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Abstract Recent research based on traffic measure-
ments shows that Internet traffic flows have a fractal
nature (i.e., self-similarity property), which causes an
underestimation of network engineering parameters
when using the conventional Poisson model. Prelimi-
nary field measurements demonstrate that packet data
traffic in wireless communications also exhibits self-
similarity. In this paper, we investigate the queuing
behavior of self-similar traffic flows for data applica-
tions in a packet-switching single-server wireless net-
work. The traffic is generated by an on–off source with
heavy-tailed on periods and exponentially distributed
off periods. We extend previous analysis of a relation
among the asymptotic distribution of loss probability,
traffic specifications, and transmission rate for a wire-
line system to a wireless system, taking into account
wireless propagation channel characteristics. We also
investigate the multiplexing of heavy-tailed traffic flows
with a finite buffer for the downlink transmission of a
wireless network. Computer simulation results demon-
strate that assumptions made in the theoretical analy-
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sis are reasonable and the derived relationships are
accurate.
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1 Introduction

Wireless communication systems have been revolution-
ized by technological advances in the last decade. The
third generation (and beyond) wireless networks use
and will continue to use packet-switching technologies
to provide high-speed data services such as File Trans-
portation Protocol (FTP) and web browsing. These
applications have stringent performance requirements
in terms of throughput and transmission accuracy. Data
traffic flows can tolerate a certain degree of transmis-
sion delay, depending on the application; however, they
are sensitive to transmission errors and can normally
tolerate a bit error rate (BER) up to 10−6. Selection
of a proper model to analyze the queueing behaviors
of network traffic flows plays an important role in
network engineering. Recently, it has been shown that
the conventional Poisson traffic model is not proper for
packet data traffic in the Internet [1]. It is also observed
that the aggregated Internet traffic flows have similar
patterns in different time scales, referred to as self-
similarity [2]. Similarly, the existence of self-similarity
in wireless network traffic flows has been observed [3]
and has attracted attention in the research commu-
nity [4]. The self-similarity characteristics result in that
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traffic engineering techniques, based on the traditional
Poisson model, underestimate the required resources
(such as transmission rate) to achieve quality-of-service
(QoS) satisfaction.

Willinger et al. prove that the superposition of a
large number of on–off traffic sources, with heavy-
tailed on or off periods, results in self-similar aggre-
gated traffic [5]. The finding is important, as it indicates
that heavy-tailed on–off periods can be the reason for
self-similarity in TCP/IP1 traffic. The result is confirmed
in [6], which shows that individual data traffic source
can be modelled by an on–off source with heavy-tailed
on or off periods.

Unfortunately the network analysis with heavy-
tailed traffic sources is very complicated. For example,
in an M/G/1 queueing system, the average packet delay
is proportional to the variance of the service time [7]. In
the presence of heavy-tailed on–off sources, the service
time variance is infinite, which implies an infinite value
for the average delay. Furthermore, it can be shown
that, for on–off sources with heavy-tailed on periods,
the moment generation function of the service time is
infinite [7]. This means that the Chernoff bound can
not be used to analyze the queue delay performance.
In [8, 9], a relation among queue length distribution,
transmission rate, and traffic characteristics is derived
for a single server system with a single on–off source in
a wireline network for an infinite buffer size and a finite
buffer size, respectively. The analysis is carried out
under the assumption that the network transmission
rate (server capacity) is a constant. The assumption is
not valid in wireless communications. Due to the time-
variant fading dispersive propagation medium, the link
capacity in a wireless system changes with time, and the
server capacity is not constant.

In this research, we extend previous analysis [8–10]
for queueing behaviors and scheduling of self-similar
packet data traffic in a wireline single-server network to
a wireless environment. We derive relations among the
packet loss probability, traffic specifications, channel
characteristics, and capacity for both infinite buffer
and finite buffer cases. In addition, we apply the re-
lation for a finite buffer to packet scheduling in the
downlink transmission of a wireless network, based on
the general process sharing (GPS) principle [11]. This
study provides insights of the impact of the self-similar
property on network resource allocation for QoS pro-
visioning. The remainder of this paper is organized
as follows. Section 2 presents mathematical definitions
and describes the system model. Details of the queue

1Transmission Control Protocol/Internet Protocol.

analysis with a self-similar traffic input for an infinite
buffer size is given in Section 3. We study the queueing
behavior for a single server and single input with a
finite buffer size in Section 4. Section 5 investigates
the queueing behavior of heavy-tailed sources under
the GPS scheduling principle in the wireless network.
Conclusions are given in Section 6.

2 System model

We first present some mathematical definitions and
concepts, which are used in this work.

Definition 1 [8] A cumulative distribution function
(CDF) F on [0, ∞] is called heavy-tailed (F ∈ Ł) if

lim
x→∞

1 − F(x − y)

1 − F(x)
= 1, y ∈ �. (1)

Definition 2 [8] A CDF function F on [0, ∞] is called
subexponential (F ∈ S) if

lim
x→∞

1 − F∗2(x)

1 − F(x)
= 2, y ∈ � (2)

where F∗2(x) denotes the 2nd convolution of F with
itself, i.e, F∗2(x) = ∫ +∞

0 F(x − y)F(y)dy.

A well known example of subexponentially distrib-
uted functions is functions of regular variation Rα (in
particular Pareto family); F ∈ Rα if it is given by

F(x) = 1 − l(x)

xα
, α ≥ 0 (3)

where l(x): �+ −→ �+ is a function of slow variation,
i.e., limx→∞ l(δx)

l(x)
= 1.

In this work, data traffic flows are modelled by on-
off sources. An on–off source can be considered as
a renewal process, with the nth renewal period Tn =
τ on

n + τ
of f
n , n ≥ 0, where τ on

n and τ
of f
n are the durations

of on and off periods, respectively. The on periods are
i.i.d. and follow a Pareto distribution with

P[τ on
n > x] = b

xα
, x ≥ 0, α > 0. (4)

In this paper, we are interested in the case where α ∈
(1, 2), corresponding to an infinite variance of τ on

n and
a finite mean of τ on

n , given by τ̄ on
n = E[τ on

n ] = bα/(α −
1). The off periods are i.i.d. and follow an exponential
distribution with

P[τ of f
n > x] = e−λx, x ≥ 0, λ > 0

with τ̄ of f = E[τ of f ]=1/λ. During each on period, pack-
ets are generated at a constant rate, r. The probability
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that the source is generating packets at any time is given
by

Pon = τ̄ on

τ̄ on + τ̄ off
.

Let An and Rn, n ≥ 0, be two sequences of i.i.d. ran-
dom variables, representing the (equivalent) numbers
of packet arrivals and departures in the nth recursion,
respectively. Let Xn (= An − Rn) denote the net incre-
ment of the packet number over the recursion.

Consider the transmission of data packets of equal
length over a wireless channel. With a constant trans-
mission rate, the transmission time for a packet is con-
stant, referred to as packet time. An important QoS
parameter in data service is the transmission accuracy,
which can be described by the transmission BER at the
physical layer. Consider the transmission over a wire-
less channel. Given the modulation and coding scheme,
the channel model and parameters, and the receiver
structure, the required BER can be mapped one-to-
one to the required received signal to interference-plus-
noise ratio (SINR)[12]. For a given maximum transmit
power, the required SINR may not be achieved and the
data transmission stops if the channel gain is below a
pre-determined threshold (i.e., the channel experiences
deep fading). When the channel condition improves
over time (to a non deep fading condition), the required
SINR can be ensured and the transmission over the
channel can resume. As a result, we use a two-state
i.i.d. channel model. The channel is said to be in a
nonworking state in the former case and in a working
state in the latter case. If the channel fades slowly with
respect to the packet time, the channel state very likely
remains the same over a packet time. Given the channel
fading statistics, the working-state probability Pw and
nonworking-state probability Pnw (= 1 − Pw) can be
calculated. The transmission system for each packet
traffic flow can be described by a simple queueing
model, where the packets are generated by a single
on–off source and are transmitted through a two-state
fading channel, as illustrated in Fig. 1. In the working
state of the channel, the server transmits packets at a

Source Channel

Traffic
Specification

Channel
StatusScheduler

Receiver

C(t)

Buffer Server

Fig. 1 Single server single input wireless system

constant rate of C, and in the nonworking state the
server stops the transmission to ensure the transmission
accuracy and to save the resources. The scheduling
principle based on the channel condition achieves a
high utilization efficiency of the limited radio resources
and has been used in third-generation wireless systems,
e.g., in 1× evolution (1×EV) for code-division multiple
access 2000 (cdma2000) and in high speed downlink
packet access (HSPDA) for wideband CDMA. Let c(t)
denote the time varying channel capacity. Then, c(t) =
C if the channel is in the working state and c(t) = 0 if
the channel is in the nonworking state, at time t. The
QoS requirements of the data traffic are specified in
terms of transmission accuracy and delay: For the case
of an infinite buffer size, the probability that the queue
length Q exceeds the threshold qth should be less than a
small value ε1, i.e., P(Q > qth) < ε1; and for the case of
a finite buffer size B, the packet loss probability should
be less than a small value ε2, i.e., P(Q = B) < ε2. The
scheduler calculates and allocates the bandwidth of c(t)
by considering the channel status and traffic specifica-
tions, which are assumed to be known to the scheduler.
Given traffic source and wireless channel statistics, our
objective is to determine the minimum capacity C in
order to guarantee the QoS requirements.

3 Queueing analysis for infinite buffer size

We start the analysis by using a classical result given in
[13]. The queueing process in Fig. 1 for an infinite buffer
size can be described by (Lindley recursion)

Qn+1 = (Qn + Xn)
+, n ≥ 0 (5)

where q+ = max(q, 0), and Qn is the queue size at
the beginning of the nth recursion. According to [13],
this recursion admits a unique stationary solution and,
for all initial conditions, the probability P[Qn > x]
converges to the stationary probability of P[Q > x]
under stability condition E[Xn] < 0. In the following
derivations, we assume that the queueing system under
consideration is in its stationary regime.

The residual life of a renewal process is defined as
the duration between some fixed time t and the starting
point of the following renewal. It is one of the random
variables that describe the local behavior of a renewal
process. Another variable is the age at time t, defined
as the time already elapsed in the current renewal.
When we look at a renewal process in the reverse
(backward) direction, we again observe a renewal
process having the same probability structure, but the
residual life time is called age [14]. Letting F(x) denote
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the CDF of Xn, the CDF of the residual life, F1(x), is
given by

F1(x) =
∫ x

0 [1 − F(u)]du

X̄n
. (6)

F1(x) is also called the integral tail distribution of F(x).

Theorem 1 [8] If FX(x) is heavy-tailed with E[Xn] < 0
and F1X(x) is subexponential, for (5) it can be shown
that

P[Qn > x] ∼
∫ ∞

x P[Xn > u]du

−E[Xn] , x → ∞

where l(x) ∼ j(x) denotes l(x)/j(x) = 1 as x → ∞.

Lemma 1 [8] Let X and Y be two independent random
variables distributed as F(x) and G(x), respectively. If
F(x) is heavy tailed, E[X] and E[Y] are finite, and Y is
a positive non-heavy-tailed random variable, then

P[X − Y > x] ∼ P[X > x] = 1 − F(x), x → ∞.

Consider the system illustrated in Fig. 1, during the
interval of �n = τ on

n + τ
of f
n , the state of the channel may

change several times, so does the capacity. We define
�n (in second) as the summation of all the time inter-
vals (during the �n period) over which the channel is in
the working state. In the working state with capacity
C, if there are backlogged packets in the queue, the
number of the transmitted packets is C�n. We define
the effective capacity of the time varying channel as
cn = C�n

�n
< r. Instead of the time-varying capacity c(t),

the effective capacity that is constant (even though
random) during �n will be considered.

Consider the evolution of the queue length at the
initial moment of the on period, denoted by Qp

n , where
the superscript p stands for Palm probability (meaning
that the queue length is observed at the beginning of
the on period). According to the definition of Xn, it can
be shown that Xn = rτ on

n − C�n, and we have

Qp
n+1 = (Qp

n + Xn)
+

= (Qp
n + rτ on

n − C�n)
+

= [Qp
n + rτ on

n − cn(
�n

�n
)�n]+

= [Qp
n + r(τ on

n ) − cn(τ
on
n + τ of f

n )]+
= [Qp

n + τ on
n (r − cn) − cnτ

of f
n ]+.

By Lemma 1, for x → ∞, we have

P[Xn > x] = P[τ on
n (r − cn) − cnτ

of f
n > x]

∼ P[τ on
n (r − cn) > x].

Since

P[Xn > x] = Ecn [P(Xn > x|cn)]
we have

P[Xn > x] ∼ Ecn{P[τ on
n (r − cn) > x|cn]}

= Ecn

[
b(r − cn)

α

xα

]

= bk
xα

(7)

where k = Ecn [(r − cn)
α]. Equation (7) shows that Xn

also follows a Pareto distribution. Under the assump-
tion that the on and off periods are stationary, it can be
shown that

E[Xn] = Ecn [τ̄ on
n (r − cn) − cnτ̄

of f
n ]

= rτ̄ on − (τ̄ on + τ̄ of f )c̄n.

Assuming that cn is an ergodic process, we have c̄n =
CPw and

X̄n = rτ̄ on − (τ̄ on + τ̄ of f )CPw. (8)

Considering the stability condition X̄n < 0, it is re-
quired that

rPon < CPw.

As the probability density function (PDF) of cn is
difficult to obtain in our system model, we need to
estimate the value of cn to proceed further. As a large
queue length is mainly the result of large �n values
(large bursts), the probability of P[Q > x] for a large
x depends mainly on large �n values. With a large
�n value, we assume that �n

�n
	 Pw and the effective

capacity cn 	 CPw. In the case of a large queue, Xn can
be approximately estimated by

Xn 	 τ on
n (r − CPw) − τ of f

n CPw.

Due to the fact that the distribution of Xn is heavy
tailed, by Theorem 1, it can be shown that, as x → ∞,

P[Qp > x] ∼ bk
[CPw(τ̄ on + τ̄ o f f ) − rτ̄ on](α − 1)xα−1

.

(9)

Substituting k = Ecn [(r − cn)
α] 	 (r − CPw)α , we have,

as x → ∞,

P[Qp > x] ≈ b(r − CPw)α

[CPw(τ̄ on + τ̄ of f ) − rτ̄ on](α − 1)xα−1

(10)

where l(x) ≈ j(x) denotes l(x)/j(x) 	 1 as x → ∞.
Next, we extend the distributed for the Palm queue

in (10) to the stationary probability P[Q > x]. Let 	on
n ,
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−∞ < n < ∞, be a random process that represents the
beginning of the on periods in the stationary on–off
process with 	on

0 < 0 ≤ 	on
1 , and B be a Bernoulli ran-

dom variable with P(B = 0) = 1 − P(B = 1) = Pon.
We define the residual on period, τ on,r

n , as the residual
life time of τ on

n with respect to time 0. Similarly, the
residual off period, τ

of f,r
n , can be defined. 	on

0 can be
represented by

−	on
0 = B(τ on

0 + τ
of f,r
0 ) + (1 − B)τ

on,r
0

where τ
on,r
0 and τ

of f,r
0 follow integrated tail distributions

of τ on
n and τ

of f
n , respectively. The preceding equation

means that, if the source is in the on state (B = 0) at
time t = 0 , −	on

0 is the age (residual life) of the on
period, τ

on,r
0 ; otherwise, −	on

0 is the duration of the
on period plus the age (residual life) of the off period.
Furthermore, the net increment X0 of the load that
arrives to the queue in the interval [	on

0 , 0] is equal to

X0 = B[τ on
0 (r − c0) − c0τ

of f,r
0 ] + (1 − B)[(r − c0)τ

on,r
0 ].

(11)

Let QT0 denote the backlogged traffic observed at the
beginning of the zeroth renewal period (t = 	on

0 ). The
asymptotic probability of the queue length in the zeroth
renewal period, P[Q0 > x], is

P[Q0 > x] = P[Q0 > x|B = 1]P[B = 1]
+P[Q0 > x|B = 0]P[B = 0]

= P[QT0 + (r − c0)τ
on
0 − c0τ

of f,r
0

> x|B = 1]P[B = 1]
+P[QT0 + (r − c0)τ

on,r
0

> x|B = 0]P[B = 0]. (12)

Note that QT0 is equal to the Palm queue Qp
0 . Since QT0

and τ
on,r
0 are independent and subexponentially distrib-

uted, as x → ∞, we have [15]

P[QT0 + (r − c0)τ
on,r
0 > x|B = 0]

∼ P[QT0 > x] + P[(r − c0)τ
on,r
0 > x]. (13)

Also by Lemma 1 [8],

P[QT0 + (r − c0)τ
on
0 − c0τ

of f,r
0 > x|B = 1]

∼ P[QT0 > x], x → ∞ (14)

as both τ on
0 and τ

of f,r
0 under the condition of B = 1 are

non heavy-tailed. Equation (12) can then be simplified
by using (13) and (14), as x → ∞,

P[Q0 > x] ∼ P[QT0 > x]
+P[(r − c0)τ

on,r
0 > x]P(B = 0). (15)

From (4) and (6), we have, for x ≥ 0,

P[(r − c0)τ
on,r
0 > x] = Ec0

⎡

⎣

∫ ∞
x

r−c0

b
uα du

τ̄ on
0

⎤

⎦

= Ec0

[
b(r − c0)

α−1

τ̄ on
0 (α − 1)xα−1

]

. (16)

Using c0 	 CPw, we have

P[(r − c0)τ
on,r
0 > x] 	 b(r − CPw)α−1

τ̄ on
0 (α − 1)xα−1

. (17)

With QT0 = Qp
0 and Q being stationary (i.e., P[Q0 >

x] = P[Qn > x] = P[Q > x]), applying (9) and (15) to
(17), we have

P[Q > x] ≈ b(r − CPw)α

[CPw(τ̄ on + τ̄ of f ) − rτ̄ on](α − 1)xα−1

+ b(r − CPw)α−1

(τ̄ on + τ̄ of f )(α − 1)xα−1
(18)

as x → ∞. In (18), we estimate the asymptotic behavior
of Q for a large x. By using this relationship, we are able
to calculate the required link capacity (transmission
rate) C based on traffic parameters (r, τ̄ on

n , τ̄
of f
n , b , α)

and channel characteristics (Pw) to reach a pre-defined
QoS level (in terms of delay specified by qth and ε1).

Due to the complexity of the queue analysis with the
heavy-tailed input traffic flow, we have to make several
simplified assumptions for tractability in deriving (18).
To validate the derivation process, computer simula-
tions were carried out and the results are presented in
the following.

The single server single input system illustrated in
Fig. 1 is simulated. The information bits of the input
traffic flow are generated during each on period at a
rate of r. The on periods are determined from the sam-
ple values of the Pareto random variable, generated by
using the random generator as specified in [16]. The off
periods are determined from the sample values of the
exponential random variable. As the data packets have
the same length and are transmitted at a constant rate,
without loss of generality, we simulate the generation
and transmission of bit flows instead of packet flows.

The simulation parameters are chosen based on the
previous measurements for FTP application in wire-
less networks [17] to be τ̄ on = 0.256 s, τ̄ of f = 15 s,
r = 64 KBps, and frame duration of 10 ms. Although
α = 1.1 is suggested in [17], we choose α = 1.4 in the
simulation, because the accuracy of the Pareto random
generator is relatively poor for a small α value. The
two-state channel status is characterized by a Bernoulli
random process with working probability (Pw), changes
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Fig. 2 Effect of the wireless channel quality on the queue length
distribution

independently from frame to frame. Each run in the
simulations consists of at least 10e8 frames.

Figure 2 shows the tail distribution of the queue
length for the buffer, with Pw being 0.5 and 1.0 respec-
tively and capacity C of 40 KBps. The analytical results
are obtained from (18). It is observed that the simula-
tion results agree very well with the analytical results.
Figure 3 plots the probability, P[Q > 8, 000 (bits)], as
a function of the system capacity C with Pw being
0.5. Again, we observe a close agreement between the
analytical results obtained from (18) and the simulation
results. Note that, in both Figs. 2 and 3, the simulation
results are slightly smaller than the corresponding ana-
lytical results, due to the infinite variance of the traffic
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Fig. 4 Impact of the traffic model on the queue length distribu-
tion (Pw = 0.5)

on periods in the analysis but a limited variance in the
simulations.

Figure 4 shows the impact of the heavy-tailed traffic
on the asymptotic tail-distribution of queue length.
Two traffic flows with the same average rate and equal
expected on and off periods respectively are simulated.
One is a non heavy-tailed on–off source, where both on
and off periods are exponentially distributed. The other
is a heavy-tailed traffic, whose on periods have a Pareto
distribution with α = 1.4. The system parameters are
the same for both inputs with C = 40 KBps and Pw =
0.5. The distribution for the non heavy-tailed traffic
decreases very fast (exponentially), but not in the case
of the heavy-tailed source. This is the most important
impact of the heavy-tailed traffic flows on network
performance. It is observed that the distribution for
the heavy-tailed traffic has a relatively large value even
for a very large queue length, which results in the
possibility of a very large delay and a large probability
of packet loss.

4 Queueing analysis for finite buffer size

For wireless packet data services, the main perfor-
mance parameters are transmission BER and packet
loss rate due to buffer overflow. In addition, for inter-
active data applications (where traffic also exhibits the
heavy-tailed property), transmission delay is another
important performance parameter. The transmission
BER requirement is to be met by ensuring that the
received SINR is not below the required threshold,
while the packet loss probability and transmission delay
requirements are to be satisfied by properly choosing
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the link capacity C and buffer size. In the following, we
focus on queueing analysis for packet loss probability
and queueing delay, given that the BER requirement
can be satisfied by a proper selection of channel para-
meters (i.e., the channel gain threshold and, therefore,
the channel working state probability Pw). We consider
a queueing model with only one on–off source as shown
in Fig. 1, where the buffer size is finite, denoted by B.
In the following, we carry out the queueing analysis
for the performance measures, under the assumption
of a heavy-tailed traffic source. The analysis helps to
determine the wireless link capacity in order to satisfy
both transmission accuracy and delay requirements.
Due to the complexity of the analysis, the approach of
analyzing the corresponding fluid renewal process [8–
10] is used to study the heavy-tailed traffic in the system
here.

Consider the system model shown in Fig. 1, where
the renewal process of the on–off traffic source has the
nth renewal period Tn = τ on

n + τ
of f
n . At the beginning

of the on periods, the queue length evolves according
to2

QB
n+1 = {min[(QB

n + (r − cn)τ
on
n , B] − cnτ

of f
n }+, n ≥ 0

(19)

where QB
n is the queue length at the beginning of the

nth recursion. Let An = (r − cn)τ
on
n and Rn = cnτ

of f
n .

The effective capacity cn is a random variable bounded
by r, depending on the channel condition, but remains
unchanged over each renewal period. It has been shown
that, for all initial conditions, QB

n converges to a sta-
tionary distribution [9]. Here, we consider that the
recursion (19) is in its stationary regime.

Theorem 2 [9] If A is subexponential and EA < ER,
the stationary number of lost packets E(QB

n + An − B)+
satisfies E(QB

n + An − B)+ = E(A − B)+(1 + o(1)) as
B → ∞.

Note that o(1) → 0 as B → ∞. The asymptotic num-
ber of lost packets, for a heavy-tailed source, is inde-
pendent of Rn.

2Another way of representing the queue length evolution is to
use Q̃B

n+1 = min[(Q̃B
n + An − Rn)+, B]. Similar to the analysis in

[9], it can be shown that the loss rates for both queue length repre-
sentations are asymptotically equivalent. Note that the QB

n+1 and

Q̃B
n+1 representations correspond to the upper and lower bounds

of the packet loss number in each renewal period.

Similar to the derivation of (7), it can be derived that

P[An > x] ∼ Ecn(P[τ on
n (r − cn) > x|cn])

= Ecn [
b(r − cn)

α

xα
]

= bk
xα

, x > 0 (20)

i.e., An follows a Pareto distribution.
The condition (EA < ER) in Theorem 2 is to be

satisfied by a properly chosen capacity C value, which is
a design constraint. Now that both the necessary condi-
tions for Theorem 2 can be satisfied, in the following,
we first derive the average loss rate λB

loss in the fluid
system based on Theorem 2 and then obtain the packet
loss probability. The long-term time average loss rate
for the fluid queue is defined as

λB
loss ≡ lim

t→∞
L(0, t)

t
(21)

where L(0, t) is the amount of fluid lost in (0, t). Let
Ln ≡ E[QB

n + (r − cn)τ
on
n − B]+, where n ≥ 0 and the

expectation is taken with respect to the random on
period, be a sequence of random variables representing
the number of lost packets in the nth renewal period.
Letting Nt = sup[n : Tn < t], we have [9]

Nt−1∑

n=1

Ln ≤ L(0, t) ≤
Nt∑

n=0

Ln (22)

The strong law of large numbers for a renewal process
yields

lim
t→∞

Nt

t
= 1

τ̄ on + τ̄ of f
almost surely. (23)

Similarly, (23) and Birkhoff’s strong law of large num-
bers imply [9]

lim
Nt→∞

∑Nt
n=0 Ln

Nt
= E[L1] almost surely. (24)

By dividing (22) with t and letting t → ∞ and using (23)
and (24), we have

λB
loss = E[QB

n + (r − cn)τ
on
n − B]+

τ̄ on + τ̄ of f
(1 + o(1)) (25)

as B → ∞. Considering that cn is a random variable,
from (25), we have

λB
loss = Ecn{E[(QB

n + (r − cn)τ
on
n − B)+|cn]}

τ̄ on + τ̄ of f
. (26)
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From Theorem 2, given cn,

E[QB
n + (r − cn)τ

on
n − B]+

∼ E[(r − cn)τ
on
n − B]+

=
∫ ∞

B
P[(r − cn)τ

on
n > x]dx

= b(r − cn)
α

(α − 1)Bα−1
(27)

Substituting (27) to (26) gives

λB
loss 	 b E[(r − cn)

α]
(τ̄ on

n + τ̄
of f
n )(α − 1)Bα−1

. (28)

Letting G(0, t) denote the amount of time that the
buffer is full, we have

G(0, t) = L(0, t)
E[r − cn] .

As it is very difficult to obtain the PDF of the effective
capacity cn in our system model, we approximate cn

by its mean value in the following, i.e., cn 	 CPw. By
ergodicity of QB(t) and (28), as B → ∞,

P[QB = B] = lim
t→∞

G(0, t)
t

= λB
loss

r − CPw

	 b(r − CPw)α−1

(τ̄ on + τ̄ of f )(α − 1)Bα−1
. (29)

Equation (29) establishes a relationship among the traf-
fic parameters, buffer size, network capacity, channel
quality, and loss probability. The transmission delay
requirement specifies the maximum buffer size B, and
the packet loss probability specifies the minimum link
capacity C.

Computer simulations were carried out to validate
(29) which is derived under several simplified assump-
tions for tractability. The single server single input
system illustrated in Fig. 1 is simulated with the para-
meters the same as those given in Section 3, but with
a finite buffer size. Figure 5 shows the loss probability
for different buffer sizes, with Pw being 0.5 and 1.0,
respectively. The analytical results are obtained from
(29). It is observed that the simulation results agree
very well with the analytical results when the buffer size
is relatively large (e.g., B ≥ 2, 000 bits). Note that the
relation given by (29) is derived under the assumption
of a large buffer size. When the buffer size is very small
(e.g., B < 1, 000 bits), the analysis is not accurate. For
a large buffer size, the loss probability from the simula-
tion is slightly smaller than that from the analysis, again
due to the finite variance of the heavy-tailed on periods
in the simulation. It is observed that, as the buffer size
increases the loss probability decreases, as expected.
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Fig. 5 Asymptotic loss probability for Pw equal to 0.5 and 1.0,
respectively

However, the rate of the loss probability decrease ver-
sus the buffer size increase is low. Figure 6 plots the
probability, P[Q = 4, 000 (bits)], as a function of the
system capacity C with Pw = 0.7. Again, we observe
a close agreement between the analytical results ob-
tained from (29) and the simulation results. The small
difference between the analytical and simulation results
is due to the assumption of a large buffer size in the
analysis and a limited variance of the traffic on period
in the simulation. It is observed that the loss probability
is more sensitive to a capacity change closer to the rate
r = 64 KBps. Increasing the capacity to reduce the loss
rate is effective only when the capacity is large, which
is an impact of the heavy-tailed on periods. In order
to guarantee the loss probability, we not only should
provide sufficient capacity but also should reserve a
large buffer space for heavy tailed traffic, if the delay
requirement permits.
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5 Multiplexing of heavy-tailed traffic sources

Consider a network model as illustrated in Fig. 7, which
represents a typical downlink transmission system in
centralized wireless communications where the buffer
sharing is possible (e.g., at the base station of a cellular
system or the access point of a wireless local area net-
work). There are N homogeneous heavy-tailed on–off
sources, whose on periods are i.i.d. Pareto distributed
and whose off periods are i.i.d. exponentially distrib-
uted. All flows are queued in a common buffer with a
finite size of B. Buffer sharing is unrestricted as long
as there is available space, i.e., the workloads evolve
as if they were in an infinite buffer. When the buffer
fills up, the flows with the maximum number of packets
in the buffer are subject to penalty. They experience a
minimum necessary loss probability in order to accom-
modate other flows with smaller workloads [10]. These
flows share the network total capacity CT but have their
own i.i.d. two-state radio channels. Without losing the
generality, we assume that the capacity is fairly divided
among flows with a good SINR value in periodic and
tiny time intervals, referred to as frames. We assume
that, during each frame, the status of every channel
does not change.

Equation (29) can be used to determine the nec-
essary buffer size and capacity to guarantee the loss
probability and transmission (queueing) delay for the
system with a single traffic source. For multiple heavy-
tailed traffic flows with statistical multiplexing, because
of the on and off nature of traffic sources and random
alternations of the radio channel states, the problem
gets more complex. The GPS principle, which is the
core of many practical scheduling schemes, guarantees
the minimum capacity for each flow [19]. It can be used
for the scheduler to guarantee the minimum necessary
capacity, as specified by (29). For example, with N
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Fig. 7 Scheduler for downlink communications

homogeneous heavy-tailed traffic flows, each of which
requires at least ξ KBps to guarantee the necessary
QoS, the GPS scheduler can guarantee the QoS by
setting the total capacity as ξ N KBps. However, this is
not the optimum way to use the limited radio resources,
because it does not explore the multiplexing gain from
the multiple sources sharing the capacity. In this sec-
tion, we study the multiplexing of heavy-tailed sources
in a wireless network, under the GPS scheduling princi-
ple. Based on computer simulation, we investigate the
capacity sharing and propose a heuristic for calculating
the necessary capacity, taking into account the QoS re-
quirements, wireless channel characteristics, and traffic
parameters.

A similar scheduling problem has been studied in
[10] for a wireline network having N heavy-tailed
sources with a total capacity CT . Flow i has a minimum
service rate guarantee ρi that exceeds its long-term
average demand, i = 1, 2, . . . , N. It has been shown
that the loss rate of a particular flow i is asymptotically
equal to the loss rate in a reduced system with capacity
of (CT − ∑

j=i ρ j) and buffer of size B, where this flow
i is served in isolation [10]. In this case, (29) can still be
used to study the queueing behavior.

Letting wi denote the weight of flow i under GPS
for resource sharing, a necessary system stability con-
dition is ρi ≤ wi PwCT . As an example, consider homo-
geneous traffic sources with N = 10, CT = 64 KBps,
and ρi = ρ, i = 1, 2, . . . , N, in the system illustrated
in Fig. 7 for FTP applications. For Pw = 0.7 and 1.0,
respectively, and for different values of buffer size B,
we measure the percentage of time during which flow
i (= 5) causes buffer overflow, P[Q5 = B]. Also, we
measure the percentage of time during which the total
queue (QT = ∑N

i=1 Qi) experiences overflow, P[QT =
B]. Taking into account the similar asymptotic behav-
iors of all the homogeneous flows in the system, each
of them causes overflow independently with the same
probability. Under the assumption that the probabil-
ity of two or more sources simultaneously cause an
overflow is low, the probability of any source causing
an overflow can be estimated by P[buffer overflows] 	
N · P[flow i overflows], i.e., P[QT = B] 	 N · P[Qi =
B] where i ∈ {1, 2, . . . , N}.

Figure 8 shows N · P[Q5 = B] and P[QT = B]
based on simulations. The results support the approxi-
mation P[QT = B] 	 N · P[Qi = B]. This is consistent
with the idea that, under a strict stability condition in
GPS (ρi ≤ wi PwCT), the workload build-up of traffic
flow i is unlikely to be caused by other flows [10].
Furthermore, considering the heavy tailed nature of the
on periods of flow i, it can be said that the overflow
scenario occurs most likely because of a single long



40 Mobile Netw Appl (2007) 12:31–41

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

10
–3

10
–2

10
–1

10
0

Buffer size (bits)

P
[Q

T
=

B
]

10P[Q
5
=B],P

w
=1.0

P[Q
T
=B],P

w
=1.0

10P[Q
5
=B],P

w
=0.7

P[Q
T
=B],P

w
=0.7

Fig. 8 Asymptotic total loss probability based on simulations of
ten traffic flows

on period of flow i. Hence, during an overflow, with a
very high probability all other flows exhibit an average
behavior with their average rate ρ. That is, during a
long on period of flow i, the other flows asymptotically
consume a total capacity of (N − 1)ρ on average. This
translates to that, during its on periods, flow i asymptot-
ically uses the available capacity when its channel is in a
good state with probability Pw. As a result, the average
total capacity available to flow i can be estimated by

Ci = [CT − (N − 1)ρ]Pw. (30)

In addition, the average behavior of flow j (= i) yields
that its build-up queue (Q j) behaves as Q j = O(1)

and, thus, flow i can potentially occupy up to B − O(1)

buffer space, where O(1) → 0 when B → ∞. For the
system shown in Fig. 7, the asymptotic loss probability
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Fig. 9 Asymptotic loss probability of flow 5 based on simulations
of ten traffic flows

of flow i can be approximately estimated by the loss
probability of flow i in a single input system shown in
Fig. 1, with the capacity specified by (30) and buffer size
B. The above argument is confirmed by preliminary
simulation results given in Fig. 9. For different values of
the buffer size, we measure the percentage of time that
flow i = 5 causes an overflow. For the system shown in
Fig. 1, we set the capacity by (30) and calculate the loss
probability by using (29). It is observed that, for a large
buffer size, the simulation results for the multiple-input
system match well with the analysis results derived for
the single-input system, for the FTP traffic. When the
buffer size is large, the simulation results are slightly
smaller than the corresponding analysis results because
of a finite variance of the traffic on periods in the
simulation.

6 Conclusions

This paper investigates the impact of the self-similarity
property of the source traffic flow(s) on the queue
length distribution and packet loss probability in a
wireless system having a single server. The wireless
channel is characterized by an i.i.d. two-state model.
In the case of a single input with an infinite buffer
size and a finite buffer size, respectively, the close-
form expressions are derived for the relation among
the traffic parameters, the channel working state prob-
ability, the server capacity, and the queue distribution
for an infinite buffer size or the packet loss proba-
bility for a finite buffer size. The simulation results
demonstrate that the assumptions made in the analysis
are reasonable and the derived closed-form expressions
are accurate. For a multiple-input system with a finite
buffer size, we study the queueing behavior under the
GPS scheduling principle, with buffer sharing. The pre-
liminary investigation demonstrates that asymptotically
each traffic flow is served by the total capacity minus
the average rate of other traffic sources in an isolated
system with an infinite buffer. The studies extend the
research presented in [8–10] for wireline networks to a
wireless communication environment.
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