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Abstract

Existing question answering methods infer

answers either from a knowledge base or

from raw text. While knowledge base (KB)

methods are good at answering composi-

tional questions, their performance is often

affected by the incompleteness of the KB.

Au contraire, web text contains millions

of facts that are absent in the KB, how-

ever in an unstructured form. Universal

schema can support reasoning on the union

of both structured KBs and unstructured

text by aligning them in a common embed-

ded space. In this paper we extend uni-

versal schema to natural language question

answering, employing memory networks

to attend to the large body of facts in the

combination of text and KB. Our models

can be trained in an end-to-end fashion on

question-answer pairs. Evaluation results

on SPADES fill-in-the-blank question an-

swering dataset show that exploiting uni-

versal schema for question answering is

better than using either a KB or text alone.

This model also outperforms the current

state-of-the-art by 8.5 F1 points.

1 Introduction

Question Answering (QA) has been a long-

standing goal of natural language processing. Two

main paradigms evolved in solving this problem:

1) answering questions on a knowledge base; and

2) answering questions using text.

Knowledge bases (KB) contains facts expressed

in a fixed schema, facilitating compositional rea-

soning. These attracted research ever since the

early days of computer science, e.g., BASEBALL

(Green Jr et al., 1961). This problem has matured

into learning semantic parsers from parallel ques-

tion and logical form pairs (Zelle and Mooney,

1996; Zettlemoyer and Collins, 2005), to recent

scaling of methods to work on very large KBs like

Freebase using question and answer pairs (Berant

et al., 2013). However, a major drawback of this

paradigm is that KBs are highly incomplete (Dong

et al., 2014). It is also an open question whether

KB relational structure is expressive enough to rep-

resent world knowledge (Stanovsky et al., 2014;

Gardner and Krishnamurthy, 2017)

The paradigm of exploiting text for questions

started in the early 1990s (Kupiec, 1993). With

the advent of web, access to text resources became

abundant and cheap. Initiatives like TREC QA

competitions helped popularizing this paradigm

(Voorhees et al., 1999). With the recent advances

in deep learning and availability of large public

datasets, there has been an explosion of research in

a very short time (Rajpurkar et al., 2016; Trischler

et al., 2016; Nguyen et al., 2016; Wang and Jiang,

2016; Lee et al., 2016; Xiong et al., 2016; Seo et al.,

2016; Choi et al., 2016). Still, text representation is

unstructured and does not allow the compositional

reasoning which structured KB supports.

An important but under-explored QA paradigm

is where KB and text are exploited together (Fer-

rucci et al., 2010). Such combination is attractive

because text contains millions of facts not present

in KB, and a KB’s generative capacity represents

infinite number of facts that are never seen in text.

However QA inference on this combination is chal-

lenging due to the structural non-uniformity of KB

and text. Distant supervision methods (Bunescu

and Mooney, 2007; Mintz et al., 2009; Riedel et al.,

2010; Yao et al., 2010; Zeng et al., 2015) address

this problem partially by means of aligning text pat-

terns with KB. But the rich and ambiguous nature

of language allows a fact to be expressed in many

different forms which these models fail to capture.

Universal schema (Riedel et al., 2013) avoids the

alignment problem by jointly embedding KB facts
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Figure 1: Memory network attending the facts in the universal schema (matrix on the left). The color

gradients denote the attention weight on each fact.

and text into a uniform structured representation,

allowing interleaved propagation of information.

Figure 1 shows a universal schema matrix which

has pairs of entities as rows, and Freebase and

textual relations in columns. Although universal

schema has been extensively used for relation ex-

traction, this paper shows its applicability to QA.

Consider the question USA has elected blank ,

our first african-american president with its answer

Barack Obama. While Freebase has a predicate for

representing presidents of USA, it does not have

one for ‘african-american’ presidents. Whereas in

text, we find many sentences describing the pres-

idency of Barack Obama and his ethnicity at the

same time. Exploiting both KB and text makes it

relatively easy to answer this question than relying

on only one of these sources.

Memory networks (MemNN; Weston et al. 2015)

are a class of neural models which have an external

memory component for encoding short and long

term context. In this work, we define the mem-

ory components as observed cells of the universal

schema matrix, and train an end-to-end QA model

on question-answer pairs.

The contributions of the paper are as follows

(a) We show that universal schema representation

is a better knowledge source for QA than either

KB or text alone, (b) On the SPADES dataset (Bisk

et al., 2016), containing real world fill-in-the-blank

questions, we outperform state-of-the-art semantic

parsing baseline, with 8.5 F1 points. (c) Our analy-

sis shows how individual data sources help fill the

weakness of the other, thereby improving overall

performance.

2 Background

Problem Definition Given a question q with

words w1,w2, . . . ,wn, where these words contain

one blank and at least one entity, our goal is to

fill in this blank with an answer entity qa using

a knowledge base K and text T . Few example

question answer pairs are shown in Table 2.

Universal Schema Traditionally universal

schema is used for relation extraction in the

context of knowledge base population. Rows in

the schema are formed by entity pairs (e.g. USA,

NYC), and columns represent the relation between

them. A relation can either be a KB relation, or it

could be a pattern of text that exist between these

two entities in a large corpus. The embeddings of

entities and relation types are learned by low-rank

matrix factorization techniques. Riedel et al.

(2013) treat textual patterns as static symbols,

whereas recent work by Verga et al. (2016)

replaces them with distributed representation of

sentences obtained by a RNN. Using distributed

representation allows reasoning on sentences that

are similar in meaning but different on the surface

form. We too use this variant to encode our textual

relations.

Memory Networks MemNNs are neural atten-

tion models with external and differentiable mem-

ory. MemNNs decouple the memory component

from the network thereby allowing it store external

information. Previously, these have been success-

fully applied to question answering on KB where

the memory is filled with distributed representation

of KB triples (Bordes et al., 2015), or for read-
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ing comprehension (Sukhbaatar et al., 2015; Hill

et al., 2016), where the memory consists of dis-

tributed representation of sentences in the compre-

hension. Recently, key-value MemNN are intro-

duced (Miller et al., 2016) where each memory slot

consists of a key and value. The attention weight

is computed only by comparing the question with

the key memory, whereas the value is used to com-

pute the contextual representation to predict the

answer. We use this variant of MemNN for our

model. Miller et al. (2016), in their experiments,

store either KB triples or sentences as memories

but they do not explicitly model multiple memories

containing distinct data sources like we do.

3 Model

Our model is a MemNN with universal schema as

its memory. Figure 1 shows the model architecture.

Memory: Our memory M comprise of both KB

and textual triples from universal schema. Each

memory cell is in the form of key-value pair. Let

(s, r,o) ∈ K represent a KB triple. We represent

this fact with distributed key k ∈ R
2d formed by

concatenating the embeddings s ∈ R
d and r ∈ R

d

of subject entity s and relation r respectively. The

embedding o ∈ R
d of object entity o is treated as

its value v.

Let (s, [w1, . . . ,arg1, . . . ,arg2,wn], o) ∈ T rep-

resent a textual fact, where arg1 and arg2 corre-

spond to the positions of the entities ‘s’ and ‘o’. We

represent the key as the sequence formed by replac-

ing arg1 with ‘s’ and arg2 with a special ‘ blank ’

token, i.e., k = [w1, . . . ,s, . . . , blank , wn] and

value as just the entity ‘o’. We convert k to a dis-

tributed representation using a bidirectional LSTM

(Hochreiter and Schmidhuber, 1997; Graves and

Schmidhuber, 2005), where k ∈ R
2d is formed by

concatenating the last states of forward and back-

ward LSTM, i.e., k =
[−−−−→
LSTM(k);

←−−−−
LSTM(k)

]

.

The value v is the embedding of the object entity o.

Projecting both KB and textual facts to R
2d offers

a unified view of the knowledge to reason upon.

In Figure 1, each cell in the matrix represents a

memory containing the distributed representation

of its key and value.

Question Encoder: A bidirectional LSTM is

also used to encode the input question q to a dis-

tributed representation q ∈ R
2d similar to the key

encoding step above.

Attention over cells: We compute attention

weight of a memory cell by taking the dot prod-

uct of its key k with a contextual vector c which

encodes most important context in the current iter-

ation. In the first iteration, the contextual vector is

the question itself. We only consider the memory

cells that contain at least one entity in the question.

For example, for the input question in Figure 1,

we only consider memory cells containing USA.

Using the attention weights and values of memory

cells, we compute the context vector ct for the next

iteration t as follows:

ct = Wt

(

ct−1 +Wp ∑
(k,v)∈M

(ct−1 ·k)v

)

where c0 is initialized with question embedding

q, Wp is a projection matrix, and Wt represents

the weight matrix which considers the context in

previous hop and the values in the current iteration

based on their importance (attention weight). This

multi-iterative context selection allows multi-hop

reasoning without explicitly requiring a symbolic

query representation.

Answer Entity Selection: The final contextual

vector ct is used to select the answer entity qa

(among all 1.8M entities in the dataset) which has

the highest inner product with it.

4 Experiments

4.1 Evaluation Dataset

We use Freebase (Bollacker et al., 2008) as our

KB, and ClueWeb (Gabrilovich et al., 2013) as our

text source to build universal schema. For evalua-

tion, literature offers two options: 1) datasets for

text-based question answering tasks such as answer

sentence selection and reading comprehension; and

2) datasets for KB question answering.

Although the text-based question answering

datasets are large in size, e.g., SQuAD (Rajpurkar

et al., 2016) has over 100k questions, answers to

these are often not entities but rather sentences

which are not the focus of our work. Moreover

these texts may not contain Freebase entities at all,

making these skewed heavily towards text. Com-

ing to the alternative option, WebQuestions (Berant

et al., 2013) is widely used for QA on Freebase.

This dataset is curated such that all questions can

be answered on Freebase alone. But since our goal

is to explore the impact of universal schema, testing

on a dataset completely answerable on a KB is not

ideal. WikiMovies dataset (Miller et al., 2016) also

has similar properties. Gardner and Krishnamurthy

(2017) created a dataset with motivations similar to
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Model Dev. F1 Test F1

Bisk et al. (2016) 32.7 31.4
ONLYKB 39.1 38.5
ONLYTEXT 25.3 26.6
ENSEMBLE. 39.4 38.6
UNISCHEMA 41.1 39.9

Table 1: QA results on SPADES.

ours, however this is not publicly released during

the submission time.

Instead, we use SPADES (Bisk et al., 2016) as

our evaluation data which contains fill-in-the-blank

cloze-styled questions created from ClueWeb. This

dataset is ideal to test our hypothesis for following

reasons: 1) it is large with 93K sentences and 1.8M

entities; and 2) since these are collected from Web,

most sentences are natural. A limitation of this

dataset is that it contains only the sentences that

have entities connected by at least one relation in

Freebase, making it skewed towards Freebase as

we will see (§ 4.4). We use the standard train, dev

and test splits for our experiments. For text part of

universal schema, we use the sentences present in

the training set.

4.2 Models

We evaluate the following models to measure the

impact of different knowledge sources for QA.

ONLYKB: In this model, MemNN memory con-

tains only the facts from KB. For each KB triple

(e1,r,e2), we have two memory slots, one for

(e1,r,e2) and the other for its inverse (e2,r
i,e1).

ONLYTEXT: SPADES contains sentences with

blanks. We replace the blank tokens with the an-

swer entities to create textual facts from the train-

ing set. Using every pair of entities, we create a

memory cell similar to as in universal schema.

ENSEMBLE This is an ensemble of the above

two models. We use a linear model that combines

the scores from, and use an ensemble to combine

the evidences from individual models.

UNISCHEMA This is our main model with uni-

versal schema as its memory, i.e., it contains mem-

ory slots corresponding to both KB and textual

facts.

4.3 Implementation Details

The dimensions of word, entity and relation em-

beddings, and LSTM states were set to d =50. The

word and entity embeddings were initialized with

word2vec (Mikolov et al., 2013) trained on 7.5

Question Answer

1. USA have elected blank , our first
african-american president.

Obama

2. Angelina has reportedly been threatening
to leave blank .

Brad Pitt

3. Spanish is more often a second and
weaker language among many blank .

Latinos

4. blank is the third largest city in the
United States.

Chicago

5. blank was Belshazzar ’s father. Nabonidus

Table 2: A few questions on which ONLYKB fails

to answer but UNISCHEMA succeeds.

million ClueWeb sentences containing entities in

Freebase subset of SPADES. The network weights

were initialized using Xavier initialization (Glorot

and Bengio, 2010). We considered up to a maxi-

mum of 5k KB facts and 2.5k textual facts for a

question. We used Adam (Kingma and Ba, 2015)

with the default hyperparameters (learning rate=1e-

3, β1=0.9, β2=0.999, ε=1e-8) for optimization. To

overcome exploding gradients, we restricted the

magnitude of the ℓ2 norm of the gradient to 5. The

batch size during training was set to 32.

To train the UNISCHEMA model, we initialized

the parameters from a trained ONLYKB model.

We found that this is crucial in making the UNIS-

CHEMA to work. Another caveat is the need to em-

ploy a trick similar to batch normalization (Ioffe

and Szegedy, 2015). For each minibatch, we nor-

malize the mean and variance of the textual facts

and then scale and shift to match the mean and

variance of the KB memory facts. Empirically, this

stabilized the training and gave a boost in the final

performance.

4.4 Results and Discussions

Table 1 shows the main results on SPADES. UNIS-

CHEMA outperforms all our models validating our

hypothesis that exploiting universal schema for QA

is better than using either KB or text alone. De-

spite SPADES creation process being friendly to

Freebase, exploiting text still provides a significant

improvement. Table 2 shows some of the ques-

tions which UNISCHEMA answered but ONLYKB

failed. These can be broadly classified into (a)

relations that are not expressed in Freebase (e.g.,

african-american presidents in sentence 1); (b) in-

tentional facts since curated databases only rep-

resent concrete facts rather than intentions (e.g.,

threating to leave in sentence 2); (c) compara-

tive predicates like first, second, largest, smallest

(e.g., sentences 3 and 4); and (d) providing addi-
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Model Dev. F1

ONLYKB correct 39.1
ONLYTEXT correct 25.3
UNISCHEMA correct 41.1
ONLYKB or ONLYTEXT got it correct 45.9

Both ONLYKB and ONLYTEXT got it correct 18.5
ONLYKB got it correct and ONLYTEXT did not 20.6
ONLYTEXT got it correct and ONLYKB did not 6.80

Both UNISCHEMA and ONLYKB got it correct 34.6
UNISCHEMA got it correct and ONLYKB did not 6.42
ONLYKB got it correct and UNISCHEMA did not 4.47

Both UNISCHEMA and ONLYTEXT got it correct 19.2
UNISCHEMA got it correct and ONLYTEXT did not 21.9
ONLYTEXT got it correct and UNISCHEMA did not 6.09

Table 3: Detailed results on SPADES.

tional type constraints (e.g., in sentence 5, Freebase

does not have a special relation for father. It can be

expressed using the relation parent along with the

type constraint that the answer is of gender male).

We have also anlalyzed the nature of UNIS-

CHEMA attention. In 58.7% of the cases the at-

tention tends to prefer KB facts over text. This is as

expected since KBs facts are concrete and accurate

than text. In 34.8% of cases, the memory prefers

to attend text even if the fact is already present in

the KB. For the rest (6.5%), the memory distributes

attention weight evenly, indicating for some ques-

tions, part of the evidence comes from text and part

of it from KB. Table 3 gives a more detailed quan-

titative analysis of the three models in comparison

with each other.

To see how reliable is UNISCHEMA, we gradu-

ally increased the coverage of KB by allowing only

a fixed number of randomly chosen KB facts for

each entity. As Figure 2 shows, when the KB cov-

erage is less than 16 facts per entity, UNISCHEMA

outperforms ONLYKB by a wide-margin indicat-

ing UNISCHEMA is robust even in resource-scarce

scenario, whereas ONLYKB is very sensitive to

the coverage. UNISCHEMA also outperforms EN-

SEMBLE showing joint modeling is superior to en-

semble on the individual models. We also achieve

the state-of-the-art with 8.5 F1 points difference.

Bisk et al. use graph matching techniques to con-

vert natural language to Freebase queries whereas

even without an explicit query representation, we

outperform them.

5 Related Work

A majority of the QA literature that focused on

exploiting KB and text either improves the infer-

Figure 2: Performance on varying the number of

available KB facts during test time. UNISCHEMA

model consistently outperforms ONLYKB

ence on the KB using text based features (Krish-

namurthy and Mitchell, 2012; Reddy et al., 2014;

Joshi et al., 2014; Yao and Van Durme, 2014; Yih

et al., 2015; Neelakantan et al., 2015b; Guu et al.,

2015; Xu et al., 2016b; Choi et al., 2015; Savenkov

and Agichtein, 2016) or improves the inference on

text using KB (Sun et al., 2015).

Limited work exists on exploiting text and KB

jointly for question answering. Gardner and Krish-

namurthy (2017) is the closest to ours who generate

a open-vocabulary logical form and rank candidate

answers by how likely they occur with this logi-

cal form both in Freebase and text. Our models

are trained on a weaker supervision signal without

requiring the annotation of the logical forms.

A few QA methods infer on curated databases

combined with OpenIE triples (Fader et al., 2014;

Yahya et al., 2016; Xu et al., 2016a). Our work

differs from them in two ways: 1) we do not need

an explicit database query to retrieve the answers

(Neelakantan et al., 2015a; Andreas et al., 2016);

and 2) our text-based facts retain complete senten-

tial context unlike the OpenIE triples (Banko et al.,

2007; Carlson et al., 2010).

6 Conclusions

In this work, we showed universal schema is a

promising knowledge source for QA than using

KB or text alone. Our results conclude though KB

is preferred over text when the KB contains the fact

of interest, a large portion of queries still attend to

text indicating the amalgam of both text and KB is

superior than KB alone.
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