
Querying RDF Streams with C-SPARQL ∗

Davide Francesco Barbieri Daniele Braga Stefano Ceri
Emanuele Della Valle Michael Grossniklaus

Politecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza L. da Vinci 32, 20133 Milano, Italy
firstname.lastname@elet.polimi.it

ABSTRACT

Continuous SPARQL (C-SPARQL) is a new language
for continuous queries over streams of RDF data. C-
SPARQL queries consider windows, i.e., the most re-
cent triples of such streams, observed while data is con-
tinuously flowing. Supporting streams in RDF format
guarantees interoperability and opens up important ap-
plications, in which reasoners can deal with knowledge
evolving over time. Examples of such application do-
mains include real-time reasoning over sensors, urban
computing, and social semantic data. In this paper, we
present the C-SPARQL language extensions in terms of
both syntax and examples. Finally, we discuss exist-
ing applications that already use C-SPARQL and give
an outlook on future research opportunities.

1. INTRODUCTION

Stream-based data sources such as sensors, feeds,
click streams, and stock quotations have become in-
creasingly important in many application domains.
Streaming data are received continuously and in
real-time, either implicitly ordered by arrival time,
or explicitly associated with timestamps. As it is
typically impossible to store a stream in its entirety,
Data Stream Management Systems (DSMS) [14],
e.g., [19, 12, 4, 1, 3], allow continuously running
queries to be registered, that return new results as
new data flow within the streams [15]. At the same
time, reasoning upon very large RDF data collec-
tions is advancing fast, and SPARQL [23] has gained
the role of standard query language for RDF data.
Also, SPARQL engines are now capable of query-
ing integrated repositories and collecting data from
multiple sources. Still, the large knowledge bases
now accessible via SPARQL (such as Linked Life
Data1) are static, and knowledge evolution is not
adequately supported.
∗
This work is supported by the European project LarKC

(FP7-215535). Michael Grossniklaus’s contribution was car-

ried out under the SNF grant number PBEZ2-121230.
1http://www.linkedlifedata.com/

The combination of static RDF data with stream-
ing information leads to stream reasoning [13], an
important step to enable logical reasoning in real
time on huge and noisy data streams in order to
support the decision process of large numbers of
concurrent users. So far, this step has received lit-
tle attention by the Semantic Web community. C-
SPARQL, that we introduced in [7], is an extension
of SPARQL designed to express continuous queries,
i.e., queries registered over both RDF repositories
and RDF streams. C-SPARQL queries can be con-
sidered as inputs to specialized reasoners that use
their knowledge about a domain to make real-time
decisions. In such applications, reasoners operate
upon knowledge snapshots, which are continuously
refreshed by registered queries. It is important to
note that, in this view, reasoners can be unaware
of time changes and of the existence of streams.
We have also explored the use of reasoners aware of
the time-dependent nature of data in [6], where we
propose an algorithm for the incremental mainte-
nance of snapshots. Reasoning over streaming facts
is also addressed by the authors of [29], who focus
on the scalability of reasoning techniques. Another
research related to ours is that by Law et al. [17],
who put particular emphasis on the problem of min-
ing data streams [18].

In this paper, we present a summary of the de-
scription of C-SPARQL published in [7] and ap-
ply the language to new use cases. We focus on
how C-SPARQL extends SPARQL with function-
ality required to manage streams, in a way that
is comparable to the approach taken by CQL [2].
Note that this paper neither discusses the evalua-
tion and optimization of C-SPARQL queries, nor
other entailment regimes beyond basic RDF entail-
ment. Details on how we addressed these topics in
the context of C-SPARQL can be found in [6, 7].

Bolles et al. [10] presented a first attempt to ex-
tend SPARQL to support streams, that can be con-
sidered an antecedent of our work. It introduced

20 SIGMOD Record, March 2010 (Vol. 39, No. 1)

a syntax for the specification of logical and physi-
cal windows in SPARQL queries by means of local
grammar extensions. However, their approach is
different from ours at least in two key aspects. First,
they simply introduce RDF streams as a new data
type, and omit essential ingredients, such as aggre-
gates and timestamp functions. Second, the au-
thors do not follow the established approach where
windows are used to transform streaming data into
non-streaming data in order to apply standard al-
gebraic operations. Instead, they chose to change
the standard SPARQL operators by making them
timestamp-aware and, thereby, actually introduce a
new language semantics.

In stream processing, aggregation is an impor-
tant functionality. When we started working on C-
SPARQL, we based it on SPARQL 1.0 which does
not contain any support for aggregates. In previous
publications, we therefore also introduced our own
syntax and semantics for aggregates in C-SPARQL
that does not shrink results in the presence of group-
ing [7]. In the meantime, it is foreseeable that the
upcoming SPARQL 1.1 specification will include ag-
gregation functionality similar to the one known
from SQL. For this paper and future work on C-
SPARQL, we have chosen to align our notion of
aggregates with the one proposed by the W3C and
present all examples accordingly.

Furthermore, several SPARQL implementations
support some form of proprietary aggregation func-
tions and group definitions. OpenLink Virtuoso2

supports COUNT, COUNT DISTINCT, MAX, MIN and AVG, with
implicit grouping criteria. ARQ3 supports COUNT

and COUNT DISTINCT over groups defined through an
SQL-like GROUP BY clause. ARC4 also supports the
keyword AS to bind variables to aggregated results.
In [25], the authors study how grouping and aggre-
gation can be defined in the context of queries over
RDF graphs, taking into consideration the peculiar-
ities of the data model, and providing an extension
of SPARQL based on operational semantics.

This paper is organized as follows. Section 2
presents the distinguishing language extensions of
C-SPARQL referring to a simple scenario of social
data analysis. After introducing the RDF stream
data type, we discuss the extensions for windows,
stream registration, and query registration. Other
application scenarios, beyond social data analysis,
are presented in Section 3. Finally, an outlook on
using C-SPARQL for enabling stream reasoning is
presented in Section 4.

2http://virtuoso.openlinksw.com/
3http://jena.sourceforge.net/ARQ/
4http://arc.semsol.org/

2. C-SPARQL

In the following, we present a summary of C-
SPARQL by progressively introducing its new fea-
tures relative to SPARQL. We interleave the pre-
sentation of the new syntax, extended by adding
new productions to the standard grammar of SPA-
RQL [23], and the discussion of some examples. As
a demonstration scenario, we have chosen queries
that are relevant to a (highly simplified) case of so-
cial data analysis.

2.1 RDF Stream Data Type

C-SPARQL adds RDF streams to the SPARQL
data types, in the form of an extension done much
in the same way in which the stream type has been
introduced to extend relations in relational data
stream management systems. RDF streams are de-
fined as ordered sequences of pairs, each pair being
made of an RDF triple and a timestamp τ :

. . .
(〈subji, predi, obji〉 , τi)

(〈subji+1, predi+1, obji+1〉 , τi+1)
. . .

Timestamps can be considered as annotations of
RDF triples, and are monotonically non-decreasing
in the stream (τi ≤ τi+1). More precisely, times-
tamps are not strictly increasing because they are
not required to be unique. Any (unbounded, though
finite) number of consecutive triples can have the
same timestamp, meaning that they “occur” at the
same time, although sequenced in the stream ac-
cording to a positional order.

Example. The classes and properties that we
consider in the social data analysis scenario are de-
scribed in the schema of Figure 1. All class in-
stances are identified by URLs.

Users also have names, and, by virtue of two
properties, they know and follow other users. Using
well-known Semantic Web vocabularies, the user
name and the foaf:knows property can be described
using the Friend of a Friend vocabulary (FOAF) [9].
For the sioc:follows property, we can use Semanti-
cally-Interlinked Online Communities (SIOC) [8].

Topics represent entities of the real world (such as
movies or books, to give examples that are relevant
for our scenario), with a name and a category.

Documents represent information sources on ac-
tual topics. Examples of documents are Web pages
that describe topics like a particular book or movie.
As vocabularies, we can use rdfs:label [11] for the
names of documents and topics. Finally, the at-
tribute skos:subject from the Simple Knowledge Or-
ganization System (SKOS) [22] connects a topic to
its category, identified using YAGO [27].

SIGMOD Record, March 2010 (Vol. 39, No. 1) 21

-URL
+rdfs:label
+skos:subject
+owl:sameAs

Topic

-URL
+rdfs:label

Document

-links

1*

+describes1 1

-URL
+foaf:name

User

+sioc:follows0..1

0..*

+foaf:knows

0..1

0..*+accesses 1

1

+likes

1

1

+dislikes1

1

Figure 1: Example data schema

All the knowledge described so far is static (or,
more precisely, slowly changing), meaning that the
applications we are willing to consider can assume
this information as invariant in a period compara-
ble with the size of a window. Of course, updates
of this information are also allowed, e.g., to state
that a new friendship holds after the addition of an
instance of the foaf:knows property.

The running example also uses streaming know-
ledge, and namely streams of notifications that cap-
ture the behavior of users with respect to documents
(and therefore, transitively, to topics). The ac-
cesses, likes, and dislikes properties represent events
that occur at the time in which users access a doc-
ument or express their opinion about it.5 Quite
straightforwardly, any interaction of a user with a
document generates in the stream a triple of the
form 〈U, sd:accesses, D〉, where U and D respec-
tively represent a generic user and a generic docu-
ment. Also, selected interactions of users with doc-
uments generate triples of the form 〈U, sd:likes, D〉
and 〈U, sd:dislikes, D〉. It is worth noting that in the
stream the predicates can only assume one of the
three values exemplified above, while the subjects
and objects may freely vary in the space of users and
documents. This is coherent with RDF repositories
whose predicates are taken from a small vocabulary
constituting a sort of schema. However, the inter-
pretation of C-SPARQL makes no specific assump-
tions nor requires restrictions on variable bindings
relative to any part of the streaming triples. An ex-
ample of possible triples in a stream of interactions
and opinions is given below.

triple Timestamp
c:Usr1 sd:accesses c:movie1 t400
c:Usr2 sd:accesses c:movie1 t401
c:Usr1 sd:likes c:movie2 t402
... ...

5In the rest of this paper, we refer to this vocabulary
with the prefix sd (for “social data”).

2.2 Windows

The introduction of data streams in C-SPARQL
requires the ability to identify such data sources and
to specify selection criteria over them.
For identification, we assume that each data stream
is associated with a distinct IRI, that is a locator of
the actual data source of the stream. More specif-
ically, the IRI represents an IP address and a port
for accessing streaming data.
For selection, given that streams are intrinsically in-
finite, we introduce a notion of windows on streams,
whose types and characteristics are inspired by the
ones defined for relational streaming data.

Identification and selection are expressed in C-
SPARQL by means of the FROM STREAM clause. The
syntax is as follows:

FromStrClause → ‘FROM’ [‘NAMED’] ‘STREAM’ StreamIRI

‘[RANGE’ Window ‘]’
Window → LogicalWindow | PhysicalWindow

LogicalWindow → Number TimeUnit WindowOverlap

TimeUnit → ‘ms’ | ‘s’ | ‘m’ | ‘h’ | ‘d’
WindowOverlap → ‘STEP’ Number TimeUnit | ‘TUMBLING’
PhysicalWindow → ‘TRIPLES’ Number

A window extracts the last data elements from
the stream, which are the only part of the stream
to be considered by one execution of the query.
The extraction can be physical (a given number
of triples) or logical (all triples occurring within a
given time interval, whose number is variable over
time).

Logical windows are sliding [16] if they are pro-
gressively advanced by a given STEP (i.e., a time in-
terval that is shorter than the window’s time inter-
val). They are non-overlapping (or TUMBLING) if they
are advanced in each iteration by a time interval
equal to their length. With tumbling windows ev-
ery triple of the stream is included exactly into one
window, whereas with sliding windows some triples
can be included into several windows.

The optional NAMED keyword works exactly like
when applied to the standard SPARQL FROM clause
for tracking the provenance of triples. It binds the
IRI of a stream to a variable which is later accessible
through the GRAPH clause.

Example. As a very simple first example, con-
sider the query that extracts all books (i.e., all top-
ics whose category is “book”) seen by the friends
of John in the last 15 minutes. The query consid-
ers the last 15 minutes, and the sliding window is
modified every minute, so that the query result is
renewed every minute.

22 SIGMOD Record, March 2010 (Vol. 39, No. 1)

SELECT DISTINCT ?topic
FROM STREAM <http://streamingsocialdata.org/

interact.trdf> [RANGE 15m STEP 1m]
WHERE { ?user sd:accesses ?document .

?user foaf:knows ?john .
?john foaf:name "John" .
?document t:describes ?topic .
?topic skos:subject yago:Movies . }

The query joins static and streaming knowledge,
and is executed as follows. First, all triples with
sd:accesses as a predicate are extracted from the
current window over the stream, to match the first
triple pattern in the WHERE clause. Then the other
triple patterns are matched against the static knowl-
edge base, applying the “join” conditions expressed
by the bindings of variables ?user and ?document to
identify the observed ?topics. The window consid-
ers all the stream triples in the last 15 minutes, and
is advanced every minute. This means that at ev-
ery new minute new triples enter into the window
and old triples exit from the window. Note that
the query result does not change during the slide
interval, and is only updated at every slide change.
Triples arriving in the stream between these points
in time are queued until the next slide change and
do not contribute to the result until then.

2.3 Stream Registration

The result of a C-SPARQL query can be a set
of bindings, but also a new RDF stream. In order
to generate a stream, the query must be registered
through the following statement:

Registration → ‘REGISTER STREAM’ QueryName

[‘COMPUTED EVERY’ Number TimeUnit] ‘AS’ Query

Only queries in the CONSTRUCT and DESCRIBE form6

can be registered as generators of RDF streams, as
they produce RDF triples, associated with a times-
tamp as an effect of the query execution.

The optional COMPUTED EVERY clause indicates the
frequency at which the query should be computed.
If no frequency is specified, the query is computed
at a frequency that is automatically determined by
the system.7

6There are four query forms in SPARQL, different in the first

clause: SELECT returns variables bound in a query pattern

match. CONSTRUCT returns an RDF graph constructed by

substituting variables in a set of triple templates. ASK returns

a boolean indicating whether a query pattern matches or not.
DESCRIBE returns an RDF graph that describes the resources

found. Please refer to [23] for further explanations.
7Several data stream management systems are capable of self

tuning the execution frequency of registered queries. This

not only applies to queries with unspecified registration fre-

quencies, but also whenever, due to peaks of workload, the
execution frequency of all queries is reduced, so as to grace-

fully degrade the overall performances.

Example. The following example shows the con-
struction of a new RDF data stream by means of
the registration of a CONSTRUCT query. We consider
the previous example again, and modify it so as to
generate a stream by selecting all interactions that
are of the “likes” type, that are performed by a
friend of John, and that concern movies.

REGISTER STREAM MoviesJohnsFriendsLike
COMPUTED EVERY 5m AS

CONSTRUCT {?user sd:likes ?document}
FROM STREAM <http://streamingsocialdata.org/

interact.trdf> [RANGE 30m STEP 5m]
WHERE { ?user sd:likes ?document .

?user foaf:knows ?john .
?john foat:name "John" .
?document sd:describes ?topic .
?topic skos:subject yago:Movies . }

This query uses the same logical conditions as the
previous one on static data, but only matches the
sd:likes predicate. The output is constructed in the
format of a stream of RDF triples. Every query exe-
cution may produce from a minimum of zero triples
to a maximum of an entire graph. The timestamp
is always dependent on the query execution time
only, and is not taken from the triples that match
the patters in the WHERE clause. Thus, even though
in the example the output stream is a restriction of
the input stream, a new timestamp is assigned to
every triple. Also note that, if the window contains
more than one matching triple with a sd:likes pred-
icate, then also the result contains more than one
triple, that are returned as a graph. In this case
the same timestamp is assigned to all the triples
of the graph. In all cases, however, timestamps
are system-generated in monotonic non-decreasing
order. Results of two evaluations of the previous
query are presented in the table below, generating
two graphs (one at τ = 100 and one at τ = 101).

triple Timestamp
c:Usr1 sd:likes c:Movie1 t100
c:Usr2 sd:likes c:Movie2 t100
c:Usr1 sd:likes c:Movie2 t101
c:Usr2 sd:likes c:Movie1 t101
c:Usr3 sd:likes c:Movie3 t101

2.4 Query Registration

All queries over RDF data streams are denoted as
continuous queries, because they continuously pro-
duce output in the form of tables of variable bind-
ings or RDF graphs. In the section above we ad-
dressed the registration of RDF streams. Here, we
address the registration of queries that do not pro-
duce a stream, but a result that is periodically up-
dated. C-SPARQL queries are registered through
the following statement:

SIGMOD Record, March 2010 (Vol. 39, No. 1) 23

Registration → ‘REGISTER QUERY’ QueryName

[‘COMPUTED EVERY’ Number TimeUnit] ‘AS’ Query

The COMPUTED EVERY clause is the same as the one
for stream registration.

Example. As a very simple example of a regis-
tered query that does not generate a stream, con-
sider the following query. For each known user, the
query counts the overall number of interactions per-
formed in the last 30 minutes and the number of
distinct topics to which the documents refer.

REGISTER QUERY GlobalCountOfInteractions
COMPUTED EVERY 5m AS

SELECT ?user
COUNT(?document) as ?numberOfInteractions
COUNT(DISTINCT ?topic) as ?numDifferentTopics

FROM STREAM <http://streamingsocialdata.org/
interact.trdf> [RANGE 30m STEP 5m]

WHERE { ?user sd:accesses ?document .
?document sd:describes ?topic . }

GROUP BY { ?user }

The query is executed by matching all interac-
tions in the window, grouping them by ?user, and
computing the aggregates. The result has the form
of a table of bindings that is updated every 5 min-
utes.

All the examples considered so far have shown a
join of static and streaming knowledge. As an ex-
ample of query composability, we now show a query
that takes as input the registered stream generated
by the query shown in Section 2.3.

REGISTER QUERY GlobalCountOfInteractions
COMPUTED EVERY 5m AS

SELECT ?user COUNT(?document) as ?numberOfMovies
FROM STREAM <http://streamingsocialdata.org/

MoviesJohnsFriendsLike.trdf> [RANGE 30m STEP 5m]
WHERE { ?user sd:likes ?document }
GROUP BY { ?user }

The query counts, among the friends of John, the
number of movies that each friend has liked in the
last 30 minutes.

2.5 Multiple Streams

C-SPARQL queries can combine triples from mul-
tiple RDF streams, as shown in the following exam-
ple.

Example. In addition to the stream of inter-
actions, we now consider the presence of a second
stream of data concerning the entrance of registered
users into theaters to watch movies. The next query
takes as input the stream of preferences of John’s
friends and the stream about people entering cin-
emas, and identifies friends who like a 3D movies,
but only considering users who actually watched at
least two 3D movies in the last week (so as to focus
on the advice of “experts”).

REGISTER QUERY JohnsFriendsToRecommend3DMovies AS
SELECT ?user

FROM STREAM <http://streamingsocialdata.org/
MoviesJohnsFriendsLike.trdf> [RANGE 1h]

FROM STREAM <http://comingsoon.com/
WatchedMovies.trdf> [RANGE 7d]

WHERE { ?user sd:likes ?document .
?document sd:describes ?topic .
?topic skos:subject yago:3DMovies .
{ SELECT ?user
WHERE { ?user sd:accesses ?document1 .

?document1 sd:describes ?topic1 .
?topic1 skos:subject yago:3DMovies . }

GROUP BY ?user
HAVING COUNT(DISTINCT ?topic1) >= 2 } }

The query is executed as follows. Variable ?user

is matched in the WHERE clause of the outer query
among the friends of John. Also, the topic is checked
to be a 3D movie (the stream is selected checking
that the topics are classified as generic movies). The
user is also checked to have the property of hav-
ing seen at least two other 3D movies in the nested
query. Note the use of the same ?user variable in the
nested query so as to pass the binding and check the
“aggregate” property.

2.6 Timestamp Function

The timestamp of a stream element can be re-
trieved and bound to a variable using a timestamp
function. The timestamp function has two argu-
ments.

• The first is the name of a variable, introduced
in the WHERE clause and bound to an RDF triple
of that stream by pattern matching.

• The second (optional) is the URI of a stream,
that can be obtained through SPARQL GRAPH

clause.

The function returns the timestamp of the RDF
stream element producing the binding. If the vari-
able is not bound, the function is undefined, and
any comparison involving its evaluation has a non-
determined behavior. If the variable gets bound
multiple times, the function returns the most re-
cent timestamp value relative to the query evalua-
tion time.

Example. In order to exemplify the use of times-
tamps within queries, we show a query that tries to
discover causal relationships between different ac-
tions. More precisely, the query identifies users who
are likely to influence the behavior of other users,
by matching interactions of the same kind that oc-
cur on the same document after the first user has
performed them. The query in C-SPARQL is the
following:

REGISTER STREAM OpinionMakers
COMPUTED EVERY 5m AS

SELECT ?opinionMaker
FROM STREAM <http://streamingsocialdata.org/

interact.trdf> [RANGE 30m STEP 5m]

24 SIGMOD Record, March 2010 (Vol. 39, No. 1)

WHERE { ?opinionMaker foaf:knows ?friend .
?friend ?opinion ?document.
?opinionMaker ?opinion ?document .
FILTER (timestamp(?friend) >

timestamp(?opinionMaker)
&& ?opinion != sd:accesses) }

GROUP BY (?opinionMaker)
HAVING (COUNT(DISTINCT ?friend) > 3)

Note that the timestamps are taken from vari-
ables that occur only once in patterns applied to
streaming triples, thus avoiding ambiguity. Also,
the query filters out actions of type “accesses”, that
are normally required before expressing an opinion
such as “like” or “dislike”.

3. APPLICATIONS

The scenario of social data analysis is just one ex-
ample of many possible applications of C-SPARQL.
In the last years, more and more effort has been
put in trying to address problems that require rea-
soning on streaming data, and this has been done
mainly with “classical” reasoning tools. For in-
stance, Bandini et al. [5] worked on traffic monitor-
ing and traffic pattern detection. Mendler et al. [21]
applied constructive Description Logics to financial-
transaction auditing. In the mobile telecommunica-
tion sector, Luther et al. [20] reported the need for
reasoning over streams for situation-aware mobile
services. Walavalkar et al. [29] worked on patient
monitoring systems. All these application areas are
natural settings for C-SPARQL. In the following, we
provide more details about concrete applications of
C-SPARQL in the cases of situation aware mobility
and oil production. In Section 4, we will also outline
how we are currently studying dedicated reasoning
techniques for the interplay of C-SPARQL and rea-
soners, in order to efficiently carry out reasoning
tasks over streams.

3.1 Situation-Aware Mobility

Mobility is one of the defining characteristics of
modern life. Technology can support and accom-
pany mobility in several ways, both for business and
for pleasure. Mobile phones provide a good basis
for challenging C-SPARQL use cases, as they are
popular and widespread. In order to complete the
adoption of such devices in our everyday life, mo-
bile applications must fulfill real-time requirements,
especially if we are to use them to make short-term
decisions. Leveraging data from sensors, which is
likely to be available in the form of streams, mo-
bile applications may compute interesting answers
by reasoning over streams.

The following C-SPARQL query finds the loca-
tions of commuters having less than 30 minutes of
travel time remaining. For each user, it retrieves

the train number, its position in terms of the clos-
est station, the city where the station is in, etc., by
computing the transitive closure of relation isIn.

REGISTER QUERY WhereAlmomstToDestinationCommutersAre
COMPUTED EVERY 1sec AS

SELECT DISTINCT ?user ?location
FROM <http://mobileservice.org/meansOfTransp.rdf>
FROM STREAM <http://mobileservice.org/

positions.trdf> [RANGE 10sec STEP 1sec]
WHERE { ?user ex:isIn ?location .

?user a ex:Commuter .
?user ex:remainingTravelTime ?t .
FILTER (?t >= "PT30M"ˆˆxsd:duration) }

It does so by continuously querying a stream of
RDF triples that describe the users on trains, mov-
ing from a station to another, together with a static
RDF graph, which describes where the stations are
located, e.g., a station is in a city, which is in a
region, which is in a state, etc. For further infor-
mation about this application scenario, the reader
is directed to [6].

3.2 Oil Production

Oil operation engineers base their decision pro-
cess on real time data acquired from sensors on
oil rigs, located at the sea surface and seabed. A
typical oil production platform is equipped with
about 400.000 sensors for measuring environmen-
tal and technical parameters. The problems they
face include determining the expected time to fail-
ure whenever the barring starts vibrating, given the
brand of the turbine, or detecting weather events
from observation data. For details about this appli-
cation scenario, the reader is directed to [26].

The C-SPARQL query below detects if a weather
station is observing a blizzard. A blizzard is identi-
fied when a severe storm, characterized by low tem-
peratures, strong winds, and heavy snow, lasts for
3 hours or more.

REGISTER STREAM BlizzardDetection
COMPUTED EVERY 10m AS

CONSTRUCT {?s so:generatedObservation [a w:blizzard]}
FROM <http://oilprod.org/weatherStations.rdf>
FROM STREAM <http://oilprod.org/weatherObs.trdf>

[RANGE 3h STEP 10m]
WHERE {
?s grs:point "66.348085,10.180662" ;
so:generatedObservation [a w:SnowfallObservation] .
{ SELECT ?s
WHERE { ?s so:generatedObservation ?o1

?o1 a w:TemperatureObservation ;
so:observedProperty w:AirTemperature ;
so:result [so:value ?temperature] . }

GROUP BY (?s)
HAVING (AVG(?temperature)<"0.0"ˆˆxsd:float) }

{ SELECT ?s
WHERE { ?s so:generatedObservation ?o2

?o2 a w:WindObservation ;
so:observedProperty w:WindSpeed ;
so:result [so:value ?speed] . }

GROUP BY (?s)
HAVING (MIN(?speed)> "40.0"ˆˆxsd:float) }

}

SIGMOD Record, March 2010 (Vol. 39, No. 1) 25

4. OUTLOOK

We believe that C-SPARQL and its correspond-
ing infrastructure provide an excellent starting point
for stream reasoning [13]. By providing an RDF-
based representation of heterogeneous streams, C-
SPARQL solves the challenge of giving reasoners
an access protocol for heterogeneous streams. As
RDF is the most accepted format to feed informa-
tion to reasoners, C-SPARQL allows existing rea-
soning mechanisms to be further extended in order
to support continuous reasoning over data streams
and rich background knowledge. We already made
a first step in this direction, investigating the incre-
mental maintenance of ontological entailment ma-
terializations [6]. To do so, we annotate streaming
knowledge with expiration times, which we manage
in an auxiliary data structure, devoted to handle
the limited validity of inference through time. Our
reasoner is then capable of incrementally maintain-
ing the entailments of transient knowledge, that are
themselves transient, in an efficient way. In future
work, we plan to extend this approach and to gen-
eralize it to more expressive languages.

Moreover, the extraction of patterns from data
streams is subject of ongoing research in machine
learning. For instance, results from statistical rela-
tional learning are able to derive classification rules
from example data in very effective ways. In our
future work, we intend to link relational learning
methods with C-SPARQL to facilitate pattern ex-
traction on top of RDF streams.

Finally, we envision the possibility to leverage re-
cent developments in distributed and parallel rea-
soning [28, 24] for scaling up to large data streams
and many concurrent reasoning tasks.

5. REFERENCES
[1] D. J. Abadi et al. The Design of the Borealis Stream

Processing Engine. In Proc. CIDR, 2005.
[2] A. Arasu, S. Babu, and J. Widom. The CQL

Continuous Query Language: Semantic Foundations
and Query Execution. The VLDB Journal,
15(2):121–142, 2006.

[3] Y. Bai, H. Thakkar, H. Wang, C. Luo, and C. Zaniolo.
A Data Stream Language and System Designed for
Power and Extensibility. In Proc. CIKM, 2006.

[4] H. Balakrishnan et al. Retrospective on Aurora. The
VLDB Journal, 13(4):370–383, 2004.

[5] S. Bandini, A. Mosca, and M. Palmonari.
Common-sense spatial reasoning for information
correlation in pervasive computing. Applied Artificial
Intelligence, 21(4&5):405–425, 2007.

[6] D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and
M. Grossniklaus. Incremental Reasoning on Streams
and Rich Background Knowledge. In ESWC, 2010.

[7] D. F. Barbieri, D. Braga, S. Ceri, and M. Grossniklaus.
An Execution Environment for C-SPARQL Queries. In
Proc. EDBT, 2010.

[8] U. Bojars, J. G. Breslin, A. Finn, and S. Decker. Using

the semantic web for linking and reusing data across
web 2.0 communities. Web Semantics, 6(1):21–28,
2008.

[9] U. Bojars, J. G. Breslin, V. Peristeras, G. Tummarello,
and S. Decker. Interlinking the social web with
semantics. Intelligent Systems, 23(3):29–40, 2008.

[10] A. Bolles, M. Grawunder, and J. Jacobi. Streaming
SPARQL – Extending SPARQL to Process Data
Streams. In Proc. ESWC, 2008.

[11] D. Brickley and R. Guha. RDF Vocabulary
Description Language 1.0: RDF Schema, W3C
Working Draft. Technical report, W3C, 2002.

[12] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: A Scalable Continuous Query System for
Internet Databases. In Proc. SIGMOD, 2000.

[13] E. Della Valle, S. Ceri, F. van Harmelen, and
D. Fensel. It’s a Streaming World! Reasoning upon
Rapidly Changing Information. IEEE Intelligent
Systems, 24(6):83–89, 2009.

[14] M. Garofalakis, J. Gehrke, and R. Rastogi. Data
Stream Management: Processing High-Speed Data
Streams (Data-Centric Systems and Applications).
Springer-Verlag New York, Inc., 2007.

[15] L. Golab, D. DeHaan, E. D. Demaine, A. López-Ortiz,
and J. I. Munro. Identifying Frequent Items in Sliding
Windows over On-line Packet Streams. In IMC, 2003.

[16] L. Golab and M. T. Özsu. Processing Sliding Window
Multi-Joins in Continuous Queries over Data Streams.
In Proc. VLDB, 2003.

[17] Y.-N. Law, H. Wang, and C. Zaniolo. Query
Languages and Data Models for Database Sequences
and Data Streams. In Proc. VLDB, 2004.

[18] Y.-N. Law and C. Zaniolo. An Adaptive Nearest
Neighbor Classification Algorithm for Data Streams.
In Proc. PKDD, 2005.

[19] L. Liu, C. Pu, and W. Tang. Continual Queries for
Internet Scale Event-Driven Information Delivery.
IEEE Trans. Knowl. Data Eng., 11(4):610–628, 1999.

[20] M. Luther, Y. Fukazawa, M. Wagner, and S. Kurakake.
Situational reasoning for task-oriented mobile service
recommendation. Knowledge Eng. Review, 23(1):7–19,
2008.

[21] M. Mendler and S. Scheele. Exponential Speedup in
UL Subsumption Checking relative to general TBoxes
for the Constructive Semantics. In Proc. DL, 2009.

[22] A. Miles, B. Matthews, M. Wilson, and D. Brickley.
SKOS core: Simple Knowledge Organisation for the
Web. In Proc. Intl. Conf. on Dublin Core and
metadata applications, Madrid, Spanien, 2005.

[23] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

[24] A. Schlicht and H. Stuckenschmidt. Distributed
resolution for expressive ontology networks. In Web
Reasoning and Rule Systems, 2009.

[25] D. Y. Seid and S. Mehrotra. Grouping and Aggregate
queries Over Semantic Web Databases. In Proc. Intl.
Conf. on Semantic Computing (ICSC), 2007.

[26] H. Stuckenschmidt, S. Ceri, E. Della Valle, and F. van
Harmelen. Towards expressive stream reasoning. In
Proceedings of the Dagstuhl Seminar on Semantic
Aspects of Sensor Networks, 2010.

[27] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO:
a core of semantic knowledge unifying wordnet and
wikipedia. In Proc. WWW, 2007.

[28] J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen,
and H. Bal. OWL reasoning with WebPIE: calculating
the closure of 100 billion triples. In Proc. ESWC, 2010.

[29] O. Walavalkar, A. Joshi, T. Finin, and Y. Yesha.
Streaming Knowledge Bases. In Proc. SSWS, 2008.

26 SIGMOD Record, March 2010 (Vol. 39, No. 1)

