many’

and belongs to question type ’LIST’ rather than ’COUNT’ (as in the example above).

Similar questions include ’How high is Mount Everest’ which also belongs to question

type ’LIST’. In order to capture those special questions, many specific cases must be

Fig. 2 Lemma expressions and dependency parse tree annotated with dependency labels for the question:

“Who is the mayor of the capital of French Polynesia?”

http://dbpedia.org/ontology/populationTotal

Page 8 of 23Liang et al. J Big Data (2021) 8:3

considered while hand-crafting heuristic rules. Instead, using a machine learning algo-

rithm for question type classification saves the tedious manual work and can automati-

cally capture such questions as long as the training data is large and sufficiently diverse.

To automatically derive the question type, we first convert each word of the original

question into its lemma representation. �en we use term frequency-inverse document

frequency (TF-IDF) to convert the resulting questions into a numeric feature vector

[26]. Afterwards, we train a Random Forest model [27] on these numeric feature vec-

tors to classify questions into ‘List’, ‘Count’ and ‘Boolean’ questions. Our experimental

results demonstrate that this simple model is good enough for this classification task

(see Related work" section). Consequently, a SPARQL query will be constructed based

on the derived question type. For instance, ‘ASK WHERE’ is used in the SPARQL query

of a ‘Boolean’ question - rather than ‘SELECT * WHERE’.

Phrase mapping

After the question types are identified, our QA system builds the final queries using the

information related to the underlying knowledge graph. �ere are mainly three types of

information when considering the RDF schema 1.1 to support the writing of SPARQL

queries: resources, properties and classes [28].

• Resources are concrete or abstract entities denoted with any Internationalized

Resource Identifier (IRI)1 or literal2. For instance, the IRI http://dbped ia.org/resou

rce/Zuric h. represents the city ‘Zurich’ or the string literal “CH-ZH” that denotes the

Zurich region code in DBpedia.

• Properties are special resources used to describe attributes or relationships of other

resources. For instance, the property http://dbped ia.org/ontol ogy/posta lCode . rep-

resents the postal code of a place.

• Classes are also resources. �ey are identified by IRIs and may be described with

properties. For example, http://dbped ia.org/resou rce/Zuric h. belongs to the class

http://dbped ia.org/resou rce/City.

For phrase mapping our QA system uses an ensemble method, combining the results

from several widely used phrase mapping systems. �e ensemble method allows to over-

come the weaknesses of each system while at the same time maximizing their strengths,

so as to produce the best possible results.

For instance, in order to identify Resources in a natural language question, we use

DBpedia Spotlight [29], TagMe [30], EARL [31] and Falcon [32]. In order to identify

Properties we use EARL [31], Falcon [32] and RNLIWOD [10]. Finally, in order to iden-

tify Classes we use NLIWOD [10]. Below we discuss these systems in more detail.

DBpedia Spotlight is a tool for automatically annotating mentions of DBpedia

resources in natural language text [29]. The DBpedia Spotlight first detects possible

phrases that are later linked to DBpedia resources. A generative probabilistic model

is then applied to disambiguate the detected phrases. Finally, an indexing process

1 https ://www.w3.org/TR/2014/REC-rdf11 -conce pts-20140 225/#dfn-iri.
2 https ://www.w3.org/TR/2014/REC-rdf11 -conce pts-20140 225/#dfn-liter al.

http://dbpedia.org/resource/Zurich
http://dbpedia.org/resource/Zurich
http://dbpedia.org/ontology/postalCode.
http://dbpedia.org/resource/Zurich.
http://dbpedia.org/resource/City
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#dfn-iri
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/#dfn-literal.

Page 9 of 23Liang et al. J Big Data (2021) 8:3

is applied to the detected phrases to efficiently extract the corresponding entities

from DBpedia [29]. DBpedia Spotlight also allows users to tune the values of impor-

tant parameters such as the confidence level and support range to get the trade-off

between the coverage and accuracy of the detected resources.

TagMe is a tool that on-the-fly identifies meaningful substrings in an unstructured

text and links each of them to a pertinent Wikipedia page in an efficient and effec-

tive way [30]. TagMe shows good performance especially when annotating texts that

are short and poorly composed. This feature of TagMe makes it ideal for question

answering tasks. Moreover, TagMe was shown to achieve the best performance on

the LC-QuAD dataset among all the available tools used for entity mapping tasks [7].

EARL is a tool for resource and property mapping as a joint task. EARL uses two

strategies. The first one is based on reducing the problem to an instance of the Gen-

eralized Travelling Salesman problem and the second one uses machine learning in

order to exploit the connection density between nodes in the knowledge graph [31].

Both strategies are shown to produce good results for entity and relationship map-

ping tasks.

Falcon also performs joint resource and property mapping. Falcon shows good per-

formance especially on short texts because it uses a light-weight linguistic approach

relying on a background knowledge graph. It uses the context of resources for find-

ing properties and it utilizes an extended knowledge graph created by merging enti-

ties and relationships from various knowledge sources [32]. Falcon outperforms

other tools and does not require training data, which makes it ideal for a QA system.

RNLIWOD is a tool for mapping properties and classes in the given text. It is

shown to have the best overall performance on the LC-QuAD dataset, although its

overall macro performance is poor. Therefore, RNLIWOD is augmented with a dic-

tionary of predicates and classes in the question analysis step along with their label

information. As a result, the coverage of predicates and classes measured by RNLI-

WOD increases, which finally leads to an improvement of the overall performance

[10].

Fig. 3 shows the mapped resources, properties and classes for the example question:

“Who is the mayor of the capital of French Polynesia?”

Fig. 3 The phrase mapping result for the example question: “Who is the mayor of the capital of French

Polynesia?”. dbo DBpedia ontology, dbr DBpedia resource

Page 10 of 23Liang et al. J Big Data (2021) 8:3

Query generation

As discussed in "Question type classification" section, the component Question Type

Generation is responsible for determining if a question falls into the category ‘List’,

‘Count’ or ‘Boolean’. �is component determines the ‘SELECT’ clause in the SPARQL

query. �e next step in constructing a SPARQL query is to determine the ‘WHERE’

clause, which is the goal of the component Query Generation that we discuss next.

Recall that a SPARQL query is comprised of graph patterns in the form of <subject,

predicate, object> triples, where each subject, predicate and object may be a variable.

�erefore, the purpose of the query generation step is to construct a set of such triples.

�ese triples are generated based on the output of the mapped resources, properties and

classes provided by the component Phrase Mapping. Finally, the ‘WHERE’ clause of the

SPARQL query is constructed.

In order to find desired RDF triples, all possible combinations of mapped resources,

properties and classes are examined [9]. For instance, dbr:French_Polynesia is

a mapped resource and dbo:capital is a mapped property in the example question

“Who is the mayor of the capital of French Polynesia?”. �e corresponding triple pat-

tern <dbr:French_Polynesiadbo:capital?uri> is added to set S of all possi-

ble triples as it exists in the underlying knowledge graph. Since dbr:France is another

mapped resource and dbo:country is another mapped property, the corresponding

triple pattern <?uridbo:countrydbr:France> is also added to set S of all possible

triples as it exists in the underlying knowledge graph.

In more complex SPARQL queries, more than one variable may be involved. �erefore,

set S is extended by adding the relationship to a new variable [9]. For example, the triple

pattern <dbr:French_Polynesiadbo:capital?uri> in S can be extended by

adding another triple pattern <?uridbo:mayor?uri’> because dbo:mayor is one

mapped property in the example question and such relationship exists in the underly-

ing knowledge graph. �e triple pattern <?uridbo:countrydbr:France> can be

extended by adding <?uri’dbo:mayor?uri> to S for the same reason.

We choose to examine only the subgraph containing the mapped resources and prop-

erties instead of traversing the whole underlying knowledge graph. As a result, our

approach dramatically decreases the computation time compared to [9]. By considering

the whole knowledge graph instead, we would have precision and execution time perfor-

mance drawbacks. For example, one drawback is that the time needed to execute all the

possible entity-property combinations increases significantly with the number of prop-

erties. As a result, the number of plausible queries to be considered will significantly

increase too, and consequently, the time to compute the similarity between questions

and SPARQL queries will also increase.

A list of triples needs to be selected from set S to build the ‘WHERE’ clause

in the SPARQL query. However, the output of the mapped resources, proper-

ties and classes from the phrase mapping step may be incorrect and some of them

may be unnecessary. �erefore, instead of only choosing the combination of tri-

ples which contains all the mapped resources and properties and has the maxi-

mum number of triples, combinations of any size are constructed from all triples in

S as long as such relationship exists in the underlying knowledge graph. For example,

(<dbr:French_Polynesiadbo:capital?uri> , <?uridbo:mayor?uri’>)

Page 11 of 23Liang et al. J Big Data (2021) 8:3

is one possible combination and (<?uridbo:countrydbr:France> ,

<?uri’dbo:mayor?uri>) is another possible combination. Given the question type

information, each possible combination can be used to build one SPARQL query. As a

result, many possible candidate queries are generated for each input question.

Algorithm 1 summarizes the process of constructing set S of all possible triples and set

Q of all possible queries, where E′ is the set of all mapped resources, P′ is the set of all

mapped properties and K is the underlying knowledge graph. �e basic idea of generat-

ing all possible triple patterns is taken from previous research [9]. However, we improve

that approach to be able to generate more possible WHERE clauses and thus, to be able

to handle more complex queries (see lines 15–24 of the algorithm below).

Query ranking

In the previous step Query Generation, we generated a number of candidate queries for

each natural language question. �e next step is to rank the candidates and to select

the most plausible queries. We follow the approach proposed in [9]. It relies on Tree-

structured Long-Short Term Memory (Tree-LSTM) [12]. In the following we give a high

level account of the method. For technical details we refer the reader to the original

publications.

Basic idea for ranking

�ere is an intrinsic tree-like structure in both SPARQL queries and natural language

questions. We adopt the basic assumption that the syntactic similarity between between

the queries and the input question can be used for ranking. Since the desired query

Page 12 of 23Liang et al. J Big Data (2021) 8:3

should capture the intention of the input question, the candidate queries that are syntac-

tically most similar to the input question should rank highest.

As an example, let us revisit the query processing phase with the question: “Who is the

mayor of the capital of French Polynesia?”. In the preprocessing phase for the input ques-

tion, the words corresponding to the mapped resources in the question are substituted

with a placeholder. Subsequently, the dependency parse tree of the input question is cre-

ated (depicted in Fig. 2 for our example). Fig. 4 shows the tree representation of four

possible candidate queries for the example question. According to our ranking approach,

the first query has the highest similarity among all possible candidate queries.

Ranking with tree-LSTM

LSTM augments the vanilla Recurrent Neural Network (RNN) structure with memory

cells. �us, it preserves sequence information over longer time periods. We measure

the similarity between candidate queries and the input question based on Tree-LSTM

[12]. Standard LSTM operates on a sequential order of the input. Tree-LSTMs take into

account the tree representation. More specifically, Tree-LSTM incorporates information

not only from an input vector but also from the hidden states of arbitrarily many child

units. In contrast, standard LSTM works only with the hidden state of the previous time

step. �us, Tree-LSTM accommodates sentence structure better. Indeed, Tree-LSTM

has been shown empirically to outperform strong LSTM baselines in tasks such as pre-

dicting semantic relatedness [12].

We use Tree-LSTM to map the input question and the candidate queries to latent

space (i.e. numerical vectors), and then compute the similarity between the vectors.

More specifically, the dependency parse tree of the natural language question is mapped

to latent space via a Tree-LSTM, denoted by Query Tree-LSTM in [9]. �e tree repre-

sentations of the candidate queries are mapped to latent space via a different Tree-LSTM

denoted Question Tree-LSTM. For each sentence pair the similarity score is computed

using a neural network that considers both the distance and angle between the vectors

Fig. 4 Tree representation of four possible queries of the example question: “Who is the mayor of the capital

of French Polynesia?” along with their semantic meaning

Page 13 of 23Liang et al. J Big Data (2021) 8:3

in latent space. As a cost function, we use the regularized Kullback–Leibler (KL) diver-

gence between the predicted and the target distributions. Since the goal is to select the

candidate query which is most similar to the original natural language question, we pick

the sentence pair with the highest similarity. For technical details we refer to the original

article [12].

Results

In this section we describe the experimental evaluation of our system. In order to make

our experiments reproducible, we provide our source code for download at https ://

githu b.com/Sylvi a-Liang /QAspa rql. We ran the experiments on two well-established

real-world data sets-the Open Challenge on Question Answering over Linked Data

Challenge (QALD) [33] and the Large-Scale Complex Question Answering Dataset (LC-

QuAD) [34]. Our results show that our QA system outperforms the state-of-art systems

by 15% on the QALD-7 dataset and by 48% on the LC-QuAD dataset.

Evaluation datasets

�e LC-QuAD dataset consists of 5000 “question-SPARQL query pairs” that cover 5042

resources and 615 properties [34]. Among the 5000 SPARQL queries in LC-QuAD, only

18% are simple questions, and the remaining questions either involve more than one tri-

ple, or involve the COUNT or ASK keyword or both. Moreover, 18.06% questions con-

tain a ‘COUNT’ aggregator, and 9.57% are ‘Boolean’ questions.

�e QALD dataset is not one single benchmark but a series of evaluation challenges

for Question Answering systems over linked data. �e latest version of QALD, which

has published the results, is the 7th Question Answering over Linked Data Challenge

(QALD-7) [35]. �e training dataset of QALD-7 contains 215 questions. Among these

215 questions, 7 questions contain a ‘COUNT’ aggregator, 28 questions are Boolean

questions and the remaining 180 questions belong to the type of ‘List’ questions, i.e. they

return a list of resources as an answer.

Evaluation systems

We could only evaluate and compare with QA systems that have either their source code

publicly available or tested their approach with the existing benchmark datasets such as

LC-QuAD or QALD that we also use in our paper. Finally, by considering the aforemen-

tioned, we were able to compare our system with the following state-of-art SPARQL-

based QA systems: WDAqua-core1 [22], ganswer2 [35], WDAqua [21] and Frankenstein

[10]. �e reasons for choosing the four SPARQL-based systems for our comparison are

as follows. According to the QALD-7 paper [35], the two systems WDAqua [21] and

ganswer2 [35] achieved the highest performance on the QALD-7 dataset. According to

[22], the system WDAqua-core1 shows the best performance on the LC-QuAD dataset.

Finally, we would like to compare with the results from SQG. However, the publication

[9] only provides the score of the Query Generation component instead of the perfor-

mance of the whole end-to-end QA pipeline. �erefore, we instead compare against the

state-of-the-art system Frankenstein [10] since it also uses a modular framework that

inspired our design.

https://github.com/Sylvia-Liang/QAsparql
https://github.com/Sylvia-Liang/QAsparql

Page 14 of 23Liang et al. J Big Data (2021) 8:3

Evaluation metrics

In order to compare the performance of our QA system with other published systems,

we compared recall, precision and F1-Score, which are calculated for each question q as

follows:

�e macro-average precision, recall and F1-score are calculated as the average precision,

recall and F1-score values for all the questions, respectively.

Evaluation parameters

In the question type classification component, the LC-QuAD dataset was split into 80%

/ 20% for the training dataset and test dataset, respectively. �e Random Forest Classi-

fier was trained on the training dataset. As parameter values we used 150 estimators, a

maximum depth of tree of 150, and the criterion Gini.

In the query ranking component, the LC-QuAD dataset was split into 70%/20%/10%

for the training dataset, validation dataset, and test dataset, respectively. �e parame-

ters of the Tree-LSTM model were tuned based on the validation dataset. �e values of

hyperparameters used in the query ranking step are summarized in Table 1. �e input

vector is a 300-dimensional word vector which is embedded using pre-trained Fast-

Text embedding models [36]. We used a gradient-based Adagrad Optimizer [37] with

a mini batch size of 25 examples. KL divergence was used as the loss function, which

provides a useful distance measure for continuous distributions and is often useful when

(1)precision(q) =

number of correct system answers for q

number of system answers for q

(2)recall(q) =

number of correct system answers for q

number of benchmark answers for q

(3)F1 − score =2 ×
recall(q) × precision(q)

recall(q) + precision(q)

Table 1 Hyper-parameter values of Tree-LSTM

Parameter Value

Input dimensions 300 × 1

LSTM memory dimensions 150 × 1

Epochs 15

Mini batch size 25

Learning rate 1 × 10−2

Weight decay (Regularization) 2.25 × 10−3

Dropout 0.2

Loss function Kullback-Leibler divergence loss

Optimizer Adagrad optimizer

Learning rate scheduler Stepwise learning rate decay

Step learning rate step size Once every 2 epochs

Step learning rate decay 0.25

Page 15 of 23Liang et al. J Big Data (2021) 8:3

performing direct regression over the space of (discretely sampled) continuous output

distributions [38].

Performance evaluation

Question type classi�cation

In the first part of our experiments we focused on the question type classification. We

tested various machine learning methods including Support-Vector Machine (SVM),

Random Forest and Tree-LSTM to classify the questions of the two datasets. As shown

in Table 2, the Random Forest classifier achieves the highest accuracy on both datasets.

Note that the deep learning model Tree-LSTM does not outperform simple classical

machine learning models such as SVM and Random Forest for this specific classification

task.

Here we analyze the results for the Random Forest in more detail. In particular, we are

interested in the classification accuracy for the three different query types. Let us first

start with the LC-QuAD dataset. Table 3 shows the precision, recall and F1-score for

each question type. For the LC-QuAD dataset we achieve the highest F1-score for list

queries, followed by Boolean and count queries. For the QUALD-7 dataset, the F1-score

for list queries is again the highest, while for Boolean queries it is the lowest.

�e question type classification accuracy results on the LC-QuAD dataset are as fol-

lows: 99.9% for ‘List’ questions, 97% for ‘Count’ questions, and 98% for ‘Boolean’ ques-

tions. �ese high accuracy values are due to the generation mechanism of the LC-QuAD

dataset. �is dataset is generated by converting SPARQL queries to Normalized Natural

Question Templates (NNQTs) which act as canonical structures. Afterwards, natural

language questions are composed by manually correcting the generated NNQTs [34].

�erefore, the questions in LC-QuAD contain much fewer noisy patterns compared to

other collected natural language questions. As a result, the performance of the Random

Forest Classifier on LC-QuAD dataset is quite satisfactory.

Table 2 Question type classi�cation performance on LC-QuAD and QALD-7 datasets

for various models

Dataset Accuracy score

SVM Random forest Tree-LSTM

LC-QuAD 0.986 0.995 0.987

QALD-7 0.937 0.958 0.930

Table 3 Question type classi�cation performance on LC-QuAD dataset

Question LC-QuAD dataset

Type Precision Recall F1-score

List 0.9945 0.9990 0.9967

Count 0.9944 0.9674 0.9807

Boolean 0.9969 0.9848 0.9908

Page 16 of 23Liang et al. J Big Data (2021) 8:3

When considering the QALD-7 dataset for the question type classification, our

approach performed slightly worse than with the LC-QuAD dataset as shown in Table 4.

�e accuracy for ‘List’ questions is 97%, for ‘Count’ questions 93% and for ‘Boolean’

questions 86%. �e reduction in performance is mainly due to the different qualities

of the datasets. For instance, the QALD-7 dataset contains questions with richer char-

acteristics such as ‘Boolean’ questions starting with ‘Are’ or ’Was’. However, the LC-

QuAD dataset contains very few such ‘Boolean’ questions, which results in the dramatic

decrease in the accuracy for ‘Boolean’ questions.

End-to-end system evaluation

In this part of experiments, we analyze the overall performance of our proposed end-

to-end system. Our system receives natural language questions as input, translates them

into corresponding SPARQL queries and returns answers extracted from the underlying

knowledge graph. �e following reported performance values are calculated based on

the returned answers.

Table 5 and Fig. 5 show the comparison of the performance of our QA system with

published result of the state-of-art systems WDAqua-core1 [22] and Frankenstein [10].

�is comparison result demonstrates that our proposed QA system significantly out-

performs the state-of-art QA systems on the LC-QuAD dataset. We tested our QA sys-

tem on 2430 questions in the LC-QuAD dataset which are still applicable to the latest

SPARQL endpoint version (2019-06).

Table 6 and Fig. 6 show that on the QALD-7 dataset our QA system also significantly

outperforms the state-of-art systems WDAqua [21] and ganswer2 [35].

Our in-depth analysis of the failed questions shows that no SPARQL query was gener-

ated for 968 questions in LC-QuAD datset and 80 questions in QALD-7 dataset. Most

of these failures were related to the phrase mapping step where the required resources,

properties or classes could not be detected.

Table 4 Question type classi�cation performance on QALD-7 dataset

Question QALD-7 dataset

Type Precision Recall F1-score

List 0.9830 0.9665 0.9746

Count 1.0000 0.9310 0.9643

Boolean 0.5000 0.8571 0.6316

Table 5 End-to-end performance on the LC-QuAD dataset

Evaluation Models

WDAqua-core1 Frankenstein Proposed
system

Precision 0.59 0.20 0.88

Recall 0.38 0.21 0.56

F1-score 0.46 0.20 0.68

Page 17 of 23Liang et al. J Big Data (2021) 8:3

For instance, most of these failures are related to detecting properties implicitly stated in

the input question. In such cases, the properties required to build the SPARQL query can-

not be inferred from the input question. For example, consider the question “How many

golf players are there in Arizona State Sun Devils?”. �e correct SPARQL query should be:

Fig. 5 End-to-end performance on the LC-QuAD dataset

Table 6 End-to-end performance on the QALD-7 dataset

Evaluation Models

WDAqua ganswer2 Proposed system

Precision 0.488 0.557 0.813

Recall 0.535 0.592 0.527

F1-score 0.511 0.556 0.639

Fig. 6 End-to-end performance on the QALD-7 dataset

Page 18 of 23Liang et al. J Big Data (2021) 8:3

�e property http://dbped ia.org/ontol ogy/colle ge is necessary to build the correct

SPARQL query but it is impossible to detect it solely from the input question. �ere-

fore, the bottleneck of designing QA systems over knowledge graphs lies in the phrase

mapping step, i.e detecting the corresponding resources, properties and classes in the

underlying knowledge graph.

�e previous experiments showed the end-to-end performance of our system. We

will now show more detailed performance analysis based on the question type of

the natural language questions, which are presented in Tables 7, 8, Figs. 7, 8. Both

Tables 7, 8 shows that the performance on ‘List’ questions is much better than the

performance on ‘Boolean’ questions. Low recall for ‘Boolean’ questions might be

caused by the intrinsic structure of the SPARQL query. For instance, the question “Is

Tom Cruise starring in Rain Man?” has the following SPARQL query:

According to the input question, the generated query should be

<dbr:Tom_Cruisedbo:starringdbr:Rain_Man> . However, the correct triple

pattern is the opposite, i.e. <dbr:Rain_Man dbo:starring dbr:Tom_Cruise> .

It is difficult to distinguish between these two triples solely based on the current

Table 7 Performance of each question type on LC-QuAD dataset

Question LC-QuAD dataset

Type Precision Recall F1-score

List 0.8762 0.7024 0.7797

Count 0.8583 0.4240 0.5676

Boolean 0.9355 0.2364 0.3774

Table 8 Performance of each question type on QALD-7 dataset

Question QALD-7 dataset

Type Precision Recall F1-score

List 0.8127 0.5921 0.6851

Count 0.8333 0.7143 0.7692

Boolean 0.8000 0.1379 0.2353

http://dbpedia.org/ontology/college

Page 19 of 23Liang et al. J Big Data (2021) 8:3

small training dataset. Therefore, more training data of ‘Boolean’ questions are

needed to fully capture the characteristics of such questions and queries. In addi-

tion, advanced query ranking mechanisms which could better capture the intention

behind questions could also be useful in improving the recall on ‘Boolean’ questions.

The high F1-score of ‘Count’ questions in the QALD-7 dataset does not have much

affect because there are only 7 questions of the ‘Count’ type in the QALD-7 dataset.

The reason for the low recall of ‘Count’ questions in LC-QuAD dataset might be the

high complexity of the SPARQL queries. Most queries with the ’COUNT’ keyword

are quite complex because they tend to contain more than one triple and variable in

the WHERE clause. However, the number of ‘Count’ questions in the training data-

set is relatively small as there are only 658 ‘Count’ questions in LC-QuAD dataset.

Therefore, more training data is required in order to fully learn the characteristics of

those complex queries.

Fig. 7 Performance of each question type on LC-QuAD dataset

Fig. 8 Performance of each question type on QALD-7 dataset

Page 20 of 23Liang et al. J Big Data (2021) 8:3

Discussion

Conclusions

�is paper presents a novel approach to constructing QA systems over knowledge

graphs. Our proposed QA system first identifies the type of each question by training a

Random Forest model. �en, an ensemble approach comprised of various entity recog-

nition and property mapping tools is used in the phrase mapping task. All possible triple

patterns are then extracted based on the mapped resources, properties and classes. Pos-

sible SPARQL queries are constructed by combining these triple patterns in the query

generation step. In order to select the correct SPARQL query among a number of can-

didate queries for each question, a ranking model based on Tree-LSTM is used in the

query ranking step. �e ranking model takes into account both the syntactical struc-

ture of the question and the tree representation of the candidate queries to select the

most plausible SPARQL query which represents the correct intention behind the ques-

tion. Experimental results demonstrate that our proposed QA system outperforms the

state-of-art result by 15% on the QALD-7 dataset and 48% on the LC-QuAD dataset,

respectively.

�e advantage of our QA system is that it requires neither any laborious feature engi-

neering, nor does it require a list of heuristic rules mapping a natural language question

to a query template and then to a SPARQL query. In this sense, our system could avoid

the over-fitting problem, which usually arises when defining the heuristic rules for con-

verting from natural language to a SPARQL query. In addition, our proposed system can

be used on large open-domain knowledge graphs and handle noisy inputs, as it uses an

ensemble method in the phrase mapping task, which leads to a significant performance

improvement. What is more, each component in our QA system is reusable and can be

integrated with other components to construct a new QA system that further improves

the performance. �is proposed system can be easily applied to newly unseen domains

because the question type classification model and the query generation model do not

require any domain specific knowledge.

One important design question might concern our choice of a modular architecture,

rather than an end-to-end system. �e reason behind this choice is that the modular

approach makes the QA system more independent and less susceptible to data schema

changes. An end-to-end system often needs to be re-trained due to potentially frequent

changes of the underlying database. However, in a modular system, only one or two

components will be affected by the changes in the underlying database, and as a result,

the training time and computing effort for updating the modular system is much smaller

than an end-to-end system. In addition, in order to match the changed underlying data-

base, the adjustment of the architecture used by a modular system will also be much

smaller compared to the end-to-end system.

Nowadays, many graph databases such as DBpedia and UniProt provide a SPARQL

endpoint for end users to access information. However, end users have to master the

SPARQL query language and the structure of the database in order to utilize the pro-

vided SPARQL endpoint. With the help of the proposed system, which can automati-

cally translate natural language questions into corresponding SPARQL queries, non-tech

savvy users can now take advantage of the large and complex graph databases much

more efficiently and easily.

Page 21 of 23Liang et al. J Big Data (2021) 8:3

Future work

Currently available training datasets contain only three types of questions and there-

fore the diversity of training data is limited. In reality, many more types of questions

are commonly used. Among the commonly used SPARQL operators, which were not

considered here, are FILTER, LIMIT, ORDER, MIN, MAX, UNION, etc. Collect-

ing complex questions containing the listed operators to improve both the size and

the quality of the training dataset is one obvious direction for this work. �e num-

ber of questions for each type should be relatively homogeneous in the training data-

set. Moreover, multiple expressions for the same question should also be developed

to increase the size and variety of the training dataset and to improve the system

performance.

Another possible future research direction is to convert the current QA system into

an architecture similar to distributed systems. Efforts could be made to integrate mul-

tiple knowledge graphs in order to return the correct answers. For instance, one com-

plex question may require information from multiple resources such as both DBpedia

and Freebase [39]. Hence, the current system could be extended to multiple knowl-

edge graphs by detecting the related knowledge graph, building sub-queries for each

possible knowledge graph and finally returning the correct answer by composing the

complete query from the generated sub-queries.

As mentioned earlier, a major strength of the proposed QA system is the modular

framework. Consequently, the performance of the whole system could be increased

by improving each component model. Future efforts could be made by either upgrad-

ing the current component models or replacing current models by more advanced

ones. For instance, when more types of questions are available in the training data-

set, the question type classification component might be replaced by more complex

machine learning models in order to achieve higher classification accuracy.

Our current ensemble method for phrase mapping returns the union of all the indi-

vidual methods, thereby potentially increasing the true positive rate at the phrase

mapping and query generation steps. �e increase may come at the cost of more false

positive candidate queries. However, these should be filtered out at the query ranking

step. A conservative ensemble method can be obtained by some consensus criterion

over the individual phrase mappers. As future work, a parameter could be introduced

to move between union and consensus to control for the precision-recall trade-off.

Among the five components in the system, currently only the phrase mapping com-

ponent depends on the underlying knowledge graph. Specifically speaking, the phrase

mapping model used in this paper performs well on DBpedia but not on other knowl-

edge graphs because it uses many pre-trained tools for DBpedia. In order to make this

system fully independent of the underlying knowledge graph, and for it to be easily

transferable to a new domain, the models used in this component could be changed to

more general models. For instance, DeepType [40] could map resources in Wikidata

[41], Freebase and YAGO2 [42]. If no pre-trained phrase mapping models are avail-

able for a specific knowledge graph, one simple model is to measure the similarity

between the phrases in question and the labels of resources in the knowledge graph.

In order to improve the accuracy of this simple approach, specific tailoring for each

knowledge graph would be required.

Page 22 of 23Liang et al. J Big Data (2021) 8:3

Acknowledgements

Not applicable.

Authors’ contributions

SL carried out the detailed experiments and drafted the manuscript. KS, TMF, MA and MG provided instructions on the

manuscript andthroughout the whole research project. All authors read and approved the final manuscript.

Funding

We thank the Swiss National Science foundation for funding (NRP 75, grant 407540_167149).

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1 ETH Swiss Federal Institute of Technology, Rämistrasse 101, 8092 Zurich, Switzerland. 2 Zurich University of Applied Sci-

ences, Obere Kirchgasse 2, 8400 Winterthur, Switzerland. 3 SIB Swiss Institute of Bioinformatics, Quartier Sorge-Bâtiment

Amphipôle, 1015 Lausanne, Switzerland. 4 Department of Ecology and Evolution, University of Lausanne, Quartier

Sorge-Bâtiment Biophore, 1015 Lausanne, Switzerland.

Received: 11 September 2020 Accepted: 22 November 2020

References

 1. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A. Uniprotkb/swiss-prot. In: Plant Bioinformatics, pp. 89–112.

Springer, 2007.

 2. Diefenbach D, Lopez V, Singh K, Maret P. Core techniques of question answering systems over knowledge bases: a

survey. Knowl Informat syst. 2018;55(3):529–69.

 3. Li F, Jagadish H. Constructing an interactive natural language interface for relational databases. Proceed VLDB

Endowment. 2014;8(1):73–84.

 4. Basik F, Hättasch B, Ilkhechi A, Usta A, Ramaswamy S, Utama P, Weir N, Binnig C, Cetintemel U. Dbpal: A learned

nl-interface for databases. In: Proceedings of the 2018 International Conference on Management of Data, ACM

2018;1765–1768.

 5. Affolter K, Stockinger K, Bernstein A. A comparative survey of recent natural language interfaces for databases. VLDB

J. 2019. https ://doi.org/10.1007/s0077 8-019-00567 -8.

 6. Höffner K, Walter S, Marx E, Usbeck R, Lehmann J, Ngonga Ngomo A-C. Survey on challenges of question answering

in the semantic web. Semant Web. 2017;8(6):895–920.

 7. Sing K, Lytra I, Radhakrishna AS, Shekarpour S, Vidal M-E, Lehmann J. No one is perfect: Analysing the performance

of question answering components over the dbpedia knowledge graph. arXiv preprint arXiv:1809.10044. 2018.

 8. Sima AC, Mendes de Farias T, Zbinden E, Anisimova M, Gil M, Stockinger H, Stockinger K, Robinson-Rechavi M, Des-

simoz C. Enabling semantic queries across federated bioinformatics databases. Database. 2019;2019: baz106.

 9. Zafar H, Napolitano G, Lehmann J. Formal query generation for question answering over knowledge bases. In:

European Semantic Web Conference, 2018;714–728. Springer

 10. Singh K, Radhakrishna AS, Both A, Shekarpour S, Lytra I, Usbeck R, Vyas A, Khikmatullaev A, Punjani D, Lange C, Vidal

ME, Lehmann J, Auer S. Why reinvent the wheel: Let’s build question answering systems together. In: Proceedings of

the 2018 World Wide Web Conference 2018.

 11. Trivedi P, Maheshwari G, Dubey M, Lehmann J. Lc-quad: A corpus for complex question answering over knowledge

graphs. In: International Semantic Web Conference, 2017;210–218. Springer

 12. Tai KS, Socher R, Manning CD. Improved semantic representations from tree-structured long short-term memory

networks. arXiv preprint arXiv:1503.00075. 2015.

 13. Copestake A, Jones KS. Natural language interfaces to databases. Knowl Eng Rev. 1990;5(4):225–49.

 14. Androutsopoulos I, Ritchie GD, Thanisch P. Natural language interfaces to databases-an introduction. Nat Lang Eng.

1995;1(1):29–81.

 15. Popescu A-M, Etzioni O, Kautz H. Towards a theory of natural language interfaces to databases. In: Proceedings of

the 8th International Conference on Intelligent User Interfaces. IUI ’03, pp. 149–157. Association for Computing

Machinery, New York 2003. https ://doi.org/10.1145/60404 5.60407 0.

 16. Dong L, Lapata M. Language to logical form with neural attention. CoRR abs/1601.01280.1601.01280. 2016.

 17. Xu X, Liu C, Song D. Sqlnet: Generating structured queries from natural language without reinforcement learning.

CoRR abs/1711.04436. 1711.04436CoRR 2017.

 18. Guo J, Zhan Z, Gao Y, Xiao Y, Lou J, Liu T, Zhang D. Towards complex text-to-sql in cross-domain database with

intermediate representation. CoRR abs/1905.08205. 2019. 1905.08205

 19. Wang B, Shin R, Liu X, Polozov O, Richardson M. Rat-sql: Relation-aware schema encoding and linking for text-to-sql

parsers. 2019. arXiv preprint arXiv:1911.04942.

 20. Zou L, Huang R, Wang H, Yu J, He W, Zhao D. Natural language question answering over rdf - a graph data driven

approach. Proceedings of the ACM SIGMOD International Conference on Management of Data. 2014. https ://doi.

org/10.1145/25885 55.26105 25.

 21. Diefenbach D, Singh K, Maret P. Wdaqua-core0: a question answering component for the research community. In:

Dragoni M, Solanki M, Blomqvist E, editors. Semantic Web Challenges. Cham: Springer; 2017. p. 84–89.

https://doi.org/10.1007/s00778-019-00567-8
https://doi.org/10.1145/604045.604070
https://doi.org/10.1145/2588555.2610525
https://doi.org/10.1145/2588555.2610525

Page 23 of 23Liang et al. J Big Data (2021) 8:3

 22. Diefenbach D, Both A, Singh K, Maret P. Towards a question answering system over the semantic web. Semantic

Web. 2018;1–19:

 23. Chakraborty N, Lukovnikov D, Maheshwari G, Trivedi P, Lehmann J, Fischer A. Introduction to neural network based

approaches for question answering over knowledge graphs. 2019. arXiv preprint arXiv:1907.09361.

 24. Abdelkawi A, Zafar H, Maleshkova M, Lehmann J. Complex query augmentation for question answering over

knowledge graphs. In: OTM Confederated International Conferences” On the Move to Meaningful Internet Systems”,

2019:571–587. Springer

 25. Honnibal M, Johnson M. An improved non-monotonic transition system for dependency parsing. In: Proceedings of

the 2015 Conference on Empirical Methods in Natural Language Processing, 2015:1373–1378

 26. Baeza-Yates R, Ribeiro-Neto B, et al. Modern Information Retrieval, vol. 463. New York: ACM press; 1999.

 27. Breiman L. Random forests. Machine learn. 2001;45(1):5–32.

 28. Morsey M, Lehmann J, Auer S, Stadler C, Hellmann S. Dbpedia and the live extraction of structured data from wiki-

pedia. Program Electron Libr Informat Syst. 2012;46:157–81. https ://doi.org/10.1108/00330 33121 12218 28.

 29. Daiber J, Jakob M, Hokamp C, Mendes PN. Improving efficiency and accuracy in multilingual entity extraction. In:

Proceedings of the 9th International Conference on Semantic Systems (I-Semantics) 2013.

 30. Ferragina P, Scaiella U. Tagme: On-the-fly annotation of short text fragments (by wikipedia entities). In: Proceedings

of the 19th ACM International Conference on Information and Knowledge Management. CIKM ’10, pp. 1625–1628.

ACM, New York, 2010. https ://doi.org/10.1145/18714 37.18716 89.

 31. Dubey M, Banerjee D, Chaudhuri D, Lehmann J. EARL: joint entity and relation linking for question answering over

knowledge graphs. CoRR abs/1801.03825 2018;. https ://doi.org/10.1007/s0077 8-019-00567 -80

 32. Sakor A, Onando Mulang’ I, Singh K, Shekarpour S, Esther Vidal M, Lehmann J, Auer S. Old is gold: Linguistic driven

approach for entity and relation linking of short text. In: Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers), pp. 2336–2346. Association for Computational Linguistics, Minneapolis, Minnesota 2019;. https ://doi.

org/10.1007/s0077 8-019-00567 -81

 33. Lopez V, Unger C, Cimiano P, Motta E. Evaluating question answering over linked data. Web Semant Sci Serv Agents

World Wide Web. 2013;21:3–13. https ://doi.org/10.1016/j.webse m.2013.05.0062.

 34. Trivedi P, Maheshwari G, Dubey M, Lehmann J. Lc-quad: A corpus for complex question answering over knowledge

graphs. In: d’Amato C, Fernandez M, Tamma V, Lecue F, Cudré-Mauroux P, Sequeda J, Lange C, Heflin J, editors. The

Semantic Web-ISWC 2017. Cham: Springer; 2017. p. 210–218.

 35. Usbeck R, Ngomo A-CN, Haarmann B, Krithara A, Röder M. Napolitano G. 7th open challenge on question answering

over linked data (qald-7). In: Dragoni M, Solanki M, Blomqvist E, editors. Semantic Web Challenges. Cham: Springer;

2017. p. 59–69.

 36. Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word vectors with subword information. Transact Assoc Com-

putat Linguist. 2017;5:135–46.

 37. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. J Mach

Learn Res. 2011;12(Jul):2121–59.

 38. Kullback S. Information Theory and Statistics.: Courier Corporation; 1997.

 39. Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase: A collaboratively created graph database for structuring

human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.

SIGMOD ’08, pp. 1247–1250. ACM, New York 2008. https ://doi.org/10.1145/13766 16.13767 46.

 40. Raiman JR, Raiman OM. Deeptype: multilingual entity linking by neural type system evolution. In: Thirty-Second

AAAI Conference on Artificial Intelligence 2018.

 41. Vrandečić D, Krötzsch M. Wikidata: a free collaborative knowledge base 2014.

 42. Hoffart J, Suchanek FM, Berberich K, Weikum G. Yago2: a spatially and temporally enhanced knowledge base from

wikipedia. Artifici Intell. 2013;194:28–61.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1108/00330331211221828
https://doi.org/10.1145/1871437.1871689
https://doi.org/10.1007/s00778-019-00567-8
https://doi.org/10.1007/s00778-019-00567-8
https://doi.org/10.1007/s00778-019-00567-8
https://doi.org/10.1016/j.websem.2013.05.006
https://doi.org/10.1145/1376616.1376746

	Querying knowledge graphs in natural language
	Abstract
	Introduction
	Related work
	Methods
	Question analysis
	Question type classification
	Phrase mapping
	Query generation
	Query ranking
	Basic idea for ranking
	Ranking with tree-LSTM

	Results
	Evaluation datasets
	Evaluation systems
	Evaluation metrics
	Evaluation parameters
	Performance evaluation
	Question type classification
	End-to-end system evaluation

	Discussion
	Conclusions
	Future work

	Acknowledgements
	References

