
Questions and Answers about BSP

D.B. SKILLICORN, 1 JONATHAN M.D. HILL, 2 AND W.F. McCOLL 2

1 Department of Computing and Information Science, Queen's University, Kingston, Canada; e-mail: skill@qucis.queensu.ca
2 Computing Laboratory, University of Oxford, Oxford, UK; e-mail: {Jonathan.Hill, Bill.McCollj@comlab.ox.ac.uk

ABSTRACT

Bulk Synchronous Parallelism (BSP) is a parallel programming model that abstracts from

low-level program structures in favour of supersteps. A superstep consists of a set of in

dependent local computations, followed by a global communication phase and a barrier

synchronisation. Structuring programs in this way enables their costs to be accurately de

termined from a few simple architectural parameters, namely the permeability of the com

munication network to uniformly-random traffic and the time to synchronise. Although per

mutation routing and barrier synchronisations are widely regarded as inherently expensive,

this is not the case. As a result, the structure imposed by BSP does not reduce perfor

mance, while bringing considerable benefits for application building. This paper answers

the most common questions we are asked about BSP and justifies its claim to be a major

step forward in parallel programming.

1 Why Is Another Model Needed?

In the 1980s, a large number of different types of parallel

architectures were developed. This variety may have been

necessary to thoroughly explore the design space but, in

retrospect, it had a negative effect on the commercial de

velopment of parallel applications software. To achieve

acceptable performance, software had to be carefully tai

lored to the specific architectural properties of each com

puter, making portability almost impossible. Each new

generation of processors appeared in strikingly-different

parallel architectural frameworks, forcing performance

driven software developers to redesign their applications

from the ground up. Understandably, few were keen to

join this process.

Today, the number of parallel computation models and

languages probably exceeds the number of different ar

chitectures with which parallel programmers had to con

tend ten years ago. Most make it hard to achieve portabil

ity, hard to achieve performance, or both.

© 1997 lOS Press
ISSN 1058-9244/97/$8

Scientific Programming, Vol. 6, pp. 249-274 (1997) ·

The two largest classes of models are based on

message passing, and on shared memory. Those based

on message passing are inadequate for three reasons.

First, messages require paired actions at the sender and

receiver, which it is difficult to ensure are correctly

matched. Second, messages blend communication and

synchronisation so that sender and receiver must be in

appropriately-consistent states when the communication

takes place. This is appallingly difficult to ensure in most

models, and programs are prone to deadlock as a result.

Third, the performance of such programs is impossible to

predict because the interaction of large numbers of indi

vidual messages in the interconnection mechanism makes

the variance in their delivery times large.

The argument for shared-memory models is that they

are easier to program because they provide the abstrac

tion of a single, shared address space. A whole class of

placement decisions are avoided. This is true, but is only

half of the issue. When memory is shared, simultaneous

access to the same location must be prevented. This re

quires either PRAM-style discipline by the programmer,

or expensive lock management (and locks are expensive

on today's parallel computers [16]). In both cases, the

benefits are counterbalanced by quite serious drawbacks.

250 SKILLICORN, HILL, AND McCOLL

From an architectural point of view, shared-memory ab

stractions limit the size of computer that can be built be

cause a larger and larger fraction of the computer's re

sources must be devoted to communication and the main

tenance of coherence. Even worse, this part of the com

puter is most likely to be highly customized, and hence to

be proportionally more expensive. Thus even the propo

nents of shared memory agree that, with our current un

derstanding, such architectures can contain no more than,

say, fifty processors. Whether this is sufficient for the ap

plication demands of the next decade is debatable.

The Bulk Synchronous Parallel (BSP) model [36] is

a distributed-memory abstraction that treats communica

tion as a bulk action of a program, rather than as the ag

gregate of a set of individual, point-to-point messages.

It provides software developers with an attractive escape

route from the world of architecture-dependent parallel

software. The emergence of the model has coincided with

the convergence of commercial parallel machine designs

to a standard architectural form with which it is com

patible. These developments have been enthusiastically

welcomed by a rapidly-growing community of software

engineers who produce scalable and portable parallel ap

plications. However, while the parallel-applications com

munity has welcomed the approach, there is a degree

of skepticism amongst parts of the computer science re

search community. Some people seem to regard some of

the claims made in support of the BSP approach as "too

good to be true". We will make these claims, and back

them up, in what follows.

The only sensible way to evaluate an architecture

independent model of parallel computation such as BSP

is to consider it in terms of all of its properties, that is

(a) its usefulness as a basis for the design and analysis

of algorithms,

(b) its applicability across the whole range of

general-purpose architectures and its ability to

provide efficient, scalable performance on them,

and

(c) its support for the design of fully-portable

programs with analytically-predictable

performance.

To focus on only one of these at a time, is simply to re

place the zoo of parallel architectures in the 1980s by a

new zoo of parallel models in the 1990s. A fully-rounded

viewpoint on the nature and role of models seems more

appropriate as we move from the straightforward world

of parallel algorithms to the much more complex world

of parallel software systems.

2 What Is Bulk Synchronous

Parallelism?

Bulk Synchronous Parallelism is a style of parallel pro

gramming intended for parallelism across all application

areas and a wide range of architectures [25]. Its goals are

more ambitious than most parallel-programming systems

which are aimed at particular kinds of applications, or

work well only on particular classes of parallel architec

tures [26].

BSP's most fundamental properties are that:

1. It is simple to write. BSP imposes a high-level

series-parallel structure on programs which

makes them easy to write, and to read. Existing

BSP languages are SPMD, making programs even

simpler, since the parallelism is largely implicit.

2. It is independent of target architectures. Unlike

many parallel programming systems, BSP is

designed to be architecture-independent, so that

programs run unchanged when they are moved

from one architecture to another. Thus BSP

programs are portable in a strong sense.

3. The performance of a program on a given

architecture is predictable. The execution time of

a BSP program can be computed from the text of

the program and a few simple parameters of the

target architecture. This makes engineering design

possible, since the effect of a decision on

performance can be determined at the time it is

made.

BSP achieves these properties by raising the level of

abstraction at which programs are written and implemen

tation decisions made. Rather than considering individ

ual processes and individual communication actions, BSP

considers computation and communication at the level

of the entire program, and the entire executing computer

and its interconnection mechanism. Determining the bulk

properties of a program, and the bulk ability of a partic

ular computer to satisfy them makes it possible to design

with new clarity.

One way in which BSP is able to achieve this abstrac

tion is by renouncing locality as a performance optimisa

tion. This simplifies many aspects of both program and

implementation design, and in the end does not adversely

affect performance for most application domains. There

will always be some application domains for which lo

cality is critical, for example low-level image processing,

and for these BSP may not be the best choice.

-Virtual Processors--....-

FIGURE I

Local Computations

Global Communications

Barrier Synchronisation

A superstep.

3 What Does the BSP Programming Style Look

Like?

BSP programs have both a vertical structure and a hor

izontal structure. The vertical structure arises from the

progress of a computation through time. For BSP, this is a

sequential composition of global supersteps, which con

ceptually occupy the full width of the executing architec

ture. A superstep is shown in Figure 1.

Each superstep is further subdivided into three ordered

phases consisting of:

1. simultaneous local computation in each process,

using only values stored in the memory of its

processor;

2. communication actions amongst the processes,

causing transfers of data between processors;

3. a barrier synchronisation, which waits for all of

the communication actions to complete, and which

then makes any data transferred visible in the local

memories of the destination processes.

The horizontal structure arises from concurrency, and

consists of a fixed number of virtual processes. These pro

cesses are not regarded as having a particular linear order,

and may be mapped to processors in any way. Thus local

ity plays no role in the placement of processes on proces

sors.

We will use p to denote the virtual parallelism of a pro

gram, that is the number of processes it uses. If the target

parallel computer has fewer processors than the virtual

parallelism, an extension of Brent's theorem [5] can be

used to transform any BSP program into a slimmer ver

sion.

4 How Does BSP Communication Work?

Most parallel programming systems treat communica

tion, both conceptually and in implementations, at the

QUESTIONS AND ANSWERS ABOUT BSP 251

level of individual actions: memory-to-memory transfers,

sends and receives, or active messages. This level is diffi

cult to work with because parallel programs contain many

simultaneous communication actions, and their interac

tions are complex. For example, congestion in the inter

connection mechanism is typically very sensitive to the

applied load. This makes it hard to discover much about

the time any single communication action will take to

complete, because it depends so much on what else is

happening in the computer at the same time.

Considering communication actions en masse both

simplifies their treatment, and makes it possible to bound

the time it takes to deliver a whole set of data. BSP does

this by considering all of the communication actions of a

superstep as a unit. For the time being, imagine that all

messages have a fixed size. During a superstep, each pro

cess has designated some set of outgoing messages and

is expecting to receive some set of incoming messages. If

the maximum number of incoming or outgoing messages

per processor is h, then such a communication pattern is

called an h-relation. The communication pattern in Fig

ure 1 is a 2-relation.

Many communication topologies deliver almost all

message patterns well, but perform badly for a particular,

small set of patterns. The patterns in this set are typically

regular ones. In other words, a random message pattern

is unlikely to be in this set of 'bad' patterns unless it has

some regular structure. One of the attractions of adap

tive routing techniques is that they reduce the likelihood

of such 'bad' patterns. BSP randomises the placement

of processes on processors so that regularities from the

problem domain, which are often reflected in programs,

are destroyed in the implementation. This tends to make

the destination processor addresses of an h-relation ap

proximate a random permutation. This, in turn, makes it

unlikely that each h-relation will be a 'bad' pattern. The

performance advantage of avoiding patterns that take the

network a long time to deliver outweighs any advantage

gained by exploiting locality in placement.

The ability of a communication network to deliver data

is captured by a BSP parameter, g, that measures the per

meability of the network to continuous traffic addressed

to uniformly-random destinations. As we have seen, BSP

programs randomise to approximate such traffic. The pa

rameter g is defined such that an h-relation will be de

livered in time hg. Subject to some small provisos, dis

cussed later, hg is an accurate measure of communica

tion performance over a large range of architectures. The

value of g is normalised with respect to the clock rate of

each architecture so that it is in the same units as the time

for executing sequences of instructions.

Sending a message of length m clearly takes longer

than sending a message of size 1. For reasons that will

become clear later, BSP does not distinguish between a

252 SKILL! CORN, HILL, AND McCOLL

message of length m and m messages of length 1 - the

cost in either case is mhg. So messages of varying lengths

may either be costed using the form mhg where h is

the number of messages, or the message lengths can be

folded into h, so that it becomes the number of units of

data to be transferred.

The parameter g is related to the bisection bandwidth

of the communication network but they are not equivalent

- g also depends on factors such as:

1. the protocols used to interface with, and within,

the communication network;

2. buffer management by both the processors and the

communication network;

3. the routing strategy used in the communication

network; and

4. the BSP runtime system.

So g is bounded below by the ratio of p to the bisection

bandwidth, suitably normalised, but may be much larger

because of these other factors. Only a very unusual net

work would have a bisection bandwidth that grew faster

than p, so g is a monotonically increasing function of p.

The precise values of g is, in practice, determined em

pirically for each parallel computer, by running suitable

benchmarks. A BSP benchmarking protocol in given in

Appendix B.

Note that g is not the single-word delivery time, but the

single-word delivery time under continuous traffic condi

tions. This difference is subtle but crucial.

5 Surely This Isn't a Very Precise Measure of

How Long Communication Takes? Don't

Hotspots and Congestion Make It Very

Inaccurate?

One of the most difficult problems of determining the per

formance of conventional messaging systems is precisely

that congestion makes upper bounds hard to determine

and quite pessimistic. BSP largely avoids this difficulty.

An apparently-balanced communication pattern may

always generate hotspots in some region of the intercon

nection network. BSP prevents this in several ways. First,

the random allocation of processes to processors breaks

up patterns arising from the problem domain. Second, the

BSP runtime system uses routing techniques that avoid

localized congestion. These include randomized routing

[37], in which particular kinds of randomness are intro

duced into the choice of route for each communication

action, and adaptive routing [4], in which data are di

verted from their normal route in a controlled way to

avoid congestion. If congestion occurs, as when an archi

tecture has only a limited range of deterministic routing

techniques for the BSP runtime system to choose from,

this limitation on continuous message traffic is reflected

in the measured value of g.

Notice also that the definition of an h-relation distin

guishes the cost of a balanced communication pattern

from one that is skewed. A communication pattern in

which each processor sends a single message to some

other (distinct) processor counts as a 1-relation. However,

a communication pattern that transfers the same number

of messages, but in the form of a broadcast from one pro

cessor to all of the others, counts as a p-relation. Hence,

unbalanced communication, which is the most likely to

cause congestion, is charged a higher cost. Thus the cost

model does take into account congestion phenomena aris

ing from the limits on each processor's capacity to send

and receive data, and from extra traffic that might occur

on the communication links near a busy processor.

Experiments have shown that g is an accurate measure

of the cost of moving large amounts of data on a wide

range of existing parallel computers. The reason that g

works so well is that, while today's interconnection net

works do have non-uniform latencies, these are quite flat.

Once a message has entered the network, the latency to

an immediate neighbour is not very much smaller than

the latency to the other side of the network. Almost all

of the end-to-end latency arises on the path from the pro

cessor to the network itself, and is caused by operating

system overheads, protocol overheads, and limited band

width into the network.

6 Isn't It Expensive to Give up Locality?

There will always be application domains where exploit

ing locality is the key to achieving good performance.

However, there are not as many of them as a naive analy

sis might suggest.

There are two reasons why locality is oflimited impor

tance. The first is that the communication networks of to

day's parallel computers seldom have the regular topolo

gies that are often assumed. They are far more likely to

have a hierarchical, cluster-based topology (the important

exceptions being the Cray T3D and T3E which have a

torus topology). Hence each processor has a few neigh

bours in its cluster, a lot more neighbours slightly further

away, and then all of the other nodes at the same effective

distance. Furthermore, these distances vary only slightly.

So there is just not much advantage to locality in the ar

chitecture, since it makes very little difference to latencies

once in the network.

The second reason why locality is of limited impor

tance is that most performance-limited problems work

with large amounts of data, and can therefore exploit large

amounts of virtual parallelism. However, most existing

parallel computers have only modest numbers of pro

cessors. When highly-parallel programs are mapped to

much less parallel architectures, many virtual processes

must be multiplexed onto each physical processor by the

programmer. Almost all of the locality is lost when this

is done, unless the application domain is highly-regular

and matches the structure of the communication topol

ogy very closely. Most interesting applications have lo

cality arising from the three-dimensional nature of the

world, while most communication networks have two

dimensional locality. For example, finite element appli

cations typically triangulate a three-dimensional surface,

and there is no obvious way to map such triangulations

onto, say, a 2D torus, while preserving all of the local

ity. So, while there are applications where locality can be

exploited, they are, in practice, less frequent than is com

monly supposed.

7 Most Parallel Computers Have a Considerable

Cost Associated with Starting up

Communicaton. Doesn't This Mean that the

Cost Model Is Inaccurate for Small Messages,

Since g Doesn't Account for Start-up Costs?

The cost model can be inaccurate, but only in rather spe

cial circumstances. Recall that all of the communications

in a superstep are regarded as taking place at the end of

the superstep. This semantics makes it possible for imple

mentations to wait until the end of the computation part

of each superstep to begin the communication actions that

have been requested. The implementation can then pack

age the data to be transferred into larger message units.

The cost of starting up a data transfer is thus only paid

once per destination per superstep.

However, if the total amount of communication in a

superstep is small, then start-up effects may make a no

ticeable difference to the performance. We address this

quantitatively later.

8 Aren't Barrier Synchronisations Expensive?

How Are Their Costs Accounted for?

Barriers are often expensive on today's architectures. The

reasons can usually be traced back to naive implemen

tations based on, say, trees of pairwise synchronisations,

which are themselves expensive on most machines be

cause of poor implementations of semaphores and locks

[16]. There is nothing inherently expensive about barri

ers, and there are signs that future architecture develop

ments will make them much cheaper.

The cost of a barrier synchronisation comes in two

parts:

QUESTIONS AND ANSWERS ABOUT BSP 253

1. The cost caused by the variation in the completion

times of the computation steps that participate.

There is not much that an implementation can do

about this, but it does suggest that balance in the

computation parts of a superstep is a good thing.

2. The cost of reaching a globally-consistent state in

all of the processors. This depends, of course, on

the communication network, but also on whether

or not special-purpose hardware is available for

synchronizing, and on the way in which interrupts

are handled by processors.

For each architecture, the cost of a barrier synchroni

sation is captured by a parameter, l. The diameter of

the communication network, or at least the length of the

longest path that allows state to be moved from one pro

cessor to another clearly imposes a lower bound on l.

However, it is also affected by many other factors, so that,

in practice, an accurate value of l for each parallel archi

tecture is obtained empirically.

Notice that barriers, although potentially costly, have

a number of attractive features. They make it possible for

communication and synchronisation to be logically sepa

rated. Communication patterns can no longer accidentally

introduce circular state dependencies, so there is no pos

sibility of deadlock or livelock in a BSP program. This

makes software easier to build and to understand, and

completely avoids the complex debugging needed to find

state errors in traditional parallel programs. Barriers also

permit novel forms of fault tolerance.

9 How Do These Parameters Allow the Cost of

Programs to Be Determined?

The cost of a single superstep is the sum of three terms:

the (maximum) cost of the local computations on each

processor, the cost of the global communication of an h

relation, and the cost of the barrier synchronisation at the

end of the superstep. Thus the cost is given by

cost of a superstep = MAX w; + MAX h;g + l,
processes processes

where i ranges over processes, and w; is the time for the

local computation in process i. Often the maxima are as

sumed and BSP costs are expressed in the form w+hg+l.

The cost of an entire BSP program is just the sum of

the cost of each superstep. We call this the standard cost

model. At this point we emphasize that the standard cost

model is not simply a theoretical construct. It provides an

accurate model for the cost of real programs of all sizes,

across a wide range of real parallel computers. Hill et al.

[18] illustrates the use of the cost model to predict the

cost of a computational fluid dynamics code running on

254 SKILLICORN, HILL, AND McCOLL

one architecture when it is moved to another. In contrast,

[33] uses the cost model to compare the predicted and

actual speedup of an electromagnetics application.

To make this summation of costs meaningful, and to

allow comparisons between different parallel computers,

the parameters w, g, and l are expressed in terms of the

basic instruction execution rate, s, of the target architec

ture. Since this will only vary by a constant factor across

architectures, asymptotic complexities for programs are

often given unless the constant factors are critically im

portant. Note that we are assuming that the processors

are homogeneous, although it is not hard to avoid that as

sumption by expressing performance factors in any com

mon unit.

The existence of a cost model that is both tractable

and accurate makes it possible to truly design BSP pro

grams, that is to consciously and justifiably make choices

between different implementations of a specification. For

example, the cost model makes it clear that the follow

ing strategies should be used to write efficient BSP pro

grams:

1. balance the computation in each superstep

between processes, since w is a maximum over

computation times, and the barrier synchronisation

must wait for the slowest process;

2. balance the communication between processes,

since h is a maximum over fan-in and fan-out of

data; and

3. minimise the number of supersteps, since this

determines the number of times l appears in the

final cost.

The cost model also shows how to predict performance

across target architectures. The values of p, w, and h for

each superstep, and the number of supersteps can be de

termined by inspection of the program code, subject to

the usual limits on determining the cost of sequential pro

grams. Values of g and l can then be inserted into the cost

formula to estimate execution time before the program is

executed. The cost model can be used

1. as part of the design process for BSP programs;

2. to predict the performance of programs ported to

new parallel computers; and

3. to guide buying decisions for parallel computers if

the BSP program characteristics of typical

workloads are known.

Other cost models for BSP have been proposed, in

corporating finer detail. For example, communication and

computation could conceivably be overlapped, giving a

superstep cost of the form

max(w, hg) + l,

although this optimisation is not usually a good idea on

today's architectures [17, 32]. It is also sometimes argued

that the cost of an h-relation is limited by the time taken

to send h messages and then receive h messages, so that

the communication term should be of the form

All of these variations alter costs by no more than small

constant factors, so we will continue to use the standard

cost model in the interests of simplicity and clarity.

A more important omission from the standard cost

model is any restriction on the amount of memory re

quired at each processor. While the existing cost model

encourages balance in communication and limited barrier

synchronisation, it encourages profligate use of memory.

An extension to the cost model to bound the memory as

sociated with each processor is being investigated.

The cost model also makes it possible to use BSP to

design algorithms, not just programs. Here the goal is to

build solutions that are optimal with respect to total com

putation, total communication, and total number of su

persteps over the widest possible range of values of p.

Designing a particular program then becomes a matter

of choosing among known algorithms for those that are

optimal for the range of machine sizes envisaged for the

application.

For example two BSP algorithms for matrix multipli

cation have been developed. The first, a block paralleliza

tion of the standard n3 algorithm [26], has (asymptotic)

BSP complexity

Block MM cost= n3 1 p + (n 2 1 p 1
1
2
)g + p 1

12z,

requiring memory at each processor of size n2 I p. This is

optimal in computation time and memory requirement.
A more sophisticated algorithm (McColl and Valiant

[23]) has BSP complexity

Block and Broadcast MM cost = n3 1 p + (n 2 1 p2
13)g +l,

requiring memory at each processor of size n2 1 p 213
. This

is optimal in time, communication, and supersteps, but

requires more memory at each processor. Therefore the

choice between these two algorithms in an implementa

tion may well depend on the relationship between the size

of problem instances and the memory available on pro

cessors of the target architecture.

10 Is BSP a Programming Discipline, or a
Programming Language, or Something else?

BSP is a model of parallel computation. It is concerned

with high-level structure of computations. Therefore it

QUESTIONS AND ANSWERS ABOUT BSP 255

Table 1. Core BSP Operations

Class Operation Meaning

Initialisation bsp_ init Simulate dynamic processes

bsp_begin Start of SPMD code

bsp_end End of SPMD code

Enquiry bsp_pid Find my process id

bsp_nprocs Number of processes

bsp_ time Local time

Synchronisation bsp_sync Barrier synchronisation

DRMA bsp_pushregister Make region globally visible

bsp_popregister Remove global visibility

bsp_put Push to remote memory

bsp_get Pull from remote memory

BSMP bsp_set_tag_size Choose tag size

bsp_bsrnp_info

bsp_ send

bsp_get_tag

bsp_rnove

Halt bsp_abort

High Performance bsp_hpput

bsp_hpget

bsp_hprnove

does not prescribe the way in which local computations

are carried out, nor how communication actions are ex

pressed. All existing BSP languages are imperative, but

there is no intrinsic reason why this need be so.

BSP can be expressed in a wide variety of program

ming languages and systems. For example, BSP programs

could be written using existing communication libraries

such as PVM [9], MPI [27], or Cray's SHMEM. All that

is required is that they provide non-blocking communica

tion mechanisms and a way to implement barrier synchro

nisation. Indeed, experienced programmers may already

find themselves writing in a style reminiscent ofBSP pre

cisely to avoid the deadlock potential of the unrestricted

message passing style.

There are two advantages to explicitly adopting the

BSP framework. First, the values of g and l depend not

only on the hardware performance of the target architec

ture but also on the amount of software overhead required

to achieve the necessary behaviour. Systems not designed

with BSP in mind may not deliver good values of g and l.

Second, use of the cost model as a design tool can guide

software development and increase confidence that good

choices have been made.

The most common approach to BSP programming is

SPMD imperative programming using Fortran or C, with

BSP functionality provided by library calls. Two BSP li

braries have been in use for some years: the Oxford BSP

Number of packets in queue

Send to remote queue

Get tag of I st message

Fetch from queue

One process halts all

Unbuffered versions

of communication

primitives

Library [26] and the Green BSP Library [11, 12]. A stan

dard has recently been agreed for a library called BSPLib

[13]. BSPLib contains operations for delimiting super

steps, and two variants of communication, one based on

direct memory transfer, and the other on buffered mes

sage passmg.

Other BSP languages have been developed. These in

clude GPL [24] and Opal [21].

11 How Easy Is It to Program Using the BSPLib

Library?

The BSPLib library provides the operations shown in Ta

ble 1. There are operations to:

1. set up a BSP program;

2. discover properties of the environment in which

each process is executing;

3. communicate, either directly into or out of a

remote memory, or using a message queue;

4. participate in a barrier synchronisation;

5. abort a computation from anywhere inside it; and

6. communicate in a high-performance unbuffered

mode.

256 SKILL! CORN, HILL, AND McCOLL

The BSPLib library is freely available in both Fortran

and C from http: I IWW"N. bsp-wor ldwide. org I

implmnts I oxtool. htm. A more complete descrip

tion of the library can be found in Appendix A.

Another higher-level library provides specialised col

lective-communication operations. These are not consid

ered as part of the core library, but they can be easily re

alised in terms of the core. These include operations for

broadcast, scatter, gather, and total exchange.

12 In what Application Domains Has BSP Been

Used?

BSP has been used in a number of application areas, pri

marily in scientific computing. Much of this work has

been done as part of contracts involving Oxford Parallel

(http: I IWW"N. comlab. ox. ac. ukl oxpara/).

Computational fluid dynamics applications of BSP in

clude:

(a) an implementation of a BSP version of the OPlus

library for solving 3D multigrid viscous flows,

used for computation of flows around aircraft or

complex parts of aircraft in a project with Rolls

Royce [6];

(b) a BSP version of FLOW3D, a computational fluid

dynamics code;

(c) oil reservoir modelling in the presence of

discontinuities and anisotropies in a project with

Schlumberger Geoquest Ltd.

Computational electromagnetics applications of BSP

[30] include:

(a) 3D modelling of electromagnetic interactions with

complex bodies using unstructured 3D meshes, in

a project with British Aerospace;

(b) parallelisation of the TOSCA, SCALA, and

ELEKTRA codes, and demonstrations on

problems such as design of electric motors and

permanent magnets for MRI imaging;

(c) a parallel implementation of a time domain

electromagnetic code ParEMC3d with absorbing

boundary conditions;

(d) parallelisation of the EMMA-T2 code for

calculating electromagnetic properties of

microstrips, wires and cables, and antennae [33].

BSP has been used to parallelise the MERLIN code

in a project with Lloyds Register of Shipping and Ford

Motor Company. It has been applied to plasma simulation

at Rensselaer Polytechnic Institute in New York [31]. It

is being used to build neural network systems for data

mining at Queen's University in Kingston, Canada.

13 What Do BSP Programs Look Like?

Most BSP programs for real problems are large and it

is impractical to include their source here. Instead we

include some small example programs to show how the

BSPLib interface can be used. We illustrate some differ

ent possibilities using the standard parallel prefix or scan

operation: given xo, ... , Xp-1 (with Xi stored on process

i), compute xo + · · · +Xi on each process i.

All Sums: Version 1

The function bsp_allsumsl calculates the partial

sums of p integers stored on p processors. The algorithm

uses the logarithmic technique that performs !log p l su

persteps, such that during the kth superstep, the processes

in the range 2k-i ::;; i < p each combine their local par

tial sums with process i - 2k-l. Figure 2 shows the steps

involved in summing the values bsp_pid () +1 using 4

processors.

int bsp_allsumsl(int x) {

int i, left, right;

bsp_pushregister(&left,sizeof(int));

bsp_sync();

right = x;

for(i=l;i<bsp_nprocs();i*=2)

if (bsp_pid()+i < bsp_nprocs())

bsp_put(bsp_pid()+i,&right,&left,

O,sizeof(int));

bsp_sync();

if (bsp_pid()>=i)right=left+right;

bsp_popregister(&left);

return right;

A process called registration is used to enable refer

ences to a data structure on one processor to be correctly

mapped to locations on other processors. BSPLib does

not assume that processors are homogeneous. In any case,

heap-allocated data structures need not have the same ad

dresses on different processors, so some mechanism for

associating names to addresses is required. The procedure

FIGURE 2 All sums using the logarithmic technique.

bsp_pushregister allows all processors to declare

that the variable left is willing to have data put into it

by a DRMA operation.
When

bsp_put(bsp_pid()+i,&right,&left,

O,sizeof(int))

is executed on process bsp_pid (), then a single in

teger right is copied into the memory of processor

bsp_pid () +i at the address &left+O.

The cost of the algorithm is llog p l (1 + g + /) + l as
there are llog p l + 1 supersteps (including one for reg

istration); during each superstep a local addition is per

formed (which costs 1 flop), and at most one message of

size 1 word enters and exits each process.

All Sums: Version 2

An alternative implementation of the prefix sums func

tion can be achieved in a single superstep by using a tem

porary data structure containing up to p integers. Each

process i puts the data to be summed into the ith element

of the temporary array on processes j (where 0 ~ j ~ i).
After all communications have been completed, a local

sum is then performed on the accumulated data. The cost

of the algorithm is p + p g + 2!.

int bsp_allsums2(int x)

inti, result,*array =

calloc(bsp_nprocs() ,sizeof(int));

if (array==NULL)

bsp_abort("Unable to allocate %d
element array",bsp_nprocs(});

bsp_pushregister(array,bsp_nprocs()

*sizeof(int));
bsp_sync();

for(i=bsp_pid() ;i<bsp_nprocs();i++)

bsp_put(i,&x,array,bsp_pid()

*sizeof(int) ,sizeof(int));
bsp_sync();

result = array[O];

for(i=1;i<=bsp_pid() ;i++)

result += array[i];
free (array);

bsp_popregister(array);

return result;

The first algorithm performs a logarithmic number of

additions and supersteps, while the second algorithm per

forms a linear number of additions but a constant number
of supersteps. If the operation being performed at each

iteration of the algorithm were changed from addition to

another, more costly, associative operator, then BSP cost

analysis provides a simple mechanism for determining

which is the better implementation.

QUESTIONS AND ANSWERS ABOUT BSP 257

All Sums on an Array

Either of the routines defined above can be used to sum

n values held in nl p blocks distributed among p proces

sors. The algorithm proceeds in four phases:

1. The running sum of each nIp block of integers is

computed locally on each processor.

2. As the last element of each nl p block contains the

sum of each (nIp)-element segment, then either of

the two simple algorithms can be used to calculate

the running sums of the last element in each block

(call this last).

3. Each processor gets the value of last from its

left neighbouring processor (we call this

lefts_last).

4. Adding lefts_last to each of the

locally-summed nl p elements produces the

desired effect of the running sums of all n

elements.

void bsp_allsums(int*array,

int n_over_p)

int i, last, lefts_last;

bsp_pushregister(&last,sizeof(int));

for (i=1;i<n_over_p;i++)

array[i] += array[i-1];

last = bsp_allsums2

(array[n_over_p-1]);

if (bsp_pid()==O) lefts_last=O;

else
bsp_get(bsp_pid()-1,&last,O,

&lefts_last,sizeof(int));

bsp_sync();

for(i=O;i<n_over_p;i++)

array[i] += lefts_last;

bsp_popregister(&last);

void main() {

int i,j,n_over_p,*xs;

bsp_begin(bsp_nprocs());

n_over_p = 100;

xs = calloc(n_over_p,sizeof(int));

for (i=O;i<n_over_p;i++) xs[i]=1;

bsp_allsums(xs,n_over_p);

for(i=O;i<bsp_nprocs() ;i++)

if (bsp_pid()==i) {

printsf("On process %d: "

258 SKILLICORN, HILL, AND McCOLL

bsp_pid ()) ;

for(j=O;j<n_over_p;j++)

printf("%d ",xs[j]);

printf("\n");

fflush(stdout);

bsp_sync();

}

bsp_end();

14 What Are Typical Values of g and I for

Common Parallel Computers?

Values of the BSP cost model parameters are shown in

Table 2. The values of the g and l parameters are nor

malised by the instruction rate, s, of each processor (to aid

comparisons between machines, raw rates are also given

in microseconds). Because this instruction rate depends

heavily upon the kind of computations being done, the

average of two different measured values are used:

Ls J measures the cost of an inner product, where O(n)

operations are performed on a data structure of

size n. The value of n is chosen to be far greater

than the cache size on each processor. This bench

mark therefore gives a lower-bound megaflop rate

for the processor as each arithmetic operation in

duces a cache miss.

Is l measures the cost of a dense matrix multiplication,

where O(n3) operations are performed on a data

structures of size n2
. Because a large percentage of

the computation can be kept in cache, this bench

mark gives an upper-bound megaflop rate for the

processor.

As we have already mentioned, good BSP algorithm

design is often based around balanced patterns of com

munication. We illustrate the communication capacity, g,

using two balanced communications. The first is a par

ticularly easy !-relation, a local communication that per

forms a cyclic shift of data between neighbouring proces

sors. This benchmark provides an upper-bound rate for

communication as there are only p messages injected into

the communication network during a superstep.

Parallel computers have far greater difficulty in achiev

ing scalable communication for patterns of communica

tion that move lots of data to many destinations. As an

extreme example, we consider the total exchange global

communication that injects p 2 messages into the network

and realises a p-relation. As no scalable architecture can

provide p 2 dedicated wires because it is too expensive,

sparser interconnection networks are used in practice. For

example, the Cray T3D uses a 3D Torus, while the IBM

SP2 uses a hierarchy of 8-node fully-connected crossbar

switches. The value of g for a total exchange therefore

provides a good measure of the lower-bound rate of com

munication of an architecture.

Not very surprisingly, the two values of g, derived di

rectly from a !-relation, and from the pg cost of a p

relation total exchange can be quite different. This might

mean that the !-relation performance of the network is

not very good (for example, a ring takes time proportional

top to deliver both a !-relation and a p-relation), but usu

ally means that the network's effective capacity is not as

large as the per-link bandwidth would suggest. When cost

modelling algorithms, it is advisable to use the value of g

produced by the global communication (total exchange)

benchmark.

Appendix B shows how these figures were obtained.

The meaning of n 112 is explained in Section 16.

15 How Can the BSPLib Be Implemented

Efficiently on Today's Architectures?

The semantics of supersteps separates local computation

from communication, and the Oxford implementation of

BSPLib keeps these two phases separate in the imple

mentation also. Thus while the semantics of calls to put

and get permits them to begin executing concurrently

with the local process's computation, calls to these func

tions in fact buffer the data for later transfer. Not over

lapping computation and communication contradicts con

ventional wisdom, but it turns out that the performance

advantages of postponing communication are larger than

of exploiting the potential overlap [17].

We begin by noting that overlapping computation and

communication can give at best a factor of two perfor

mance improvement, and then only when the computa

tion and communication times are precisely equal. This

equality is neither a scalable nor portable property, so we

must expect an appropriate balance to be quite rare. Thus

the performance improvement factor due to overlapping

is likely to be much less than two in practice.

On the other hand, postponing communication is a big

performance win because it permits two major optimisa

tions:

1. Combining all of the transfers between a pair of

processors into a single messages, so that the

overhead of message startup is paid only once.

The benefits of doing this are discussed in the next

section.

2. Reordering communications so that the load they

generate is applied to the communication network

effectively, rather than in the order in which the

QUESTIONS AND ANSWERS ABOUT BSP 259

Table 2. BSP Machine Parameters

computation barrier local comm. global comm.

LsJ lsl s p g g/s f? R/S n 1/2

Machine Mflops flops /LS flop/word tLS!word flop/word tLS!word words

SGI PowerChallenge 53 94 74 226 3.1 0.5 0.007 0.5 0.007 80

2 1132 15.3 9.8 0.13 10.2 0.14 12

3 1496 20.2 8.9 0.12 9.5 0.13 12

4 1902 25.7 9.8 0.13 9.3 0.13 12

Cray T3E 4.3 89.2 46.7 86 1.8 2.12 0.05 2.14 0.05 9

2 269 5.7 0.87 0.02 2.61 0.07 33

3 296 6.3 0.86 0.02 2.11 0.04 35

4 357 7.6 0.87 0.02 1.77 0.04 40

8 506 10.8 0.81 0.02 1.64 0.03 40

9 552 11.7 0.82 0.02 1.57 0.03 42

16 751 16.0 1.04 0.02 1.66 0.04 38

20 880 18.7 0.96 0.02 1.63 0.03 38

24 1013 21.6 1.39 0.03 1.70 0.04 36

Cray T3D 5 19 12 68 5.6 0.3 0.02 0.3 0.02 94

2 164 13.5 0.7 0.06 1.0 0.08 71

4 168 13.9 0.7 0.06 0.8 0.65 66

8 175 14.4 0.8 0.07 0.8 0.65 59

9 383 31.7 0.9 0.07 1.2 0.10 39

16 181 14.9 0.9 0.07 1.0 0.08 61

25 486 40.2 1.1 0.09 1.5 0.13 26

32 201 16.6 1.1 0.09 1.4 0.12 28

64 148 12.3 1.0 0.09 1.7 0.14 27

128 301 24.9 1.1 0.09 1.8 0.15 20

256 387 32.1 1.2 0.11 2.4 0.19 15

IBM SP2 (switch) 25 27 26 1 244 9.4 1.3 0.05 1.3 0.05 7

2 1903 73.2 6.3 0.24 7.8 0.30 6

4 3583 137.8 6.4 0.25 8.0 0.31 7

8 5412 208.2 6.9 0.27 11.4 0.43 6

Multiprocessor Sun 3.8 16.4 10.1 1 24 2.4 0.4 0.04 0.4 0.04 7

2 54 5.3 3.0 0.29 3.4 0.34 7

3 74 7.4 2.9 0.29 4.1 0.41 8

4 118 11.7 3.3 0.32 4.1 0.41 11

Parsytec GC 19.3 98 5.1 1.0 0.05 1.0 0.05 16

2 6309 325 109 5.6 113 5.9 3

4 23538 1219 190 9.9 143 7.4 3

8 29080 1506 252 13.1 254 13.2 3

16 224977 11600 253 13.1 342 17.7 3

32 130527 6700 272 14.1 658 34.1 3

IBM SP2 (ethernet) 25 27 26 I 241 9.3 1.3 0.05 1.3 0.05 8

2 18759 721.5 182.1 7.0 183.6 7.1 3

4 39025 1500.9 388.2 14.9 628.2 24.2 5

8 88795 3415.2 1246.6 47.3 1224.1 47.1 2

(1) All values for g are for communications of 32-bit words; (2) benchmarks were performed at the- 03 optimisation level; (3) the

Cray T3D, SGI PowerChallenge, IBM SP2, and Parsytec GC used native implementations of the toolset; (4) the toolset used on the

multiprocessor Sun was built using generic System V shared-memory facilities

260 SKILLICORN, HILL, AND McCOLL

particular puts and gets appears in the

program. Patterns guaranteed to avoid congestion

can be set up in software, rather than requiring

expensive hardware solutions operating during the

data transfers.

These results are counter-intuitive, since they appear to

increase congestion in the network that could be avoided

by allowing some messages to begin transmission early.

This effect is undoubtedly present, but it it dwarfed by

the size of the improvements which postponement makes

possible. Reordering communication, for example, gives

performance improvements of a factor between about 2

and p, while combining multiple transfers into single

messages can give improvements of several orders of

magnitude. One reason why this tradeoff has not been

noted previously is that message-passing interfaces that

operate at the level of single messages cannot naturally

conceive of postponing transmission since there is no

clear moment to postpone transmission to.

The performance gains of delaying communication are

so large that even.,the high-performance versions of the

put and get operations, which are designed so that

computation and communication can be overlapped with

out buffering, postpone transmissions until the end of the

computation phase of each superstep. Congestion within

the network is much less important, in practice, than con

gestion at the network boundaries. A processor that si

multaneously receives messages from several other pro

cessors has no choice but to sequentialise their removal

from the network.

Regardless of the type of parallel architecture, the abil

ity to reorder messages before transmission is crucial

to creating a consistent bulk-communication behaviour

without increasing the value of g. Two mechanisms used

are:

1. randomly ordering the messages to reduce the

likelihood of troublesome patterns, and

2. using a latin square to schedule transmissions in a

guaranteed contention-free way.

Which of these mechanisms is to be preferred is architec

ture-dependent.

Recall that a latin square is a p x p square in which

each of the values from 1 to p appears p times, with no

repetition in any row or column. Such a square can be

used as a schedule for the routing of the h-relation, using

row i as the schedule for processor i, with the contents of

the row regarded as the destinations for each communi

cation iime step.

The use of such mechanisms has a major effect on

performance. For example, consider a total exchange al

gorithm shown in Figure 3 where each processor i has

xo xo

Xt Xt

X2 X2

xa xa

FIGURE3

xo xo

Xt Xt

X2 X2

xa xa

Before

communication

After

communication

Total exchange between four processors.

data x; of size n that is to be exchanged with every other

processor. After the communication, each processor will

contain a data structure of size np containing all of the

xi, where 1 ~ j < p. The BSP cost of the algorithm

is png + l because p messages enter and exit each pro

cessor. However, a naive implementation may have each

processor send a message to processor 0 on the first time

step, to processor 1 on the second, and so on. This causes

p messages to contend at process 0, then p to contend at

process 1, and so on. The cost of this communication will

be 0(p2
) rather than the linear cost predicted by the BSP

cost formula png + l. An alternative ordering that does

not cause contention is for processors to send their data

in the order mod(i + j, p); where 1 ~ j < p, and i is

the processor identifier, using a simple latin square. The

expected linear (in p) cost can then be achieved.

Table 3 shows the results of an implementation that

routes total exchanges. Column 1 shows the performance

of a system in which messages are despatched as soon

as the puts are encountered, and in which the or

der of the puts causes contention. The second col

umn shows the performance when messages are immedi

ately despatched, but the programmer has carefully hand

crafted the order of puts to minimise contention. The

third and fourth columns show the performance when

both of these programs are run with puts postponed

until the end of the superstep and reordered by the run

time system using a latin square. The performance is

very slightly worse than the best hand-coded program,

because of the overhead of the runtime system manag

ing the reordering. Far more importantly, the effect of the

programmer's ordering of the puts has been completely

removed. In other words, reordering provides consistent

performance over varying orderings of the data transfer

instructions, at the expense of a very small decrease in

best case performance. Note also that reordering provides

almost a factor of two performance improvement, enough

by itself to make up for any performance loss caused by

not overlapping computation and communication.

The precise details of handling communication and

building barriers differs depending on the specifics of tar

get architectures:

Table 3. The Effects of Node Contention on the Cray
T3D. Entries in the table are in seconds for routing a
4,000,000-relation, e.g., for 128 processors, 15625 integers
per process

immediate transmission BSPLib reordering

Procs contention latin square contention latin square

2 .168 .157 .157 .157
4 .392 .194 .191 .191
8 .461 .239 .228 .229

16 .598 .289 .344 .345
32 .784 .413 .465 .456
64 .903 .529 .548 .546

128 .961 .575 .599 .599

Distributed-memory machines with remote-mem

ory access (Gray T3D and Gray T3E). A barrier syn

chronisation is performed to ensure that each process has

finished its local computation. Once all the processors

have passed the barrier, one-sided memory accesses are

used to route messages into the memories of the remote

processors. Combining is not used, because there is little

to be gained when the actual data transfer mechanism is

DRMA. The communication phase of a superstep is com

pleted by performing a further barrier synchronisation.

Distributed-memory machines with message

passing (IBM SP2, Parsytec GC, Generic TCP/IP).

On architectures that provide native non-blocking send

and blocking receive message-passing primitives, the h

relation is routed through the communication network in

three phases:

1. a total exchange is performed, exchanging

information about the number, sizes, and

destination addresses of messages. This total

exchange is considered to be the barrier

synchronisation for the superstep.

2. gets are translated into puts and the data they

refer to is buffered at the source processor.

3. after the total exchange, each processor knows

how many messages, from every other process, it

is expecting. Each process therefore knows when

the communication phase of the superstep is

complete by counting the incoming messages.

Communication is performed by interleaving the

outgoing and incoming messages, so that

minimum buffering requirements are placed on the

underlying message-passing system.

QUESTIONS AND ANSWERS ABOUT BSP 261

Shared-memory architectures (SGI Power Chal

lenge, Sun). The implementation on shared-memory ar

chitectures combines features from both of the implemen

tations above. The information about the number and size

of messages to be sent between each processor pair is

constructed in a region of shared memory by each call to

put and get. After the computation phase, a barrier syn

chronisation takes place to ensure that this information

is frozen. Because the message information is in shared

memory, an implicit total exchange can be considered to

have occurred at this point. The actual exchange of data

is performed in a message-passing style. First messages

are copied into buffers associated with each process in

shared memory. These buffers are then inspected by the

remote process, and their contents copied into the remote

processor's memories. Using a contention-limiting order

for messages, the number of message passing buffers as

sociated with each process can be minimised. Finally, the

message information region is cleared and a further bar

rier synchronisation takes place to allow renewed access

to it.

16 How Much Effect Does Message Size Have

on the Value of g?

As we have already seen, the way in which BSPLib de

lays communication until the end of each superstep and

then combines messages into the largest possible units re

duces the importance of message size. The cost model

makes no distinction between the cost of a process send

ing h messages of size one or a single message of size h;

both communications have an h-relation cost of hg. How

ever, a superstep in which very little total communication

occurs may still deviate from the cost model because of

the effects of startup costs for message transmission.

Miller refined the standard cost model [29] using a

technique of Hockney [20] to model the effect of message

granularity on communication cost. In the refined model,

g is defined as a function of the message size x:

g(x) = c;2
+ 1)goo, (1)

where g00 is the asymptotic communication cost for very

large messages (that is, the g reported in Table 2) and

n 1/2 is the size of message that produces half the optimal

bandwidth of the machine so g(n1;2) = 2goo.

The value of n1;2 in Equation (1) is determined ex

perimentally for each machine configuration by fitting a

curve to actual values of g(x). Figure 4 shows the actual

values of g(x) on an 8-processor IBM SP2. Because mes

sages are combined in each superstep, the value of n 112 is

effectively reduced to 6 words. For comparison purposes,

the effect of naively communicating messages separately

262 SKILLICORN, HILL, AND McCOLL

60rr------.------~-----.-------r----~

50

40

g(z) 30

20

Actual cost of single-word messages <>
Actual cost of combined messages +

Theoretical model of eqn. {1). u~ = 7.8; n112 =202 -
Theoretical model of eqn. (1). u~ = 9.2; n112 =6 · · · •

10 ~-~-. + ~.,..,..,..~--'1>----~ a........., .. _,_ -~· ..

0~----~------~----~~----~----~

0 500 1000 1500 2000 2500
message size in words

FIGURE 4 Fitting experimental values of g(x) flops/word to
Equation (I) using an 8-processor IBM SP2 with switch com
munication. The messages are communicated using one-sided
put communication where a process puts data into another pro
cessor's memory. The top curve represents single-word mes
sages and the bottom curve uses a message-combining scheme.

is shown by the data points labeled "actual cost of single

word messages" in the figure. Fitting a curve to this data

gives n 112 = 202 words.

The n 112 parameter can be used to discover the min

imum message size for which the standard cost model

is within a given percentage of the more-detailed cost

model. For the standard model to be within y% accuracy

of the cost attributed by the model that includes message

granularity, then:

(

100
+ y)hog00 = hog(ho) = (n

112 + l)hogoo, (2)
100 ho

where ho words is Valiant's parameter [36] that measures

the minimum size of h-relation to achieve n 112 through

put. Thus the percentage error in the communication cost

hogoo is

(
lOOn1;2)

y= %.
ho

(3)

So on the IBM SP2 with switch communication the error

in the standard BSP model for communicating ho = 60

32-bit words is 10%. Moreover, as would be expected, as

the size of h-relation increases, the error in the standard

BSP model decreases.

These data show that combining the messages sent be

tween each pair of processors has a significant effect on

the achieved value of g, and so provides further justifi

cation for not overlapping computation and communica

tion.

17 What Tools Are Available to Help with

Building and Tuning BSP Programs?

The intensional properties of a parallel program (i.e., how

it computes a result) can often be hard to understand. The

BSP model goes some way towards alleviating this prob

lem if cost analysis is used to guide program develop

ment. Unfortunately, in large-scale problems, cost anal

ysis is rarely used at the time of program development.

The role of current BSP tools [18] is to aid programmers

in understanding the intensional properties of their pro

grams by graphically providing profiling and cost infor

mation. The tools may be used both to analyse the com

munication properties of a program, and to analyse the

predicted performance of the code on a real machine.

A central problem with any parallel-profiling systems

is effective visualisation of large amounts of profiling

data. In contrast to conventional parallel-profiling tools,

which highlight the patterns of communication between

individual sender-receiver pairs in a message passing sys

tem, the BSP approach significantly simplifies visualisa

tion because all of the communications from a superstep

can be visualised as a single monolithic unit.

Figure 5 is an example of the results from a BSP profil

ing tool running on the IBM SP2. It shows a communica

tion profile for the parallel prefix algorithm (with n > p)

developed on page 260.

The top and bottom graphs in Figure 5 show, on the

y-axis, the volume of data moved, and on the x -axis, the

elapsed time. Each pair of vertically-aligned bars in the

two graphs represents the total communication during a

superstep. The upper bars represent the output from pro

cessors, and the lower bars the input. Within each com

munication bar is a series of bands. The height of each

band represents the amount of data communicated by a

particular process, identified by the band's shade. The

sum of all the bands (the height of the bar) represents the

total amount of communication during a superstep. The

width represents the elapsed time spent in both communi

cation and barrier synchronisation. The label found at the

lop left-hand corner of each bar can be used in conjunc

tion with the legend in the right of the graph to identify

the end of each superstep (i.e., the call to bsp_sync) in

the user's code. The white space in the figure represents

the computation time of each superstep.

In Figure 5, the start and end of the running sums

is identified by the points labelled 0 and 4. The white

space in the graphs between supersteps 0 and 1 shows

the computation of the running sums executed locally

in each process on a block of size njp. The first su

perstep, which is hidden by the label 1 at this scale,

shows the synchronisation that arises due to registration

in the function bsp_allsums 1. The three successively

smaller bars represent the logarithmic number of commu

nication phases of the parallel prefix technique. Contrast-

QUESTIONS AND ANSWERS ABOUT BSP 263

D-·

·-·

FIGURE 5 All sums of 32,000 elements using the logarithmic technique on an 8-processor IBM SP2.

GJ-·

lilll-· ·-· ·-· ·-·
~-· ·-·

FIGURE 6 All sums of 32,000 e lements using total exchange on an 8-processor IBM SP2.

ing the sizes o f the communicatio n bars in Figure 5 with

the schematic diagram of Figure 2 graphically shows the

diminishing numbers of processors involved in communi

cation as the parallel prefix algorithm proceeds. Contrast

ing this method of running sums with the total-exchange

based algorithm in Figure 6 shows that although the num

ber of synchronisations within the algorithm is reduced

from flog p 1 to l , the time spent in the total exchange of

bsp_a llsurns2 is approximately the same as the algo-

rithm based upon the logarithmic technique. This is due to

the larger amount of data transferred, i.e., 1.51 millisec

onds spent in summing p values in p processes using the

parallel prefix technique, compared to 1.42 mill iseconds

when the total exchange is used.

Figures 7 and 8 show pro fi les of the same two algo

rithms running on a 32-processor Cray TID, with the

same data-set size as the IBM SP2. Although the T3D has

a lower value for the barrier synchronisation latency than

264 SKILLICORN, HILL, AND McCOLL

c- · 121-·
m- · s --
a- •-· ·- ·-· •-· rn-·
ES- !:!--

1.70 "" 110 -GI- HI-·

2.'71 1 11 t.• .t.OI ,....._....

·-· ·-· ·- ·-· •- rn-·
0 -·lil--

l!bl-· ·-·
19-· ·--

ID-· ·--
11-· o--
o-· GJ--

FIGURE 7 All sums of 32,000 elements using the logarithmic technique on a 32-processor Cray T3D.

o-· Ell-·
o- , s-·
·-II-· ·- ·-· •-· rn-·
ts- m--

-Gt-·11-·

·-· ·--·- ·--
·- E!l-·
0-· Iii-·

a-·•
fB-· ·-·
ID-· ·--
11-· o-·
0 -· Q--

FIGURE 8 All sums of 32,000 elements using a total exchange on a 32-processor Cray TID.

the IBM SP2 (see Table 2), reducing the number of super

steps from rtog 321 = 6 supersteps to l has a marked ef

fect on the efficiency. The version bsp_allsumsl (i.e.,

logarithmic) takes 1.39 milliseconds compared to 0.91

milliseconds for bsp_allsums2 (i.e., total exchange).

These data show that, for today's parallel computers,

it is often better to reduce the number of supersteps, even

at the expense of requiring more communication.

18 How Does BSPLib Compare with Other
Communication Systems such as PVM or MPI?

In recent years, the PVM message-passing library [l ,

2, I 0] has been widely implemented and widely used.

In that respect, the goal of source code portabiljty in

parallel computing has already been achieved by PVM.

What then, are the advantages of BSP programming, if

any, over a message-passing framework such as PVM?

First, PVM and all other message-passing systems based

on pairwise, rather than barrier, synchronisation have no

simple analytic cost model for performance prediction,

and no simple means of examining the global state of a

computation for debugging. Second, taking a global view

of communication introduces opportunities for optimisa

tion that can improve performance substantially [17] and

these are inaccessible to systems such as PVM.

MPI [14] has been proposed as a new standard for

those who want to write portable message-passing pro

grams in Fortran and C. At the level of point-to-point

communications (send, receive etc.), MPI is similar to

PVM, and the same comparisons apply. The MPI stan

dard is very general and is very complex relative to the

BSP model. However, one could use some carefully

chosen combination of the various non-blocking com

munication primitives available in MPI, together with

its barrier synchronisation primitive, to produce an MPI

based BSP programming model. At the higher level of

collective communications, MPI provides support for

various specialised communication patterns which arise

frequently in message-passing programs. These include

broadcast, scatter, gather, total exchange, reduction, and

scan. These standard communication patterns are also

provided for BSP in a higher-level library. There have

been two comparisons of the performance of BSP and

MPI. One by Szymanski on a network of worksta

tions [31] showed performance differences of the order

of a few percent. Another by Hyaric (http: I /merry.

comlab.ox.ac.uk/users/hyaric/doc/BSP/

NASfromMPitoBSP) used the NAS benchmarks. BSP

outperformed MPI on four out of five of these, perform

ing ten percent better in some cases. Only on LU did BSP

perform about five percent worse.

Compared to PVM and MPI, the BSP approach offers

(a) a simple programming discipline (based on

supersteps) that makes it easier to determine the

correctness of programs;

(b) a cost model for performance analysis and

prediction which is simpler and compositional;

and

(c) more efficient implementations on many

machines.

19 How Is BSP Related to the LogP Model?

LogP [7] differs from BSP in three ways:

I. It uses a form of message passing based on

pairwise synchronisation.

QUESTIONS AND ANSWERS ABOUT BSP 265

2. It adds an extra parameter representing the

overhead involved in sending a message. This has

the same general purpose as then 112 parameter in

BSP, except that it applies to every

communication, whereas the BSP parameter can

be ignored except for a few unusual programs.

3. It defines gin local terms. The g parameter in BSP

is regarded as capturing the throughput of an

architecture when every processor inserts a

message (to a uniformly-distributed address) on

every step. It takes no account of the actual

capacity of the network, and does not distinguish

between delays in the network itself and those

caused by inability to actually enter the network

(blocking back at the sending processor). In

contrast, LogP regards the network as having finite

capacity, and therefore treats g as the minimal

permissible gap between message sends from a

single process. This amounts to the same thing in

the end, that is g in both cases is the reciprocal of

the available per-processor network bandwidth,

but BSP takes a global view of the meaning of g,

while LogP takes a more local view.

Experience in developing software using the LogP model

has shown that, to analyse the correctness and efficiency

of LogP programs, it is often necessary, or at least con

venient, to use barriers. Also, major improvements in

network hardware and in communications software have

greatly reduced the overhead associated with sending

messages. In early multiprocessors, this overhead could

be substantial, since a single processor handled both the

application and its communication. Manufacturers have

learned that this is a bad idea, and most newer multi

processors provide either a dedicated processor to han

dle message traffic at each node or direct remote-memory

access. In this new scenario, the only overhead for the ap

plication processor in sending or receiving a message is

the time to move it from user address space to a system

buffer. This is likely to be small and relatively machine

independent, and may even disappear as communication

processors gain access to user address space directly. The

importance of the overhead parameter in the long term

seems negligible.

Given that

LogP +barriers- overhead= BSP,

the above points would suggest that the LogP model does

not improve upon BSP in any significant way. However, it

is natural to ask whether or not the more "flexible" LogP

model enables a designer to produce a more efficient al

gorithm or program for some particular problem, at the

expense of a more complex style of programming. Recent

266 SKILLICORN, HILL, AND McCOLL

results show that this is not the case. In [3] it is shown that

the BSP and LogP models can efficiently emulate one an

other, and that there is therefore no loss of performance

in using the more-structured BSP programming style.

20 How Is BSP Related to the PRAM Model?

The BSP model can be regarded as a generalisation of

the PRAM model which permits the frequency of barrier

synchronisation, and hence the demands on the routing

network, to be controlled. If a BSP architecture has a very

small value of g, e.g., g = 1, then it can be regarded as a

PRAM and we can use hashing to automatically achieve

efficient memory management. The value of l determines

the degree of parallel slackness required to achieve opti

mal efficiency. The case l = g = 1 corresponds to the

idealised PRAM, where no parallel slackness is required.

21 How Is BSP Related to Data

Parallelism?

Data parallelism is an important niche within the field

of scalable parallel computing. A number of interesting

programming languages and elegant theories have been

developed in support of the data-parallel style of pro

gramming, see, e.g., [34]. High Performance Fortran [22]

is a good example of a practical data-parallel language.

Data parallelism is particularly appropriate for problems

in which locality is crucial.

The BSP approach, in principle, offers a more flexi

ble and general style of programming than is provided by

data parallelism. However, the current SPMD language

implemented by BSPLib is very much like a large-grain

data parallel language, in which locality is not considered

and programmers have a great deal of control over parti

tioning of functionality. In any case, the two approaches

are not incompatible in any fundamental way. For some

applications, the flexibility provided by the BSP approach

may not be required and the more limited data-parallel

style may offer a more attractive and productive setting

for parallel software development, since it frees the pro

grammer from having to provide an explicit specification

of the various processor scheduling, communication and

memory management aspects of the parallel computation.

In such a situation, the BSP cost model can still play an

important role in terms of providing an analytic frame

work for performance prediction of the data-parallel pro

gram.

22 Can BSP Handle Synchronisation among a

Subset of the Processes?

Synchronising a subset of executing processes is a com

plex issue because the ability of an architecture to syn

chronise is not a bulk property in the same sense that

its processing power and communication resources are.

Certain architecture provide a special hardware mecha

nism for barrier synchronisation across all of the pro

cessors. For example the Cray T3D provides an add

and-broadcast tree, and work at Purdue [8] has created

generic, fast, and cheap barrier synchronisation hardware

for a wide range of architectures. Sharing this single syn

chronisation resource among several concurrent subsets

that may wish to use it at any time seems difficult. We are

currently exploring this issue, but the current version of

the library synchronises only across the entire machine.

Architectures in which barrier synchronisation is im

plemented in software do not have any difficulty in im

plementing barriers for subsets of the processors. The re

maining difficulty here is a language design one- it is not

yet clear what an MIMD, subset-synchronising language

should be like if it is to retain the characteristics of BSP,

such as accurate predictability.

23 Can BSP be Used on Vector, Pipelined, or

VLIW Architectures?

Nothing about BSP presupposes how the sequential parts

of the computation, that is the processes within each pro

cessor, are computed. Thus architectures in which the

processor uses a specialised technique to improve perfor

mance might make it harder to determine the value of w

for a particular program, but they do not otherwise af

fect the BSP operation or cost modelling. The purpose of

normalising g with respect to processor speed is to en

able terms of the form hg to be compared to computation

times so that the balance between computation and com

munication in a program is obvious. Architectures that

issue multiple instructions per cycle might require a more

sophisticated normalisation to keep these quantities com

parable in useful ways.

24 BSP Doesn't Seem to Model Either

Input/Output or Memory Hierarchy?

Both properties can be modelled as part of the cost of ex

ecuting the computation part of a superstep. Modelling

the latency of deep storage hierarchies fits naturally into

BSP's approach to the latency of communication, and in

vestigations of extensions to the BSP cost model applica

ble to databases are underway [35].

25 Does BSP Have a Formal Semantics?

Several formal semantics for BSP have been developed.

He eta!. [15] show how these may be used to give alge

braic laws for developing BSP programs. BSP is used as
a semantics case study in a forthcoming book [19].

26 Will BSP Influence the Design of
Architectures for the Next Generation of Parallel

Computers?

The contribution of BSP to architecture design is that it

clarifies those f<Jctors that are most important for perfor

mance on problems without locality. It suggests that the

critical properties of an architecture are:

I. high permeability of the communication system,

that is the ability to move arbitrary patterns of data

quickly; and
2. the ability to reach a consistent global state

quickly by barrier synchronisation.

More subtly, it also suggests that predictability of deliv

ery for a wide range of communication patterns is more

important than high performance for some special com

munication patterns, and low performance for others. In
other words, low variance is more significant than low

mean.
The two parameters l and g capture, in a direct way,

how well an architecture achieves these two major per

formance properties. Details of exactly which topology to

use, what routing technology, and what congestion con

trol scheme are all subsumed in the single consideration

of total throughput.
When the BSP model was first considered, it was of

ten felt to be necessarily inefficient because of its use of

permutation routing. After a while, it came to be appreci

ated that permutation routing is not necessarily expensive,

and architectures that do it well were developed. Next the

BSP model was considered inefficient because of its re

quirement for barrier synchronisation. It is now under

stood that barriers need not be expensive, and architec

tures that handle them well are being developed. It may

be that total exchange is the next primitive to be made
central to BSP and the same arguments about its neces

sary inefficiency may well be made. New communication
technologies, such as ATM, repay foreknowledge of com

munication patterns, and total exchange may turn out to

be a reasonable standard building block for parallel archi

tectures as well.
BSP's structured use of machine resources also sug

gests functions that could be usefully migrated to hard

ware. We have already seen this possibility for barrier
synchronisation. Hardware support for message combin

ing and scheduling would appear to be cost-effective also.

QUESTIONS AND ANSWERS ABOUT BSP 267

27 How Can I Find out More about BSP?

Development of BSP is coordinated by BSP Worldwide,

and organisation of researchers and users. Information

about it can be found at the web site http: I lwww. bsp

-worldwide. org I. The BSPLib library described

here is a BSP Worldwide standard. Other general papers

about BSP are [23, 36].
There are groups of BSP researchers at:

I. Oxford-http: I lwww. comlab. ox. ac. ukl

oucl I groups /bsp;
2. Harvard- http: I ldas-www. harvard. edu

lcslresearchlbsp.html;

3. Utrecht- http: I lwww .math. ruu .nll

peoplelbisseling.html;

4. Carleton-http: I lwww. scs. carleton. ca

l~palepuiBSP. html;

5. Central Florida-http: I I longwood. cs.

ucf.edu/csdept/faculty/
goudreau. html;

as well as individuals working on BSP at a number of

other universities.

ACKNOWLEDGEMENTS

We appreciate the helpful comments made on earlier

drafts of this paper by David Burgess, Dave Dove, Gaetan

Hains, Jifeng He, Owen Rogers, Heiko Schroder, Bolek

Szymanski, and Alexandre Tiskin.

D. B. Skillicorn was supported in part by EPSRC Re

search Grant GR/K63740 "A Unified Framework for Par

allel Programming".

J. M. D. Hill and W. F. McColl were supported in

part by EPSRC Research Grant GR/K40765 "A BSP Pro

gramming Environment".

REFERENCES

[I] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and

Y. Sunderam, "Recent enhancements to PVM," Interna

tional Journal of Supercomputing Applications and High

Performance Computing, 1995.

[2] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and

Y. Sunderam, "A users' guide to PVM parallel virtual ma

chine," University of Tennessee, Tech. Rep. CS-91-136,

July 1991.

[3] G. Bilardi, K. T. Herley, A. Pietracaprina, G. Pucci, and

P. Spirakis, "BSP vs LogP," in Proc. 8th Ann. Symp. Par

allel Algorithms and Architectures, June 1996, pp. 25-32.

[4] R. V. Boppana and S. Chalasani, "A comparison of adap

tive wormhole routing algorithms," in Proc. 20th Ann.

Symp. Computer Architecture, May 1993.

268 SKILLICORN, HILL, AND McCOLL

[5] R. P. Brent, "The parallel evaluation of general arithmetic

expressions," Journal of the ACM, vol. 21, no. 2, pp. 201-

206, April1974.

[6] P. I. Crumpton and M. B. Giles, "Multigrid aircraft com

putations using the OP!us parallel library," in Parallel

Computational Fluid Dynamics: Implementation andRe

sults using Parallel Computers, Proc. Parallel CFD'95,

Pasadena, CA, USA. Elsevier/North-Holland, June 1995,

pp. 339-346.

[7] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay,

K. E. Schauser, E. Santos, R. Subramanian, and T. von

Eicken, "LogP: Towards a realistic model of parallel com

putation," in Proc. 4th ACM SIGPLAN Symp. Principles

and Practice of Parallel Programming, San Diego, CA,

May 1993.

[8] H. G. Dietz, T. Muhammad, J. B. Sponaugle, and T. Mat

tox, "PAPERS: Purdue's adapter for parallel execution and

rapid synchronisation," Purdue School of Electrical Engi

neering, Tech. Rep. TR-EE-94-11, March 1994.

[9] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,

and V. Sunderam, PVM 3 Users Guide and Reference

Manual. Oak Ridge National Laboratory, Oak Ridge, Ten

nessee 37831, May 1994.

[10] G. A. Geist, "PVM3: Beyond network computing," in

J. Volkert, ed., Parallel Computation, Lecture Notes in

Computer Science 734, Springer, 1993, pp. 194-203.

[II] M. Goudreau, K. Lang, S. Rao, T. Sue!, and T. Tsanti

las, "Towards efficiency and portability: Programming the

BSP model," in Proc. 8th Ann. Symp. Parallel Algorithms

and Architectures, June 1996, pp. 1-12.

[12] M. W. Goudreau, K. Lang, S. B. Rao, and T. Tsantilas,

"The Green BSP Library," University of Central Florida,

Tech. Rep. 95-11, August, 1995.

[13] M. W. Goudreau, J. M. D. Hill, K. Lang, W. F. McColl,

S. D. Rao, D. C. Stefanescu, T. Sue!, and T. Tsantilas, "A

proposal for a BSP Worldwide standard," BSP Worldwide,

http://www.bsp-worldwide.org/, Aprill996.
[14] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:

Portable Parallel Programming. Cambridge, MA: MIT
Press, 1994.

[15] J. He, Q. Miller, and L. Chen, "Algebraic laws for BSP
programming," in Proc. Europar'96, Lecture Notes in
Computer Science, vol. 1124, Springer-Verlag, August
1996.

[16] J. M. D. Hill and D. B. Skillicorn, "Practical barrier syn

chronisation," Oxford University Computing Laboratory,

Tech. Rep. TR-96-16, October 1996.

[17] J. M. D. Hill and D. B. Skillicorn, "Lessons learned from

implementing BSP," in High-Performance Computing and

Networks, Lecture Notes in Computer Science, vol. 1225,

Springer, April 1997, pp. 762-771. Also appears as Ox

ford University Computing Laboratory Tech. Rep. TR-96-

21.

[18] J. M.D. Hill, P. I. Crumpton, and D. A. Burgess, "The the

ory , practice, and a tool for BSP performance prediction,"

in Proc. Europar'96, LNCS, vol. 1124, Springer-Verlag,

August 1996, pp. 697-705.

[19] C. A. R. Hoare and J. He, Unified Theories of Program

ming. Prentice-Hall International, 1997 (to.appear).

[20] R. W. Hockney, "Performance parameters and benchmark

ing of supercomputers, " Parallel Computing, vol. 17,

pp. 1111-1130, 1991.

[21] S. Knee, "Program development and performance predic

tion on BSP machines using Opal," Oxford University

Computing Laboratory, Tech. Rep. PRG-TR-18-94, Au

gust 1994.

[22] C. H. Koelbel, D. B. Loveman, R. S. Schreiber,

G. L. Steele Jr., and M. E. Zosel, The High Performance

Fortran Handbook. Cambridge, MA: MIT Press, 1994.

[23] W. F. McColl, "Scalable computing," in J. van Leeuwen,

ed., Computer Science Today: Recent Trends and Devel

opments. Lecture Notes in Computer Science, vol. 1000,

Springer-Verlag, 1995, pp. 46-61.

[24] W. F. McColl and Q. Miller, "The GPL language: Refer

ence manual," ESPRIT GEPPCOM Project, Oxford Uni

versity Computing Laboratory, Tech. Rep., October 1995.

[25] W. F. McColl, "General purpose parallel computing," in

A. M. Gibbons and P. Spirakis, eds, Lectures on Parallel

Computation. Cambridge International Series on Parallel

Computation, Cambridge: Cambridge University Press,

1993, pp. 337-391.

[26] W. F. McColl, "Special purpose parallel computing," in

A. M. Gibbons and P. Spirakis, eds, Lectures on Parallel

Computation. Cambridge International Series on Parallel

Computation, Cambridge: Cambridge University Press,

1993, pp. 261-336.

[27] Message Passing Interface Forum, "MPI: A message pass

ing interface," in Proc. Supercomputing'93, IEEE Com

puter Society, 1993, pp. 878-883.

[28] R. Miller, "A library for Bulk Synchronous Parallel pro

gramming," in Proc. BCS Parallel Processing Specialist

Group workshop on General Purpose Parallel Computing,

December 1993, pp. 100-108.

[29] R. Miller, Two approaches to architecture-independent

parallel computation, Oxford University Computing Lab

oratory, Wolfson Building, Parks Road, Oxford OX! 3QD,

Ph.D. thesis, 1994.

[30] P. B. Monk, A. K. Parrott, and P. J. Wesson, "A paral

lel finite element method for electromagnetic scattering,"

COMPEL, vol. 13, Supp. A, pp. 237-242, 1994.
[31] M. Nibhanupudi, C. Norton, and B. Szymanski, "Plasma

simulation on networks of workstations using the bulk
synchronous parallel model," in Proc. Int. Conf Parallel

and Distributed Processing Techniques and Applications,

Athens, GA, November 1995.
[32] M. J. Quinn and P. J. Hatcher, "On the utility of

communication-computation overlap in data-parallel pro
grams," J. Parallel and Distributed Computing, vol. 33,
pp. 197-204, 1996.

[33] J. Reed, K. Parrott, and T. Lanfear, "Portability, pre

dictability and performance for parallel computing: BSP

in practice," Concurrency: Practice and Experience (to

appear).

[34] D. B. Skillicorn, Foundations of Parallel Programming.

Cambridge Series in Parallel Computation, vol. 6, Cam

bridge University Press, 1994.

[35] K. R. Sujithan and J. M. D. Hill, "Collection types for

database programming in the BSP model," in Proc. Eu-

romicro Workshop on Parallel and Distributed Processing,

IEEE CS Press, January 1997.

[36] L. G. Valiant, "A bridging model for parallel computa

tion," Comm. ACM, vol. 33, pp. 103-111, August 1990.

[37] L. G. Valiant, "General purpose parallel architectures," in

J. van Leeuwen, ed., Handbook of Theoretical Computer

Science, vol. A, Elsevier and MIT Press, 1990.

APPENDIX A THE BSPLib LIBRARY

This Appendix provides slightly more detail about the

current major BSP system, BSPLib. We describe C inter

faces to the library, but a Fortran version is also available.

A.1 Initialisation

Processes are created in a BSPLib program by the oper

ations bsp_begin and bsp_end. There can only be

one instance of a bsp_begin/bsp_end pair within a

program. There are two different ways to start a BSPLib

program. If bsp_begin and bsp_end are the first and

last statements in a program, then the entire BSPLib com

putation is SPMD. In an alternative mode, a single pro

cess starts execution and determines the number of paral

lel processes required for the calculation. It then spawns

the required number of processes using bsp_begin.

Execution of the spawned processes then continue in an

SPMD manner, until bsp_end is encountered by all the

processes. At that point, all processes except process zero

are terminated, and process zero is left to continue the

execution of the rest of the program sequentially.

One problem with providing this mode is that some

parallel machines available today, for example almost

all distributed-memory machines, e.g., IBM SP2, Cray

T3D, Meiko CS-2, Parsytec GC, Hitachi SR2001, do not

provide dynamic process creation. Therefore we simu

late dynamic spawning using an operation bsp_ini t

which takes as its argument a procedure name. The pro

cedure passed as an argument to bsp_ini t must con

tain bsp_begin and bsp_end as its first and last state

ments.

The interface for these library operations is:

void bsp_init(void (*startproc) (void),

int argc, char**argv);

void bsp_begin(int maxprocs);

void bsp_end ()

maxprocs is the number of processes requested by the

user.

s tartproc is the name of a procedure that contains

bsp_begin and bsp_end as its first and last

statements.

argc and argv are command line size and arguments.

QUESTIONS AND ANSWERS ABOUT BSP 269

A.2 Enquiry

There are also operations to determine the total number

of processes, and for each process to find out its process

identifier. The interface for these operations is:

int bsp_nprocs();

int bsp_pid();

If the function bsp_nprocs is called before bsp_

begin, then it returns the number of processors which

are available. If it is called after bsp_begin it returns

n, the actual number of processes allocated to the pro

gram, where 1 ~ n ~ maxprocs, and maxprocs is

the number of processes requested in bsp_begin. Each

of then processes created by bsp_begin has a unique

associated value m in the range 0 ~ m ~ n- 1. The func

tion bsp_pid returns the associated value of the process

executing the function call.

A.3 Synchronisation

A BSPLib calculation consists of a sequence of super

steps. The end of one superstep and the start of the next

is identified by a call to the library procedure bsp_sync

with interface:

void bsp_sync();

A.4 DRMA

There are two ways of communicating among processes:

one using direct remote-memory access (DRMA), and the

other using a BSP version of message passing.

The DRMA communication operations are defined for

stack- and heap-allocated data structures as well as for

static data. This is achieved by allowing a process to ref

erence only certain registered areas of a remote memory.

In a registration procedure, processes use the operation

bsp_pushregister to announce the address of the

start of a local area which is available for global remote

use. This makes it possible to execute BSP programs us

ing heterogeneous processor architectures. Registration

takes effect at the next barrier synchronisation.

void bsp_pushregister (void*region,

int nbytes);

void bsp_popregister (void*region);

region is the starting address of the region to be reg

istered or unregistered. The name region must

be the same for all logically-related calls to bsp_

pushregister or bsp_popregister, and

implementations may check that this is true.

nbytes is the size of the region (used for range check

ing).

270 SKILLICORN, HILL, AND McCOLL

Each processor maintains a stack of registration slots.

Logically-related calls to bsp__pushregister in dif

ferent processes (the ith call in each process is related to

the ith call in all of the others) associate a variable name

and the addresses to which it is mapped in each process

with the next available slot. Registration slots can be deal

located using bsp__popregister, which invalidates

the last slot associated with the variable name passed as

an argument - deregistration does not impose the strict

nesting of push-pop pairs that is normally associated with

a stack; the scheme allows the popping of registrations to

occur in an arbitrary order. This provides the benefits of

encapsulation provided by a stack, whilst providing the

flexibility associated with a heap-based discipline. How

ever, the registration slot of the argument to popregister

must be the same across all the processing elements.

The intent of registration is to make it simple to re

fer to variables in other processes without requiring their

locations to be explicitly known. A reference to a regis

tered name in a put or get is translated to the address cor

responding to the remote variable with the same name.

Here is an example:

Process 0:

int x;

bsp__pushregister(&x,sizeof(int));

bsp_sync();

X = 3;

bsp__put(l,&x,&x,O,sizeof(int));

bsp_sync();

Process 1

int x;

bsp__pushregister(&x,sizeof(int));

bsp_sync();

bsp_sync();

Process 0 and Process 1 register x in the first slot.

When Process 0 executes a put, using x as the destination

region name, this is mapped to the region whose address

is associated with the first slot in Process 1. Therefore, the

variable x in Process 1 has the value 3 placed in it after

the second sync as the result of the put.

The operation bsp__put pushes locally-held data into

a registered remote-memory area on a target process,

without the active participation of the target process.

The operation bsp_get reaches into the registered local

memory of another process to copy data values held there

into a data structure in its own local memory. All gets are

executed before all puts at the end of a superstep, consis

tent with the semantics that communications do not take

effect locally until the end of a superstep. Their interfaces

are:

void bsp_[hp]put(int pid,

const void *src,

void *dst,

int offset,

int nbytes);

pid is the identifier of the process where data is to be

stored.

src is the location of the first byte to be transferred by

the put operation. The calculation of src is per

formed on the process that initiates the put.

ds t is the base address of the area where data is to be

stored. It must be a previously-registered data area.

offset is the displacement in bytes from dst to which

src will copy. The calculation of offset is per

formed by the process that initiates the put.

nbytes is the number of bytes to be transferred from

src into dst. It is assumed that src and dst

are addresses of data structures that are at least

nbytes in size.

void bsp_[hp]get(int pid,

const void *src,

int offset,

void *dst,

int nbytes);

pid is the identifier of the process from which data is to

be obtained.

src is the base address of the area from which data will

be obtained. src must be a previously-registered

data structure.

offset is an offset from src. The calculation of

offset is performed by the process that initiates

the get.

ds t is the location of the first byte where the data ob

tained is to be placed. The calculation of ds t is

performed by the process that initiates the get.

nbytes is the number of bytes to be transferred from

src into dst. It is assumed that src and dst

are addresses of data structures that are at least

nbytes in size.

The semantics adopted for BSPLib bsp__put com

munication is buffered-locally/buffered-remotely. When

a bsp__pu t is executed, the data to be transferred is

copied out of user address space immediately. The exe

cuting process is free to alter the contents of those lo

cations after return from the call to bsp__put. While

the semantics is clean and safety is maximized, puts

may unduly tax the memory resources of an imple

mentation, thus preventing large data transfers. Conse

quently, BSPLib also provides a high-performance put

operation bsp_hppu t whose semantics is unbuffered

locally/unbuffered-remotely. The use of this operation re

quires care, as correct data delivery is only guaranteed

if neither communication nor local/remote computations

modify either the source or the destination areas during a

superstep. The main advantage of this operation is its eco

nomical use of memory. It is therefore particularly useful

for applications which repeatedly transfer large data sets.

The bsp_get and bsp_hpget operations reach

into the local memory of another process and copy

previously-registered remote data held there into a data

structure in the local memory of the process that initiated

them.

A.5 BSMP

Bulk synchronous remote-memory access is a convenient

style of programming for BSP computations that can be

statically analysed in a straightforward way. It is less con

venient for computations in which the volumes of data

being communicated are irregular and data-dependent, or

where the computation to be performed in a superstep de

pends on the quantity and form of data received at its start.

A more appropriate style of programming in such cases

is bulk-synchronous message passing (BSMP).

In BSMP, a non-blocking send operation delivers mes

sages to a system buffer associated with the destination

process. The message is guaranteed to be in the destina

tion buffer at the beginning of the subsequent superstep,

and can be accessed by the destination process only dur

ing that superstep. A collection of messages sent to the

same process has no implied ordering at the receiving

end. However, since messages may be tagged, the pro

grammer can identify them by their tag.

In BSPLib, bulk-synchronous message passing is based

on the idea of two-part messages, a fixed-length part car

rying tagging information that will help the receiver to

interpret the message, and a variable-length part contain

ing the main data payload. We will call the fixed-length

portion the tag and the variable-length portion the pay

load. In C programs, either part could be a complicated

structure. The length of the tag is required to be fixed dur

ing any particular superstep, but may vary between su

persteps. The buffering mode of the BSMP operations is

buffered-locally/buffered-remotely.

The procedure to set tag size must be called collec

tively by all processes. Moreover, in any superstep where

bsp_set_tag_size is called, it must be called before

sending any messages.

void bsp_set_tag_size(int *tag_bytes);

tag_bytes, on entry to the procedure, specifies the

size of the fixed-length portion of every message

from the current superstep until it is updated; the

QUESTIONS AND ANSWERS ABOUT BSP 271

default tag size is zero. On return from the proce

dure, tag_bytes is changed to reflect the previ

ous value of the tag size to allow for its use inside

procedures.

The tag size of incoming messages is prescribed by the

outgoing tag size of the previous step.

The procedure bsp_bsmp_info is an enquiry op

eration that returns information concerning how many

BSMP packets were sent to the process calling the opera

tion in the prior superstep. This information is intended to

help the user to allocate an appropriate sized data struc

ture to hold any incoming BSMP messages.

void bsp_bsmp_info(int*packets,

int*accum_nbytes);

packets becomes the number of packets sent using

bsp_send in the previous superstep.

accum_nbytes is the accumulated size of all the

packets.

The bsp_send operation is used to send a message

that consists of a tag and a payload to a specified des

tination process. The destination process will be able to

access the message during the subsequent superstep. Its

interface is:

void bsp_send(int pid,

const void*tag,

const void*payload,

int payload_bytes);

pid is the identifier of the process where data is to be

sent.

tag is a token that can be used to identify the mes

sage. Its size is determined by the value specified

in bsp_set_size_tag.

payload is the location of the first byte of the payload

to be communicated.

payload_bytes is the size of the payload.

The bsp_send operation copies both the tag and the

payload of the message out of user space into the system

before returning. The tag and payload inputs may be

changed by the user immediately after the bsp_send

returns.

To receive a message, the operations bsp_get_tag

and bsp_move are used. The operation bsp_get_tag

returns the tag of the first message in the buffer. The oper

ation bsp_move copies the payload of the first message

in the buffer into payload, and removes that message

from the buffer. Its interface is:

void bsp_get_tag(int *status,

void *tag);

272 SKILLICORN, HILL, AND McCOLL

status returns -1 if the system buffer is empty. Oth

erwise it returns the length of the payload of the

first message in the buffer. This length can be used

to allocate an appropriately-sized data structure for

copying the payload using bsp_move.

tag is unchanged if the system buffer is empty. Other

wise it is assigned the tag of the first message in the

buffer.

void bsp_move(void *payload,

int reception_nbytes);

payload is an address to which the message payload

will be copied. The buffer is then advanced to the

next message.

reception_nbytes specifies the size of the recep

tion area where the payload will be copied into.

At most reception_nbytes will be copied into

payload.

int bsp_hpmove(void**tag_ptr_buf,

void**payload_ptr_buf);

bsp_hpmove is a function which returns -1, if the sys

tem buffer is empty. Otherwise it returns the length

of the payload of the first message in the buffer and

(a) places a pointer to the tag in tag_ptr_buf;

(b) places a pointer to the payload in payload_ptr

_buf; and

(c) conceptually removes the message (by advanc

ing a pointer representing the head of the buffer).

Note that bsp_move flushes the corresponding mes

sage from the buffer, while bsp_get_tag does not.

This allows a program to get the tag of a message (as well

as the payload size in bytes) before obtaining the payload

of the message. It does, however, require that even if a

program only uses the fixed-length tag of incoming mes

sages the program must call bsp_move to get successive

message tags.

bsp_get_tag can be called repeatedly and will al

ways return the same tag until a call to bsp_move.

A.6 Halt

The function bsp_abort can be used to print an error

message followed by a halt of the entire BSPLib program.

The routine is designed not to require a barrier synchro

nisation of all processes. A single process can therefore

halt the entire BSPLib program.

void bsp_abort(char*format, ...) ;

format is a C-style format string as used by print f.

Any other arguments are interpreted in the same

way as the variable number of arguments to printf.

The function bsp_time provides access to a high

precision timer- the accuracy of the timer is implementa

tion-specific. The function is a local operation of each

process, and can be issued at any point after bsp_begin.

The result of the timer is the time in seconds since bsp_

begin. The semantics of bsp_time is as though there

were bsp_nprocs timers, one per process. BSPLib

does not impose any synchronisation requirements be

tween the timers in each process.

double bsp_time();

APPENDIX B BENCHMARKING

The BSP parameter l measures the minimum time for

all processors to barrier synchronise. It is benchmarked

by repeatedly over-sampling barrier synchronisation, and

measuring the wall-clock time. Repeated barrier synchro

nisation produces a pessimistic value for l as it models the

case where the computation part of each superstep com

pletes in each processor at the same moment. This pro

duces most contention in whatever resources are used for

synchronising.

Two values for the BSP parameter g are calculated.

The first is the value of g experienced when routing a

local communication (a cyclic shift), and the second a

global communication using a total exchange. As well as

calculating the value of g, the benchmark also calculates

the value for n 112 used in Equation (1). This is done by

routing a fixed-sized h-relation (an over-sampling of 10

iterations is performed for each h-relation) for large hand

measuring the elapsed time of a superstep containing no

computation.

Sophisticated profiling tools are available to examine

how much this measured value of g is affected by partic

ular properties of the target computer. We have already

mentioned some such factors, for example the overhead

of message startup and the extra data that must be trans

ferred as control information. This can be clearly seen in

Figures 9-11.

These figures shows the amount of data transferred

and the effective value of g in two phases. The first half

of each figure shows a cyclic shift; the second half a total

exchange. All supersteps in each half send an h-relation,

in sets of size 10 for oversampling, varying the granular

ity for each set - first using single messages of size h,

then using two messages of size h/2, and so on. Accord

ing to the theory, the measured value of g should be the

same for all of these granularities, since the same total

volume of data is moved into and out of each processor.

The top half of each figure shows the volume of data be

ing moved. The second half shows the measured value of

g for each superstep.

-
-

QUESTIONS AND ANSWERS ABOUT BSP 273

_ ...

-

--··ON
1 '"'" • ·•u~ .• •n
• ~ . an

__ ...
~
............. . Mal

............ Jill

CJ-·

llilll-·

lEI-·

Ill-·

....

- - ·-· ·-· ~-·
.• .., ;.

---------------~-------~----------- ·

FIGURE 9 Cyclic shift and total exchange, on an 8-processor Cray T3D.

CWrrwdiNPTOIIIIIMIII01......_& .. •••11 IID~....,_.. ... c~TID

-· ,. ,,
11 ,
••

-

EJ-· ·-· Ill-··-·
Ill!-· o-·

·-· !:3-·
·-· ffi-· -·-·6.'1-·
E!-· a-·

Et-· ·-· s-· e-·
•-·B-· •-·B-·
•-· D-·

---------------------~-------- --- - - - -- --· - ~- .. B-·11:1-· --- e-· a-·
19-· [!]-·

a-· 1!1-·
•+---~-----r----r---~----~---,----~----r----, o.oo 1.00 1.01 a.oo 4.00 uo a.oo 1.00 a.oo __.

FIGURE 10 Cyclic shift and total exchange, on a 32-processor Cray T3D.

The curves in the lower half o f F igure 9 show the

value o f g during the cyclic shift phase and the total ex

change phase. The curves are not the expected horizon

tal lines because o f the overhead of message startup. The

implementation o n the CRAY delays messages and re

orders them, but does not combine them because the com

munication mechanism is DRMA. The curves are good

matches for Equation (I) which uses the n t; 2 parame-

ter to model the extra cost of communicating small mes

sages. The dotted line in the graph shows the value o f g

obtained from the benchmark, and given in Table 2. It is

very close to the asymptote of the curves. The same struc

ture can be seen for larger numbers of processors (Fig

ure 10).

Figure II shows the same benchmark running on a

e ight-processor ffiM SP2. Unlike the Cray, the value of

274 SKJLLICORN, HILL, AND McCOLL

-· .

Tue ~3D 10:Gt:21 1•

~- -··
, ~ . Ln

• -..-u..-.• "'
- ~ . ut
......,..... .• sa
-----· ...

14 • • • ~ •••• :: .. : ·: . . . '• .,.,···,. m- ·
II-· ------- ~ ---------,--- ~~:~~ - ~-~ --------· " ~ . ~ .

10 • ' • , '-'. ;.-. ,._,.,. ~·.......:.,w .. ;r-.. .~ : ~ ·-· ·-· ·-·
~+.oo-- -- , ~r----,. r~----, . r ~ ---- , . ~r---~2 . 00 ~~ . 2, . ~---- ~ ,~---- ~ T•---- ~ T•o -- -~-,

FIGURE 11 Cyclic shift and total exchange on an 8-processor IBM SP2.

g is more unpredictable. However, although g has a value

which is three times larger than that of the Cray, the SP2

has a per-node computation rate twice that of the T3D,

so the absolute values of g are closely matched on the

two machines. From the upper graph of Figure I I, it can

be seen that the amount of data communicated gradu

ally grows, even though the program sends a fixed size

h-relation . The reason is that, on the SP2, small messages

are combined. For the combining to work, information

concerning the size and destination of the individual com

munications are sent with the combined individual com

munications, so that the destination process can unpack

the data correctly. Therefore, the total size of data sent

may triple due to the extra unpacking information. This

causes a slight increase in the effective value of g in the

presence of large numbers of small messages within a su

perstep.

These examples show that g can deviate from the val

ues predicted by the cost model because of properties of

the target computers, and unavoidable overheads in the

implementation of the library operations. Three observa

tions seem relevant:

1. Deviations from the predicted values are relatively

small , even for these artificial test programs, anJ

experience so far suggests that, for practical

programs, deviations are much smaller.

2. The ach ieved values of g and l in BSPLib are

much smaller than those of a naive

implementation, so there are advantages to using

BSP explicitly, rather than programming 'in the

BSP style'.

3. Values for g and l continue to decrease as more is

learned about the detailed properties of each

architecture. BSP provides a focus for the

properties of an architecture that are critical, but it

is often different from the focus of the

manufacturer. Basic information that would make

better implementations possible is hard to obtain,

sometimes because even the manufacturers do not

know it.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

