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ABSTRACT 

Bulk Synchronous Parallelism (BSP) is a parallel programming model that abstracts from 

low-level program structures in favour of supersteps. A superstep consists of a set of in

dependent local computations, followed by a global communication phase and a barrier 

synchronisation. Structuring programs in this way enables their costs to be accurately de

termined from a few simple architectural parameters, namely the permeability of the com

munication network to uniformly-random traffic and the time to synchronise. Although per

mutation routing and barrier synchronisations are widely regarded as inherently expensive, 

this is not the case. As a result, the structure imposed by BSP does not reduce perfor

mance, while bringing considerable benefits for application building. This paper answers 

the most common questions we are asked about BSP and justifies its claim to be a major 

step forward in parallel programming. 

1 Why Is Another Model Needed? 

In the 1980s, a large number of different types of parallel 

architectures were developed. This variety may have been 

necessary to thoroughly explore the design space but, in 

retrospect, it had a negative effect on the commercial de

velopment of parallel applications software. To achieve 

acceptable performance, software had to be carefully tai

lored to the specific architectural properties of each com

puter, making portability almost impossible. Each new 

generation of processors appeared in strikingly-different 

parallel architectural frameworks, forcing performance

driven software developers to redesign their applications 

from the ground up. Understandably, few were keen to 

join this process. 

Today, the number of parallel computation models and 

languages probably exceeds the number of different ar

chitectures with which parallel programmers had to con

tend ten years ago. Most make it hard to achieve portabil

ity, hard to achieve performance, or both. 
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The two largest classes of models are based on 

message passing, and on shared memory. Those based 

on message passing are inadequate for three reasons. 

First, messages require paired actions at the sender and 

receiver, which it is difficult to ensure are correctly 

matched. Second, messages blend communication and 

synchronisation so that sender and receiver must be in 

appropriately-consistent states when the communication 

takes place. This is appallingly difficult to ensure in most 

models, and programs are prone to deadlock as a result. 

Third, the performance of such programs is impossible to 

predict because the interaction of large numbers of indi

vidual messages in the interconnection mechanism makes 

the variance in their delivery times large. 

The argument for shared-memory models is that they 

are easier to program because they provide the abstrac

tion of a single, shared address space. A whole class of 

placement decisions are avoided. This is true, but is only 

half of the issue. When memory is shared, simultaneous 

access to the same location must be prevented. This re

quires either PRAM-style discipline by the programmer, 

or expensive lock management (and locks are expensive 

on today's parallel computers [16]). In both cases, the 

benefits are counterbalanced by quite serious drawbacks. 



250 SKILLICORN, HILL, AND McCOLL 

From an architectural point of view, shared-memory ab

stractions limit the size of computer that can be built be

cause a larger and larger fraction of the computer's re

sources must be devoted to communication and the main

tenance of coherence. Even worse, this part of the com

puter is most likely to be highly customized, and hence to 

be proportionally more expensive. Thus even the propo

nents of shared memory agree that, with our current un

derstanding, such architectures can contain no more than, 

say, fifty processors. Whether this is sufficient for the ap

plication demands of the next decade is debatable. 

The Bulk Synchronous Parallel (BSP) model [36] is 

a distributed-memory abstraction that treats communica

tion as a bulk action of a program, rather than as the ag

gregate of a set of individual, point-to-point messages. 

It provides software developers with an attractive escape 

route from the world of architecture-dependent parallel 

software. The emergence of the model has coincided with 

the convergence of commercial parallel machine designs 

to a standard architectural form with which it is com

patible. These developments have been enthusiastically 

welcomed by a rapidly-growing community of software 

engineers who produce scalable and portable parallel ap

plications. However, while the parallel-applications com

munity has welcomed the approach, there is a degree 

of skepticism amongst parts of the computer science re

search community. Some people seem to regard some of 

the claims made in support of the BSP approach as "too 

good to be true". We will make these claims, and back 

them up, in what follows. 

The only sensible way to evaluate an architecture

independent model of parallel computation such as BSP 

is to consider it in terms of all of its properties, that is 

(a) its usefulness as a basis for the design and analysis 

of algorithms, 

(b) its applicability across the whole range of 

general-purpose architectures and its ability to 

provide efficient, scalable performance on them, 

and 

(c) its support for the design of fully-portable 

programs with analytically-predictable 

performance. 

To focus on only one of these at a time, is simply to re

place the zoo of parallel architectures in the 1980s by a 

new zoo of parallel models in the 1990s. A fully-rounded 

viewpoint on the nature and role of models seems more 

appropriate as we move from the straightforward world 

of parallel algorithms to the much more complex world 

of parallel software systems. 

2 What Is Bulk Synchronous 

Parallelism? 

Bulk Synchronous Parallelism is a style of parallel pro

gramming intended for parallelism across all application 

areas and a wide range of architectures [25]. Its goals are 

more ambitious than most parallel-programming systems 

which are aimed at particular kinds of applications, or 

work well only on particular classes of parallel architec

tures [26]. 

BSP's most fundamental properties are that: 

1. It is simple to write. BSP imposes a high-level 

series-parallel structure on programs which 

makes them easy to write, and to read. Existing 

BSP languages are SPMD, making programs even 

simpler, since the parallelism is largely implicit. 

2. It is independent of target architectures. Unlike 

many parallel programming systems, BSP is 

designed to be architecture-independent, so that 

programs run unchanged when they are moved 

from one architecture to another. Thus BSP 

programs are portable in a strong sense. 

3. The performance of a program on a given 

architecture is predictable. The execution time of 

a BSP program can be computed from the text of 

the program and a few simple parameters of the 

target architecture. This makes engineering design 

possible, since the effect of a decision on 

performance can be determined at the time it is 

made. 

BSP achieves these properties by raising the level of 

abstraction at which programs are written and implemen

tation decisions made. Rather than considering individ

ual processes and individual communication actions, BSP 

considers computation and communication at the level 

of the entire program, and the entire executing computer 

and its interconnection mechanism. Determining the bulk 

properties of a program, and the bulk ability of a partic

ular computer to satisfy them makes it possible to design 

with new clarity. 

One way in which BSP is able to achieve this abstrac

tion is by renouncing locality as a performance optimisa

tion. This simplifies many aspects of both program and 

implementation design, and in the end does not adversely 

affect performance for most application domains. There 

will always be some application domains for which lo

cality is critical, for example low-level image processing, 

and for these BSP may not be the best choice. 
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3 What Does the BSP Programming Style Look 

Like? 

BSP programs have both a vertical structure and a hor

izontal structure. The vertical structure arises from the 

progress of a computation through time. For BSP, this is a 

sequential composition of global supersteps, which con

ceptually occupy the full width of the executing architec

ture. A superstep is shown in Figure 1. 

Each superstep is further subdivided into three ordered 

phases consisting of: 

1. simultaneous local computation in each process, 

using only values stored in the memory of its 

processor; 

2. communication actions amongst the processes, 

causing transfers of data between processors; 

3. a barrier synchronisation, which waits for all of 

the communication actions to complete, and which 

then makes any data transferred visible in the local 

memories of the destination processes. 

The horizontal structure arises from concurrency, and 

consists of a fixed number of virtual processes. These pro

cesses are not regarded as having a particular linear order, 

and may be mapped to processors in any way. Thus local

ity plays no role in the placement of processes on proces

sors. 

We will use p to denote the virtual parallelism of a pro

gram, that is the number of processes it uses. If the target 

parallel computer has fewer processors than the virtual 

parallelism, an extension of Brent's theorem [5] can be 

used to transform any BSP program into a slimmer ver

sion. 

4 How Does BSP Communication Work? 

Most parallel programming systems treat communica

tion, both conceptually and in implementations, at the 
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level of individual actions: memory-to-memory transfers, 

sends and receives, or active messages. This level is diffi

cult to work with because parallel programs contain many 

simultaneous communication actions, and their interac

tions are complex. For example, congestion in the inter

connection mechanism is typically very sensitive to the 

applied load. This makes it hard to discover much about 

the time any single communication action will take to 

complete, because it depends so much on what else is 

happening in the computer at the same time. 

Considering communication actions en masse both 

simplifies their treatment, and makes it possible to bound 

the time it takes to deliver a whole set of data. BSP does 

this by considering all of the communication actions of a 

superstep as a unit. For the time being, imagine that all 

messages have a fixed size. During a superstep, each pro

cess has designated some set of outgoing messages and 

is expecting to receive some set of incoming messages. If 

the maximum number of incoming or outgoing messages 

per processor is h, then such a communication pattern is 

called an h-relation. The communication pattern in Fig

ure 1 is a 2-relation. 

Many communication topologies deliver almost all 

message patterns well, but perform badly for a particular, 

small set of patterns. The patterns in this set are typically 

regular ones. In other words, a random message pattern 

is unlikely to be in this set of 'bad' patterns unless it has 

some regular structure. One of the attractions of adap

tive routing techniques is that they reduce the likelihood 

of such 'bad' patterns. BSP randomises the placement 

of processes on processors so that regularities from the 

problem domain, which are often reflected in programs, 

are destroyed in the implementation. This tends to make 

the destination processor addresses of an h-relation ap

proximate a random permutation. This, in turn, makes it 

unlikely that each h-relation will be a 'bad' pattern. The 

performance advantage of avoiding patterns that take the 

network a long time to deliver outweighs any advantage 

gained by exploiting locality in placement. 

The ability of a communication network to deliver data 

is captured by a BSP parameter, g, that measures the per

meability of the network to continuous traffic addressed 

to uniformly-random destinations. As we have seen, BSP 

programs randomise to approximate such traffic. The pa

rameter g is defined such that an h-relation will be de

livered in time hg. Subject to some small provisos, dis

cussed later, hg is an accurate measure of communica

tion performance over a large range of architectures. The 

value of g is normalised with respect to the clock rate of 

each architecture so that it is in the same units as the time 

for executing sequences of instructions. 

Sending a message of length m clearly takes longer 

than sending a message of size 1. For reasons that will 

become clear later, BSP does not distinguish between a 
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message of length m and m messages of length 1 - the 

cost in either case is mhg. So messages of varying lengths 

may either be costed using the form mhg where h is 

the number of messages, or the message lengths can be 

folded into h, so that it becomes the number of units of 

data to be transferred. 

The parameter g is related to the bisection bandwidth 

of the communication network but they are not equivalent 

- g also depends on factors such as: 

1. the protocols used to interface with, and within, 

the communication network; 

2. buffer management by both the processors and the 

communication network; 

3. the routing strategy used in the communication 

network; and 

4. the BSP runtime system. 

So g is bounded below by the ratio of p to the bisection 

bandwidth, suitably normalised, but may be much larger 

because of these other factors. Only a very unusual net

work would have a bisection bandwidth that grew faster 

than p, so g is a monotonically increasing function of p. 

The precise values of g is, in practice, determined em

pirically for each parallel computer, by running suitable 

benchmarks. A BSP benchmarking protocol in given in 

Appendix B. 

Note that g is not the single-word delivery time, but the 

single-word delivery time under continuous traffic condi

tions. This difference is subtle but crucial. 

5 Surely This Isn't a Very Precise Measure of 

How Long Communication Takes? Don't 

Hotspots and Congestion Make It Very 

Inaccurate? 

One of the most difficult problems of determining the per

formance of conventional messaging systems is precisely 

that congestion makes upper bounds hard to determine 

and quite pessimistic. BSP largely avoids this difficulty. 

An apparently-balanced communication pattern may 

always generate hotspots in some region of the intercon

nection network. BSP prevents this in several ways. First, 

the random allocation of processes to processors breaks 

up patterns arising from the problem domain. Second, the 

BSP runtime system uses routing techniques that avoid 

localized congestion. These include randomized routing 

[37], in which particular kinds of randomness are intro

duced into the choice of route for each communication 

action, and adaptive routing [4], in which data are di

verted from their normal route in a controlled way to 

avoid congestion. If congestion occurs, as when an archi

tecture has only a limited range of deterministic routing 

techniques for the BSP runtime system to choose from, 

this limitation on continuous message traffic is reflected 

in the measured value of g. 

Notice also that the definition of an h-relation distin

guishes the cost of a balanced communication pattern 

from one that is skewed. A communication pattern in 

which each processor sends a single message to some 

other (distinct) processor counts as a 1-relation. However, 

a communication pattern that transfers the same number 

of messages, but in the form of a broadcast from one pro

cessor to all of the others, counts as a p-relation. Hence, 

unbalanced communication, which is the most likely to 

cause congestion, is charged a higher cost. Thus the cost 

model does take into account congestion phenomena aris

ing from the limits on each processor's capacity to send 

and receive data, and from extra traffic that might occur 

on the communication links near a busy processor. 

Experiments have shown that g is an accurate measure 

of the cost of moving large amounts of data on a wide 

range of existing parallel computers. The reason that g 

works so well is that, while today's interconnection net

works do have non-uniform latencies, these are quite flat. 

Once a message has entered the network, the latency to 

an immediate neighbour is not very much smaller than 

the latency to the other side of the network. Almost all 

of the end-to-end latency arises on the path from the pro

cessor to the network itself, and is caused by operating 

system overheads, protocol overheads, and limited band

width into the network. 

6 Isn't It Expensive to Give up Locality? 

There will always be application domains where exploit

ing locality is the key to achieving good performance. 

However, there are not as many of them as a naive analy

sis might suggest. 

There are two reasons why locality is oflimited impor

tance. The first is that the communication networks of to

day's parallel computers seldom have the regular topolo

gies that are often assumed. They are far more likely to 

have a hierarchical, cluster-based topology (the important 

exceptions being the Cray T3D and T3E which have a 

torus topology). Hence each processor has a few neigh

bours in its cluster, a lot more neighbours slightly further 

away, and then all of the other nodes at the same effective 

distance. Furthermore, these distances vary only slightly. 

So there is just not much advantage to locality in the ar

chitecture, since it makes very little difference to latencies 

once in the network. 

The second reason why locality is of limited impor

tance is that most performance-limited problems work 

with large amounts of data, and can therefore exploit large 

amounts of virtual parallelism. However, most existing 



parallel computers have only modest numbers of pro

cessors. When highly-parallel programs are mapped to 

much less parallel architectures, many virtual processes 

must be multiplexed onto each physical processor by the 

programmer. Almost all of the locality is lost when this 

is done, unless the application domain is highly-regular 

and matches the structure of the communication topol

ogy very closely. Most interesting applications have lo

cality arising from the three-dimensional nature of the 

world, while most communication networks have two

dimensional locality. For example, finite element appli

cations typically triangulate a three-dimensional surface, 

and there is no obvious way to map such triangulations 

onto, say, a 2D torus, while preserving all of the local

ity. So, while there are applications where locality can be 

exploited, they are, in practice, less frequent than is com

monly supposed. 

7 Most Parallel Computers Have a Considerable 

Cost Associated with Starting up 

Communicaton. Doesn't This Mean that the 

Cost Model Is Inaccurate for Small Messages, 

Since g Doesn't Account for Start-up Costs? 

The cost model can be inaccurate, but only in rather spe

cial circumstances. Recall that all of the communications 

in a superstep are regarded as taking place at the end of 

the superstep. This semantics makes it possible for imple

mentations to wait until the end of the computation part 

of each superstep to begin the communication actions that 

have been requested. The implementation can then pack

age the data to be transferred into larger message units. 

The cost of starting up a data transfer is thus only paid 

once per destination per superstep. 

However, if the total amount of communication in a 

superstep is small, then start-up effects may make a no

ticeable difference to the performance. We address this 

quantitatively later. 

8 Aren't Barrier Synchronisations Expensive? 

How Are Their Costs Accounted for? 

Barriers are often expensive on today's architectures. The 

reasons can usually be traced back to naive implemen

tations based on, say, trees of pairwise synchronisations, 

which are themselves expensive on most machines be

cause of poor implementations of semaphores and locks 

[16]. There is nothing inherently expensive about barri

ers, and there are signs that future architecture develop

ments will make them much cheaper. 

The cost of a barrier synchronisation comes in two 

parts: 
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1. The cost caused by the variation in the completion 

times of the computation steps that participate. 

There is not much that an implementation can do 

about this, but it does suggest that balance in the 

computation parts of a superstep is a good thing. 

2. The cost of reaching a globally-consistent state in 

all of the processors. This depends, of course, on 

the communication network, but also on whether 

or not special-purpose hardware is available for 

synchronizing, and on the way in which interrupts 

are handled by processors. 

For each architecture, the cost of a barrier synchroni

sation is captured by a parameter, l. The diameter of 

the communication network, or at least the length of the 

longest path that allows state to be moved from one pro

cessor to another clearly imposes a lower bound on l. 

However, it is also affected by many other factors, so that, 

in practice, an accurate value of l for each parallel archi

tecture is obtained empirically. 

Notice that barriers, although potentially costly, have 

a number of attractive features. They make it possible for 

communication and synchronisation to be logically sepa

rated. Communication patterns can no longer accidentally 

introduce circular state dependencies, so there is no pos

sibility of deadlock or livelock in a BSP program. This 

makes software easier to build and to understand, and 

completely avoids the complex debugging needed to find 

state errors in traditional parallel programs. Barriers also 

permit novel forms of fault tolerance. 

9 How Do These Parameters Allow the Cost of 

Programs to Be Determined? 

The cost of a single superstep is the sum of three terms: 

the (maximum) cost of the local computations on each 

processor, the cost of the global communication of an h

relation, and the cost of the barrier synchronisation at the 

end of the superstep. Thus the cost is given by 

cost of a superstep = MAX w; + MAX h;g + l, 
processes processes 

where i ranges over processes, and w; is the time for the 

local computation in process i. Often the maxima are as

sumed and BSP costs are expressed in the form w+hg+l. 

The cost of an entire BSP program is just the sum of 

the cost of each superstep. We call this the standard cost 

model. At this point we emphasize that the standard cost 

model is not simply a theoretical construct. It provides an 

accurate model for the cost of real programs of all sizes, 

across a wide range of real parallel computers. Hill et al. 

[ 18] illustrates the use of the cost model to predict the 

cost of a computational fluid dynamics code running on 
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one architecture when it is moved to another. In contrast, 

[33] uses the cost model to compare the predicted and 

actual speedup of an electromagnetics application. 

To make this summation of costs meaningful, and to 

allow comparisons between different parallel computers, 

the parameters w, g, and l are expressed in terms of the 

basic instruction execution rate, s, of the target architec

ture. Since this will only vary by a constant factor across 

architectures, asymptotic complexities for programs are 

often given unless the constant factors are critically im

portant. Note that we are assuming that the processors 

are homogeneous, although it is not hard to avoid that as

sumption by expressing performance factors in any com

mon unit. 

The existence of a cost model that is both tractable 

and accurate makes it possible to truly design BSP pro

grams, that is to consciously and justifiably make choices 

between different implementations of a specification. For 

example, the cost model makes it clear that the follow

ing strategies should be used to write efficient BSP pro

grams: 

1. balance the computation in each superstep 

between processes, since w is a maximum over 

computation times, and the barrier synchronisation 

must wait for the slowest process; 

2. balance the communication between processes, 

since h is a maximum over fan-in and fan-out of 

data; and 

3. minimise the number of supersteps, since this 

determines the number of times l appears in the 

final cost. 

The cost model also shows how to predict performance 

across target architectures. The values of p, w, and h for 

each superstep, and the number of supersteps can be de

termined by inspection of the program code, subject to 

the usual limits on determining the cost of sequential pro

grams. Values of g and l can then be inserted into the cost 

formula to estimate execution time before the program is 

executed. The cost model can be used 

1. as part of the design process for BSP programs; 

2. to predict the performance of programs ported to 

new parallel computers; and 

3. to guide buying decisions for parallel computers if 

the BSP program characteristics of typical 

workloads are known. 

Other cost models for BSP have been proposed, in

corporating finer detail. For example, communication and 

computation could conceivably be overlapped, giving a 

superstep cost of the form 

max(w, hg) + l, 

although this optimisation is not usually a good idea on 

today's architectures [ 17, 32]. It is also sometimes argued 

that the cost of an h-relation is limited by the time taken 

to send h messages and then receive h messages, so that 

the communication term should be of the form 

All of these variations alter costs by no more than small 

constant factors, so we will continue to use the standard 

cost model in the interests of simplicity and clarity. 

A more important omission from the standard cost 

model is any restriction on the amount of memory re

quired at each processor. While the existing cost model 

encourages balance in communication and limited barrier 

synchronisation, it encourages profligate use of memory. 

An extension to the cost model to bound the memory as

sociated with each processor is being investigated. 

The cost model also makes it possible to use BSP to 

design algorithms, not just programs. Here the goal is to 

build solutions that are optimal with respect to total com

putation, total communication, and total number of su

persteps over the widest possible range of values of p. 

Designing a particular program then becomes a matter 

of choosing among known algorithms for those that are 

optimal for the range of machine sizes envisaged for the 

application. 

For example two BSP algorithms for matrix multipli

cation have been developed. The first, a block paralleliza

tion of the standard n3 algorithm [26], has (asymptotic) 

BSP complexity 

Block MM cost= n3 1 p + (n 2 1 p 1
1
2
)g + p 1

12z, 

requiring memory at each processor of size n2 I p. This is 

optimal in computation time and memory requirement. 
A more sophisticated algorithm (McColl and Valiant 

[23]) has BSP complexity 

Block and Broadcast MM cost = n3 1 p + (n 2 1 p2
13)g +l, 

requiring memory at each processor of size n2 1 p 213
. This 

is optimal in time, communication, and supersteps, but 

requires more memory at each processor. Therefore the 

choice between these two algorithms in an implementa

tion may well depend on the relationship between the size 

of problem instances and the memory available on pro

cessors of the target architecture. 

10 Is BSP a Programming Discipline, or a 
Programming Language, or Something else? 

BSP is a model of parallel computation. It is concerned 

with high-level structure of computations. Therefore it 
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Table 1. Core BSP Operations 

Class Operation Meaning 

Initialisation bsp_ init Simulate dynamic processes 

bsp_begin Start of SPMD code 

bsp_end End of SPMD code 

Enquiry bsp_pid Find my process id 

bsp_nprocs Number of processes 

bsp_ time Local time 

Synchronisation bsp_sync Barrier synchronisation 

DRMA bsp_pushregister Make region globally visible 

bsp_popregister Remove global visibility 

bsp_put Push to remote memory 

bsp_get Pull from remote memory 

BSMP bsp_set_tag_size Choose tag size 

bsp_bsrnp_info 

bsp_ send 

bsp_get_tag 

bsp_rnove 

Halt bsp_abort 

High Performance bsp_hpput 

bsp_hpget 

bsp_hprnove 

does not prescribe the way in which local computations 

are carried out, nor how communication actions are ex

pressed. All existing BSP languages are imperative, but 

there is no intrinsic reason why this need be so. 

BSP can be expressed in a wide variety of program

ming languages and systems. For example, BSP programs 

could be written using existing communication libraries 

such as PVM [9], MPI [27], or Cray's SHMEM. All that 

is required is that they provide non-blocking communica

tion mechanisms and a way to implement barrier synchro

nisation. Indeed, experienced programmers may already 

find themselves writing in a style reminiscent ofBSP pre

cisely to avoid the deadlock potential of the unrestricted 

message passing style. 

There are two advantages to explicitly adopting the 

BSP framework. First, the values of g and l depend not 

only on the hardware performance of the target architec

ture but also on the amount of software overhead required 

to achieve the necessary behaviour. Systems not designed 

with BSP in mind may not deliver good values of g and l. 

Second, use of the cost model as a design tool can guide 

software development and increase confidence that good 

choices have been made. 

The most common approach to BSP programming is 

SPMD imperative programming using Fortran or C, with 

BSP functionality provided by library calls. Two BSP li

braries have been in use for some years: the Oxford BSP 

Number of packets in queue 

Send to remote queue 

Get tag of I st message 

Fetch from queue 

One process halts all 

Unbuffered versions 

of communication 

primitives 

Library [26] and the Green BSP Library [11, 12]. A stan

dard has recently been agreed for a library called BSPLib 

[13]. BSPLib contains operations for delimiting super

steps, and two variants of communication, one based on 

direct memory transfer, and the other on buffered mes

sage passmg. 

Other BSP languages have been developed. These in

clude GPL [24] and Opal [21]. 

11 How Easy Is It to Program Using the BSPLib 

Library? 

The BSPLib library provides the operations shown in Ta

ble 1. There are operations to: 

1. set up a BSP program; 

2. discover properties of the environment in which 

each process is executing; 

3. communicate, either directly into or out of a 

remote memory, or using a message queue; 

4. participate in a barrier synchronisation; 

5. abort a computation from anywhere inside it; and 

6. communicate in a high-performance unbuffered 

mode. 
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The BSPLib library is freely available in both Fortran 

and C from http: I IWW"N. bsp-wor ldwide. org I 

implmnts I oxtool. htm. A more complete descrip

tion of the library can be found in Appendix A. 

Another higher-level library provides specialised col

lective-communication operations. These are not consid

ered as part of the core library, but they can be easily re

alised in terms of the core. These include operations for 

broadcast, scatter, gather, and total exchange. 

12 In what Application Domains Has BSP Been 

Used? 

BSP has been used in a number of application areas, pri

marily in scientific computing. Much of this work has 

been done as part of contracts involving Oxford Parallel 

(http: I IWW"N. comlab. ox. ac. ukl oxpara/). 

Computational fluid dynamics applications of BSP in

clude: 

(a) an implementation of a BSP version of the OPlus 

library for solving 3D multigrid viscous flows, 

used for computation of flows around aircraft or 

complex parts of aircraft in a project with Rolls 

Royce [6]; 

(b) a BSP version of FLOW3D, a computational fluid 

dynamics code; 

(c) oil reservoir modelling in the presence of 

discontinuities and anisotropies in a project with 

Schlumberger Geoquest Ltd. 

Computational electromagnetics applications of BSP 

[30] include: 

(a) 3D modelling of electromagnetic interactions with 

complex bodies using unstructured 3D meshes, in 

a project with British Aerospace; 

(b) parallelisation of the TOSCA, SCALA, and 

ELEKTRA codes, and demonstrations on 

problems such as design of electric motors and 

permanent magnets for MRI imaging; 

(c) a parallel implementation of a time domain 

electromagnetic code ParEMC3d with absorbing 

boundary conditions; 

(d) parallelisation of the EMMA-T2 code for 

calculating electromagnetic properties of 

microstrips, wires and cables, and antennae [33]. 

BSP has been used to parallelise the MERLIN code 

in a project with Lloyds Register of Shipping and Ford 

Motor Company. It has been applied to plasma simulation 

at Rensselaer Polytechnic Institute in New York [31]. It 

is being used to build neural network systems for data 

mining at Queen's University in Kingston, Canada. 

13 What Do BSP Programs Look Like? 

Most BSP programs for real problems are large and it 

is impractical to include their source here. Instead we 

include some small example programs to show how the 

BSPLib interface can be used. We illustrate some differ

ent possibilities using the standard parallel prefix or scan 

operation: given xo, ... , Xp-1 (with Xi stored on process 

i ), compute xo + · · · +Xi on each process i. 

All Sums: Version 1 

The function bsp_allsumsl calculates the partial 

sums of p integers stored on p processors. The algorithm 

uses the logarithmic technique that performs !log p l su

persteps, such that during the kth superstep, the processes 

in the range 2k-i ::;; i < p each combine their local par

tial sums with process i - 2k-l. Figure 2 shows the steps 

involved in summing the values bsp_pid () +1 using 4 

processors. 

int bsp_allsumsl(int x) { 

int i, left, right; 

bsp_pushregister(&left,sizeof(int)); 

bsp_sync(); 

right = x; 

for(i=l;i<bsp_nprocs();i*=2) 

if (bsp_pid()+i < bsp_nprocs()) 

bsp_put(bsp_pid()+i,&right,&left, 

O,sizeof(int)); 

bsp_sync(); 

if (bsp_pid()>=i)right=left+right; 

bsp_popregister(&left); 

return right; 

A process called registration is used to enable refer

ences to a data structure on one processor to be correctly 

mapped to locations on other processors. BSPLib does 

not assume that processors are homogeneous. In any case, 

heap-allocated data structures need not have the same ad

dresses on different processors, so some mechanism for 

associating names to addresses is required. The procedure 

FIGURE 2 All sums using the logarithmic technique. 



bsp_pushregister allows all processors to declare 

that the variable left is willing to have data put into it 

by a DRMA operation. 
When 

bsp_put(bsp_pid()+i,&right,&left, 

O,sizeof(int)) 

is executed on process bsp_pid (), then a single in

teger right is copied into the memory of processor 

bsp_pid () +i at the address &left+O. 

The cost of the algorithm is llog p l ( 1 + g + /) + l as 
there are llog p l + 1 supersteps (including one for reg

istration); during each superstep a local addition is per

formed (which costs 1 flop), and at most one message of 

size 1 word enters and exits each process. 

All Sums: Version 2 

An alternative implementation of the prefix sums func

tion can be achieved in a single superstep by using a tem

porary data structure containing up to p integers. Each 

process i puts the data to be summed into the ith element 

of the temporary array on processes j (where 0 ~ j ~ i). 
After all communications have been completed, a local 

sum is then performed on the accumulated data. The cost 

of the algorithm is p + p g + 2!. 

int bsp_allsums2(int x) 

inti, result,*array = 

calloc(bsp_nprocs() ,sizeof(int)); 

if (array==NULL) 

bsp_abort("Unable to allocate %d 
element array",bsp_nprocs(}); 

bsp_pushregister(array,bsp_nprocs() 

*sizeof(int)); 
bsp_sync(); 

for(i=bsp_pid() ;i<bsp_nprocs();i++) 

bsp_put(i,&x,array,bsp_pid() 

*sizeof(int) ,sizeof(int)); 
bsp_sync(); 

result = array[O]; 

for(i=1;i<=bsp_pid() ;i++) 

result += array[i]; 
free (array); 

bsp_popregister(array); 

return result; 

The first algorithm performs a logarithmic number of 

additions and supersteps, while the second algorithm per

forms a linear number of additions but a constant number 
of supersteps. If the operation being performed at each 

iteration of the algorithm were changed from addition to 

another, more costly, associative operator, then BSP cost 

analysis provides a simple mechanism for determining 

which is the better implementation. 
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All Sums on an Array 

Either of the routines defined above can be used to sum 

n values held in nl p blocks distributed among p proces

sors. The algorithm proceeds in four phases: 

1. The running sum of each nIp block of integers is 

computed locally on each processor. 

2. As the last element of each nl p block contains the 

sum of each (nIp )-element segment, then either of 

the two simple algorithms can be used to calculate 

the running sums of the last element in each block 

(call this last). 

3. Each processor gets the value of last from its 

left neighbouring processor (we call this 

lefts_last). 

4. Adding lefts_last to each of the 

locally-summed nl p elements produces the 

desired effect of the running sums of all n 

elements. 

void bsp_allsums(int*array, 

int n_over_p) 

int i, last, lefts_last; 

bsp_pushregister(&last,sizeof(int)); 

for (i=1;i<n_over_p;i++) 

array[i] += array[i-1]; 

last = bsp_allsums2 

(array[n_over_p-1]); 

if (bsp_pid()==O) lefts_last=O; 

else 
bsp_get(bsp_pid()-1,&last,O, 

&lefts_last,sizeof(int)); 

bsp_sync(); 

for(i=O;i<n_over_p;i++) 

array[i] += lefts_last; 

bsp_popregister(&last); 

void main() { 

int i,j,n_over_p,*xs; 

bsp_begin(bsp_nprocs()); 

n_over_p = 100; 

xs = calloc(n_over_p,sizeof(int)); 

for (i=O;i<n_over_p;i++) xs[i]=1; 

bsp_allsums(xs,n_over_p); 

for(i=O;i<bsp_nprocs() ;i++) 

if (bsp_pid()==i) { 

printsf("On process %d: " 
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bsp_pid ( ) ) ; 

for(j=O;j<n_over_p;j++) 

printf("%d ",xs[j]); 

printf("\n"); 

fflush(stdout); 

bsp_sync(); 

} 

bsp_end(); 

14 What Are Typical Values of g and I for 

Common Parallel Computers? 

Values of the BSP cost model parameters are shown in 

Table 2. The values of the g and l parameters are nor

malised by the instruction rate, s, of each processor (to aid 

comparisons between machines, raw rates are also given 

in microseconds). Because this instruction rate depends 

heavily upon the kind of computations being done, the 

average of two different measured values are used: 

Ls J measures the cost of an inner product, where O(n) 

operations are performed on a data structure of 

size n. The value of n is chosen to be far greater 

than the cache size on each processor. This bench

mark therefore gives a lower-bound megaflop rate 

for the processor as each arithmetic operation in

duces a cache miss. 

Is l measures the cost of a dense matrix multiplication, 

where O(n3) operations are performed on a data 

structures of size n2
. Because a large percentage of 

the computation can be kept in cache, this bench

mark gives an upper-bound megaflop rate for the 

processor. 

As we have already mentioned, good BSP algorithm 

design is often based around balanced patterns of com

munication. We illustrate the communication capacity, g, 

using two balanced communications. The first is a par

ticularly easy !-relation, a local communication that per

forms a cyclic shift of data between neighbouring proces

sors. This benchmark provides an upper-bound rate for 

communication as there are only p messages injected into 

the communication network during a superstep. 

Parallel computers have far greater difficulty in achiev

ing scalable communication for patterns of communica

tion that move lots of data to many destinations. As an 

extreme example, we consider the total exchange global 

communication that injects p 2 messages into the network 

and realises a p-relation. As no scalable architecture can 

provide p 2 dedicated wires because it is too expensive, 

sparser interconnection networks are used in practice. For 

example, the Cray T3D uses a 3D Torus, while the IBM 

SP2 uses a hierarchy of 8-node fully-connected crossbar 

switches. The value of g for a total exchange therefore 

provides a good measure of the lower-bound rate of com

munication of an architecture. 

Not very surprisingly, the two values of g, derived di

rectly from a !-relation, and from the pg cost of a p

relation total exchange can be quite different. This might 

mean that the !-relation performance of the network is 

not very good (for example, a ring takes time proportional 

top to deliver both a !-relation and a p-relation), but usu

ally means that the network's effective capacity is not as 

large as the per-link bandwidth would suggest. When cost 

modelling algorithms, it is advisable to use the value of g 

produced by the global communication (total exchange) 

benchmark. 

Appendix B shows how these figures were obtained. 

The meaning of n 112 is explained in Section 16. 

15 How Can the BSPLib Be Implemented 

Efficiently on Today's Architectures? 

The semantics of supersteps separates local computation 

from communication, and the Oxford implementation of 

BSPLib keeps these two phases separate in the imple

mentation also. Thus while the semantics of calls to put 

and get permits them to begin executing concurrently 

with the local process's computation, calls to these func

tions in fact buffer the data for later transfer. Not over

lapping computation and communication contradicts con

ventional wisdom, but it turns out that the performance 

advantages of postponing communication are larger than 

of exploiting the potential overlap [ 17]. 

We begin by noting that overlapping computation and 

communication can give at best a factor of two perfor

mance improvement, and then only when the computa

tion and communication times are precisely equal. This 

equality is neither a scalable nor portable property, so we 

must expect an appropriate balance to be quite rare. Thus 

the performance improvement factor due to overlapping 

is likely to be much less than two in practice. 

On the other hand, postponing communication is a big 

performance win because it permits two major optimisa

tions: 

1. Combining all of the transfers between a pair of 

processors into a single messages, so that the 

overhead of message startup is paid only once. 

The benefits of doing this are discussed in the next 

section. 

2. Reordering communications so that the load they 

generate is applied to the communication network 

effectively, rather than in the order in which the 
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Table 2. BSP Machine Parameters 

computation barrier local comm. global comm. 

LsJ lsl s p g g/s f? R/S n 1/2 

Machine Mflops flops /LS flop/word tLS!word flop/word tLS!word words 

SGI PowerChallenge 53 94 74 226 3.1 0.5 0.007 0.5 0.007 80 

2 1132 15.3 9.8 0.13 10.2 0.14 12 

3 1496 20.2 8.9 0.12 9.5 0.13 12 

4 1902 25.7 9.8 0.13 9.3 0.13 12 

Cray T3E 4.3 89.2 46.7 86 1.8 2.12 0.05 2.14 0.05 9 

2 269 5.7 0.87 0.02 2.61 0.07 33 

3 296 6.3 0.86 0.02 2.11 0.04 35 

4 357 7.6 0.87 0.02 1.77 0.04 40 

8 506 10.8 0.81 0.02 1.64 0.03 40 

9 552 11.7 0.82 0.02 1.57 0.03 42 

16 751 16.0 1.04 0.02 1.66 0.04 38 

20 880 18.7 0.96 0.02 1.63 0.03 38 

24 1013 21.6 1.39 0.03 1.70 0.04 36 

Cray T3D 5 19 12 68 5.6 0.3 0.02 0.3 0.02 94 

2 164 13.5 0.7 0.06 1.0 0.08 71 

4 168 13.9 0.7 0.06 0.8 0.65 66 

8 175 14.4 0.8 0.07 0.8 0.65 59 

9 383 31.7 0.9 0.07 1.2 0.10 39 

16 181 14.9 0.9 0.07 1.0 0.08 61 

25 486 40.2 1.1 0.09 1.5 0.13 26 

32 201 16.6 1.1 0.09 1.4 0.12 28 

64 148 12.3 1.0 0.09 1.7 0.14 27 

128 301 24.9 1.1 0.09 1.8 0.15 20 

256 387 32.1 1.2 0.11 2.4 0.19 15 

IBM SP2 (switch) 25 27 26 1 244 9.4 1.3 0.05 1.3 0.05 7 

2 1903 73.2 6.3 0.24 7.8 0.30 6 

4 3583 137.8 6.4 0.25 8.0 0.31 7 

8 5412 208.2 6.9 0.27 11.4 0.43 6 

Multiprocessor Sun 3.8 16.4 10.1 1 24 2.4 0.4 0.04 0.4 0.04 7 

2 54 5.3 3.0 0.29 3.4 0.34 7 

3 74 7.4 2.9 0.29 4.1 0.41 8 

4 118 11.7 3.3 0.32 4.1 0.41 11 

Parsytec GC 19.3 98 5.1 1.0 0.05 1.0 0.05 16 

2 6309 325 109 5.6 113 5.9 3 

4 23538 1219 190 9.9 143 7.4 3 

8 29080 1506 252 13.1 254 13.2 3 

16 224977 11600 253 13.1 342 17.7 3 

32 130527 6700 272 14.1 658 34.1 3 

IBM SP2 (ethernet) 25 27 26 I 241 9.3 1.3 0.05 1.3 0.05 8 

2 18759 721.5 182.1 7.0 183.6 7.1 3 

4 39025 1500.9 388.2 14.9 628.2 24.2 5 

8 88795 3415.2 1246.6 47.3 1224.1 47.1 2 

(1) All values for g are for communications of 32-bit words; (2) benchmarks were performed at the- 03 optimisation level; (3) the 

Cray T3D, SGI PowerChallenge, IBM SP2, and Parsytec GC used native implementations of the toolset; (4) the toolset used on the 

multiprocessor Sun was built using generic System V shared-memory facilities 
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particular puts and gets appears in the 

program. Patterns guaranteed to avoid congestion 

can be set up in software, rather than requiring 

expensive hardware solutions operating during the 

data transfers. 

These results are counter-intuitive, since they appear to 

increase congestion in the network that could be avoided 

by allowing some messages to begin transmission early. 

This effect is undoubtedly present, but it it dwarfed by 

the size of the improvements which postponement makes 

possible. Reordering communication, for example, gives 

performance improvements of a factor between about 2 

and p, while combining multiple transfers into single 

messages can give improvements of several orders of 

magnitude. One reason why this tradeoff has not been 

noted previously is that message-passing interfaces that 

operate at the level of single messages cannot naturally 

conceive of postponing transmission since there is no 

clear moment to postpone transmission to. 

The performance gains of delaying communication are 

so large that even.,the high-performance versions of the 

put and get operations, which are designed so that 

computation and communication can be overlapped with

out buffering, postpone transmissions until the end of the 

computation phase of each superstep. Congestion within 

the network is much less important, in practice, than con

gestion at the network boundaries. A processor that si

multaneously receives messages from several other pro

cessors has no choice but to sequentialise their removal 

from the network. 

Regardless of the type of parallel architecture, the abil

ity to reorder messages before transmission is crucial 

to creating a consistent bulk-communication behaviour 

without increasing the value of g. Two mechanisms used 

are: 

1. randomly ordering the messages to reduce the 

likelihood of troublesome patterns, and 

2. using a latin square to schedule transmissions in a 

guaranteed contention-free way. 

Which of these mechanisms is to be preferred is architec

ture-dependent. 

Recall that a latin square is a p x p square in which 

each of the values from 1 to p appears p times, with no 

repetition in any row or column. Such a square can be 

used as a schedule for the routing of the h-relation, using 

row i as the schedule for processor i, with the contents of 

the row regarded as the destinations for each communi

cation iime step. 

The use of such mechanisms has a major effect on 

performance. For example, consider a total exchange al

gorithm shown in Figure 3 where each processor i has 

xo xo 

Xt Xt 

X2 X2 

xa xa 

FIGURE3 
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Before 
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communication 

Total exchange between four processors. 

data x; of size n that is to be exchanged with every other 

processor. After the communication, each processor will 

contain a data structure of size np containing all of the 

xi, where 1 ~ j < p. The BSP cost of the algorithm 

is png + l because p messages enter and exit each pro

cessor. However, a naive implementation may have each 

processor send a message to processor 0 on the first time 

step, to processor 1 on the second, and so on. This causes 

p messages to contend at process 0, then p to contend at 

process 1, and so on. The cost of this communication will 

be 0(p2
) rather than the linear cost predicted by the BSP 

cost formula png + l. An alternative ordering that does 

not cause contention is for processors to send their data 

in the order mod(i + j, p); where 1 ~ j < p, and i is 

the processor identifier, using a simple latin square. The 

expected linear (in p) cost can then be achieved. 

Table 3 shows the results of an implementation that 

routes total exchanges. Column 1 shows the performance 

of a system in which messages are despatched as soon 

as the puts are encountered, and in which the or

der of the puts causes contention. The second col

umn shows the performance when messages are immedi

ately despatched, but the programmer has carefully hand

crafted the order of puts to minimise contention. The 

third and fourth columns show the performance when 

both of these programs are run with puts postponed 

until the end of the superstep and reordered by the run

time system using a latin square. The performance is 

very slightly worse than the best hand-coded program, 

because of the overhead of the runtime system manag

ing the reordering. Far more importantly, the effect of the 

programmer's ordering of the puts has been completely 

removed. In other words, reordering provides consistent 

performance over varying orderings of the data transfer 

instructions, at the expense of a very small decrease in 

best case performance. Note also that reordering provides 

almost a factor of two performance improvement, enough 

by itself to make up for any performance loss caused by 

not overlapping computation and communication. 

The precise details of handling communication and 

building barriers differs depending on the specifics of tar

get architectures: 



Table 3. The Effects of Node Contention on the Cray 
T3D. Entries in the table are in seconds for routing a 
4,000,000-relation, e.g., for 128 processors, 15625 integers 
per process 

immediate transmission BSPLib reordering 

Procs contention latin square contention latin square 

2 .168 .157 .157 .157 
4 .392 .194 .191 .191 
8 .461 .239 .228 .229 

16 .598 .289 .344 .345 
32 .784 .413 .465 .456 
64 .903 .529 .548 .546 

128 .961 .575 .599 .599 

Distributed-memory machines with remote-mem

ory access (Gray T3D and Gray T3E). A barrier syn

chronisation is performed to ensure that each process has 

finished its local computation. Once all the processors 

have passed the barrier, one-sided memory accesses are 

used to route messages into the memories of the remote 

processors. Combining is not used, because there is little 

to be gained when the actual data transfer mechanism is 

DRMA. The communication phase of a superstep is com

pleted by performing a further barrier synchronisation. 

Distributed-memory machines with message

passing (IBM SP2, Parsytec GC, Generic TCP/IP). 

On architectures that provide native non-blocking send 

and blocking receive message-passing primitives, the h

relation is routed through the communication network in 

three phases: 

1. a total exchange is performed, exchanging 

information about the number, sizes, and 

destination addresses of messages. This total 

exchange is considered to be the barrier 

synchronisation for the superstep. 

2. gets are translated into puts and the data they 

refer to is buffered at the source processor. 

3. after the total exchange, each processor knows 

how many messages, from every other process, it 

is expecting. Each process therefore knows when 

the communication phase of the superstep is 

complete by counting the incoming messages. 

Communication is performed by interleaving the 

outgoing and incoming messages, so that 

minimum buffering requirements are placed on the 

underlying message-passing system. 
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Shared-memory architectures (SGI Power Chal

lenge, Sun). The implementation on shared-memory ar

chitectures combines features from both of the implemen

tations above. The information about the number and size 

of messages to be sent between each processor pair is 

constructed in a region of shared memory by each call to 

put and get. After the computation phase, a barrier syn

chronisation takes place to ensure that this information 

is frozen. Because the message information is in shared 

memory, an implicit total exchange can be considered to 

have occurred at this point. The actual exchange of data 

is performed in a message-passing style. First messages 

are copied into buffers associated with each process in 

shared memory. These buffers are then inspected by the 

remote process, and their contents copied into the remote 

processor's memories. Using a contention-limiting order 

for messages, the number of message passing buffers as

sociated with each process can be minimised. Finally, the 

message information region is cleared and a further bar

rier synchronisation takes place to allow renewed access 

to it. 

16 How Much Effect Does Message Size Have 

on the Value of g? 

As we have already seen, the way in which BSPLib de

lays communication until the end of each superstep and 

then combines messages into the largest possible units re

duces the importance of message size. The cost model 

makes no distinction between the cost of a process send

ing h messages of size one or a single message of size h; 

both communications have an h-relation cost of hg. How

ever, a superstep in which very little total communication 

occurs may still deviate from the cost model because of 

the effects of startup costs for message transmission. 

Miller refined the standard cost model [29] using a 

technique of Hockney [20] to model the effect of message 

granularity on communication cost. In the refined model, 

g is defined as a function of the message size x: 

g(x) = c;2 
+ 1 )goo, (1) 

where g00 is the asymptotic communication cost for very 

large messages (that is, the g reported in Table 2) and 

n 1/2 is the size of message that produces half the optimal 

bandwidth of the machine so g(n1;2) = 2goo. 

The value of n1;2 in Equation (1) is determined ex

perimentally for each machine configuration by fitting a 

curve to actual values of g(x). Figure 4 shows the actual 

values of g(x) on an 8-processor IBM SP2. Because mes

sages are combined in each superstep, the value of n 112 is 

effectively reduced to 6 words. For comparison purposes, 

the effect of naively communicating messages separately 
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FIGURE 4 Fitting experimental values of g(x) flops/word to 
Equation (I) using an 8-processor IBM SP2 with switch com
munication. The messages are communicated using one-sided 
put communication where a process puts data into another pro
cessor's memory. The top curve represents single-word mes
sages and the bottom curve uses a message-combining scheme. 

is shown by the data points labeled "actual cost of single

word messages" in the figure. Fitting a curve to this data 

gives n 112 = 202 words. 

The n 112 parameter can be used to discover the min

imum message size for which the standard cost model 

is within a given percentage of the more-detailed cost 

model. For the standard model to be within y% accuracy 

of the cost attributed by the model that includes message 

granularity, then: 

( 

100 
+ y)hog00 = hog(ho) = (n

112 + l)hogoo, (2) 
100 ho 

where ho words is Valiant's parameter [36] that measures 

the minimum size of h-relation to achieve n 112 through

put. Thus the percentage error in the communication cost 

hogoo is 

( 
lOOn1;2) 

y= %. 
ho 

(3) 

So on the IBM SP2 with switch communication the error 

in the standard BSP model for communicating ho = 60 

32-bit words is 10%. Moreover, as would be expected, as 

the size of h-relation increases, the error in the standard 

BSP model decreases. 

These data show that combining the messages sent be

tween each pair of processors has a significant effect on 

the achieved value of g, and so provides further justifi

cation for not overlapping computation and communica

tion. 

17 What Tools Are Available to Help with 

Building and Tuning BSP Programs? 

The intensional properties of a parallel program (i.e., how 

it computes a result) can often be hard to understand. The 

BSP model goes some way towards alleviating this prob

lem if cost analysis is used to guide program develop

ment. Unfortunately, in large-scale problems, cost anal

ysis is rarely used at the time of program development. 

The role of current BSP tools [18] is to aid programmers 

in understanding the intensional properties of their pro

grams by graphically providing profiling and cost infor

mation. The tools may be used both to analyse the com

munication properties of a program, and to analyse the 

predicted performance of the code on a real machine. 

A central problem with any parallel-profiling systems 

is effective visualisation of large amounts of profiling 

data. In contrast to conventional parallel-profiling tools, 

which highlight the patterns of communication between 

individual sender-receiver pairs in a message passing sys

tem, the BSP approach significantly simplifies visualisa

tion because all of the communications from a superstep 

can be visualised as a single monolithic unit. 

Figure 5 is an example of the results from a BSP profil

ing tool running on the IBM SP2. It shows a communica

tion profile for the parallel prefix algorithm (with n > p) 

developed on page 260. 

The top and bottom graphs in Figure 5 show, on the 

y-axis, the volume of data moved, and on the x -axis, the 

elapsed time. Each pair of vertically-aligned bars in the 

two graphs represents the total communication during a 

superstep. The upper bars represent the output from pro

cessors, and the lower bars the input. Within each com

munication bar is a series of bands. The height of each 

band represents the amount of data communicated by a 

particular process, identified by the band's shade. The 

sum of all the bands (the height of the bar) represents the 

total amount of communication during a superstep. The 

width represents the elapsed time spent in both communi

cation and barrier synchronisation. The label found at the 

lop left-hand corner of each bar can be used in conjunc

tion with the legend in the right of the graph to identify 

the end of each superstep (i.e., the call to bsp_sync) in 

the user's code. The white space in the figure represents 

the computation time of each superstep. 

In Figure 5, the start and end of the running sums 

is identified by the points labelled 0 and 4. The white 

space in the graphs between supersteps 0 and 1 shows 

the computation of the running sums executed locally 

in each process on a block of size njp. The first su

perstep, which is hidden by the label 1 at this scale, 

shows the synchronisation that arises due to registration 

in the function bsp_allsums 1. The three successively

smaller bars represent the logarithmic number of commu

nication phases of the parallel prefix technique. Contrast-
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FIGURE 5 All sums of 32,000 elements using the logarithmic technique on an 8-processor IBM SP2. 
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FIGURE 6 All sums of 32,000 e lements using total exchange on an 8-processor IBM SP2. 

ing the sizes o f the communicatio n bars in Figure 5 with 

the schematic diagram of Figure 2 graphically shows the 

diminishing numbers of processors involved in communi

cation as the parallel prefix algorithm proceeds. Contrast

ing this method of running sums with the total-exchange

based algorithm in Figure 6 shows that although the num

ber of synchronisations within the algorithm is reduced 

from flog p 1 to l , the time spent in the total exchange of 

bsp_a llsurns2 is approximately the same as the algo-

rithm based upon the logarithmic technique. This is due to 

the larger amount of data transferred, i.e., 1.51 millisec

onds spent in summing p values in p processes using the 

parallel prefix technique, compared to 1.42 mill iseconds 

when the total exchange is used. 

Figures 7 and 8 show pro fi les of the same two algo

rithms running on a 32-processor Cray TID, with the 

same data-set size as the IBM SP2. Although the T3D has 

a lower value for the barrier synchronisation latency than 
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FIGURE 8 All sums of 32,000 elements using a total exchange on a 32-processor Cray TID. 

the IBM SP2 (see Table 2), reducing the number of super

steps from rtog 321 = 6 supersteps to l has a marked ef

fect on the efficiency. The version bsp_allsumsl (i.e., 

logarithmic) takes 1.39 milliseconds compared to 0.91 

milliseconds for bsp_allsums2 (i.e., total exchange). 

These data show that, for today's parallel computers, 

it is often better to reduce the number of supersteps, even 

at the expense of requiring more communication. 

18 How Does BSPLib Compare with Other 
Communication Systems such as PVM or MPI? 

In recent years, the PVM message-passing library [ l , 

2, I 0] has been widely implemented and widely used. 

In that respect, the goal of source code portabiljty in 

parallel computing has already been achieved by PVM. 

What then, are the advantages of BSP programming, if 



any, over a message-passing framework such as PVM? 

First, PVM and all other message-passing systems based 

on pairwise, rather than barrier, synchronisation have no 

simple analytic cost model for performance prediction, 

and no simple means of examining the global state of a 

computation for debugging. Second, taking a global view 

of communication introduces opportunities for optimisa

tion that can improve performance substantially [ 17] and 

these are inaccessible to systems such as PVM. 

MPI [ 14] has been proposed as a new standard for 

those who want to write portable message-passing pro

grams in Fortran and C. At the level of point-to-point 

communications (send, receive etc.), MPI is similar to 

PVM, and the same comparisons apply. The MPI stan

dard is very general and is very complex relative to the 

BSP model. However, one could use some carefully

chosen combination of the various non-blocking com

munication primitives available in MPI, together with 

its barrier synchronisation primitive, to produce an MPI

based BSP programming model. At the higher level of 

collective communications, MPI provides support for 

various specialised communication patterns which arise 

frequently in message-passing programs. These include 

broadcast, scatter, gather, total exchange, reduction, and 

scan. These standard communication patterns are also 

provided for BSP in a higher-level library. There have 

been two comparisons of the performance of BSP and 

MPI. One by Szymanski on a network of worksta

tions [31] showed performance differences of the order 

of a few percent. Another by Hyaric (http: I /merry. 

comlab.ox.ac.uk/users/hyaric/doc/BSP/ 

NASfromMPitoBSP) used the NAS benchmarks. BSP 

outperformed MPI on four out of five of these, perform

ing ten percent better in some cases. Only on LU did BSP 

perform about five percent worse. 

Compared to PVM and MPI, the BSP approach offers 

(a) a simple programming discipline (based on 

supersteps) that makes it easier to determine the 

correctness of programs; 

(b) a cost model for performance analysis and 

prediction which is simpler and compositional; 

and 

(c) more efficient implementations on many 

machines. 

19 How Is BSP Related to the LogP Model? 

LogP [7] differs from BSP in three ways: 

I. It uses a form of message passing based on 

pairwise synchronisation. 
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2. It adds an extra parameter representing the 

overhead involved in sending a message. This has 

the same general purpose as then 112 parameter in 

BSP, except that it applies to every 

communication, whereas the BSP parameter can 

be ignored except for a few unusual programs. 

3. It defines gin local terms. The g parameter in BSP 

is regarded as capturing the throughput of an 

architecture when every processor inserts a 

message (to a uniformly-distributed address) on 

every step. It takes no account of the actual 

capacity of the network, and does not distinguish 

between delays in the network itself and those 

caused by inability to actually enter the network 

(blocking back at the sending processor). In 

contrast, LogP regards the network as having finite 

capacity, and therefore treats g as the minimal 

permissible gap between message sends from a 

single process. This amounts to the same thing in 

the end, that is g in both cases is the reciprocal of 

the available per-processor network bandwidth, 

but BSP takes a global view of the meaning of g, 

while LogP takes a more local view. 

Experience in developing software using the LogP model 

has shown that, to analyse the correctness and efficiency 

of LogP programs, it is often necessary, or at least con

venient, to use barriers. Also, major improvements in 

network hardware and in communications software have 

greatly reduced the overhead associated with sending 

messages. In early multiprocessors, this overhead could 

be substantial, since a single processor handled both the 

application and its communication. Manufacturers have 

learned that this is a bad idea, and most newer multi

processors provide either a dedicated processor to han

dle message traffic at each node or direct remote-memory 

access. In this new scenario, the only overhead for the ap

plication processor in sending or receiving a message is 

the time to move it from user address space to a system 

buffer. This is likely to be small and relatively machine

independent, and may even disappear as communication 

processors gain access to user address space directly. The 

importance of the overhead parameter in the long term 

seems negligible. 

Given that 

LogP +barriers- overhead= BSP, 

the above points would suggest that the LogP model does 

not improve upon BSP in any significant way. However, it 

is natural to ask whether or not the more "flexible" LogP 

model enables a designer to produce a more efficient al

gorithm or program for some particular problem, at the 

expense of a more complex style of programming. Recent 
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results show that this is not the case. In [3] it is shown that 

the BSP and LogP models can efficiently emulate one an

other, and that there is therefore no loss of performance 

in using the more-structured BSP programming style. 

20 How Is BSP Related to the PRAM Model? 

The BSP model can be regarded as a generalisation of 

the PRAM model which permits the frequency of barrier 

synchronisation, and hence the demands on the routing 

network, to be controlled. If a BSP architecture has a very 

small value of g, e.g., g = 1, then it can be regarded as a 

PRAM and we can use hashing to automatically achieve 

efficient memory management. The value of l determines 

the degree of parallel slackness required to achieve opti

mal efficiency. The case l = g = 1 corresponds to the 

idealised PRAM, where no parallel slackness is required. 

21 How Is BSP Related to Data 

Parallelism? 

Data parallelism is an important niche within the field 

of scalable parallel computing. A number of interesting 

programming languages and elegant theories have been 

developed in support of the data-parallel style of pro

gramming, see, e.g., [34]. High Performance Fortran [22] 

is a good example of a practical data-parallel language. 

Data parallelism is particularly appropriate for problems 

in which locality is crucial. 

The BSP approach, in principle, offers a more flexi

ble and general style of programming than is provided by 

data parallelism. However, the current SPMD language 

implemented by BSPLib is very much like a large-grain 

data parallel language, in which locality is not considered 

and programmers have a great deal of control over parti

tioning of functionality. In any case, the two approaches 

are not incompatible in any fundamental way. For some 

applications, the flexibility provided by the BSP approach 

may not be required and the more limited data-parallel 

style may offer a more attractive and productive setting 

for parallel software development, since it frees the pro

grammer from having to provide an explicit specification 

of the various processor scheduling, communication and 

memory management aspects of the parallel computation. 

In such a situation, the BSP cost model can still play an 

important role in terms of providing an analytic frame

work for performance prediction of the data-parallel pro

gram. 

22 Can BSP Handle Synchronisation among a 

Subset of the Processes? 

Synchronising a subset of executing processes is a com

plex issue because the ability of an architecture to syn

chronise is not a bulk property in the same sense that 

its processing power and communication resources are. 

Certain architecture provide a special hardware mecha

nism for barrier synchronisation across all of the pro

cessors. For example the Cray T3D provides an add

and-broadcast tree, and work at Purdue [8] has created 

generic, fast, and cheap barrier synchronisation hardware 

for a wide range of architectures. Sharing this single syn

chronisation resource among several concurrent subsets 

that may wish to use it at any time seems difficult. We are 

currently exploring this issue, but the current version of 

the library synchronises only across the entire machine. 

Architectures in which barrier synchronisation is im

plemented in software do not have any difficulty in im

plementing barriers for subsets of the processors. The re

maining difficulty here is a language design one- it is not 

yet clear what an MIMD, subset-synchronising language 

should be like if it is to retain the characteristics of BSP, 

such as accurate predictability. 

23 Can BSP be Used on Vector, Pipelined, or 

VLIW Architectures? 

Nothing about BSP presupposes how the sequential parts 

of the computation, that is the processes within each pro

cessor, are computed. Thus architectures in which the 

processor uses a specialised technique to improve perfor

mance might make it harder to determine the value of w 

for a particular program, but they do not otherwise af

fect the BSP operation or cost modelling. The purpose of 

normalising g with respect to processor speed is to en

able terms of the form hg to be compared to computation 

times so that the balance between computation and com

munication in a program is obvious. Architectures that 

issue multiple instructions per cycle might require a more 

sophisticated normalisation to keep these quantities com

parable in useful ways. 

24 BSP Doesn't Seem to Model Either 

Input/Output or Memory Hierarchy? 

Both properties can be modelled as part of the cost of ex

ecuting the computation part of a superstep. Modelling 

the latency of deep storage hierarchies fits naturally into 

BSP's approach to the latency of communication, and in

vestigations of extensions to the BSP cost model applica

ble to databases are underway [35]. 



25 Does BSP Have a Formal Semantics? 

Several formal semantics for BSP have been developed. 

He eta!. [15] show how these may be used to give alge

braic laws for developing BSP programs. BSP is used as 
a semantics case study in a forthcoming book [19]. 

26 Will BSP Influence the Design of 
Architectures for the Next Generation of Parallel 

Computers? 

The contribution of BSP to architecture design is that it 

clarifies those f<Jctors that are most important for perfor

mance on problems without locality. It suggests that the 

critical properties of an architecture are: 

I. high permeability of the communication system, 

that is the ability to move arbitrary patterns of data 

quickly; and 
2. the ability to reach a consistent global state 

quickly by barrier synchronisation. 

More subtly, it also suggests that predictability of deliv

ery for a wide range of communication patterns is more 

important than high performance for some special com

munication patterns, and low performance for others. In 
other words, low variance is more significant than low 

mean. 
The two parameters l and g capture, in a direct way, 

how well an architecture achieves these two major per

formance properties. Details of exactly which topology to 

use, what routing technology, and what congestion con

trol scheme are all subsumed in the single consideration 

of total throughput. 
When the BSP model was first considered, it was of

ten felt to be necessarily inefficient because of its use of 

permutation routing. After a while, it came to be appreci

ated that permutation routing is not necessarily expensive, 

and architectures that do it well were developed. Next the 

BSP model was considered inefficient because of its re

quirement for barrier synchronisation. It is now under

stood that barriers need not be expensive, and architec

tures that handle them well are being developed. It may 

be that total exchange is the next primitive to be made 
central to BSP and the same arguments about its neces

sary inefficiency may well be made. New communication 
technologies, such as ATM, repay foreknowledge of com

munication patterns, and total exchange may turn out to 

be a reasonable standard building block for parallel archi

tectures as well. 
BSP's structured use of machine resources also sug

gests functions that could be usefully migrated to hard

ware. We have already seen this possibility for barrier 
synchronisation. Hardware support for message combin

ing and scheduling would appear to be cost-effective also. 
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27 How Can I Find out More about BSP? 

Development of BSP is coordinated by BSP Worldwide, 

and organisation of researchers and users. Information 

about it can be found at the web site http: I lwww. bsp 

-worldwide. org I. The BSPLib library described 

here is a BSP Worldwide standard. Other general papers 

about BSP are [23, 36]. 
There are groups of BSP researchers at: 

I. Oxford-http: I lwww. comlab. ox. ac. ukl 

oucl I groups /bsp; 
2. Harvard- http: I ldas-www. harvard. edu 

lcslresearchlbsp.html; 

3. Utrecht- http: I lwww .math. ruu .nll 

peoplelbisseling.html; 

4. Carleton-http: I lwww. scs. carleton. ca 

l~palepuiBSP. html; 

5. Central Florida-http: I I longwood. cs. 

ucf.edu/csdept/faculty/ 
goudreau. html; 

as well as individuals working on BSP at a number of 

other universities. 
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APPENDIX A THE BSPLib LIBRARY 

This Appendix provides slightly more detail about the 

current major BSP system, BSPLib. We describe C inter

faces to the library, but a Fortran version is also available. 

A.1 Initialisation 

Processes are created in a BSPLib program by the oper

ations bsp_begin and bsp_end. There can only be 

one instance of a bsp_begin/bsp_end pair within a 

program. There are two different ways to start a BSPLib 

program. If bsp_begin and bsp_end are the first and 

last statements in a program, then the entire BSPLib com

putation is SPMD. In an alternative mode, a single pro

cess starts execution and determines the number of paral

lel processes required for the calculation. It then spawns 

the required number of processes using bsp_begin. 

Execution of the spawned processes then continue in an 

SPMD manner, until bsp_end is encountered by all the 

processes. At that point, all processes except process zero 

are terminated, and process zero is left to continue the 

execution of the rest of the program sequentially. 

One problem with providing this mode is that some 

parallel machines available today, for example almost 

all distributed-memory machines, e.g., IBM SP2, Cray 

T3D, Meiko CS-2, Parsytec GC, Hitachi SR2001, do not 

provide dynamic process creation. Therefore we simu

late dynamic spawning using an operation bsp_ini t 

which takes as its argument a procedure name. The pro

cedure passed as an argument to bsp_ini t must con

tain bsp_begin and bsp_end as its first and last state

ments. 

The interface for these library operations is: 

void bsp_init(void (*startproc) (void), 

int argc, char**argv); 

void bsp_begin(int maxprocs); 

void bsp_end () 

maxprocs is the number of processes requested by the 

user. 

s tartproc is the name of a procedure that contains 

bsp_begin and bsp_end as its first and last 

statements. 

argc and argv are command line size and arguments. 
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A.2 Enquiry 

There are also operations to determine the total number 

of processes, and for each process to find out its process 

identifier. The interface for these operations is: 

int bsp_nprocs(); 

int bsp_pid(); 

If the function bsp_nprocs is called before bsp_ 

begin, then it returns the number of processors which 

are available. If it is called after bsp_begin it returns 

n, the actual number of processes allocated to the pro

gram, where 1 ~ n ~ maxprocs, and maxprocs is 

the number of processes requested in bsp_begin. Each 

of then processes created by bsp_begin has a unique 

associated value m in the range 0 ~ m ~ n- 1. The func

tion bsp_pid returns the associated value of the process 

executing the function call. 

A.3 Synchronisation 

A BSPLib calculation consists of a sequence of super

steps. The end of one superstep and the start of the next 

is identified by a call to the library procedure bsp_sync 

with interface: 

void bsp_sync(); 

A.4 DRMA 

There are two ways of communicating among processes: 

one using direct remote-memory access (DRMA), and the 

other using a BSP version of message passing. 

The DRMA communication operations are defined for 

stack- and heap-allocated data structures as well as for 

static data. This is achieved by allowing a process to ref

erence only certain registered areas of a remote memory. 

In a registration procedure, processes use the operation 

bsp_pushregister to announce the address of the 

start of a local area which is available for global remote 

use. This makes it possible to execute BSP programs us

ing heterogeneous processor architectures. Registration 

takes effect at the next barrier synchronisation. 

void bsp_pushregister (void*region, 

int nbytes); 

void bsp_popregister (void*region); 

region is the starting address of the region to be reg

istered or unregistered. The name region must 

be the same for all logically-related calls to bsp_ 

pushregister or bsp_popregister, and 

implementations may check that this is true. 

nbytes is the size of the region (used for range check

ing). 
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Each processor maintains a stack of registration slots. 

Logically-related calls to bsp__pushregister in dif

ferent processes (the ith call in each process is related to 

the ith call in all of the others) associate a variable name 

and the addresses to which it is mapped in each process 

with the next available slot. Registration slots can be deal

located using bsp__popregister, which invalidates 

the last slot associated with the variable name passed as 

an argument - deregistration does not impose the strict 

nesting of push-pop pairs that is normally associated with 

a stack; the scheme allows the popping of registrations to 

occur in an arbitrary order. This provides the benefits of 

encapsulation provided by a stack, whilst providing the 

flexibility associated with a heap-based discipline. How

ever, the registration slot of the argument to popregister 

must be the same across all the processing elements. 

The intent of registration is to make it simple to re

fer to variables in other processes without requiring their 

locations to be explicitly known. A reference to a regis

tered name in a put or get is translated to the address cor

responding to the remote variable with the same name. 

Here is an example: 

Process 0: 

int x; 

bsp__pushregister(&x,sizeof(int)); 

bsp_sync(); 

X = 3; 

bsp__put(l,&x,&x,O,sizeof(int)); 

bsp_sync(); 

Process 1 

int x; 

bsp__pushregister(&x,sizeof(int)); 

bsp_sync(); 

bsp_sync(); 

Process 0 and Process 1 register x in the first slot. 

When Process 0 executes a put, using x as the destination 

region name, this is mapped to the region whose address 

is associated with the first slot in Process 1. Therefore, the 

variable x in Process 1 has the value 3 placed in it after 

the second sync as the result of the put. 

The operation bsp__put pushes locally-held data into 

a registered remote-memory area on a target process, 

without the active participation of the target process. 

The operation bsp_get reaches into the registered local 

memory of another process to copy data values held there 

into a data structure in its own local memory. All gets are 

executed before all puts at the end of a superstep, consis

tent with the semantics that communications do not take 

effect locally until the end of a superstep. Their interfaces 

are: 

void bsp_[hp]put(int pid, 

const void *src, 

void *dst, 

int offset, 

int nbytes); 

pid is the identifier of the process where data is to be 

stored. 

src is the location of the first byte to be transferred by 

the put operation. The calculation of src is per

formed on the process that initiates the put. 

ds t is the base address of the area where data is to be 

stored. It must be a previously-registered data area. 

offset is the displacement in bytes from dst to which 

src will copy. The calculation of offset is per

formed by the process that initiates the put. 

nbytes is the number of bytes to be transferred from 

src into dst. It is assumed that src and dst 

are addresses of data structures that are at least 

nbytes in size. 

void bsp_[hp]get(int pid, 

const void *src, 

int offset, 

void *dst, 

int nbytes); 

pid is the identifier of the process from which data is to 

be obtained. 

src is the base address of the area from which data will 

be obtained. src must be a previously-registered 

data structure. 

offset is an offset from src. The calculation of 

offset is performed by the process that initiates 

the get. 

ds t is the location of the first byte where the data ob

tained is to be placed. The calculation of ds t is 

performed by the process that initiates the get. 

nbytes is the number of bytes to be transferred from 

src into dst. It is assumed that src and dst 

are addresses of data structures that are at least 

nbytes in size. 

The semantics adopted for BSPLib bsp__put com

munication is buffered-locally/buffered-remotely. When 

a bsp__pu t is executed, the data to be transferred is 

copied out of user address space immediately. The exe

cuting process is free to alter the contents of those lo

cations after return from the call to bsp__put. While 

the semantics is clean and safety is maximized, puts 

may unduly tax the memory resources of an imple

mentation, thus preventing large data transfers. Conse

quently, BSPLib also provides a high-performance put 



operation bsp_hppu t whose semantics is unbuffered

locally/unbuffered-remotely. The use of this operation re

quires care, as correct data delivery is only guaranteed 

if neither communication nor local/remote computations 

modify either the source or the destination areas during a 

superstep. The main advantage of this operation is its eco

nomical use of memory. It is therefore particularly useful 

for applications which repeatedly transfer large data sets. 

The bsp_get and bsp_hpget operations reach 

into the local memory of another process and copy 

previously-registered remote data held there into a data 

structure in the local memory of the process that initiated 

them. 

A.5 BSMP 

Bulk synchronous remote-memory access is a convenient 

style of programming for BSP computations that can be 

statically analysed in a straightforward way. It is less con

venient for computations in which the volumes of data 

being communicated are irregular and data-dependent, or 

where the computation to be performed in a superstep de

pends on the quantity and form of data received at its start. 

A more appropriate style of programming in such cases 

is bulk-synchronous message passing (BSMP). 

In BSMP, a non-blocking send operation delivers mes

sages to a system buffer associated with the destination 

process. The message is guaranteed to be in the destina

tion buffer at the beginning of the subsequent superstep, 

and can be accessed by the destination process only dur

ing that superstep. A collection of messages sent to the 

same process has no implied ordering at the receiving 

end. However, since messages may be tagged, the pro

grammer can identify them by their tag. 

In BSPLib, bulk-synchronous message passing is based 

on the idea of two-part messages, a fixed-length part car

rying tagging information that will help the receiver to 

interpret the message, and a variable-length part contain

ing the main data payload. We will call the fixed-length 

portion the tag and the variable-length portion the pay

load. In C programs, either part could be a complicated 

structure. The length of the tag is required to be fixed dur

ing any particular superstep, but may vary between su

persteps. The buffering mode of the BSMP operations is 

buffered-locally/buffered-remotely. 

The procedure to set tag size must be called collec

tively by all processes. Moreover, in any superstep where 

bsp_set_tag_size is called, it must be called before 

sending any messages. 

void bsp_set_tag_size(int *tag_bytes); 

tag_bytes, on entry to the procedure, specifies the 

size of the fixed-length portion of every message 

from the current superstep until it is updated; the 
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default tag size is zero. On return from the proce

dure, tag_bytes is changed to reflect the previ

ous value of the tag size to allow for its use inside 

procedures. 

The tag size of incoming messages is prescribed by the 

outgoing tag size of the previous step. 

The procedure bsp_bsmp_info is an enquiry op

eration that returns information concerning how many 

BSMP packets were sent to the process calling the opera

tion in the prior superstep. This information is intended to 

help the user to allocate an appropriate sized data struc

ture to hold any incoming BSMP messages. 

void bsp_bsmp_info(int*packets, 

int*accum_nbytes); 

packets becomes the number of packets sent using 

bsp_send in the previous superstep. 

accum_nbytes is the accumulated size of all the 

packets. 

The bsp_send operation is used to send a message 

that consists of a tag and a payload to a specified des

tination process. The destination process will be able to 

access the message during the subsequent superstep. Its 

interface is: 

void bsp_send(int pid, 

const void*tag, 

const void*payload, 

int payload_bytes); 

pid is the identifier of the process where data is to be 

sent. 

tag is a token that can be used to identify the mes

sage. Its size is determined by the value specified 

in bsp_set_size_tag. 

payload is the location of the first byte of the payload 

to be communicated. 

payload_bytes is the size of the payload. 

The bsp_send operation copies both the tag and the 

payload of the message out of user space into the system 

before returning. The tag and payload inputs may be 

changed by the user immediately after the bsp_send 

returns. 

To receive a message, the operations bsp_get_tag 

and bsp_move are used. The operation bsp_get_tag 

returns the tag of the first message in the buffer. The oper

ation bsp_move copies the payload of the first message 

in the buffer into payload, and removes that message 

from the buffer. Its interface is: 

void bsp_get_tag(int *status, 

void *tag); 
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status returns -1 if the system buffer is empty. Oth

erwise it returns the length of the payload of the 

first message in the buffer. This length can be used 

to allocate an appropriately-sized data structure for 

copying the payload using bsp_move. 

tag is unchanged if the system buffer is empty. Other

wise it is assigned the tag of the first message in the 

buffer. 

void bsp_move(void *payload, 

int reception_nbytes); 

payload is an address to which the message payload 

will be copied. The buffer is then advanced to the 

next message. 

reception_nbytes specifies the size of the recep

tion area where the payload will be copied into. 

At most reception_nbytes will be copied into 

payload. 

int bsp_hpmove(void**tag_ptr_buf, 

void**payload_ptr_buf); 

bsp_hpmove is a function which returns -1, if the sys

tem buffer is empty. Otherwise it returns the length 

of the payload of the first message in the buffer and 

(a) places a pointer to the tag in tag_ptr_buf; 

(b) places a pointer to the payload in payload_ptr 

_buf; and 

(c) conceptually removes the message (by advanc

ing a pointer representing the head of the buffer). 

Note that bsp_move flushes the corresponding mes

sage from the buffer, while bsp_get_tag does not. 

This allows a program to get the tag of a message (as well 

as the payload size in bytes) before obtaining the payload 

of the message. It does, however, require that even if a 

program only uses the fixed-length tag of incoming mes

sages the program must call bsp_move to get successive 

message tags. 

bsp_get_tag can be called repeatedly and will al

ways return the same tag until a call to bsp_move. 

A.6 Halt 

The function bsp_abort can be used to print an error 

message followed by a halt of the entire BSPLib program. 

The routine is designed not to require a barrier synchro

nisation of all processes. A single process can therefore 

halt the entire BSPLib program. 

void bsp_abort(char*format, ... ) ; 

format is a C-style format string as used by print f. 

Any other arguments are interpreted in the same 

way as the variable number of arguments to printf. 

The function bsp_time provides access to a high

precision timer- the accuracy of the timer is implementa

tion-specific. The function is a local operation of each 

process, and can be issued at any point after bsp_begin. 

The result of the timer is the time in seconds since bsp_ 

begin. The semantics of bsp_time is as though there 

were bsp_nprocs timers, one per process. BSPLib 

does not impose any synchronisation requirements be

tween the timers in each process. 

double bsp_time(); 

APPENDIX B BENCHMARKING 

The BSP parameter l measures the minimum time for 

all processors to barrier synchronise. It is benchmarked 

by repeatedly over-sampling barrier synchronisation, and 

measuring the wall-clock time. Repeated barrier synchro

nisation produces a pessimistic value for l as it models the 

case where the computation part of each superstep com

pletes in each processor at the same moment. This pro

duces most contention in whatever resources are used for 

synchronising. 

Two values for the BSP parameter g are calculated. 

The first is the value of g experienced when routing a 

local communication (a cyclic shift), and the second a 

global communication using a total exchange. As well as 

calculating the value of g, the benchmark also calculates 

the value for n 112 used in Equation (1). This is done by 

routing a fixed-sized h-relation (an over-sampling of 10 

iterations is performed for each h-relation) for large hand 

measuring the elapsed time of a superstep containing no 

computation. 

Sophisticated profiling tools are available to examine 

how much this measured value of g is affected by partic

ular properties of the target computer. We have already 

mentioned some such factors, for example the overhead 

of message startup and the extra data that must be trans

ferred as control information. This can be clearly seen in 

Figures 9-11. 

These figures shows the amount of data transferred 

and the effective value of g in two phases. The first half 

of each figure shows a cyclic shift; the second half a total 

exchange. All supersteps in each half send an h-relation, 

in sets of size 10 for oversampling, varying the granular

ity for each set - first using single messages of size h, 

then using two messages of size h/2, and so on. Accord

ing to the theory, the measured value of g should be the 

same for all of these granularities, since the same total 

volume of data is moved into and out of each processor. 

The top half of each figure shows the volume of data be

ing moved. The second half shows the measured value of 

g for each superstep. 
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FIGURE 9 Cyclic shift and total exchange, on an 8-processor Cray T3D. 

CWrrwdiNPTOIIIIIMIII .... .01......_& .. •••11 IID~....,_.. ... c~TID 

-· ,. ,, 
11 , 
•• 

-

EJ-· ·-· Ill-··-· 
Ill!-· o-· 

·-· !:3-· 
·-· ffi-· -·-·6.'1-· 
E!-· a-· 

Et-· ·-· s-· e-· 
•-·B-· •-·B-· 
•-· D-· 

---------------------~-------- --- - - - -- --· - ~- .. B-·11:1-· --- e-· a-· 
19-· [!]-· 

a-· 1!1-· 
•+---~-----r----r---~----~---,----~----r----, o.oo 1.00 1.01 a.oo 4.00 uo a.oo 1.00 a.oo __. 

FIGURE 10 Cyclic shift and total exchange, on a 32-processor Cray T3D. 

The curves in the lower half o f F igure 9 show the 

value o f g during the cyclic shift phase and the total ex

change phase. The curves are not the expected horizon

tal lines because o f the overhead of message startup. The 

implementation o n the CRAY delays messages and re

orders them, but does not combine them because the com

munication mechanism is DRMA. The curves are good 

matches for Equation ( I) which uses the n t; 2 parame-

ter to model the extra cost of communicating small mes

sages. The dotted line in the graph shows the value o f g 

obtained from the benchmark, and given in Table 2. It is 

very close to the asymptote of the curves. The same struc

ture can be seen for larger numbers of processors (Fig

ure 10). 

Figure II shows the same benchmark running on a 

e ight-processor ffiM SP2. Unlike the Cray, the value of 
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FIGURE 11 Cyclic shift and total exchange on an 8-processor IBM SP2. 

g is more unpredictable. However, although g has a value 

which is three times larger than that of the Cray, the SP2 

has a per-node computation rate twice that of the T3D, 

so the absolute values of g are closely matched on the 

two machines. From the upper graph of Figure I I, it can 

be seen that the amount of data communicated gradu

ally grows, even though the program sends a fixed size 

h-relation . The reason is that, on the SP2, small messages 

are combined. For the combining to work, information 

concerning the size and destination of the individual com

munications are sent with the combined individual com

munications, so that the destination process can unpack 

the data correctly. Therefore, the total size of data sent 

may triple due to the extra unpacking information. This 

causes a slight increase in the effective value of g in the 

presence of large numbers of small messages within a su

perstep. 

These examples show that g can deviate from the val

ues predicted by the cost model because of properties of 

the target computers, and unavoidable overheads in the 

implementation of the library operations. Three observa

tions seem relevant: 

1. Deviations from the predicted values are relatively 

small , even for these artificial test programs, anJ 

experience so far suggests that, for practical 

programs, deviations are much smaller. 

2. The ach ieved values of g and l in BSPLib are 

much smaller than those of a naive 

implementation, so there are advantages to using 

BSP explicitly, rather than programming 'in the 

BSP style'. 

3. Values for g and l continue to decrease as more is 

learned about the detailed properties of each 

architecture. BSP provides a focus for the 

properties of an architecture that are critical, but it 

is often different from the focus of the 

manufacturer. Basic information that would make 

better implementations possible is hard to obtain, 

sometimes because even the manufacturers do not 

know it. 
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