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The rapid growth in the use of microarrays has generated
many questions about how to design experiments that use this
technology effectively. Investigators need answers to questions
about RNA sample selection, allocation of samples to arrays,
robustness of design, dye bias, sample size, and statistical power
to ensure that the experimental objectives are achieved. We
address some common questions that arise in designing dual-
label microarray experiments and provide statistical answers
to these questions, focusing specifically on how to select opti-
mal designs for the identification of differentially expressed
genes.

BACKGROUND

The dual-label microarray measures the expression level
of thousands of genes for a sample of cells. A common goal
of microarray experiments is to determine which genes are dif-
ferentially expressed among two or more predefined classes
of biologic specimens. These types of study goals are referred
to as “class comparisons” (1). Some examples of class compari-
sons are 1) identifying the differentially expressed genes in
BRCA1 mutation–positive, BRCA1 mutation–negative, and
sporadic cases of primary breast cancer (2); 2) identifying the
differentially expressed genes in colon cancer cells treated
with high versus low doses of camptothecin (3); and 3) identi-
fying the differentially expressed genes in the prostate cancer
cell line LNCaP before and after treatment with the tumor
growth inhibitor, PC-SPES (4). Because of their widespread
use, class comparison experiments will be the focus of this com-
mentary.

A microarray generally consists of either cDNA or externally
synthesized oligonucleotides that are printed or coated on glass
slides. A dual-label microarray uses competitive hybridization in
which nucleic acids (i.e., cDNA, cRNA, or RNA) derived from
two RNA sources are hybridized to the same microarray (5,6).
The cDNA from one source is labeled with green (Cy3) dye, and
the cDNA from the other source is labeled with red (Cy5) dye,
either directly or indirectly (7). The cDNA or oligonucleotides
representing different genes are immobilized on the glass slide
and are often referred to as spots. For each spot there are two
corresponding measurements, one for each dye, often referred to
as the two channels. The advantages of competitive hybridiza-
tion for cDNA experiments have been well established (8). The
relative intensities of two labeled specimens measured at a
single spot are much less variable than the relative intensities if
measured at corresponding spots on different arrays. Relative
expression measurements provide a means of controlling the

variability in the size and shape of corresponding spots and
the effects of variation in sample concentration on the surface of
the array.

The relative expression measurements compare the expres-
sion levels of labeled cDNA that have originated from two dif-
ferent RNA sources. cDNA from a single source is often applied
to every microarray slide and is labeled with the same dye (either
Cy3 or Cy5). These labeled cDNAs are referred to as the refer-
ence. If the reference is labeled with Cy3 dye, then the nonref-
erence samples are all labeled with Cy5 dye. Comparisons be-
tween the nonreference samples are based on log-ratios of the
intensity of the Cy5 dye to the intensity of the Cy3 dye for
corresponding spots on different arrays. Basing comparisons be-
tween the nonreference samples on the log-ratios eliminates the
sources of variability attributable to aspects of the spot that
affect both channels similarly. The gene expression data from
such a design, called a reference design, is easy to analyze
because simple t tests or similar statistical methods can be ap-
plied directly to the log-ratios, and there is much existing soft-
ware available for performing such tests. In addition, it is also
possible to control for spot variability from designs that do not
use a reference by statistical modeling. Hence, the reference
design may or may not be the best choice for a particular situ-
ation.

The ability to measure expression levels for two samples on
each cDNA array permits a number of design options for as-
signing specimens to labels and arrays. When choosing among
these design options, one should consider the objectives of the
experiment, the sources of variability, and the differences be-
tween dyes with regard to labeling and detection characteristics.
The purpose of this commentary is to provide statistically sound
advice about the design of investigations for finding differen-
tially expressed genes using dual-label microarray platforms.
We present a number of results comparing the statistical prop-
erties of different designs that we have established elsewhere.
However, to keep the presentation nonmathematical, we have
replaced equations presented in our earlier articles (9,10) with
graphical displays where appropriate.
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SAMPLE SELECTION

Is It Sufficient to Sample One Individual From Each
Class?

The answer is no, because the goals of class comparison are
to determine whether the gene expression profiles are different
between the classes and to identify differentially expressed
genes. Different individuals in the same class are not expected to
have exactly the same gene expression level measurements. Bio-
logic variation and measurement error will produce some dif-
ferences in the gene expression profiles. If we sample only one
individual from each class, then there is no way to distinguish
expression differences associated with class from those associ-
ated with biologic variation or measurement error. Some genes
may vary widely in their expression level from individual to
individual in the same class, whereas others may display differ-
ential expression that is relatively small but is nonetheless criti-
cal for class distinction. Therefore, it is important to have mul-
tiple (and distinct) individuals from each class to obtain an
estimate of biologic variation. Similarly, in studying gene ex-
pression in model organisms under different biologic conditions,
it is important to have distinct applications of the conditions and
harvesting of cells.

How Many Replicates of Each RNA Sample Should Be
Hybridized?

Some investigators (11) have promoted using three or more
replicate measurements for each RNA sample, and others (12)
have suggested that at least two replicate measurements are re-
quired for each sample. These guidelines may be correct in some
situations; however, they will probably not be correct for class
comparison problems. When one is interested in class compari-
son, then replication measurements should generally be at the
population level, so that each replicate represents RNA from a
different individual. Intuitively, the reason that this level of rep-
lication produces the best comparisons is that, by replicating at
the population level, one simultaneously reduces variability
from both population heterogeneity and experimental error.
When multiple aliquots are replicated from the same RNA
source, one only reduces variability from experimental error.
Therefore, replication of individual samples is inefficient for
class comparisons.

Hybridization replicates increase the accuracy of the indi-
vidual sample measurements (11). However, if the number of
arrays is fixed (e.g., when one only has time or resources avail-
able to run a prespecified number of arrays), then increasing the
hybridization replicates requires decreasing the number of dis-
tinct RNA samples assayed. The result of this approach is a
reduction in the accuracy of the class mean estimates. The re-
lationship between sample measurement accuracy and class
mean estimate accuracy as the number of hybridization repli-
cates per sample increases for an experiment with a fixed num-
ber of 24 arrays is shown in Fig. 1. (see supplemental informa-
tion at http://jncicancerspectrum.oupjournals.org/jnci/content/
vol95/issue18/index.shtml for details and proof). Accuracy is
defined as the inverse of the variance of the mean estimate.
Population parameter estimates are most accurate when hybrid-
ization replication (i.e., subsampling) is avoided, even though
the accuracy of individual sample estimates is at a minimum
when there is no subsampling. With less subsampling, one is
better able to detect differentially expressed genes in the classes

when the total number of arrays is fixed. An obvious exception
to this rule is when only a limited number of valuable RNA
samples are available and when one does not have access to
more. Assaying each sample multiple times will clearly be pref-
erable to assaying each sample only once.

One might think that replicate hybridizations would help off-
set high measurement variability in low-quality microarray ex-
periments that display high variation in repeated assays on the
same sample. The power to detect a differentially expressed
gene as a function of the number of subsamples per sample used,
for example, of both a high-quality (i.e., displays low variation
in repeated assays on the same sample) and a low-quality ex-
periment, is shown in Fig. 2 (see supplemental information at
http://jncicancerspectrum.oupjournals.org/jnci/content/vol95/
issue18/index.shtml for details and proof). The high-quality ex-
periment is assumed to have an experimental error variance of
half the biologic variance, and the low-quality experiment is
assumed to have an experimental error variance twice that of the
biologic variance. Although the loss of power is more dramatic
for the high-quality experiment than for the low-quality experi-
ment, the low-quality experiment also loses power when one
replicates hybridizations for a fixed number of arrays.

What Are the Advantages and Disadvantages of Pooling
Samples?

Pooling samples involves mixing together RNA from several
sources before labeling and hybridization. Two motivations for
pooling samples are 1) not enough RNA available from each
individual to perform the assay, and 2) wanting to reduce the
number of arrays used. Investigators sometimes hope to cut
down on the number of arrays needed by comparing a single
pooled sample from each class. The reasoning behind this ap-
proach is that the concentration of an mRNA molecule in a
pooled sample is likely to be closer to the average concentration
for the class than the concentration in a sample from a single

Fig. 1. Accuracy of sample and class mean estimates as a function of the number
of replicates per sample. The number of arrays was fixed at 24. Accuracy is
defined as the inverse of the variance of the estimate. The estimates are the
difference in the class averages for class mean estimates (solid squares) and
the average of repeated measurements on the same sample for sample esti-
mates (open circles). Some parameters, such as the biologic and experimental
variation, were fixed to construct the display. For further details about math-
ematical equations, refer to online supplemental information (see http//
jncicancerspectrum.oupjournals.org/jnci/content/vol95/issue18/index.shtml).
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individual. Unfortunately, a single pooled sample from each
class will not be adequate for statistical inference, because one
has no estimate of the biologic or experimental variability in the
gene expression levels for pooled samples constructed from
samples of the same class. Taking multiple subsamples from
each pool and repeating them on multiple microarrays does not
solve this problem, because variation among the subsamples will
reflect only measurement error and will not include biologic
variation.

It is possible to perform valid statistical comparisons between
the classes with pooled data, but this approach requires multiple
pooled samples from each class. Different pools of RNA should
be constructed from different sets of individuals so that the
pooled samples are independent and represent true replication.
Comparisons of gene expression levels between classes are then
straightforward. However, there are still some disadvantages to
this approach. 1) It does not allow one to understand the con-
tribution of individual RNA samples to the observed gene ex-
pression levels, which makes it impossible to identify outlier or
poor-quality RNA samples. 2) A pool average is potentially
biased for the class average—that is, the average expression
level of a gene in the pool may differ from the average of the
expression levels of the gene in the contributing samples, which
can happen because of inequalities in the amounts of RNA con-
tributed by different samples or because mixing of the RNA
causes unanticipated alteration of gene expression. 3) It may be
difficult or impossible to understand how gene expression is
distributed in the population from pooled data and, hence, to
make valid statistical inferences or predictions for individuals. In
summary, pooling of samples is recommended when there is not
enough RNA from individual samples to run a microarray. The
use of several independent pools from each class will allow for
valid statistical inference about the classes.

PAIRING SAMPLES FOR CO-HYBRIDIZATION

What Types of Designs Should Be Considered?

Three designs have been proposed for cDNA microarray
class comparison experiments (Fig. 3). The reference design is
by far the most widely used because spot-to-spot variation can
be eliminated in a simple way by using ratios or log-ratios. There
are many other advantages to the reference design, which are
explored later in this section; however, its widespread use should
not preclude consideration of other alternatives. The distinctive
feature of a reference design is that expression of a gene for a
sample is measured relative to the expression of that gene at the
same spot on the same array for a reference sample.

The ability to co-hybridize two differentially labeled samples
to each array may appear to open a Pandora’s box of experi-
mental design possibilities. However, do we really need to sort
through every possible design? The fact that the difference in
gene expression levels between corresponding spots on different
microarrays is a major source of variability makes the arrays
analogous to a blocking factor in agricultural experiments. There
is extensive statistical literature on the design of such experi-
ments (13,14), but it cannot be applied directly to dual-labeled
microarray experiments, because the error structure for micro-
array data is somewhat different than the agricultural analog. We
have adapted the method for deriving optimal designs in the

Fig. 2. Statistical power to detect differentially expressed genes as a function of
the number of replicates per sample. The number of arrays was fixed at 24. The
high-quality (i.e., displays low variation in repeated assays on the same sample)
experiment (solid squares) has experimental error variance half that of the
biologic variance. The low-quality (i.e., displays high variation in repeated as-
says on the same sample) experiment (open circles) has experimental error
variance twice that of the biologic variance. The power is the probability of
detecting a twofold change in gene expression levels for the high-quality ex-
periment and a 2√2-fold change in gene expression levels for the low-quality
experiment (i.e., to make the powers comparable). For further details about
mathematical equations, refer to online supplemental information (see http//
jncicancerspectrum.oupjournals.org/jnci/content/vol95/issue18/index.shtml).

Fig. 3. Design diagrams for cDNA microarray class comparison experiments.
Rectangles represent the arrays. A1 is sample 1 from class A, B1 is sample 1
from class B, A2 is sample 2 from class A, and so on. R is the reference sample.
Arrows connect samples repeated on multiple arrays. Red is the Cy5 dye and
Green is the Cy3 dye used to label the reference and nonreference samples.
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presence of a blocking factor to microarray experiments (9) and
have established that, for many class comparison studies, the
balanced block design shown in Fig. 3 is optimal. The effect of
spot-to-spot variation in gene expression levels is eliminated in
the balanced block design because each gene’s expression level
is measured at the same spot on the same array for samples from
each of the two classes being compared.

The third type of design that might be considered for cDNA
microarrays is one proposed by Kerr and Churchill (15), which
they called a loop design (Fig. 3). Unlike the two other designs,
the loop design requires two aliquots from each RNA sample.
These aliquot pairs connect the arrays and are arranged so that
the connected arrays form a loop pattern.

Class comparisons for the balanced block design and the loop
design are accomplished by fitting an analysis-of-variance
(ANOVA) model to the logarithm of the background-corrected
channel-specific intensities (9) and fitting a separate model for
each gene. This approach can also be used for analysis of the
reference design, but the results are equal to or very similar to
applying simple Student’s t tests to the log-ratio measurements.

More elaborate designs have been proposed to achieve dif-
ferent experimental objectives (15,16); however, we will focus
on the three types of designs presented in Fig. 3 because they are
the most obvious choices for class comparisons. Other types of
designs to consider are presented in the dye bias section.

Which Design Will Provide the Best Class Comparisons?

Balanced block, loop, and reference design experiments can
all provide unbiased estimates of the differences in gene expres-
sion levels between class means, i.e., differences between the
average gene expression levels. However, the three designs are
not equally efficient. The efficiency of a design is based on the
precision of the statistical estimates of the differences in the
class means for “equivalent experiments.” We define two no-
tions of equivalent experiments that we think are appropriate to
many microarray studies: 1) Two experiments are equivalent if
they use the same number of microarrays, and 2) two experi-
ments are equivalent if they use the same (nonreference) samples
and subsamples.

Definition 1 is appropriate when nonreference RNA samples
are abundant and the limiting factor is the amount of time or
resources required to actually run the arrays. The question then
might be “If I can afford to run only 20 arrays, how should I
design the experiment?” Definition 2 is appropriate when the
nonreference RNA resources are scarce and the cost of running
the arrays is less critical. The question then might be “Given that
I have only these 12 RNA samples, how should I design the
experiment?”

Efficiency comparisons of the three designs for a typical ex-
periment (with biologic variation twice that of the experimental
error variation) calculated from equations presented in Dobbin
and Simon (9) are shown in Fig. 4, A. When the number of
microarrays is limited (equivalence definition 1), then the bal-
anced block design is substantially more efficient than the ref-
erence or the loop designs. However, the efficiency gain with the
balanced block design comes with some sacrifice, including ro-
bustness and difficulty in clustering samples.

When the nonreference RNA samples are limited (equiva-
lence definition 2), then the efficiencies of the reference and
balanced block design are similar (Fig. 4, B). The loop design is
less efficient than the balanced block design and also suffers

from the same lack of robustness. The more robust reference
design appears to be better overall than the other two designs
when nonreference RNA samples are limited.

What Happens If the Class Definitions Change?

It is not unusual to have different classifications of the
samples or to have corrections in the class of specific samples.
The reference design is more robust to changes in the classifi-
cation scheme than either the balanced block or loop designs.
The reason for this increased robustness is that the reference
design will remain a reference design with a new classification.
In contrast, the balanced block design will probably lose its
structure (i.e., it will no longer be a balanced block design). With
regard to a new classification, many arrays may contain two
samples from the same class, which can result in a severe loss of
efficiency. It is also possible that, with a new classification, the
classes cannot be compared with the balanced block design be-
cause they never appear together on any arrays. The loop design

Fig. 4. Comparison of design efficiencies. A) Comparison of design efficiencies
for the reference (solid bars), loop (hatched bars), and balanced block (open
bars) designs when the number of arrays is fixed. B) Comparison of the refer-
ence (solid bars) and balanced block (open bars) designs when the nonreference
RNA samples are fixed. Efficiency is the inverse of the variance of the estimated
difference between the class averages. Some parameters, such as the biologic and
experimental variation, were fixed to construct the display. Results are general
in that the specific number of arrays or samples used does not affect the rela-
tionship between the heights of the histogram bars. The loop design was not
included in the histogram because it uses a different sampling scheme. For
further details about mathematical equations, refer to online supplemental infor-
mation (see http//jncicancerspectrum.oupjournals.org/jnci/content/vol95/
issue18/index.shtml).
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is also subject to large efficiency loss, because under a new
classification, the classes may appear together only on a small
proportion of arrays.

What If We Also Plan to Perform Class Discovery on the
Samples?

Class discovery is the process of finding a new classification
system for a set of biologic samples on the basis of gene ex-
pression profiles when the class labels are unknown ahead of
time. Cluster analysis is the most appropriate approach to use in
class discovery. Of the three designs presented in Fig. 3, effec-
tive class discovery can only be performed for the reference and
loop designs. Individual samples must be compared in class
discovery. The balanced block design confounds spot variability
with comparison of samples on different arrays because no RNA
sample appears on more than one array. The arrows connecting
the samples repeated on different slides in the reference and loop
designs indicate why this type of confounding is not a problem
in these designs—that is, connections can be made between any
two samples on different arrays using the arrows.

The reference design is recommended for class discovery
because cluster analysis can perform substantially better with a
reference design than a loop design (9), particularly as the num-
ber of samples increases. An example of a cluster analysis for 10
and 20 samples, which was originally presented in Dobbin and
Simon (9), is presented in Fig. 5. The data in that figure were
generated from two true clusters (i.e., the data in each cluster
were generated from a different mean gene expression vector).
The number of discrepancies between the clusters found by a
common cluster analysis algorithm and the true clusters for the
reference and loop designs appear on the x-axis. The reference
design finds the true clusters almost every time, whereas the
loop design performs poorly for 10 samples and much worse for
20 samples. Moreover, the loop design performs even worse
when there are more than 20 samples (9). The difference in
cluster analysis performance is so dramatic that it will usually
offset any relatively moderate differences in efficiency and
power between the loop and reference designs. For this reason,
we recommend using the reference design for class discovery
experiments.

What Is Sacrificed If a Reference Design Is Not Used?

Most investigators are familiar with the reference design, and
they may want to know what will be sacrificed if an alternative
design such as the balanced block design is used. In addition to
the issues discussed in the last two questions, there are other
considerations worth mentioning. 1) The data from a balanced
block or loop design may be more difficult to analyze than data
from a reference design. Most microarray analysis packages as-
sume a reference design has been used, so analyzing the experi-
ment may require switching to different software. 2) The bal-
anced block or loop design may be more difficult to devise than
the reference design. If there are many groups being compared
or many possible ways to group the samples, designing the study
so that all comparisons of interest can be made may be non-
trivial. 3) It may not be possible to compare data from different
microarray experiments or prospective data that is analyzed by
microarrays at different times. If a common reference sample is
used for all experiments, then there is some foundation for the
comparison of samples collected over time or samples analyzed

in different experiments, a situation that is generally not possible
for balanced block or loop designs.

DYE BIAS

What Is the Source of Dye Bias?

Cy3 and Cy5 have different efficiencies for their labeling
ability and detection characteristics. Background correction and
normalization adjust for consistent dye-related differences that
are not gene-specific. For example, median centering of arrays is
meant to eliminate bias that is common across all genes, and
intensity-dependent normalization, such as loess smoothers, ad-
just for bias related to overall spot intensity (15). Gene-specific
dye bias is displayed by genes that do not fall into the overall
pattern of the dye effect that characterizes the majority of genes.
This bias may persist even after normalization.

Does Gene-Specific Dye Bias Exist?

To our knowledge, there has been no definitive study char-
acterizing the nature or magnitude of gene-specific dye bias. In
addition, it is not clear that gene-specific dye bias is the same

Fig. 5. Comparison of cluster analysis performance. Comparison of cluster
analysis performance for the reference (solid bars) and loop (hatched bars)
designs on A) 10 samples and B) 20 samples. Simulated data comes from two
true (each with a different mean gene expression) clusters. One thousand genes
were present in the clusters, 20 of which were differentially expressed. x-axis is
the number of discrepancies between true clusters and closest matches. y-axis is
the frequency of the number of discrepancies observed in 200 simulations.
Simulation was based on a prostate cancer dataset [see Dobbin and Simon (9) for
details].
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from one experiment to another or from one laboratory to an-
other, but it is of general concern among microarray investiga-
tors. Many studies (3,18–22) have been designed to guard
against gene-specific dye bias, whereas others (8,17,23–25) have
made gene-specific dye bias adjustments to their statistical
analysis. Some studies have attempted to eliminate gene-specific
dye bias through technical innovations in labeling (7,23,26,27).
Although novel labeling procedures such as indirect labeling
appear to reduce gene-specific dye bias, it is not clear that they
eliminate dye bias.

We have observed gene-specific dye bias and provide, as an
example, one reference design experiment involving transgenic
mice (Green J: unpublished data). Nine distinct RNA samples
from nine mice were examined, and three of these samples were
run twice, once with each dye label (i.e., once with the reference
labeled with Cy3 and once with the reference labeled with Cy5),
for a total of 12 arrays. The intensity data were first background-
adjusted to eliminate stray fluorescence signals from the slide
and normalized to make the measurements on different arrays
comparable. We then performed an ANOVA on the individual
channel log intensities. An ANOVA model was fit separately to
data for each of 8832 genes. In the ANOVA approach, the dye
bias effects are called dye-by-gene interactions. Overall, we ob-
served that there were many genes with a statistically significant
dye-by-gene interaction (P<.001), but these effects tended to be
small. The size of these effects on the base 2 log-scale is shown
in Fig. 6. The average absolute value of the gene-by-dye inter-
actions was 0.18 (standard deviation � 0.16), corresponding to
a 1.13-fold change in gene expression levels. Only 10 of the
8832 genes had dye bias that corresponded to a twofold or
greater change in gene expression levels. Tseng et al. (8) have
presented similar results. Although dye bias appears to be com-
mon in these direct-labeled cDNA experiments, it appears to be
fairly small in magnitude.

When Is Gene-Specific Dye Bias an Issue?

Gene-specific dye bias is a potential issue when comparisons
are made between samples labeled with different dyes. Hence, it
is not generally a problem in reference design experiments be-
cause they compare classes of nonreference RNA samples. Be-

cause all of the nonreference RNA samples are labeled with the
same dye, the dye bias between the nonreference and reference
intensities does not become a bias in comparing classes. Gene-
specific dye bias is a potential problem, however, if nonrefer-
ence RNA samples are compared with a common reference
RNA sample. Gene-specific dye bias is also an issue for bal-
anced block and loop designs. When gene-specific dye bias is an
issue, its magnitude must be estimated for each gene, and an
explicit adjustment to the statistical analysis must be made to
ensure that class comparisons are unbiased. For example, in
ANOVA analysis, the adjustment involves adding terms repre-
senting gene-specific dye bias to the statistical model.

How Should I Design an Experiment to Eliminate Dye
Bias From the Class Comparisons?

Dye bias can be eliminated from the class comparisons in two
ways: 1) by labeling all samples from all classes being compared
with the same dye, and 2) by labeling half the samples with one
dye and half the samples with the other dye for each class being
compared.

Reference designs usually use strategy 1 to eliminate dye
bias. Other designs, such as balanced block designs, often use
strategy 2. Labeling exactly half the samples of a class with a
dye is preferable to labeling some other fraction because it pro-
duces more accurate class comparisons and is simpler to ana-
lyze. If there is an odd number of nonreference RNA samples
from each class (e.g., seven), then strategy 2 would not be able
to be followed exactly (e.g., three samples labeled with red dye
[Cy5] and four samples labeled with green dye [Cy3]). Dye bias
can still be eliminated from such a design, but it requires a more
complex weighted analysis to adjust for the dye asymmetry.

Another approach that is sometimes used to eliminate dye
bias is to run a set of arrays with the reference in both channels
to identify the genes that display dye bias. These genes could
then be flagged as suspect if they show up as statistically sig-
nificant in the class comparisons.

Some investigators (12) have used the existence of dye bias
as a reason to run all sample pairs twice, once with each dye, to
eliminate the bias. However, we (10) have shown that complete
dye swapping is an inefficient way to adjust for the dye bias
correction. If each sample is run twice in a fixed number of
arrays, then the effective sample size is cut in half. The reference
design or balanced block design will provide unbiased estimates
of the class comparison without running any sample pairs twice.
Hence, the complete dye-swapping strategy effectively halves
the sample size and reduces the efficiency with no real gain as
far as class comparisons are concerned. Balancing the classes
with respect to the dyes is more efficient than dye swapping of
individual samples for eliminating dye bias.

How Will Class Discovery Results Be Affected by Dye
Bias?

Dye bias generally will not have a substantial impact on class
discovery, although it may be necessary to make an explicit dye
bias adjustment. In this commentary, we have focused on class
comparison experiments in which we already have class labels
for the samples. Class discovery can be performed on all the
samples or on only the samples within a particular class. Class
discovery using cluster analysis on all of the samples is some-
times performed to verify that the resulting clusters recapitulate
the known classes (28,29). In addition, cluster analysis within a

Fig. 6. Estimated dye bias contrast that was not corrected for in normalization.
Estimates for dye bias were based on 8832 genes from a transgenic mouse
experiment. Data were transformed to base 2 logarithms so that an estimated dye
bias contrast of size 1 corresponds to a twofold change in gene expression.
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particular class is sometimes used to identify novel subclasses
(28,30,31).

In the previous section we discussed two designs for class
discovery—the reference design and the loop design. Dye bias
generally will not affect class discovery for the reference design
because all the samples being clustered are labeled with the same
dye. The effect of dye bias on cluster analysis results can also be
eliminated from the loop design by making a dye bias adjust-
ment; however, we do not recommend this design because of its
poor cluster analysis performance, as discussed in the previous
section.

How Can Dye Bias Be Eliminated From Comparisons
Between the Reference and the Nonreference Samples in a
Reference Design?

One can eliminate dye bias from the comparisons between the
reference and nonreference samples by including dye-swapping
arrays in the design of the experiment. Consider a reference
design experiment used to study a collection of tumor samples,
where the reference sample consists of a mixture of normal
tissue. A fairly common experimental situation is one in which
the primary goal is to perform class discovery on the tumors and
the secondary goal is to compare the tumors with the normal
reference to identify potential tumor markers (32,33). Because
the normal reference sample is labeled with a different dye than
the tumor samples, there is potential for dye bias in the com-
parisons. In this case, we recommend appending the basic ref-
erence design with just enough dye-swapping arrays to allow for
good statistical inference for the comparison with the reference
sample. This comparison is made by ANOVA and is adjusted for
dye bias; an example of such a design is shown in Fig. 7. Note,
we do not recommend reversing all the arrays in this situation,
because running all samples both forward and backward with the
reference sample substantially reduces the efficiency of the tu-
mor versus normal comparison (for a fixed number of arrays)
and hinders the ability of the cluster analysis to identify true

groupings in the gene expression data. Running dye-swapping
arrays on all samples essentially sacrifices the primary goal of
discovering a new taxonomy for the secondary goal of identi-
fying potential markers; even for the secondary goal, complete
dye swapping is inefficient in most cases.

SAMPLE SIZE

How Many Biologic Samples Are Needed for a Reference
Design?

Suppose we want to test whether a particular gene is differ-
entially expressed in two classes. To test the null hypothesis that
there is no difference in gene expression levels at the � signifi-
cance level, we want to have 1 – � power to detect a difference
of � in the class mean log-ratios. Let � be the standard deviation
of the log-ratios within each class and n be the total number of
arrays used, i.e., n/2 arrays for each class. Then the usual sample
size formula (34), based on an assumption of normal distribu-
tions within the classes, would be:

n =
4�z1−��2 + z1−��2

�����2

The notation z1−�/2 indicates the 100(1 – �/2)th percentile of
the standard normal distribution. When the samples sizes are
small, the normal approximation of the test statistic may be poor,
and an iterative computational procedure based on the t distri-
bution can be used to compute the sample size. For example, we
have observed an � ≈ .50 for human cancer data using log base
2 intensities on cDNA microarrays and a reference design, and
we have observed � ≈ .25 with data from inbred strains on
transgenic mice (9). A � � 1 corresponds to a twofold differ-
ence in gene expression. Setting � � .001 guards against an
excessive number of false-positive genes. For example, with
10 000 genes, � � .001 results in an average of 10 false-positive
genes. Setting � � .05 provides 95% probability of detecting a
twofold change in gene expression. The resulting sample size is
then 30 total samples for � � .50 and 12 total samples for � �
.25. Because of the small sample sizes, we have used t distri-
bution percentiles in both cases.

What Sample Size Should Be Used for a Balanced Block
Design?

Suppose that two classes will be compared and that the
samples from each class are independent. Again, we want to test
the null hypothesis that there is no difference in gene expression
levels between the classes at the � significance level and to have
1 – � power to detect a difference of � in the class means. Let
� be the standard deviation of the log-ratios. In the balanced
block design, each log-ratio involves two independent samples,
one from each class. The � parameter will tend to be larger than
the � parameter in the reference design because additional bio-
logic variation is displayed in the log-ratios. Let n be the total
number of arrays used, i.e., n arrays with n samples from each
class. The sample size formula would now be:

n =
�z1−��2 + z1−��2

�����2

Because the reference sample appears on each array in the
reference design, variability among the log-ratios will be smaller
for a reference design than for a balanced block design. We provide

Fig. 7. Dye-swapping reference design for clustering and comparison of non-
reference with reference RNA samples. Rectangles represent the arrays. S1 is
sample 1 from the nonreference samples, S2 is sample 2 from the nonreference
samples, and so on up to some numbered sample n (Sn). R is the reference
sample. Of the n + k arrays, k is run as a dye swap on repeated samples. The first
row of arrays represents the forward arrays and second row of arrays represents
the reverse arrays. The reference sample is dyed green (Cy3) on the forward
arrays and red (Cy5) on the reverse arrays. The resulting fixed-effects analysis
of variance table has k –1 degrees of freedom for error.
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on-line supplemental material (see http//jncicancerspectrum.
oupjournals.org/jnci/content/vol95/issue18/index.shtml for de-
tails) that shows how prior data from a reference design experi-
ment can be used to estimate �. For example, using our estimated
standard deviation of the log-ratios from the reference design
that used human samples (� � .50) and the same parameter
settings that we used for the reference design sample size cal-
culation (� � 1, � � .001, � � .05) results for � ≈ .67, the
sample size required changes from 30 arrays under the reference
design to 17 arrays under the balanced block design. The refer-
ence design uses 30 arrays from 30 total samples, 15 from each
class, whereas the balanced block design uses 13 fewer arrays
but requires 17 samples from each class, or a total of 34 samples.

REFERENCES

(1) Golub T, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP,
et al. Molecular classification of cancer: class discovery and class predic-
tion by gene expression monitoring. Science 1999;286:531–7.

(2) Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, et al.
Gene-expression profiles in hereditary breast cancer. N Engl J Med 2001;
344:539–48.

(3) Zhou Y, Gwadry FG, Reinhold WC, Miller LD, Smith LH, Scherf U, et al.
Transcriptional regulation of mitotic genes by camptothecin-induced DNA
damage: microarray analysis of dose- and time-dependent effects. Cancer
Res 2002;62:1688–95.

(4) Bonham MJ, Galkin A, Montgomery B, Stahl WL, Agus D, Nelson PS.
Effects of the herbal extract PC-SPES on microtubule dynamics and pac-
litaxel-mediated prostate tumor growth inhibition. J Natl Cancer Inst 2002;
94:1641–7.

(5) Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM. Expression profiling
using cDNA microarrays. Nat Genet 1999;21(1 Suppl):10–4.

(6) Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays.
Nature 2000;405:827–36.

(7) Manduchi E, Scearce LM, Brestelli JE, Grant GR, Kaestner KH, Stoeckert
CJ Jr. Comparison of different labeling methods for two-channel high-
density microarray experiments. Physiol Genomics 2002;10:169–79.

(8) Tseng GC, Oh M, Rohlin L, Liao JC, Wong WH. Issues in cDNA micro-
array analysis: quality filtering, channel normalization, models of varia-
tions and assessment of gene effects. Nucleic Acids Res 2001;29:2549–57.

(9) Dobbin K, Simon R. Comparison of microarray designs for class compari-
son and class discovery. Bioinformatics 2002;18:1438–45.

(10) Dobbin K, Shih JH, Simon R. Statistical design of reverse dye microarrays.
Bioinformatics 2003;19:803–10.

(11) Lee MT, Kuo FC, Whitmore GA, Sklar J. Importance of replication in
microarray gene expression studies: statistical methods and evidence from
repetitive cDNA hybridizations. Proc Natl Acad Sci U S A 2000;97:
9834–9.

(12) Goryachev AB, MacGregor PF, Edwards AM. Unfolding of microarray
data. J Comput Biol 2001;8:443–61.

(13) Cochran WG, Cox GM. Experimental designs. 2nd ed. New York (NY):
Wiley; 1992. p. 95–182.

(14) Scheffé H. The analysis of variance. New York (NY): Wiley; 1999.
p. 55–146.

(15) Kerr MK, Churchill GA. Experimental design for gene expression micro-
arrays. Biostatistics 2001;2:183–201.

(16) Yang YH, Speed T. Design issues for cDNA microarray experiments. Nat
Rev Genet 2002;3:579–88.

(17) Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, et al. Normalization
for cDNA microarray data: a robust composite method addressing single
and multiple slide systematic variation, Nucleic Acids Res 2002;30:e15.

(18) Bayani J, Brenton JD, Macgregor PF, Beheshti B, Albert M, Nallainathan
D, et al. Parallel analysis of sporadic primary ovarian carcinomas by spec-
tral karyotyping, comparative genomic hybridization, and expression mi-
croarrays. Cancer Res 2002;62:3466–76.

(19) Klebes A, Biehs B, Cifuentes F, Kornberg TB. Expression profiling of
Drosophila imaginal discs. Genome Biol 2002;3:RESEARCH0038.

(20) Aharoni A, Keizer LC, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Ver-
hoeven HA, et al. Identification of the SAAT gene involved in strawberry
flavor biogenesis by use of DNA microarrays. Plant Cell 2000;12:647–62.

(21) Barrans JD, Allen PD, Stamatiou D, Dzau VJ, Liew C. Global gene ex-
pression profiling of end-stage dilated cardiomyopathy using a human car-
diovascular-based cDNA microarray. Am J Pathol 2002;160:2035–43.

(22) Desai KV, Xiao N, Wang W, Gangi L, Greene J, Powell JI, et al. Initiating
oncogenic event determines gene-expression patterns of human breast can-
cer models. Proc Natl Acad Sci U S A 2002;99:6967–72.

(23) Yu J, Othman MI, Farjo R, Zareparsi S, MacNee SP, Yoshida S, et al.
Evaluation and optimization of procedures for target labeling and hybrid-
ization of cDNA microarrays. Mol Vis 2002;8:130–7.

(24) Kerr MK, Churchill GA. Bootstrapping cluster analysis: assessing the re-
liability of conclusions from microarray experiments. Proc Natl Acad Sci
U S A 2001;98:8961–5.

(25) Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel
P, et al. Assessing gene significance from cDNA microarray expression
data via mixed models. J Comput Biol 2001;8:625–37.

(26) Wilson AS, Hobbs BG, Speed TP, Rakoczy PE. The microarray: potential
applications for ophthalmic research. Mol Vis 2002;8:259–70.

(27) Stears RL, Getts RC, Gullans SR. A novel, sensitive detection system for
high-density microarrays using dendrimer technology. Physiol Genomics
2000;3:93–9.

(28) Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-
Gengelbach M, et al. Diversity of gene expression in adenocarcinoma of the
lung. Proc Natl Acad Sci U S A 2001;98:13784–9.

(29) Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, et al.
Classification of human lung carcinomas by mRNA expression profiling
reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A
2001;98:13790–5.

(30) Beer DG, Kardia SL, Huang C, Giorano TJ, Levin AM, Misek DE, et al.
Gene-expression profiles predict survival in patients with lung adenocar-
cinoma. Nat Med 2002;8:816–24.

(31) Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al.
Distinct types of diffuse large B-cell lymphoma identified by gene expres-
sion profiling. Nature 2000;403:503–11.

(32) Lin Y, Furukawa Y, Tsunoda T, Yue C, Yang K, Nakamura Y. Molecular
diagnosis of colorectal tumors by expression profiles of 50 genes expressed
differentially in adenomas and carcinomas. Oncogene 2002;21:4120–8.

(33) Jazaeri AA, Yee CJ, Sotiriou C, Brantley KR, Boyd J, Liu ET. Gene
expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovar-
ian cancers. J Natl Cancer Inst 2002;94:990–1000.

(34) Desu MM, Raghavarao D. Sample size methodology. Boston (MA): Aca-
demic Press; 1990. p. 30.

NOTES

We thank Jeff Green and Nianqing Xiao for the transgenic mouse data used
for our analysis of gene-specific dye bias.

Manuscript received February 10, 2003; revised July 9, 2003; accepted
July 16, 2003.

Journal of the National Cancer Institute, Vol. 95, No. 18, September 17, 2003 COMMENTARY 1369


