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ABSTRACT The Semantic Web contains a large amount of data in the form of knowledge bases. Question
Answering system is the most promising way of retrieving data from the available knowledge base to the
end-users, to get the appropriate result for their questions. Although many systems have been developed over
the years, it remains a challenge that most systems yet to require improvements to increase the accuracy for
correct interpretation of the question and provide an answer. Many Question Answering systems convert the
questions into triples which are mapped to the Knowledge base from which answer is derived. However,
these triples do not express the semantic representation of the question, due to which the answers cannot
be located. To handle this, a template-based approach is proposed which classifies the question types and
finds appropriate SPARQL query templates for each type including comparatives and superlatives. The
SPARQL query built is executed in the DBpedia endpoint and results are obtained. Compared with other
factoid question answering systems, the proposed approach has the potential to deal with a large number of
question types, including comparatives and superlatives. Also, the experimental evaluations of the system
performed on the QALD-8 dataset present good performance and can help users to find answers to their
questions.

INDEX TERMS Question answering, natural language processing, knowledge base, DBpedia, SPARQL.

I. INTRODUCTION

Question Answering (QA) is the fusion of natural language
processing (NLP), Machine Learning (ML), and Semantic
Analysis. It is used everywhere in various domains such as
medical, education systems, personal assistants. In the last
decade, there has been significant growth in a new part of
the internet, namely the semantic web. The semantic web is
developed with the motive to link the data available across
multiple web pages, organize them in such a way that the data
is directly readable by machines. It includes data sources in
different forms. The structured database contains information
that is organized and easy to access. A substantial increase
in the amount of research work over semantic web data
creates an interaction model that enables people to benefit
from semantic web standards. The QA process over dynamic
data sources appears to be the most optimistic method to
access information. At the same time, Question Answering
systems hide their complexity behind an intuitive interface
that is easy to use. The spontaneous increase in the semantic
web data has resulted in heterogeneous data, as a result of this
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many systems has to compete with the types, quantity, of data
sources.

Most Semantic Web Resources use RDF Query language
to access the database, which implies that the user has to
learn a query language to scan the semantic web. To facil-
itate that, the developed Question Answering System helps
people to retrieve data from the database they want. It can
be useful in preserving their private Knowledge Bases(KB)
within organizations. They can trust the system to access data
sources, other than depending on additional services. The
Question Answering system can enact any data source, and
can function better as it has developed to manage independent
and domain-dependent applications. It varies depending on
the types of inputs, maybe a keyword or a description. It also
requires factoid, affirmation type of questions, and have a
clear understanding, reasoning of reality, where the origins
of data is from various domains. Thus, the scope of QA is
enormous and widely acceptable. In Real-time application,
the Text Retrieval Conference (TREC) [1] was the first large
scale evaluation of being domain-independent, and it consists
of open-domain, fact-based questions with broad semantic
categories. Questions may also require a specific order of out-
come, or be aggregated or to filter results. The information is
conveyed in several languages on the internet. While RDF [2]
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data is used to represent the tags in several languages, there
is no popular language used in Web documents. People have
different native tongues but using QA systems can handle
several input languages that differ from the language used to
communicate information which is a more flexible solution.
Ambiguity is the phenomenon of different definitions of the
same word, It may be textual, syntactic, functional, semantic
or lexical. TheQA system begins the process by reviewing the
query as an input, then selecting the appropriate KB in which
the relevant answer is then to extract the information from the
KB and address the user. Based on KB, modern technology is
used to store complex structured and unorganized data. In the
KB, the fact is expressed by a triple as subject, predicate,
and object. (The predicate word represents the relationship
among the entities). The most popular KBs are DBpedia [3],
Yago [4], Wikipedia [5], Freebase [6], SPARQL [7] is the
standard way to access KB. It is a tedious and challenging
process for end-users to access/use due to the complexity of
understanding the schema and syntax of SPARQL. The com-
mon challenges for developing the QA project are complex
queries, where the corresponding SPARQL query contains
multiple generic graph patterns and specialized approaches
needed to obtain the actual query layout. The intent of the pro-
posed work is to hide the structure of the model by providing
a user-friendly system to the clients with high-performance,
and it automatically generates the SPARQL query to retrieve
the answer from KB. The primary concept of the approach
is a template-based selection that improves the accuracy of
an answer in minimal time. These templates are also defined
for comparatives and superlatives to cover all the cases. The
performance level determines the level of accuracy of the
answer given by the system.
The paper is organized as follows. Section II discusses the

existing literature on Knowledge-based Question Answer-
ing Systems. Section III discusses the proposed system and
illustration of the process. In Section IV, the experimental
findings and the system performances are discussed. The
study is summed up in Section V.

II. RELATED WORK

With the growth of semantic mark up to the large-scale data
available on the web, there is an arising need for question
answering systems that can help people utilize the informa-
tion. Many researchers have investigated the field of Ques-
tion Answering Systems in focus with the Semantic Web.
To the best of the authors’ knowledge, some of the Question
Answering Systems are investigated and examined in this
section.
Diefenbach et al. [8] proposed a system to retrieve answers

directly by converting the question into SPARQL. They focus
on the semantics of the string to understand the problem.
The main advantage of this system is that it is multilingual.
Besides, it is working well for both natural language ques-
tions and keywords. This system could be easily adaptable
to new KBs as well as with querying multiple KBs simul-
taneously. This QA system proposes a new idea for using

semantic words rather than the syntax of the expressions
present in the question.

Ngomo [9] developed a template-based QA system with
separate algorithms for listing out the combination of adja-
cent words and for gathering information such as entities,
classes, properties. This system used the QALD-8 dataset
[10], [11] and has many ways to access that includes inter-
face from the GERBIL QA benchmark that provides the
answer in the JSON file in the SPARQL query format.
Dubey et al. [12] proposed a system that helps users to get
appropriate answers from RDF KBs for the queries they
post. NormalizedQuery Structure (NQS) facilitates the detec-
tion of intended information as output and user-provided
input query information and the establishment of a semantic
relationship between them. It is also adaptable enough to
paraphrase the query. The framework is examined in terms
of the syntactic stability of NQS and semantic exactness in
standard benchmark data sets and found to be more durable.
The issues persist wherever the system could not resolve
the proper relation between input and direct to the correct
DBpedia property.
Hu et al. [13] came up with a systematic concept for

extracting answers for the question over the RDF kind of KB
repository. They provide a procedural query graph that struc-
turally models the query to reduce the graph to a subgraph
for matching the problem. The critical step here is to deter-
mine and solve the natural language question’s ambiguity
when the query matches. By doing so, the disambigua-
tion costs will be saved if there is no matching similari-
ties. Intensive experiments prove that this method not just
increases accuracy, but also significantly accelerates query
performance.

Dennis Diefenbach et al. proposed a conceptual solution
to overcome the drawbacks of multilingual natural language
keywords [14]. This QA system helps the end-users to access
the new structured data quickly and efficiently since the exist-
ing systems are not capable of adapting to different languages
and KBs. They introduced a conceptual method to overcome
multiple KBs and language problems. The proposed algo-
rithm is examined and found to work for multiple languages,
as well as numerous KBs. The features used help with the
approach of portability that is an added advantage of this
proposed system.

H. Jin et al. provides the end-users with an excellent natural
language interface and helps them to overcome the complex-
ity of the underlying KB [15]. This QA system allows people
who do not have any prior knowledge about the KBs and
can get answers for even complex questions. The KBs with
triple patterns are used for getting candidate subgraphs. The
subgraphs and the triple patterns are used for the semantic
similarity of the answer. To reduce the complexity of this
process, the author proposed an extension method based on
semantic similarity and identifying the entities and relations
while encountering the underlying KB. Then the process is
proceeded with creating the query graph. The final process is
done with all the preliminary information about the KBs and
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is followed by tuning the vectors to make them accurate for
retrieving answers.
H öffner et al. [16] suggested a new technique of QA

to multi-dimensional linked information utilizing the RDF
Data Cube Vocabulary [17], which cannot be interpreted by
current methods. They use questions of accessible domain
statistical knowledge requirements to evaluate whether these
questions vary from others, what extra verbalizations are
widely adopted, and how this impacts QA design decisions
on statistical data.
Balikas et al. [18] participated in the competition that

consists of semantic indexing but also a QA component on
biomedical information. For the QA section, systems are
supposed to be combinations, delivering matching triples but
also text fragments, but a limited assessment is also feasible.
The primary function of forming a description by sorting
procedures related to Named Entity Recognition (NER) and
Named Entity Disambiguation (NED) and the next function
is to incorporate these two moves. Baudi š and Šedivỳ [19]
proposed an open-source hybrid solution developed on top
of the Apache UIMA framework, part of the Brmson initia-
tive, and influenced by DeepQA. YodaQA enables efficient
parallelization and utilization of pre-existing NLPUIMA ele-
ments by describing each artifact (question, request answer,
passage, applicant response) as a different UIMA CAS.
Yoda pipeline has five specific stages: (a) Query Analysis,
(b) Response Processing, (c) Response Analysis, (d) Answer
Blending and Rating, and (e) Successive Optimizing.
Hakimov et al. [20] came up with a semantic parsing

methodology to QA that achieves high efficiency but depends
on a massive volume of training data that is not realistic.
At the same time, the scope is broad or unspecified. Mishra
and Jain [21] introduces eight classification parameters, such
as application context, type of query, the form of data. For
each parameter, the various classifications are provided with
their benefits, drawbacks, and excellent systems. Park et al.
suggested a method to address questions regarding natu-
ral language by regular expressions and keyword questions
with a Lucene-based index [22]. Also, the technique utilizes
DBpedia [23] and its triple extraction process for Wikipedia.
SemBioNLQA [24] is a biomedical Question Answering

System for extracting answers to biomedical questions from
peer-reviewed scientific articles. It uses hand-crafted lexico-
syntactic patterns and SVM for classifying the question type,
PubMed search engine for document retrieval, BM25 model
for passage retrieval and Bioportal synonyms, Term fre-
quency metric for answer extraction. The system can give
correct answers for yes/no, factoid and list questions and
provides ideal answers for summary questions.
The proposed QA system gives answer responses to ques-

tions by building and querying the SPARQL queries in DBpe-
dia Endpoint. This method develops predefined templates for
all the input types to prove appropriate answers to the input
request. In this approach, the QA system uses annotators,
parsers, taggers from Stanford core NLP, DBPedia Spot-
light for NER, which results in complexity reduction of the

system providing better performance. The improvement of
the system takes place by classifying questions and creating
a SPARQL template according to its specific type, such as
comparative and superlative questions.

III. PROPOSED APPROACH

The proposed QA system is developed on the template
based concept by defining SPARQL Query templates that
are contoured based on input questions. Figure 1 illustrates
the functional flow of the Question Answering System. The
QA system consists of two components namely, Question
Processor and SPARQL Query Builder. In the question pro-
cessing, the annotations have been done on the input to get all
necessary details, such as finding relevant entities, question
types, classes, and properties. The SPARQL Query builder
component constructs building SPARQL Query by filling
gathered information on predefined templates and run it on an
endpoint that is provided by DBpedia. Finally, the DBpedia
endpoint sends the answer with the SPARQL query in JSON
format.

A. QUESTION ANSWERING SYSTEM COMPONENTS

1) QUESTION PROCESSING

The Question processor plays a vital role in the QA system.
To develop a SPARQL query [25], analysing the input ques-
tion is required. The Question processor identifies the rele-
vant information from the input question to find the question
type. It helps us to know the kind of response to be retrieved
and Table 1 shows the question types and their expected
answer types.

TABLE 1. List of Question Types and its Expected Answer Type.

The question type is determined by the syntactic form of
the question. The identification of a question type provides us
an idea for extracting question features and determining the
various potential answers. Analysis of question is performed
to infer question features to obtain a relevant answer. These
question features would help us to determine the question
typewithwhich a list of patterns for extracting the answerwill
be associated and the type of answer required. The factoid
questions are related to facts, events, suggestions, and ideas.
For example, consider the following type of questions which
are posted by the user:

‘‘How do you make a ball?’’ (Process Question)
‘‘What does extend definition mean, and how would one

write a paper on it?’’ (Formation of two question words)
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FIGURE 1. Functional flow of Proposed Question Answering System.

‘‘The cerebellum is in what part of the body?’’ (Question
word is in the middle)
‘‘In which year did India get Independence?’’ (Question

start with a preposition)
In this study, ‘‘Wh’’ questions were performed, and these

questions contain unique features, structures, and character-
istics that help us to identify and characterize them according
to their question types [26]. The proposed approach finds the
answers for the following questions such as, What, Where,
How many, How much, Who, When, and List questions.
The QA system sends the gathered details to the DBpedia
spotlight for identifying the named entities. All the found
entities are tagged along with the question and then is sent
to the SPARQL query builder component.
The Stanford core NLP helps us to find the keywords and

derive verbs, adjectives, nouns that support us in finding
DBpedia properties and classes. QA system needs to dif-
ferentiate and remove entities that may also be linking to
class to reduce confusion. Then, the system still gets a list
of comparatives and superlatives for further elimination of
the list of selected templates and find a more appropriate one.
These found properties fill the SPARQL query templates. The
following are the patterns that are used to form the templates
for the questions. The ‘‘+’’ sign indicates concatenation, ‘‘|’’
sign indicates OR and ‘‘*’’ sign indicates any word.
1. [Where]+[*]+?
2. [What]+[JJS]+[*]+?
3. [Where]+[JJS]+[*]+?
4. [When]+[*]+?
5. [Who]+[JJS]+[*]+?

6. [How]+[much]+[*]+?
7. [How]+[many]+[*]+?
8. [List|Name|Show|Give]+[*]+?
The following subsection explains the selection of the

SPARQL template according to question type.

2) SPARQL QUERY BUILDER

The SPARQL Query builder component has predefined tem-
plates for various question types that show how to construct a
SPARQL query for each question type. The QA system then
adds the properties, classes, and entities to the selected tem-
plate found from the question processing component based
on the question type. The templates for developing SPARQL
queries for different question types given in Table 2 and
Table 3.

The queries are finally executed in the DBpedia end-
point using SPARQL templates designed for various question
types, including comparative and superlatives. The query
results are ranked according to their properties, and the most
number of triples in DBpedia are identified. Following the
ranking process, the query at the top of the list will almost
always have the correct answer to the user’s question. The
proposed algorithm for building the SPARQL query from the
input question is given in Algorithm 1.

B. ILLUSTRATION

Let us see how the proposed QA system work for ‘‘Question:
Which Indian Company has the most employees?’’ The pro-
cess starts by adding an annotator from Stanford Core NLP
to the question string. Then the question string will split into
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TABLE 2. Various Wh-Question types with corresponding SPARQL templates.

tokens (that is words) by using the PTB tokenizer. The PTB
tokenizer is a class provided by Stanford core NLP for the
tokenizing process.
Which / Indian / Company / has / the / most / employees

/ ?

Now, the Parts of Speech (POS) tagging on the tokenized
split words takes place by adding annotator POS by Maxent
tagger from Stanford NLP.

Which (WDT) / Indian (JJ) / Company (NNP) / has

(VRB) / the (DT) / most (RBS) / employees (NNS) / ?
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TABLE 3. Various Question types with corresponding SPARQL templates.

The dependency parser helps in examining the grammati-
cal form of the question and develop the relationship between
the lemma and words. Then, the QA system uses Neural Net-
work Dependency Parser for gathering typed dependencies.
Lemmatization: Which (Which) / Indian (India) / Com-

pany (Company) / has (have) / the (the) / most (most) /

employees (employee) / ?

The question passed to DBpedia Spotlight for identifying
entities. The process starts by recognizing phrases that denote
reference of DBpedia knowledge. Then the spotted phrases
are mapped to resources for the selection of candidates. Then,

the process follows by using the context of spotted phrases for
the selection of an appropriate candidate. By configuration
parameters, the annotation may be tailored by users to their
particular needs.

Named Entity Recognition: Which / Indian (Country) /

Company / has / the / most / employees / ?

Dependency Parser:
The root is the root words that denote grammatical rela-

tions. The advmod of a word is an adverb modifier that lists
adverb headed expression or adverb to modify the mean-
ing of the word. The dep denotes dependency, where the
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Algorithm 1 Query Formulation Algorithm
Input: Question q, Question type t
Output: SPARQL Query

1: BoolQuestion=Arrays.asList (‘‘DO’’, ‘‘DID’’, ‘‘HAS’’, ‘‘WAS’’, ‘‘HAVE’’, ‘‘DOES’’, ‘‘WERE’’, ‘‘IS’’, ‘‘ARE’’, ‘‘BE’’);
2: AnswerType = Arrays.asList (‘‘RESOURCE’’, ‘‘BOOLEAN’’, ‘‘DATE’’, ‘‘NUMBER’’, ‘‘STRING’’, ‘‘LITERAL’’,

‘‘NUMBER’’);
3: builder = new SparqlQueryBuilder(q);
4: result = null;
5: switch t do

6: case ‘‘WHO’’:
7: if q.contains(superlative) then
8: result = builder.sparqlWho();
9: break;

10: case ‘‘HOW’’:
11: result = builder.sparqlHow();
12: break;
13: case ‘‘WHERE’’:
14: result = builder.sparqlWhere();
15: break;
16: case ‘‘WHAT’’:
17: if (q.contains(superlative) then
18: result = builder.supersparql();
19: result = builder.simplesparql();
20: break;
21: case ‘‘WHICH’’:
22: if q.contains(superlative) then
23: result = builder.listSparql();
24: result = builder.simplesparql();
25: break;
26: case ‘‘WHEN’’:
27: result = builder.simpleSparql(‘‘‘‘,’’ FILTER ( (datatype(?answer) = xsd:date) || (datatype(?answer) =

xsd:gYear))’’);
default:

28: if (t.equals(‘‘LIST’’) || t.equals(‘‘NAME’’) || t.equals(‘‘SHOW’’) || t.equals(‘‘GIVE’’)) then
29: result = builder.sparqlList();

30: if (BoolQuestion.contains(t)) then
31: q.questionType = ‘‘ASK’’;
32: result = builder.simpleASK(‘‘‘‘,’’’’);

else
33: result = builder.simpleSparql(‘‘‘‘, ’’’’); end
34: break;
35: while ( do(result == null ||result.isEmpty()) and (q.entityList != null) and (q.entityList.size()>1) and

(builder.getEntityIndex()<q.entityList.size()));
36: container.setAnswers(result);
37: container.setSparqlQuery(builder.getLastUsedQuery());
38: return container;
39: builder.incrementIndex();

parser cannot establish a more detailed relationship of depen-
dence between two terms. The nsubj is a noun phrase that
denotes the subject. The punct means punctuation. The det
means determiner that denotes the interlinking of singular
proper noun headwords and its determiner. Figure 2 illus-
trates the output of the Dependency Parser for the given

example question. Now, the system gathers necessary infor-
mation such as nouns, verbs, adjectives. The IndexDBO class
from the library of QA annotator is used with the extracted
nouns (that are classes), verbs, and adjectives (denotes
properties) to DBpedia ontology to find the classes and
properties.
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FIGURE 2. Dependency Parser output for the input question.

The process follows by listing the adjectives, nouns, and
classes along with abbreviation and its expansion.
Adverb: most
Nouns: Indian, Company, Employee
Classes:

[http : //dbpedia.org/ontology/Company]
[http : //dbpedia.org/ontology/location]
[http : //dbpedia.org/ontology/numberOfEmployees]
Entities:

[Indian (URI: http : //dbpedia.org/resource/India)] The
question type isWHICH, which assists in selecting the appro-
priate SPARQL template from the predefined templates with
the help of classes, entities, and properties. Then, the system
retrieves answers by processing the SPARQL query, and send
the response in the JSON format.
SELECT DISTINCT ?uri WHERE ?uri a &lt;

http : //dbpedia.org/ontology/Company &gt;. ?uri
&lt; http : //dbpedia.org/ontology/location &gt; &lt;
http : //dbpedia.org/resource/India &gt;. ?uri &lt;
http : //dbpedia.org/ontology/numberOfEmployees&gt; ?n
ORDER BY DESC(?n) OFFSET 0 LIMIT 1

Question:

[string=Which Indian Company has the most employees?,
language=en]

Answer:

URI [http : //dbpedia.org/resource/Indian_Railways]
The inbuilt templates will have SPARQL queries for vari-

ous question types like where, what, when, who, how. When
the SPARQL query builder module finds any comparatives
or superlatives, it selects the template accordingly. Table 4
shows the sample enum list for comparing adjectives. The
next step is ranking the properties that will return the query
with most triples on DBpedia. The answer is made possible
in a SPARQL format.

IV. RESULTS AND DISCUSSION

QALD is a series of evaluation campaigns on question
answering over linked data. QALD Contest intends to medi-
ate between the clients and responding to his / her demands

TABLE 4. Sample Enum List for Comparing Adjectives.

of content in human language, as well as RDF information,
for an up-to-date review and comparison [11]. It is essen-
tial to follow methods that can tackle not only the unique
aspects of organized data but also the processing of data
across various organized and unorganized knowledge data
sources and combined them into a single outcome. Training
data consist of 250 questions is gathered and organized from
earlier contests. The questions are available in languages like
English, Italian, Spanish, Hindi, French, Dutch, Romanian,
Farsi andGerman. The underlying RDF dataset will beDBpe-
dia 2016-10. The questions are general, open-domain, and
factoid in nature. The questions vary based on their com-
plexity, including questions with superlatives, comparatives,
and temporal aggregators. Each question is annotated with a
manually specified SPARQL query and answers. To provide
an unbiased test set, real-time questions and query logs that
express the information needs are compiled and manually
curated. The test dataset contains 50 to 100 manually com-
piled similar questions. The additional questions are from
original, real-life inquiry records, and survey files since they
have high-grade criteria.

The proposed QA system gives answer responses to user
questions by building and querying the SPARQL queries in
DBpedia Endpoint. In this approach, the proposed system
uses annotators, parsers, taggers from Stanford core NLP,
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TABLE 5. Unanswered Question Analysis.

FIGURE 3. Experimental results of various Question Types.

DBpedia Spotlight for Named Entity Recognition, which
results in complexity reduction of the system providing better
performance. The question is split into tokens by using PTB
Tokenizer, a default tokenizer of Stanford Core NLP, for the
tokenization process. Then, POS tagging is done on question
string using Maximum Entropy tagger. Dependency parser is
used for analyzing and knowing the grammatical question
structure and get a clear understanding of the relationship
with words. After parsing, we collect the information which
will be used later for finding the answer. The DBpedia spot-
light can find the named entities available to understand its
nature. The system classifies the question types and finds an
appropriate SPARQL query template. The gathered details
such as properties, entities and classes will now fill the
selected SPARQL query templates, and Apache Jena helps us
to find the possible property set and then the DBpedia end-
point is queried. The data from DBpedia is indexed using the
Lucene Library. The executed query results are then ranked
with their properties and finds the most triples with DBpedia.
After the ranking process, the query at the top of the list will
mostly find the correct answer for the user question. Finally,
the user request will be answered using a JSON response
object.
Figure 3 shows the total number of questions under differ-

ent question types provided in the test dataset and the count
of the answered and unanswered questions. In answering the
‘‘WHAT’’ question type, the count of answered questions is
comparatively more than the unanswered questions. Some

questions remain unanswered because they come under the
SPARQL template categories that are not predefined by the
proposed approach. In Table 5, the value is more for unan-
swered questions for which SPARQL is not generated, which
shows the need for developing templates for such categories.
The ‘‘HOW’’ question type shows a similar count as the
‘‘WHAT’’ question type as it answered most of the questions.
The QA system needs more SPARQL templates to ensure that
every input question has its matching category of templates
to overcome these issues. The results show similar values
for ‘‘WHEN’’ and ‘‘WHERE’’ question types. For eg. the
system does not give an answer for the question ‘‘Where
does Piccadilly start?’’. The question is about the starting
route of the Piccadilly train station, and the answer is ‘‘Dover
Street’’. The QA system requires a deep understanding of
the keyword ‘‘start’’ to answer this question correctly. In the
DBpedia ontology, the QA system should be able to associate
the words ‘‘start’’ and ‘‘route start’’. It necessitates the use
of disambiguation techniques to determine the appropriate
meaning of the word ‘‘start’’ with respect to the context of
the question. The system shows poor results for ‘‘WHO’’
question types as the problem seems to arise from gathering
information regarding the question starting from tagging,
finding entities till selecting the appropriate templates. For
eg. the system does not identify the answer for the question
‘‘Who played Agent Smith in Matrix?’’. Again, the rectifi-
cation of these problems can occur by finding and filling
up all the unchecked cases. The WHICH question type has
zero unanswered questions that mean the proposed method
for answering the question using SPARQL templates work
well for WHICH question type. The questions unanswered
even when the SPARQL template is generated may be due to
the error that might have occurred while mapping properties
and entities. The framework needs some more templates for
tackling the question that is not falling under the devel-
oped templates. Minor improvements in these processes will
improve results for all question types.

The QALD-8 data emphasize questions that include com-
parative, superlative, and temporal aggregates. So, the QA
system needs predefined SPARQL templates to address those
kinds of queries. The program would likely give poor out-
comes on specific question sets. It could be resolved by mak-
ing small improvements that may boost the choice of models
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for Boolean and list queries. QA framework establishes the
basis for addressing a variety of queries, and it can quickly
expand to enhance the result further. The problem could have
occurred when the approach misunderstood the meaning of
the question. So, recognizing the questions and tracking them
to classes and entities helps us to characterize the questions
that correspond to its suitable SPARQL query. The QALD-
8 challenge has an evaluation tool called GERBIL QA. It is a
generic benchmarking framework for Linked Data (formerly
used by BAT-based object annotation systems), which pro-
vides a web-based, easy-to-use interface for agile annotator
analysis utilizing various databases and standardized mea-
surement approaches. To connect a device in this framework,
the end-user needs to supply the application with a URL
to the REST interface that satisfies a standard. The tool
integration and benchmarking against specified datasets take
place automatically. The Apache Jena, along with SPARQL
queries, benefits us by giving some proper meaning with the
help of a possible property set, and then theDBpedia endpoint
is queried. Finally, the request will be answered by using the
gerbil wrapper class and complying with a JSON response
object. This tool is open sourced anyone can make use of
it. The answer set is the input to the GERBIL QA tool for
the process of evaluation. The evaluation takes place with
precision and recall. Precision is a measure of quality, and
recall is a measure of quantity. The Equations below show
the formula for calculating precision and recall.

Precision =
No._of _Correct_Answers_retrieved

Total_no._of _Answers_retrieved
(1)

Recall =
No._of _Correct_Answers_retrieved

Total_no._of _Gold_Standard_Answers
(2)

Fscore = 2 ∗
precision ∗ recall

precision+ recall
(3)

The F-score calculation takes place using precision and recall
value by Equations 1, 2, and 3. The F-score is the harmonic
mean of precision and recall. At the value of 1, The F score
hits the best value, indicating optimal precision and recall.
QALD-8 dataset is used for comparison betweeen pro-

posed method and other existing systems with templates
[8], [27] and without predefined template [13] as shown
in Table 6. Comparison of various metrics for the proposed
system is shown in figure 4. The experiment is evaluated with
QA system performance across training and test data with
macro-averaged metrics. The formula for calculating macro
averaged metrics given in Equations 4, 5, and 6.

Macro−Precision =
Precision1 + Precision2

2
(4)

Macro− Recall =
Recall1 + Recall2

2
(5)

Macro−Fscore = 2∗
Macro−precision∗Macro−recall

Macro−precision+Macro−recall

(6)

If the dataset size is variable, the process uses micro-averaged
metrics. The formula for calculating micro averaged metrics

FIGURE 4. Comparison of various metrics for the proposed QA system.

TABLE 6. Comparison of the proposed system over the QALD-8 dataset.

as shown in Equations 7, 8, 9,

Micro−Precision =
TP1 + TP2

TP1 + FP2 + TP2 + FP2
(7)

Micro− Recall =
TP1 + TP2

TP1 + FN1 + TP2 + FN2
(8)

Micro−Fscore = 2∗
Micro−precision∗Micro−recall

Micro−precision+Micro−recall

(9)

The evaluation process has to follow the conditions below,
Condition-1: The precision, recall, and F-score are fixed to 1,
having an empty answer set, and system answers with the
no answer. Condition-2: The precision, recall, and F-score
are fixed to 0, having an empty answer set, but the system
responds with an answer. Condition-3: The precision, recall,
and F-score have been fixed to 0, with an answer set, but the
system does not answer.

V. CONCLUSION

This paper presents a Template-based approach for answer-
ing factoid questions over a large Knowledgebase DBpe-
dia. The proposed system successfully answers to the user’s
questions by converting the natural language question into a
formal query language SPARQL and querying the DBpedia
Knowledgebase at its endpoint. We also investigate various
question types and develop separate SPARQL templates for
each of them. While keeping the system simple by the use
of templates, the proposed approach can achieve competitive
results. We found that the choice of POS tagger, Parser and
Named Entity Recognizer has a big impact on identifying the
corresponding entities and properties in the DBpedia Knowl-
edge Base. The system experiments with comparative and
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superlative questions and it can answer thosewhichmakes the
system reliable. As the proposed model does not support all
the question types, the authors believe it to be easily portable
if templates for other questions are added to the system.
In Future work, the creation of all kinds of templates that
would support any real-time questions are to be created and
added to the existing model to improve its performance. The
exploitation of external lexical resources and Disambiguation
mechanisms would help the system to give support to the
real-time environment of Question Answering.
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