
2

Querying Multimedia Data from Multiple

Repositories by Content: the Garlic 1 Project

W. F. Cody, L. M. Haas, W. Niblack, M. Arya, M.]. Carey, R. Fagin, M.

Flickner, D. Lee, D. Petkovic, P.M. Schwarz,]. Thomas, M. Tork Roth,

]. H. Williams and E. L. Wimmers

IBM Almaden Research Center

650 Harry Road

San Jose, California 95120-6099

(408) 927-1740,/ax (408) 927-4121

e-mail: cody at almaden.ibm.com or laura at almaden.ibm.com

Abstract

We describe Garlic, an object-oriented multimedia middleware query system. Garlic enables

existing data management components, such as a relational database or a full text search engine,

to be integrated into an extensible information management system that presents a common inter

face and user access tools. We focus in this paper on how QBIC, an image retrieval system that

provides content-based image queries, can be integrated into Garlic. This results in a system in

which a single query can combine visual and nonvisual data using type-specific search tech

niques, enabling a new breed of multimedia applications

Keywords

Multimedia Database, Heterogeneous Databases, Image Database, Query By Content

1 INTRODUCTION

Many applications today require access to a broad range of datatypes. A patient's medical folder

contains MRI scans (image),lab reports (text), doctors' dictated notes (audio), and address and in

surance information (record-oriented database data). A geographic information system needs

maps, satellite images, and data about roads, buildings, and populations. In many of these areas,

specialized software has emerged to allow key datatypes to be queried efficiently, or to support

type-specific predicates. For example, there are special systems for fingerprint recognition, for

finding specific molecular structures, and to locate areas that overlap or that contain a specific ob

ject on a map. The expanding role of multimedia data in many other application domains has sim-

I. Garlic is not an acronym. Most members of the team really like garlic, and enjoy our laboratory's proximity to the

Gilroy garlic fields!

S. Spaccapietra et al. (eds.), Visual Database Systems 3

© Springer Science+Business Media Dordrecht 1995

18 Part One Querying by Content

ilarly resulted in special purpose systems that provide content based search of their data. Since

multimedia data is largely visual and hard to describe precisely, it will be increasingly important

to support content based searches that can be specified visually "by example" and that allow for

degrees of similarity in the answer set.

The increasing diversity of datatypes and the need for special-purpose data servers is occurring

even in traditional application areas like insurance (e.g., to manage videos of damaged property),

catalog sales (e.g., to manage collections of photos for product spreads) and advertising (e.g., to

manage shots of magazine ads). In these traditional applications, this new data must be managed

in coordination with the large amounts of business data and text data that are already managed by

a variety of information systems. In the current environment, developing a multimedia application

requires the developer to deal with different interfaces for several different data systems, while

worrying about how to locate the right system to handle each part of the query, how to optimize

the accesses to the various data systems and how to combine the results into a meaningful form for

the user. All these tasks are inhibitors to the creation of modem multimedia applications that ex

ploit the rich data environment we live in.

Garlic is an object-oriented multimedia middleware system that is designed to address this

problem. Garlic allows existing data management components, such as a relational DBMS, a full

text search engine, or an image retrieval system, to be integrated into an extensible information

management system. Applications can access any of the data in the underlying data sources

through a common, nonprocedural interface, and can exploit the specialized query capabilities of

those sources. A single query can access data in several repositories, using the type-specific pred

icates they support. Garlic also provides a powerful query/browse application that includes type

specific query interfaces in a uniform query framework.

In this paper, we show how Garlic enables applications that need content-based search of visual

(and nonvisual) data stored in separate specialized servers. The paper is organized as follows. In

the next section, we describe related work. An overview of Garlic is given in Section 3. Section 4

shows how visual data can be incorporated into Garlic. It introduces an image retrieval system sup

porting content-based image queries (QBIC), describes the steps and the decisions involved in in

tegrating QBIC into Garlic, and then shows how queries combining visual and nonvisual

predicates can be processed. At the end of this section we briefly describe a Query/Browse appli

cation and show how it allows visual data to be browsed and queried in conjunction with other data

reachable through Garlic (Section 4.4). We summarize our contributions and discuss future work

in Section 5.

2 RELATED WORK

The multimedia area is expanding at a rapid pace. It includes work on hypermedia systems, spe

cialized servers (e.g., video servers), image and document management tools, interactive games,

authoring tools, scripting languages, and so forth. In the personal computer industry, a large num

ber of small-scale multimedia software packages and products have emerged due to the availability

Querying multimedia data from multiple repositories by content 19

and affordability of CD-ROM technology. Several companies are offering "multimedia database"

products. These products combine the functionality of a DBMS (typically based on a relational or

object-oriented model) with the ability to store images, text, audio, and even short video clips.

These systems store and manage all their data, and typically provide keyword search for pre-anno

tated multimedia data. It is not clear that these systems can scale to large volumes of data.

Mainline database vendors have only recently started to pay attention to multimedia data. The

Dlustra object-relational DBMS (Ubell, 1994) provides media-specific class libraries (Dat

aBiades(tm)) for storing and managing multimedia data. IBM, Sybase, Oracle and others can store

image, video and text in their databases, but support for searching these types by content is just

starting to appear. IBM's new UltiMedia Manager is the first product to offer content-based image

query (based on QBIC (Niblack, et. al., 1993) technology) in conjunction with standard relational

search. Garlic differs from these systems in that it aims to leverage existing intelligent repositories,

such as text and image management systems, rather than requiring all multimedia data to be stored

within and searched by a single DBMS. Garlic's open approach should enable it to take advantage

of continuing advances in multimedia storage and search technology. It should also be more effec

tive for legacy environments, where multimedia data collections (such as document or image li

braries) and business data already exist in forms that cannot easily be migrated into a new DBMS.

Content-based retrieval of data is highly type-specific. Years of research have produced a solid

technology base for content-based retrieval of documents through the use of various text indexing

and ~earch techniques (Salton, 1989). Similarly, simple spatial searches are well-supported by to

day's geographic information systems ((ESRI, 1990), (TYDAC, 1990), e.g.). Image content

based retrieval of visual data is still in its infancy. Although a few specialized commercial appli

cations exist (such as fingerprint matching systems), most content-based image retrieval systems

are research prototypes. Some examples, which focus on interesting feature and model indexing

techniques, include (Pentland, et.al., 1994), (Kato, et.al., 1992), (Swain, et.al., 1991}, and (Grosky

and Mehotra, 1990). Further, with the exception of simple approaches like attaching attributes to

spatial objects, or associating user-provided keywords with images, these component search tech

nologies remain largely isolated from one another.

In the database community, much research has been done on heterogeneous distributed data

base systems (also known as multidatabase systems). These systems aim to enable applications that

span multiple DBMS. Surveys of the relevant work can be found in (Eimagarmid, et.al., 1990) and

(Hsiao, 1992). Commercial middleware products now exist for providing uniform access to data

in multiple databases, relational and otherwise, and to structured files, usually through the provi

sion of a unified relational schema. Models with object-oriented features have been employed in

projects such as (Rosenberg, 1982), (Connors, et.al., 1991}, (Fang, et.al., 1993) and others. What

distinguishes Garlic from these efforts is its focus on providing an object-oriented view of data re

siding not only in databases and record-based files, but also in a wide variety of media-specific data

repositories with specialized search facilities. With the exception of the Papyrus (Connors, et.al.,

1991) and Pegasus (Shan, 1993) projects at HP Labs, we are aware of no other efforts that have

tried to address the problems involved in supporting heterogeneous, multimedia applications.

20 Part One Querying by Content

3 GARLIC OVERVIEW

Figure I depicts the overall architecture of the Garlic system (Carey, et.al., 1995). At the leaves

of the figure are a number of data repositories containing the data that Garlic is intended to inte

grate. Examples of potential data repositories include relational and non-relational database sys

tems, file systems, document managers, image managers, and video servers. Repositories will vary

widely in their ability to support content-based search, from a video server which can simply re

trieve by video name, to a relational DBMS with its powerful query language. While Garlic will

accommodate (i.e., provide access to) more limited servers, we are particularly interested in en

abling a richer style of query for a broader range of datatypes. Thus we focus on repositories that

provide content-based querying of multimedia datatypes, and on the technology needed to incor

porate them into Garlic, in such a way as to exploit their special abilities.

One special repository shown in Figure I is the Garlic complex object repository. This reposi

tory, provided with Garlic, is used to hold the complex objects that most Garlic applications need

to relate together legacy information from different systems, or to create new multimedia objects.

For example, an advertising agency that had information about its clients in a relational database,

stills of ads in an image server, video clips on a video server and financial reports in a document

manager might build Garlic complex objects representing the ad campaigns to link all of this in

formation together.

Above each repository is a repository wrapper. A repository wrapper serves two purposes.

First, it exports to Garlic a description of the data types and collections of data that live in that un

derlying repository. This description is basically a schema for that repository instance, expressed

in the Garlic Data Model (Carey, et.al., 1995) (a variant of the ODMG-93 object model (Cattell,

et.al., 1994)). It also describes to Garlic the search capabilities of this repository type -- what pred

icates it supports. Second, the wrapper translates data access and manipulation requests (i.e., que

ries) from Garlic's internal protocols to the repository's native protocol. Initially, wrappers will

have to be created by hand; eventually, we plan to provide tools to ease the task of wrapper gener

ation.

Query processing and data manipulation services, especially for queries where the target data

resides in more than one repository, are provided by the Garlic Query Services and Runtime Sys

tem component shown in Figure I. This component presents Garlic applications with a unified, ob

ject-oriented view of the data accessible by Garlic. This view may be a simple union of all of the

repository wrapper schemas, or it may involve subsetting or restructuring of those schemas. Garlic

Query Services processes users' and applications' queries, updates and method invocation requests

against this view. Queries, expressed in an object-oriented extension of SQL called GQL, are bro

ken into pieces, each of which can be handled by a single wrapper. This process relies on Garlic

metadata that describes both the unified Garlic schema and the individual wrapper schemas. The

subqueries are initiated by the Garlic Runtime System and the results are combined and returned

to the user.

Garlic applications interact with the Query Services and Runtime System through Garlic's ob-

Querying multimedia data from multiple repositories by content

Complex

Object

Repository

Data

Repository

Garlic

Query Services &

Runtime System

Data

Repository •••

Figure 1. Garlic System Architecture

Garlic

Metadata

Data

Repository

21

ject query language and a C++ application programming interface (API). One particularly impor

tant application, which is also shown in Figure 1, is the Garlic Query/Browser. This component of

Garlic will provide end users of the system with a friendly, graphical interface that supports inter

active browsing, navigation, and querying of Garlic databases.

4 QUERYING VISUAL DATA IN GARLIC

In this section, we focus on how queries involving visual data can be handled in Garlic. We start

by describing one particular image repository that we are integrating; the QBIC repository provides

the ability to search for images by various visual characteristics such as color, texture or layout.

We then discuss the design of a wrapper for this repository. Once a wrapper is defined, it is possible

to query data in this repository through Garlic. The advantage of Garlic, however, is its ability to

handle queries spanning data in visual and other repositories. We illustrate this with an example

involving three repositories. Finally, we describe the Garlic query/browser application, and show

how it could be used in the same example.

4.1 Query by content of image data -- the QBIC repository

QBIC (Niblack, et.al., 1993) is a research prototype image retrieval system that uses the content of

22 Part One Querying by Content

images as the basis of queries. The content used by QBIC includes the colors, textures, shapes, and

locations of user-specified objects (e.g., a person, flower, etc.) or areas (e.g., the sky area) in im

ages, and/or the overall distribution and placement of colors, textures, and edges in an image as a

whole. Queries are posed graphically/visually, by drawing, sketching, or selecting examples of

what is desired. A sample QBIC query is "Find images with a generally green background that

have a red, round object in the upper left comer", where the image predicates (red, round, ...) are

specified graphically using color wheels and drawing tools, by selecting samples, and so on.

QBIC is a stand-alone system. It has two main components, database population, which pre

pares a collection of images for query, and database query. Each component has its own user in

terface and engine. In this section, we describe these two components, and in the next, consider the

issues involved in making QBIC's collections and query function accessible to Garlic.

4.1.1 QBIC database population

The QBIC database population step is a one-time process that prepares images for later query. The

images are loaded or imported into the system, and several utility operations are performed -- pre

paring a reduced lOOxlOO "thumbnail", converting each image to a common system palette and

storing available text information. An optional but important step is "object/area identification" in

which objects or areas in an image -- a car, a person, swatch of background texture -- are identified.

This may be done manually, semi-automatically, or fully automatically, depending on the nature

of the images and the objects they contain. For unconstrained natural scenes and general photo clip

art, objects are usually identified manually by outlining with a mouse, or by using semi-automatic

tools such as flood-fill algorithms for foreground/background identification, or spline-based edge

tracking to refine a rough user outline. Automatic methods such as background removal can be

used in constrained cases such as images of museum artifacts on generally uniform backgrounds,

or images of industrial/commercial parts in a fixed position and under controlled lighting. In any

case, the result of object/area identification is a set of outlines or, more generally, bit masks (to al

low for disconnected and overlapping areas) defining objects and areas in the images.

For each object/area and for each image as a whole, a set of numeric features are computed that

characterize properties of image content. These features are listed in Table I, and described briefly

below.

TABLE 1. QBIC Features

Objects

Average color

Histogram color

Texture

Shape

Location

Images

Average color

Histogram color

Texture

Positional edges (sketch)

Positional color (draw/paint)

Average and Histogram Color: QBIC computes the average Munsell (Miyahara, et.al., 1988)

Querying multimedia data from multiple repositories by content 23

coordinates of each object and image, plus a k element color histogram (k is typically 64 or 256)

that gives the percentage of the pixels in each object/image in each of the k colors.

Texture: QBIC's texture features are based on modified versions of the coarseness, contrast,

and directionality features proposed in (Tamura, et.al., 1978). Coarseness measures the scale of the

texture (pebbles vs. boulders), contrast describes the vividness of the pattern, and directionality de

scribes whether or not the image has a favored direction or is isotropic (grass versus a smooth ob

ject).

Shape: QBIC has used several different sets of shape features. One is based on a combination

of area, circularity, eccentricity, major axis orientation and a set of algebraic moment invariants.

A second is the turning angles or tangent vectors around the perimeter of an object, computed from

smooth splines fit to the perimeter. The result is a list of 64 values of turning angle. All shapes are

assumed to be non-occluded planar shapes allowing each shape to be represented as a binary im

age.

Location: The location features are the x andy centroid of the object.

Positional edge (sketch): QBIC implements an image retrieval method similar to the one de

scribed in (Hirata, et.al., 1992) and (Kato, et.al., 1992) that allows images to be retrieved based on

a rough user sketch. The feature needed to support this retrieval consists of a reduced resolution

edge map of each image. QBIC computes a set of edges using a Canny edge operator, and then

reduces this to a 64 x 64 edge map, giving the data on which the retrieval by sketch is performed.

Positional color (draw): Positional color or "draw" features are computed by partitioning the

image into a number of roughly square grid cells and, for the pixels in each grid cell, computing a

set of features. The features computed are average color, a partial color histogram that captures the

main colors, and a set of texture parameters. The set of computed features, one for each grid cell,

is the draw feature for the entire image.

4.1.2 QBIC image query

Once the set of features for objects and images has been computed, queries may be run. Queries

are initiated by a user in an interactive session by graphically specifying a set of image and object

properties and requesting images "like" the query specification. For example, images may be re

quested that contain objects whose color is similar to the color of an indicated object, or a color

selected from a color wheel. Full image queries are based on the global set of color and texture fea

tures occurring in an image. For example, images may be retrieved that are globally similar, in

terms of color and/or texture, to a given image, or, using a menu-based color or texture "picker",

a user can select a set of colors and textures and request images containing them in selected pro

portions. Sample pickers for various features are shown in Plates 1 and 2.

All retrievals on image features are based on similarity, not exact match, and similarity func

tions are used for each feature or feature set. Most of the similarity functions are based on weighted

Euclidean distance in the corresponding feature space (e.g. three dimensional average Munsell col-

24 Part One Querying by Content

or, three dimensional texture, or 20 dimensional shape). Special similarity measures are used for

histogram color, turning angle shape, sketch and positional color, as described in (Niblack, et.al.,

1993). These measures can be used individually or in a weighted combination. Also, "multi-que

ries" can be formed, querying on multiple objects, each with multiple properties, and on multiple

image attributes, as in a query for an image with a red, round object, a green fish-shaped object,

and a blue background.

Example queries are shown in Plates I, 2, 3 and 4. In all cases, the returned results are ranked,

and are shown in order with the best result in the leftmost position, next best in the next position,

and so on. Each image returned is displayed as a reduced "thumbnail". The thumbnails are active

menu buttons that can be clicked on to give a list of options. The options include: initiate the query

"Find images like this one", display the similarity value of this image to the query image, display

the (larger) full scale image, place the image in a holding area for later processing, or perform a

user defined image operation or comparison.

4.2 Wrapping a QBIC repository

In this section we show how QBIC can be integrated into Garlic. The goal of this integration is to

enable applications to exploit QBIC's special facilities for image search in conjunction with other

kinds of search on other types of data. So far, we have not thought about integrating QBIC's data

base population component. Thus, in this section we discuss integration of the two pieces of the

database query component of QBIC: the query formation interface and the query engine.

QBIC's specialized query engine was developed as a stand alone system with its own user in

terface for querying image data. This architecture is similar to many systems on the market which

provide content-based querying of particular datatypes (e.g., text, images, maps, molecular struc

tures). In an increasing number of these systems however, (e.g., Lotus Notes, Excalibur' s Electron

ic File System) the search engine is accessible through a published application programming

interface (API), making integration as a repository feasible. On the other hand, the query formation

interface is not usually accessible through an API. These systems can either be integrated into Gar

lic as a monolith, with no exploitation of Garlic's ability to provide cross repository queries or to

integrate and synchronize presentation of results; or, the callable search engine can be integrated

as a repository and other user interfaces exploited for query formation. One drawback of this latter

approach is the loss of the familiar user-interface that a particular system provides. However, we

believe the benefits of a closer integration with Garlic (and consistency of user interface when ac

cessing multiple similar repositories) will outweigh the costs for most users/applications that need

Garlic functionality. Thus, we are trying to borrow or develop good general query interfaces for

specific types, including image.

The QBIC query formation interface, unlike other systems, has provided tools to specify que

ries on rather general purpose image properties. We'd like, therefore, to take advantage of this gen

erality by integrating this interface with the Garlic Query/Browser (section 4.4) as the basis for our

general image query interface. Furthermore, the QBIC search engine will be "wrapped" so that it

Querying multimedia data from multiple repositories by content 25

presents itself to Garlic as an image database manager with an object-oriented schema. In the next

two subsections we discuss some of the issues involved and choices made in this integration pro

cess.

4.2.1 Integrating the QBIC query formation interface

The QBIC pickers provide intuitively appealing and general mechanisms for users to specify col

ors, textures, and other image features. To make these pickers available to the Query/Browser, we

have encapsulated the QBIC query formation interface with a socket protocol that enables them to

be invoked by Garlic and to exchange query specifications in a form permitting them to be com

bined into a full Garlic query. The query formation features interact with the user in the same way

they currently do in the QBIC system.

Secondly, to enable these pickers to be used to query both QBIC and non-QBIC image data

bases, it must be possible to use the same query specification to query different repositories having

different computations for the same feature (e.g., different shape feature vectors for the same

shape). Thus, QBIC pickers do not return a feature vector but capture the user specification in a

small, say 100 x 100, image which can be input to the feature computation functions in another

image database supporting query by content for the same feature. This also eliminates the need for

client machines to have implementations for potentially expensive feature computations. The cost

is that "image literals" must now be handled by Garlic's Query Services. These literals will be care

fully passed "around" the system in order to minimize copying and query cost. (Similar mecha

nisms are used to handle long fields in relational databases today (Lehman and Lindsay, 1989)).

Another requirement is that it must be possible to integrate the resulting image query within

the complete user query being built by the Query/Browser. The QBIC query formation functions

will therefore capture the logical expression of the user's query in a text form with references to

the image literals discussed above. The text form will be a subset of the Garlic Query Language

which can be pieced into the full GQL query that the Query/Browser will submit to Garlic Query

Services.

The thumbnails available from QBIC in response to an image query will be displayed by the

query/browser using the image display tools available at the client. They will therefore appear in

tegrated with data returned by other repositories in response to the user's full query (Plate 6). If

selected, the thumbnails are then expanded into the full image and presented in a separate window.

4.2.2 Wrapping the QBIC query engine

Typical information servers, whether general purpose or domain specific (e.g., Lotus Notes, Ex

calibur's Electronic Filing System or ACR/NEMA DICOM Medical Image Servers), organize the

data they manage under a schema that presents a model of that data to the user. Document systems

compose a document from pages and then organize the documents into folders, filedrawers, cabi

nets, etc. Medical image servers organize tomographic images into series, series into studies and

studies into sections of a patient folder. Although instances of these data objects and data collec-

26 Part One Querying by Content

tions can be added, the object and collection types in each schema are fixed by the underlying sys

tem. Furthermore, the systems support several levels of search capability through a published API.

We believe this model of an information server is representative of an increasing segment of the

information server market. Trends in industry standardization of domain-specific data models and

in marketplace standardization of general purpose information and data management systems will

further support this model. Therefore, most repository wrappers in Garlic will bridge the gap be

tween Garlic's object-oriented model and a fixed schema in a similar modeling discipline.

However, QBIC is a research prototype, and does not have a published data schema or APis.

Instead of describing the data stored, QBIC's file-based data organization is oriented around han

dling image and feature vector data structures. To integrate QBIC into Garlic so that Garlic can

exploit QBIC's data and search capability, the QBIC wrapper must present an object-oriented

schema to Garlic, and be able to map this schema down to the file structures and call interfaces

currently provided by the QBIC search engine. It is a virtue of Garlic's architecture that even in

this case integration is possible.

The query engine wrapper has two parts: a model of the data in QBIC and of the predicates

QBIC can apply, and code that translates between GQL queries and QBIC's call interfaces andre

turns results to Garlic. The model for QBIC's image data must express the relationships between

base images (scenes that have outlined objects in them), their thumbnails, and outlined objects

within the images. Although these data objects are stored as bitfiles or as records in data files in

QBIC, the QBIC wrapper provides Garlic with a more integrated view. This view allows naviga

tional access from one object to its related objects through the Query/Browser, the use of image

feature queries over particular collections in a type safe manner and the incorporation of QBIC data

(as Garlic objects) into Garlic complex objects (e.g., advertising campaigns) without copying the

large data objects into Garlic.

Interface definitions satisfying these requirements are given in Figure 2. There are three key

interfaces (classes), one for full QBIC scenes (QBICScene), one for outlined objects within a scene

(OutlinedObjects), and the third containing the actual image (BasePixellmage). A QBICScene has

pointers to the raw image and a thumbnail (both instances of BasePixel/mage). It also has a set of

pointers to objects outlined in that scene. These objects are represented by the OutlinedObjects in

terface. Each outlined object has a pointer to a thumbnail of that outlined object within the image.

OutlinedObjects also point back to the QBICScene they occur in. Finally, the BasePixel/mage class

provides exactly the information needed to interpret the image bits faithfully, including width,

height, and pixel size. Appropriate methods are provided with each interface definition to allow

searching and manipulation of these classes. These interface definitions shield Garlic users from

the details of how QBIC keeps track of which image features have been computed for a given

scene, or a given object. It also hides the actual feature values. All of these are managed by the

QBIC repository, but are only accessible to Garlic through the interface methods.

The interface definitions are exported by the wrapper and copied into Garlic structures used by

Metadata Services to record schema information. They are used by Garlic Query Services during

Querying multimedia data from multiple repositories by content

interface QBICScene : persistent {
relationship BasePixelimage original_image;
relationship BasePixelimage original_image_thumbnail;
relationship set <OutlinedObjects> scene_objects

inverse OutlinedObjects::original_scene;

fuzzybool match_image (QBICScene image_srch_arg);
void QBdisplay();

interface OutlinedObjects : persistent {
relationship BasePixelimage original_obj_thumbnail;
attribute int[2] upperleft;
relationship BasePixelimage objectmask;
relationship QBICScene original_scene inverse QBICScene::scene_objects;

void QBdisplay();

interface BasePixelimage : persistent

attribute int image_width;
attribute int image_height;
attribute int pel_depth;
attribute float pel_physical_size
attribute int total_image_size

attribute char[total_image_size] image_pels;

BasePixelimage getimage();

Figure 2. A Wrapper Schema for QBIC

27

query compilation (e.g, to ensure type safe queries) and by users and applications to examine the

objects available in a Garlic database. The wrapper also exports a set of named collections. These

collections are assigned identifiers by Garlic upon import and the wrapper is responsible for main

taining mappings between these identifiers and the underlying repository entities. For instance, if

it is desired to make a set of QBICScenes, called Wilderness_Shots, available to advertisers, a

QBIC server will register the directory containing the feature data and thumbnail files to Garlic as

a collection during the wrapper registration process. QBIC will guarantee that the same set of fea

tures is computed for each Wilderness_Shot scene. Therefore, any feature-based search of the

Wilderness_ Shot collection can be assumed to be exhaustive by the user. The QBIC wrapper will

map a Garlic OlD (i.e. an object identifier understood by Garlic) for the Wilderness_ Shot collection

into a reference to this directory, and will map method invocations, such as the match_image

search predicate, into the appropriate calls against the control file structures in the QBIC search

engine.

The second part of the wrapper handles queries. The QBIC wrapper is passed that part of a us

er's query that applies to collections that are exported by QBIC. A feature of QBIC is that searches

can be performed against lists of images that are subsets of the exported collections, or against an

entire collection. This allows Garlic Query Services considerable flexibility in choosing how to ex

ecute a query (Section 4.3).The query fragment sent to QBIC is represented by an abstract parse

28 Part One Querying by Content

tree that has all references to Garlic objects bound to unique identifiers which the wrapper can map

to underlying repository entities. Any literals needed to evaluate the query (e.g., a sketch to be

matched) will also be passed. The wrapper creates an iterator, which provides the answer set (in a

relevance sorted order created by QBIC) to Garlic's Runtime System. After mapping the Garlic

subquery into QBIC entities and function calls, the wrapper relies on the client/server mechanisms

provided by QBIC, e.g., socket calls, to remotely execute the appropriate search and return the an

swer set. The answer set contains identifiers that can be mapped to Garlic 0/Ds, can be filtered

and/or can have methods applied to them.

4.3 Queries over visual (and other) data

Once a wrapper is defined for QBIC, QBIC data can be queried through Garlic. But the power of

Garlic lies in its ability to answer queries that span multiple data types in multiple repositories. In

this section we will show how queries in Garlic can combine predicates over visual and other data.

To illustrate how queries are processed, we need both wrapper schemas for each repository and a

global Garlic schema. We complete this set of schemas for a simple subset of our advertising ex

ample. We assume that in addition to a QBIC repository with images from magazine ads, the agen-

class Document {

public:
char* title;

char* text;

Date date;

make_doc_db /financial/documents
add_doc /financial/reportl.text
add_doc /financial/report2.text

int matches(char* search_expr);

Figure 3. Text Repository Contents

cy also has a text repository that stores financial reports for each campaign. The contents of this

repository and the commands to create it are indicated in C++ notation in Figure 3. Suppose that

the agency wants to correlate their reports with the magazine ads. They can use Garlic complex

objects to do this. The wrapper schemas for the text repository and for the complex objects man

aged by the Garlic complex object repository are given in Figure 4. (The wrapper for the QBIC

repository was shown in Figure 2). Notice that the text wrapper renames the title attribute of Doc

ument to campaign, based on the wrapper designer's knowledge of the actual documents being

stored. Also, note that there is no magic involving complex objects. Once the complex object sche

ma is defined, the complex object repository must be populated. In some cases this can be done

through a query, but in our example this would have to be done by hand (unless there were some

information in the document to identify the associated images, or vice versa). Finally, one possible

Garlic schema for this example is given in Figure 5. This schema promotes the campaign attribute

of the report into the Campaign objects themselves, so that Campaigns now have a name, a set of

magazine ads, and a report.

The Garlic Query Language extends SQL with additional constructs for traversing paths com-

Querying multimedia data from multiple repositories by content

interface Document(extent Document): persistent (
attribute String campaign;
attribute Date date;
attribute String text;
fuzzybool matches(String search_expr);
void QBdisplay();

Figure 4. (a): Text Wrapper Schema

interface Campaign (extent Campaign): persistent
attribute String campaign_name;
relationship Set<QBICScene> magazine_ads;
relationship Document report;

Figure 4.(b): Complex Object Repository Schema

29

posed of inter-object relationships, for querying collection-valued attributes of objects, and for in

voking methods within queries. These extensions are similar to those of other recent object query

language proposals (e.g., (Bancilhon, et.al., 1989), (Kim, 1989), (Dar, et.al., 1992)), including the

ongoing efforts of the SQL-3 committee (Kulkarni, 1994). To get a flavor of these extensions, con

sider the following query, written against the Garlic schema of Figure 5:2

interface Campaign (extent Campaign): persistent {

attribute String carnpaign_narne;
relationship Set<Scene> mag_ads;
relationship Document report;

interface Document (extent Document): persistent {
attribute String campaign;
attribute Date date;
attribute String text;
fuzzybool matches(in String search_expr);
void QBdisplay(l;

interface Scene(extent Scene): persistent (
void QBdisplay();
fuzzybool match_image{in Scene image_arg);

Figure 5. Global Garlic Schema

select C.campaign_name, C.report, C.mag_ads
from Campaign C, C.mag_ads A
where (C.report.date > "1989") and

A.match_image(SKETCH) > .5

This query finds the campaigns and the associated report and magazine ads for those cam

paigns that ran since 1989 and which had a magazine ad that resembled a particular image (for ex-

2. We are still working out the exact details of our SQL extensions. This example is provided to give the reader a

feeling for what we intend, and should not be taken too literally!

30 Part One Querying by Content

ample, a user-drawn sketch). This would be useful for those situations in which the ad executive

remembers roughly what a particular ad looked like and when it was run, but not the details of the

campaign. The query illustrates several of Garlic's object-oriented SQL extensions. First, it con

tains a number of path expressions. Second, it contains an invocation of the match _image() method

of the Scene object. This method passes QBIC a literal representing the sketch in an appropriate

fonn for QBIC (this may have been produced visually by a sketch picker), and returns a number

indicating the "goodness" of the match. Finally, C.mag_ads in the select clause illustrates there

trieval of an unflattened set.

To answer this query, Garlic first translates it into an internal representation which reflects the

query's semantics. Each operation is then re-written in tenns of the underlying wrapper schemas,

using the Garlic metadata. Next, Garlic decomposes the query into a plan containing a number of

smaller queries, each of which can be answered by a single repository. The plan also specifies how

the results of each subquery should be combined to fonn the final answer. For example, one pos

sible plan for our query would be to ask the text wrapper for the Garlic 0/Ds of reports written after

1989, then ask the complex object repository for the 0/Ds of the magazine ads associated with

these reports, then probe QBIC with the list of ad 0/Ds to see if those ads match the sketch suffi

ciently closely, and finally, get the report title (campaign name) associated with the document OlD

of the surviving campaigns. Other plans are certainly possible, and it would be up to the optimizer

to choose among them based on its estimates of cost.

In Garlic's distributed environment the issue of optimization is very important. The amount of

work that each server does in order to handle its part of the overall query can vary greatly, from

efficient range searches on a primary key in a relational database, to the costly computation of fea

ture vectors followed by the computation of an expensive distance measure against an entire col

lection of images in QBIC. Ideally, Garlic would sequence the data system accesses in order to

exploit parallelism and the special functions that a server provides (e.g., relevance sorted answer

sets) while minimizing potentially wasted time and expense at the servers and in the Garlic system

itself. Optimization will require the specification and use of several new pieces of infonnation. We

need computational models of feature calculations and distance measures in order to distinquish

between the costs of different feature predicates applied within QBIC. Selectivity factors that can

aid in predicting the amount of data returned by a similarity query are also needed. Finally, models

must be created that can reflect the existence of special purpose indexing structures, e.g., multi

dimensional indexes for feature vectors, in their estimates of a similarity query's cost. These will

all be captured in the descriptive part of a repository wrapper for use by Garlic's Query Services.

In addition, Garlic will maintain infonnation on processor speeds, I/0 rates and communication

costs for its installed servers and networks, in the tradition of relational optimizers.

It is the responsibility of each repository wrapper to convert its individual subplan into a fonn

the underlying repository can understand-- either one or more queries in that repository's query

language, or a sequence of calls to its native search API. The wrappers will execute their subplans

in a demand-driven fashion under the control of the Garlic runtime system, returning a stream of

values to Garlic for any final processing.

Querying multimedia data from multiple repositories by content 31

This final processing may involve joins, projections or restrictions, as in any middleware data

base system. However, Garlic has an additional challenge: to reconcile the different query seman

tics of its various repositories. While in database management systems data items are returned if

and only if predicates are true, QBIC and other repositories managing multimedia data return data

items in order of"closeness" to a given predicate. We are currently developing a set of SQL exten

sions and query processing algorithms to support queries that involve both exact and approximate

search criteria. This work involves introducing into SQL the notion of graded sets, in which each

object is assigned a number between 0 and l for each atomic predicate; this number represents the

degree to which the object fulfills the predicate, with l representing a perfect match. Boolean com

binations of predicates can then be handled using the rules for combining predicates in fuzzy logic

(Zimmermann, 1990). To enable query writers to specify the desired semantics, GQL permits the

specification of the number of matching results to be returned and whether or not rank-ordering

(rather than an attribute-based sort order, or an arbitrary order) is desired for the query's result set.

We are also devising new query processing algorithms that will produce the best N results effi

ciently, without materializing every intermediate result item that matches to any degree at all.

4.4 Visual Query/Browse in Garlic

The purpose of the Garlic Query/Browser component is to provide end users of the system with an

easy and highly visual way to access and manipulate the data in a Garlic database, as the typical

end user will not normally want to write GQL queries. As its name implies, the Query/Browser will

provide support for two basic data access functions, namely querying and browsing. However, un

like existing interfaces to databases, the Query/Browser will allow users to move back and forth

seamlessly between querying and browsing activities, using queries to identify interesting subsets

of the database, browsing the subset, querying the contents of a set-valued attribute of a particularly

interesting object in the subset, and so on.

The Query/Browser will support exploration of a Garlic database by allowing users to browse

through the contents of Garlic collections (via next/previous buttons or scrolling) and to traverse

relationships by clicking on (selecting) objects' reference attributes. When multiple related objects

are being simultaneously displayed, synchronous browsing will be implied (a Ia (Motro, et.al.,

1988), (Agrawal, et.al., 1990)). To illustrate these points, we'll walk through a short scenario using

screens generated by our current prototype system. Consider what an advertising executive might

do to find the campaign she wants without writing any GQL. She might start by just browsing

through campaigns. Plates 5a and 5b show the screen after she has chosen to browse the

Ad_Campaign collection, resulting in the display of the first campaign object called the "Warp

NTheNuns" campaign. Selecting ad will show images of the ads (5c), using Scene's QBdisplay

method. Clicking next on the Ad_CampaignsO.ad window would browse through the ads for this

campaign. Next in the Ad_ CampaignsO window will move to the next campaign (5d), and the ads

related to that campaign.

The Query/Browser will support querying via a "query-by-graphical-example" paradigm, ex-

32 Part One Querying by Content

tending the well-known query-by-example paradigm (Zioof, 1977) for use in formulating queries

over an object database. Suppose our account exec, tired of browsing, decides to specify a query

similar to that discussed above (section 4.3) but simplified to conserve space and exposition. She

wants to find campaign information for those campaigns of products selling above a certain price

and having an ad photo that is mostly white. She clicks on the query button("'?'' see Plate 5b) of

the Ad_CampaignsO window, and then clicks on the fields she wishes to restrict (Plate 6a). In

Plate 6b, she has specified a predicate on the price of the product (price > $18,000) and in Plate 6c

she will click on the adimage field to initiate the QBIC query formation tools. This enables access

to QBIC picker windows just like those shown in Plates 1-4, which she will use to specify a query

for an image that is mostly white. When she's done specifying predicates, she selects the GO! but

ton (Plate 6a) to cause the query to execute. The first set of results presenting product data and il

lustrated ad information is shown in Plates 6d and 6e. She can then browse the results with the

query's constraints remaining active until explicitly cleared.

In addition to smoothly combining querying and browsing, the Garlic Query/Browser will also

provide other useful features for exploring and manipulating the contents of a heterogeneous mul

timedia data collection. First, the objects on the display at any given time will be active objects -

the Query/Browser will remember their Garlic identities and will provide a graphical means of ob

taining a list of their available methods and requesting that one of the methods be applied to the

object of interest (prompting for method arguments if needed). Second, clicking on "query" fol

lowed by a multimedia (e.g., image, audio, video, or text) attribute of a displayed object will result

in the display of a type-specific picker (or set of pickers) to support the construction of a media

specific predicate on that attribute ofthe object, as discussed in Section 4.2.1. The Query/Browser

will contain a number of such pickers to support the graphical specification of content-based mul

timedia predicates. In time, the Query/Browser will become still more sophisticated, supporting the

graphical definition of end-user views. Ultimately, we believe that good support for customizing

the browser's behavior with respect to a given Garlic database and Garlic user may lead to a new

paradigm for visual application development, at least for applications of a "browsy" (i.e., naviga

tional) nature.

5 CONCLUSIONS AND FUTURE WORK

We have presented an overview of the Garlic project at the ffiM Almaden Research Center, the

goal of which is to build a heterogeneous multimedia information system (MMIS) capable of inte

grating data from a variety of traditional and non-traditional data repositories, and allowing query

by content of any type of data. We described the overall architecture for the system, which is based

on repositories, repository wrappers, and the use of an object-oriented data model and query lan

guage to provide a uniform view of the disparate data types and data sources that can contribute

data to a Garlic database. As we explained, a significant focus of the project is support for reposi

tories that provide media-specific query capabilities. We described QBIC, a system that provides

query by image content, and showed how QBIC could be integrated into Garlic so that queries

might range over data in this and other repositories simultaneously. We also described exploratory

Querying multimedia data from multiple repositories by content 33

access to Garlic by end users via the Garlic Query/Browser.

The Garlic project was initiated in early 1994. Early in 1995 a first "prototype" system reached

a stage of development to enable a first round of internal demos. This system was used to generate

the screen shots in section 4. and is being used to solicit feedback from various local groups. The

repositories included in this system are: a.) DB2 Client/Server on RS/6000 machines; b.) The Ob

jectStore object-oriented database from Object Design Incorporated; and c.) a QBIC repository.

We are currently using this system to explore the nature of wrappers, to experiment with algo

rithms and design approaches for query translation and processing, and to test the efficacy of the

query/browser as an end-user window into a collection of multimedia data.

In the longer term, we expect the Garlic project to lead us into new research in many dimen

sions, including object-oriented and middleware query processing technologies, extensibility for

highly heterogeneous, data-intensive environments, database user interfaces and application devel

opment approaches, and integration of exact- and approximate-matching semantics for multimedia

query languages. There are also many interesting, type-specific issues, such as what predicates

should be supported on image and video data, how to index multimedia information, how to sup

port similarity-based search and relevance feedback, and what the appropriate user interfaces are

for querying particular media types. We believe that significant challenges exist in each of these

areas, and that solutions must be found to meet the emerging demand for large-scale multimedia

data management.

6 ACKNOWLEDGMENTS

We would like to thank Rakesh Agrawal for his input in the start-up phase of the Garlic project; he

contributed significantly to our vision for both the project as a whole and the query/browser in par

ticular. John McPherson and Ashok Chandra have been particularly supportive of our efforts

throughout; we thank them for their encouragement and many suggestions. Many others contrib

uted to the definition of the Garlic project, including: Kurt Shoens, K.C. Lee, Jerry Kiernan, Peter

Yanker, Harpreet Sawhney, David Steele, Byron Dom and Markus Tresch.

7 REFERENCES

R. Agrawal, N. Gehani, And J. Srinivasan, "OdeView: The Graphical Interface to Ode", Proc.

ACM SIGMOD Conference, Atlantic City, NJ, May 1990.

F. Bancilhon, S. Cluet, and C. Delobel, "A Query Language for the 02 Object-Oriented Database

System", Proc. DBPL Conference, Salishan Lodge, Oregon, June 1989

R. Cattell, ed., "The Object Database Standard: ODMG-93 (Release 1.1)", Morgan Kaufmann

Publishers, San Francisco, CA, 1994.

M. Carey, P. Schwarz, L. Haas, et al., ''Towards Heterogeneous Multimedia Information Systems:

The Garlic Approach," RIDE-DOM '95, Taiwan 3/95. (5th Int'l Workshop on Research Issues

in Data Engineering: Distributed Object Management.)

34 Part One Querying by Content

T. Conners, W. Hasan, C. Kolovson, M. Neimat, D. Schneider, and K. Wilkinson, "The Papyrus

Integrated Data Server", Proc. 1st PDIS Conference, Miami Beach, FL, December 1991

S. Dar, N. Gehani, and H. Jagadish, "CQL++: A SQL for a C++ Based Object-Oriented DBMS",

Proc. EDBT Conference, Vienna, Austria, 1992.

A. Elmagarmid and C. Pu, eds., Special Issue on Heterogeneous Databases, ACM Comp. Surveys

22(3), September 1990.

ESRI Inc, Understanding GIS-- The ARC/INFO Method, (1990)

D. Fang, S. Ghandeharizadeh, D. McLeod, and A. Si, "The Design, Implementation, and Evalua

tion of an Object-Based Sharing Mechanism for Federated Database Systems", Proc. IEEE

Conf. on Data Eng., Vienna, Austria, Apri11993 ..

W.Grosky and R. Mehrotra, "Index-Based Object Recognition in Pictorial Data Management,"

Computer Vision, Graphics and Image Processing, 52,416-436 (1990)

K. Hirata and T. Kato, "Query by Visual Example", Advances in Database Technology EDBT '92,

Third International Conference on Extending Database Technology, Springer-Verlag, Vienna,

Austria, March 1992

D. Hsiao, "Federated Databases and Systems: Part I-- A Tutorial on Their Data Sharing", VLDB

Joumal1(1), July 1992.

T. Kato, T. Kurita, N. Otsu and K. Hirata, "A Sketch Retrieval Method for Full Color Image Da

tabase", International Conference on Pattern Recognition (ICPR), IAPR, The Hague, The

Netherlands, pp. 530--533, September 1992

W. Kim, "A Model of Queries for Object-Oriented Databases", Proc. VLDB Conference, Amster

dam, the Netherlands, August 1989.

K. Kulkarni, "Object-Oriented Extensions in SQL3: A Status Report", Proc. ACM SIGMOD Conf,

Minneapolis, MN, May 1994.

T.J. Lehman and B.Lindsay ,'The Starburst Long Field Manager,'' VLDB Conference Proceedings,

Amsterdam, Aug., 1989 pp. 375-383.

M. Miyahara andY. Yoshida, "Math. Transform of (R,G,B) Color Data to Munsell (H,V,C) Color

Data", Vis. Comm. and Image Proc., SPIE, Vol. 100 I, pp. 650-657, 1988.

A. Motro, A. D' Atri, and L. Tarantino, "The Design of KIVIEW: An Object-Oriented Browser",

Proc. 2nd Int'l. Expert Database Systems Conference, Tysons Comer, VA, Apri11988.

W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, and P. Yanker: "The

QBIC Project: Querying Images by Content Using Color, Texture and Shape", Proc. SPIE, San

Jose, CA, February 1993.

A. Pentland, R. Pickard, and S. Scarloff, MIT Media Lab: "Photobook: Tools for Content Based

Manipulation of Image Databases", Proc. SPIE, San Jose, CA, 1994

R. Rosenberg and T. Landers, "An Overview of MULTIBASE", in Distributed Databases, H.

Schneider, ed., North-Holland Publishers, New York, NY, 1982.

G. Salton, "Automatic Text Processing: The Transformation, Analysis, and Retrieval of Informa

tion by Computer", Addison-Wesley Publishers, 1989

M. Shan, "Pegasus Architecture and Design Principles", Proc. 1993 ACM SIGMOD Conference,

Washington, DC, May 1993

Querying multimedia data from multiple repositories by content 35

M. J. Swain and D. H. Ballard", "Color Indexing", International Journal ofCornputer Vision, 7:1,

pp. 11-32, 1991.

H. Tamura, S. Mori and T. Yamawaki, "Texture Features Corresponding to Visual Perception",

IEEE Transactions on Systems, Man, and Cybernetics, SMC-8:6, pp. 460-473, 1978.

TYDAC Technologies, "SPANS: SPatial ANalysis System", (1990)

M. Ubell, "The Montage Extensible Datablade Architecture", Proc. ACM SIGMOD Conference,

Minneapolis, MN, May 1994.

H. J. Zimmermann, Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, Boston,

MA,1990

M. Zloof, "Query-By-Example: A Data Base Language", IBM Systems Journal16(4), 1977.

