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Queue Estimation in a Connected Vehicle

Environment: A Convex Approach
Kaidi Yang and Monica Menendez

Abstract—This paper proposes a convex optimization based
algorithm for queue profile estimation in a connected vehicle
environment, which can also be used for trajectory reconstruc-
tion, delay evaluation, etc. This algorithm generalizes the widely-
adopted assumption of a linear back of queue (BoQ) curve to a
piecewise linear BoQ curve to consider more practical scenarios.
The piecewise linear BoQ curve is estimated via a convex
optimization model, ensuring efficient computation. Moreover,
this paper explicitly handles cases with low penetration rates and
low sampling rates, as well as measurement noises. Additionally,
the proposed methodology is extended to an urban arterial,
reusing the estimated departure information from the upstream
intersections to further improve the estimation accuracy. Finally,
two online implementation approaches are presented to perform
real-time queue estimation.

The proposed methodology is tested with two datasets: the
Lankershim dataset in the NGSIM project and the simulated
dataset of Wehntalerstrasse, Zurich, Switzerland. Results show
that the error is less than 1.5 cars in undersaturated scenarios
and 5.2 cars in oversaturated scenarios if the penetration rates
are larger than 0.1 and sampling rates are higher than 0.05s−1.
It is demonstrated that by considering a piecewise linear BoQ
curve, the estimation accuracy can be improved by up to 16%.
Incorporating flow successfully can also reduce the estimation
error by up to 16%. Results further show that the proposed
methodology is robust to measurement errors. It is finally shown
that the proposed framework can be solved within a reasonable
time (0.8s), which is sufficient for most real-time applications.

Index Terms—queue length estimation, connected vehicle tech-
nology, kinematic wave theory, piecewise linear regression, tra-
jectory reconstruction

I. INTRODUCTION

Q
UEUE estimation is crucial for intelligent transportation

systems. In urban traffic networks, queue lengths are

an essential input to adaptive signal control strategies [1]–[8]

and performance measurements at signalized intersections or

arterials [9].

Traditionally, queue length estimation uses information from

roadside detectors, e.g. loop detectors [10], cameras [11], and

event-based data (including both vehicle-detector actuation

events and signal phase change events) [12]. Although road-

side detectors provide aggregated traffic information such as

density, flow and speed, they are installed at fixed locations,

suffering from limited information coverage and extra cost for

installation and maintenance.

Kaidi Yang is with the Traffic Engineering Group, Institute for
Transport Planning and Systems, ETH Zurich, Switzerland (e-mail:
kaidi.yang@ivt.baug.ethz.ch); Monica Menendez is with Division of
Engineering, New York University Abu Dhabi, UAE (email: mon-
ica.menendez@nyu.edu)

Recently, the emerging connected vehicle technology is

attracting increasing attention as an alternative to traditional

traffic detectors. Equipped with Global Positioning System

(GPS) devices and wireless communication systems, con-

nected vehicles are capable of reporting real-time information

(e.g. position, speed, acceleration rate and direction) to each

other (vehicle to vehicle, V2V) or to the roadside infrastructure

(vehicle to infrastructure, V2I), providing a better spatial

coverage of information [13], [14].

One challenge on queue length estimation using this tech-

nology is the penetration rate, which is expected to remain

low in the near future. The penetration rate highly influences

the estimation accuracy, as only equipped vehicles can report

information. Another challenge is the sampling rate, i.e. the

frequency a vehicle reports information, which can also be

calculated as the inverse of the time interval between two con-

secutive reports. Some of the existing literature requires that

the equipped vehicles report information every second [15]–

[17]. However, the sampling rate could be lower in reality

due to the transmission and storage capacity. Moreover, the

obtained information can also be noisy, as there might be com-

munication latency, data corruption, or GPS noises. Therefore,

the proposed algorithm should be robust enough to handle

these challenges.

The existing literature on queue length estimation can be

mostly classified into two categories. The first category uses

queuing theory, usually with stochastic arrivals. For example,

the authors in [18]–[20] proposed a probabilistic model to

estimate the expected queue length, assuming a Poisson arrival

process of vehicles and a Bernoulli distribution for whether

a vehicle is equipped or not. [21] uses a stochastic gradient

descent method and a queuing diagram to estimate the queue

lengths. However, these works assumed point queues, and did

not consider the spatial traffic dynamics (e.g. the propagation

of traffic waves).

The second category is based on Lighthill-Whitham-

Richards (LWR) kinematic wave theory [22]–[24]. Some

works use the sampled travel time obtained from the trajectory

data to estimate the queue length (e.g. [25]–[29]). [25] and

[26] fitted the queue curves based on the observation of a

decreasing delay pattern. A support vector machine (SVM)

based method is proposed in [27] to identify the critical

points for the new cycle based on delay and travel time. [28]

and [29] considered the acceleration and deceleration process

to calculate the queue location in the discharging process

and to reconstruct the long queue when spillbacks happen,

respectively. Other works directly use the trajectory data to

estimate the piecewise linear back of queue (BoQ) that consists
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of a series of shockwaves. Through the BoQ curve, not only

queue length and platoons, but also traffic flow, density, and

even trajectories can be recovered. The estimation of the BoQ

curve can be formulated into a regression and/or classification

problem. The general process for estimating the BoQ curve

follows two steps. In the first step, critical points where the

traffic states change are identified on the time-space diagram.

Each critical point is a two dimensional vector: time t and

location x. There are a few different definitions of critical

points. [15] estimated the critical points as the first trajectory

points with speed lower than a threshold; [30] and [31] fitted

the vehicle trajectory into a piece-wise linear function, and

identified the critical points as the intersection between each

two pieces; [32] determined the critical points using both

speed and acceleration information; [33] defined the critical

points as the first calculated x-t point with zero speed. In

contrast with the existing research, and in order to retrieve

flow information from the shockwaves, this paper proposes

another way to retrieve the critical points that is coherent with

the kinematic wave theory. In the second step, the existing

literature has obtained the BoQ curve from the critical points

using variational theory [15], [34], fundamental diagram [31],

linear regression [30], [32], or piecewise linear fitting [33].

Although the algorithms developed in the aforementioned

works perform well, there is still room for improvement. For

example, most of the aforementioned works, e.g. [25]–[30]

and [32], relied on the assumption of constant arrival rate

(thus a linear BoQ curve) in each signal cycle. However,

such assumption cannot capture the variation in demand. In

an arterial, for example, the arrival rate to the downstream

intersection may be affected by the signal timings of the

upstream intersection, and thus is varying. In such cases,

relaxing the assumption of a linear BoQ curve may yield better

results. Some of the other works, e.g. [15], [33] and [34]

aimed to estimate a non-linear BoQ and proposed complex

non-convex models, which can be time consuming to find

the global optimum. [31] directly obtained the shockwave

for each trajectory point using the fundamental diagram,

which works for very low penetration rates, but might be

sensitive to GPS noises. Furthermore, none of these works

explore the queue estimation in an arterial. The discharging

process of the upstream intersection provides additional flow

information that can be utilized to improve the accuracy of the

queue estimation. Finally, most of these works focus on the

queue estimation of undersaturated scenarios, whereas for the

purpose of traffic control, oversaturated scenarios are of more

significance.

To solve the above mentioned problems, this paper proposes

a queue estimation method using connected vehicle informa-

tion based on the work of [33]. The contributions of this paper

are four-fold.

1) We relax the assumption of a constant arrival rate by

estimating a piecewise linear BoQ curve with a convex

optimization model. The methodology proposed in this

paper is independent of the demand, hence it can handle

any demand distribution (known or not). The convexity

of the proposed model guarantees a low computational

cost in the BoQ estimation.

2) The proposed convex model is further extended to

estimate queue lengths in arterials. We propose a new

framework to reuse the information on the estimated

discharging flow at the upstream intersections to improve

the estimation accuracy, especially if the penetration

rate is low. The effects of platoon dispersion are also

considered. The proposed framework does not require

the tracking of vehicles, which helps protect privacy.

3) We explicitly handle scenarios with low data quality.

On one hand, an alternative method is proposed to deal

with the cases with low sampling rates and low pene-

tration rates by using the acceleration and deceleration

information. On the other hand, the determination of the

critical points and the BoQ/FoQ(front of queue) curves

is based on the whole dataset, which makes the method

more robust to measurement noises.

4) The proposed method is of pragmatic significance.

First, it is able to work in both undersaturated and

oversaturated scenarios. Second, we propose an online

implementation framework, which is both accurate and

computationally efficient.

The paper is organized as follows. The convex formulation

for the queue estimation for a single signalized intersection

is proposed in Section II. Section III utilizes the arterial level

data to further improve the accuracy of the queue estimation.

Section IV adapts the proposed method to handle the cases

with limited data. Section V describes the simulations settings,

and Section VI shows the queue estimation results on the

Next Generation Simulation (NGSIM) dataset [35] and the

simulated dataset of an arterial of Wehntalerstrasse, Zurich,

Switzerland. A sensitivity analysis is performed in Section

VII. Section VIII studies the online implementation of the

methodology, and Section IX concludes the paper.

II. GENERAL METHODOLOGY

This section proposes a general methodology for queue

estimation at a signalized intersection using connected vehicle

technology. For the reader’s convenience, a list of the most

important variables is given in Table 1.

The signal timing plan can be either fixed, actuated or

adaptive. In this paper, it is assumed that the signal timings

are available, i.e. the start of the red signal, rp, and the

start of the green signal, gp, are available for each cycle p.

This assumption can be relaxed, however, with classification

methods (e.g. [27]) or clustering methods (e.g. [33]).

The fundamental diagram of the link is assumed to be tri-

angular with known parameters (free flow speed, jam density,

backward wave speed). In practice, the shape and parameters

of the fundamental diagram can be calibrated using trajectory

data (see [36]).

A certain percentage of vehicles are assumed to be equipped

with connected vehicle technology (GPS sensors and V2I

communication devices). It is assumed that these vehicles are

able to communicate with the intersection controller if they are

within a certain radius of it. This radius is upper bounded by

the physical limit of the communication range and the length

of the links (as otherwise route choice of the vehicles will
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TABLE I
NOMENCLATURE.

M set of all equipped vehicles, indexed by m;

J set of all trajectory points, indexed by j;

P set of signal cycles, indexed by p;

V set of all trajectory points classified as in the free flow state;

S set of all trajectory points classified as in the stopped state;

I set of all trajectory points classified as in the intermediate
state;

Jm set of trajectory points associated to vehicle m;

Vp set of trajectory points classified as in the free flow state for
cycle p;

Sp set of trajectory points classified as in the stopped state for
cycle p;

Ip set of trajectory points classified as in the intermediate state
for cycle p;

Ap set of trajectory points classified as in the accelerating state
for cycle p;

Dp set of trajectory points classified as in the decelerating state
for cycle p;

Bp set of BoQ critical points for cycle p;

Fp set of FoQ critical points for cycle p;

rp start of the red signal in cycle p;

gp start of the green signal in cycle p;

u low speed threshold to detect stopped trajectory points;

ū high speed threshold to detect free-flow trajectory points;

kjam jam density on the link;

uf free flow speed on the link;

w absolute value of the backward wave speed on the link;

xj location coordinate of trajectory point j;

tj time coordinate of trajectory point j;

vj speed coordinate of trajectory point j;

Tstep time step for the back of queue estimation;

αi slope of the back of queue curve at the ith time step;

πi time of the ith time step for the BoQ curve estimation.

be needed). Recent technologies, e.g. Dedicated Short Range

Communications (DSRC), can provide a communication range

of up to 1000 meters [37]. Therefore, for simplicity, this radius

is assumed to be comparable with the length of a typical

link. The equipped vehicles send trajectory information (time,

location and speed) to the controller at some sampling rates,

which do not have to be constant for each trajectory, and do

not need to be synchronized in time.

In this section, it is assumed that there is at least one stopped

trajectory point and one moving trajectory point for each

equipped vehicle. This assumption is made for presentation

simplicity here, and will be relaxed in Section IV.

The set of trajectory points is defined as J . The trajectory

information is defined as a vector (tj , xj , vj), where the

three coordinates represent current time, location, and speed,

respectively. In this paper, the location of a vehicle j, xj , is

assumed to be 0 at the intersection, and a negative value if the

vehicle is on the upstream link of the intersection.

Fig.1 shows the flowchart of this methodology. Given a set

of trajectory points, the method estimates the queue length in

five steps: 1) data labelling and preprocessing; 2) identification

of the critical points; 3) estimation of the FoQ curve; 4)

estimation of the BoQ curve; and 5) calculation of the queue

length. The rest of this section presents the main parts of

the five steps in detail. The other parts, i.e. incorporating

the flow information for BoQ estimation and including the

intermediate states, will be presented in Section III and Section

Data labelling and preprocessing 

 Categorize each trajectory point as in stopped , intermediate, or free-flow
state (Section II.A, Eq.1)

 Attach each trajectory point to signal cycles (Section II.A, Eq.2)

Identification of the critical points 

 Identify the front of queue (FoQ) and back of queue (BoQ) critical points
by line fitting (Section II.B)

 In cases with low penetration rates and low sampling rates, obtain more
critical points using intermediate trajectory points (Section IV, Eq.21-24)

Estimation of the FoQ curve 

 Fit the FoQ critical points to a linear FoQ curve (Section II.C, Eq.4-8)

Estimation of the BoQ curve

 Fit the BoQ critical points to a piecewise linear BoQ curve (Section II.D,
Eq.10-17)

 Incorporate the exogenous flow information if available (Section III,
Eq.18-20)

Calculation of the queue length

 Find the queue length as the difference between the BoQ and FoQ curve

Fig. 1. Flowchart of the proposed general methodology.

IV, respectively. An illustration of the process is given in Fig.2.

Intersection

BoQ

FoQ

Sp

Vp

Vp+1

Distance

Time

rp gp+1

Fig. 2. Illustration of the method. The gray dots are marked as free-flow,
the white dots are in the intermediate state, the black dots are stopped. The
points with cross marks represent the critical points. The solid lines represent
the reconstructed theoretical trajectories; the dashed lines represent the front
of queue (FoQ) curve and the back of queue (BoQ) curve.

A. Data labelling and preprocessing

In this step, the trajectory points will be labelled as in a

stopped state, free-flow state, or intermediate state, and then

attached to each signal cycle.
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A trajectory point is identified as stopped if the speed is

lower than a critical value u, and free-flow if the speed is

higher than a critical value ū > u. Define set S as the set

of all trajectory points in the stopped state, set V as the

set of all trajectory points in the free-flow state. The other

trajectory points are identified as in the intermediate state (i.e.

accelerating/decelerating state), denoted as set I . This can be

summarized as

j ∈











S, if vj ≤ u

I, if u < vj ≤ ū

V, if vj > ū

(1)

In this section, intermediate trajectory points are not consid-

ered for simplicity. However, these trajectory points can be

useful if there are no stopped or free-flow trajectory points

for an equipped vehicle trajectory, which will be discussed in

Section IV.

Each trajectory point (stopped, free-flow, or intermediate)

is attached to a signal cycle. This can be described in Eq.(2).

Note that different trajectory points of a vehicle may be

attached to different cycles, if this vehicle queues for multiple

cycles.

j ∈











Vp, if gp ≤ xj/w + tj < gp+1 and j ∈ V

Ip, if gp ≤ xj/w + tj < gp+1 and j ∈ I

Sp, if gp ≤ xj/w + tj < gp+1 and j ∈ S

(2)

where Vp, Ip and Sp represent the set of free-flow, in-

termediate, and stopped trajectory points in a signal cycle,

respectively.

B. Identification of the critical points

Critical points represent the transition between two traffic

states. As is shown in Fig.2, the FoQ critical points separate

the stopped state in cycle p and the free-flow state in cycle

p + 1, and represents the time and location where a vehicle

starts to be discharged. The BoQ critical points separate the

free-flow state in cycle p to the stopped state in cycle p, and

represents the process where a vehicle comes to a stop.

Let Jm be the trajectory points reported by the equipped

vehicle m. Then for cycle p, the set Jm ∩ Vp represents the

free-flow trajectory points of equipped vehicle m in this cycle;

the set Jm ∩ Sp represents the stopped trajectory points of

equipped vehicle m in this cycle.

The FoQ critical point for trajectory m in signal cycle p
can be calculated as the intersect between the lines formed by

trajectory points in Jm ∩Sp (the stopped points for trajectory

m in signal cycle p) with a slope of 0 and Jm ∩ Vp+1 (the

moving points for trajectory m in signal cycle p + 1) with a

slope of uf . Both lines can be derived using linear regression,

and the critical points can be identified by solving the linear

equations. Denote the set of FoQ critical points in cycle p as

Fp.

For trajectory m and signal cycle p, each BoQ critical point

is determined as the intersect between two lines: 1) the line

fitted on set Jm ∩ Vp (the moving points of vehicle m for

trajectory in signal cycle p) with a slope of uf ; and 2) the

line fitted on set Jm∩Sp (the stopped points of vehicle m for

trajectory in signal cycle p) with a slope of 0. Denote the set

of BoQ critical points in cycle p as Bp.

This definition of the critical points approximates each

vehicle trajectory as a piecewise linear curve of stopped

segments and free-flow segments. This is consistent with the

kinematic wave theory with the assumption of a triangular

fundamental diagram. This approximation is also invariant

with respect to vehicle delay.

C. Estimation of the FoQ curve

As is shown in Fig.2, the FoQ curve between cycles p and

p+1 is the discharging line in cycle p. It is a straight line that

i) separates the stopped trajectory points in cycle p, Sp, and

the free-flow trajectory points in cycle p+1, Vp+1; ii) crosses

the critical points in set Fp between Sp and Vp+1; iii) has a

slope of −w, where w is the absolute value of the backward

wave speed.

Denote the FoQ curve as a line on the x−t plane represented

by

x+ wt− h = 0 (3)

where h is the decision variable, representing the intercept

on the distance axis, x. Then estimating the FoQ curve is

equivalent to determining the intercept h that satisfies the

criteria listed above.

Hence, the problem of estimating FoQ can be formulated

into the following optimization model Eq.(4)-Eq.(8).

min
∑

j∈Fp

ǫ2j + λ1

∑

j∈Sp

ej + λ2

∑

j∈Vp+1

ej (4)

s.t. xj + wtj − h = ǫj , j ∈ Fp (5)

xj + wtj − h ≤ ej , j ∈ Sp (6)

xj + wtj − h ≥ −ej , j ∈ Vp+1 (7)

ej ≥ 0, j ∈ Vp+1 ∪ Sp (8)

where the decision variable is the intercept h. Constraint Eq.(5)

defines the error of fitting the critical points with Eq.(3);

Eq.(6) and Eq.(7) guarantee that the discharging line separates

the stopped and moving states. The slack variables ej are

introduced to handle the case where the stopped state and the

free flow state are not strictly separable by straight lines. This

could happen in scenarios with multiple lanes, or with large

measurement errors. The objective function Eq.(4) minimizes

the summed square fitting errors and classification errors. λ1

and λ2 are regularization factors that control the weight of

the the classification errors. If λ1 and λ2 are small, the model

gives more emphasis to fitting than to classification. Besides,

if λ1 > λ2, the model focuses more on the stopped state.

The optimization model Eq.(4)-Eq.(8) is convex, which can

be solved in polynomial time with the inner point method or

Newton’s method. Solving this model gives the discharging

line (i.e., FoQ curve) x+ wt− h = 0.

Note that the formulation Eq.(4)-Eq.(8) relies on the under-

lying assumption that there is at least one FoQ critical point.

In other words, it is assumed in this section that there exists



5

at least one vehicle m such that both Vp+1 ∩Jm and Sp ∩Jm
are not empty. This assumption will be relaxed in Section IV.

D. Estimation of the BoQ curve

According to LWR theory, the BoQ curve is modelled as a

piecewise linear curve x = x(t) that crosses the critical points

in set Bp and separates the moving state Vp and the stopped

state Sp (see Fig.2). All the trajectory points in Vp should be

below the BoQ curve, and all the trajectory points in Sp should

be above the BoQ curve.

The estimation of the BoQ curve can be formulated as a

classification problem with a piecewise linear boundary. In

this paper, the piecewise linear boundary is determined using

the method proposed in [38]. The key idea of this model is to

divide the region of interest into some subregions and find a

classification line in each region through a global optimization

model. For the BoQ curve estimation problem, the region of

interest Π is chosen as the time period between the start time

of a cycle to the time when the queue is cleared. The BoQ

curve begins from the start time of the red signal in cycle p, rp.

The time when the BoQ curve ends (the queue is cleared) is

generally unknown. It can be chosen as a time sufficiently

large. For real-time queue estimation, the end time of the

region can be the current time. Then the region of interest

is divided into time intervals Πi = {j|πi ≤ tj < πi+1},

i = 1, · · · , n, where π1 is the start time of Π and πn+1

is the end time of Π. The length of each time interval

Tstep = πi+1−πi determines the precision of the BoQ curve.

If this size is too large, it might give an inaccurate BoQ. If

this size is too small, it might lead to over-fitting. A sensitivity

analysis on the time interval length is conducted in Section

VII.

In this way, the BoQ curve represented by a continuous

piecewise linear curve BoQ(t) on the x − t plane can be

written as

x(t) = BoQ(t) =











α1t+ β1, π1 ≤ t < π2

· · ·

αnt+ βn, t ≥ πn

(9)

where αi, βi, i = 1, · · · , n are the slopes and intercepts in

each time interval.

The estimation of the BoQ curve can be modelled as

min
1

2

n
∑

j∈Bp

ǫ2j + λ1

∑

j∈Sp

ej + λ2

∑

j∈Vp

ej + λ3

n
∑

i=2

|αi − αi−1|

(10)

s.t. αi−1πi + βi−1 = αiπi + βi, i = 2, · · · , n (11)

xj −BoQ(tj) = ǫj , j ∈ Bp (12)

xj −BoQ(tj) ≥ −ej , j ∈ Vp (13)

xj −BoQ(tj) ≤ ej , j ∈ Sp (14)

ej ≥ 0, ∀j ∈ Vp ∪ Sp (15)

0 ≤ αi ≤ w (16)

Constraint Eq.(11) guarantees that the (i− 1)th and the ith
pieces of BoQ(t) have the same value at πi, so that the BoQ

curve is continuous. Constraint Eq.(12) represents the fitting

errors of the BoQ curve on the critical points. Constraints

Eq.(13)-Eq.(15) imply that the BoQ curve should separate the

stopped trajectory points and the moving trajectory points.

A penalty ej > 0 is introduced if the trajectory point

(tj , xj) cannot be classified into the correct state (i.e. moving

or stopped). Constraint Eq.(16) is derived from the LWR

kinematic wave theory, and guarantees that the slope of each

piece of the BoQ curve is within the backward wave speed

and 0. The objective function Eq.(10) aims to minimize the

weighted error of fitting. The first term represents the total

fitting error caused by the critical points; the second and the

third term represent the total penalty caused by the failure to

separate the moving and the stopped states; the fourth term

attempts to control the number of linear segments in the BoQ

to give a more robust solution. This is done by minimizing

non-zero components in {αi − αi−1}, i.e. to make αi and

αi−1 as close as possible. Since the number of non-zero

components in {αi − αi−1} is not a convex function, an l1
regularization term

∑n

i=2 |αi − αi−1| is minimized instead as

a convex approximation (1-norm approximation). By minimiz-

ing
∑n

i=2 |αi − αi−1|, the number of non-zero components

in the set {αi − αi−1, ∀i} can be approximately minimized.

This technique is called l1-magic and often used in signal

processing to reconstruct sparse signals (signals in which most

components are zero). It is shown in [39] that this technique

always yields a good approximation.

The regularization factors λ1, λ2 and λ3 control how much

weight should be given to each term of the objective function.

Large λ1 and λ2 represent less tolerance on the misclassifica-

tion of the moving and stopped states. Different weights λ1

and λ2 can also be given, if the importance of misclassification

of the moving and stopped states are different. Large λ3 will

result in small number of breaks (i.e. segments) in the BoQ

curve. These three parameters can be trained from the data by

a cross-validation procedure.

Note that the formulation Eq.(10) - (16) is convex. Hence,

the model can be solved easily with any convex optimization

solver using the inner-point algorithm or Newton algorithm.

E. Calculation of the queue length

With the BoQ curve and FoQ curve of cycle p, the queuing

region can be identified. The remaining queue from cycle p
can be then calculated as the difference between them. Then,

the queue length at time t is the summation of the remaining

queues, i.e.

Q(t) =
∑

p

max{FoQp(t)−BoQp(t), 0} (17)

III. REUSE OF UPSTREAM DEPARTURE INFORMATION FOR

ARTERIAL-LEVEL ESTIMATION

In an urban arterial, if the intersections can communicate

with each other, the departure information from the upstream

intersection, calculated from the FoQ curve, can be beneficial

for the queue estimation of the downstream intersection,

especially in scenarios with low penetration rates. However,

due to consideration of privacy and data transmission, it is not

desirable to track the actual vehicle trajectories or share them
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between intersections. In this section, we extend the general

methodology proposed in Section II to integrate the estimated

departure information from the upstream intersections to fur-

ther improve the estimation accuracy at the arterial level while

retaining vehicle privacy. This extended methodology follows

two steps. In the first step, the arrival flow at the downstream

intersection is estimated based on a platoon dispersion model

(Section III-A); in the second step, such flow information is

utilized for queue estimation (Section III-B).

A. Estimation of the arrival flow

Denote qi as the flow that would have arrived at the

intersection at time interval Πi = {j|πi ≤ tj < πi+1}
in cycle p. We aim to estimate the flow qi considering the

information of the upstream intersection and the effect of

platoon dispersion.

There are two cases based on whether the cycle p−1 at the

downstream intersection is oversaturated.

In the first case, the flow qi consists of the vehicles queued

in cycle p−1, hence qi is the saturation flow of the intersection.

In the second case, the flow qi has not queued in the pre-

vious cycle. Instead, it comes from the upstream intersection.

For an arterial, the discharging line at the upstream intersection

provides prior arrival information to the downstream intersec-

tion. The departure flow from the upstream intersection can

be zero (red time), the saturation flow (discharging), or the

arrival flow at the intersection. However, due to the fluctuation

of vehicle speeds, the discharging platoons from the upstream

intersection tend to disperse over time and space. Hence, the

vehicles discharged uniformly from the upstream signal would

arrive at the downstream signal in a non-uniform manner,

which makes the arrival flow at the downstream intersection

different from the departure flow at the upstream intersection.

Many models depict the platoon dispersion [40]–[42]. How-

ever, the most widely used platoon dispersion model is Robert-

sons (1969). This model has become a virtual universal stan-

dard platoon dispersion model and has been implemented in

various traffic simulation software, including TRANSYT [42],

SCOOT [43] and TRAFLO [44]. In this paper, the Robert-

son’s platoon dispersion model [42] is adopted to model the

progression of vehicles between the two intersections. Note

that other platoon dispersion models can also be incorporated

in a similar way.

The Robertson’s platoon dispersion model states that the

downstream flow should be the linear combination of the

previous downstream flow, and the corresponding upstream

flow, i.e.

qi =
ρTf

1 + ρTf

qi−1 +
1

1 + ρTf

q′i−Tf
(18)

where

• qi is the arrival flow at the downstream intersection at

time step i;
• q′i is the departure flow from the upstream intersection at

time step i;
• Tf is the free flow travel time between the two intersec-

tions with unit of time steps;

• ρ is a platoon dispersion factor expressing the degree of

the dispersion of the platoon, which can be calibrated

with empirical data [42].

The parameters Tf and ρ are constants if the configuration

of the two intersections is given. The flow q′i−Tf
is given by

the upstream intersection. The arriving flow at the downstream

intersection can be calculated by Eq.(18).

B. Estimation of the queue length

Using the estimated arrival flow qi and the kinematic wave

theory, the slope of the BoQ curve at time interval Πi can be

calculated as

α̂i =
qi

qi/uf − kjam
(19)

Then a regularization term can be added to Eq.(10) to

integrate the information provided by the trajectory data and

the flow data.

min
1

2

n
∑

j∈Bp

ǫ2j + λ1

∑

j∈Sp

ej + λ2

∑

j∈Vp

ej + λ3

n
∑

i=2

|αi − αi−1|

+ γ
n
∑

i=1

max{α̂i − αi, 0} (20)

where γ is a weighting parameter balancing the trajectory data

and the flow information. It represents our belief on the flow

information. The more we trust the flow information and the

more noisy the trajectory data is, the larger the γ should be. For

low penetration rate and large noises in data, a large γ should

be utilized. The regularization term aims to ensure that the

α̂i ≤ αi. This is because the proposed methodology tends to

underestimate the duration of the FoQ curve if the penetration

rate is low and the last few vehicles in the queue are not

connected. Therefore, the estimated slope α̂i is usually lower

than the actual one αi.

IV. INCLUSION OF THE INTERMEDIATE STATES FOR CASES

WITH LIMITED DATA

This section extends the general methodology to explicitly

handle the cases with low penetration rates and low sampling

rates. One example of such cases is queue length estimation

with probe taxi data or floating car data covering around

10% of the vehicles and reported every 10-30s. The potential

problem in these cases is that there might not be enough

trajectory points for the FoQ and BoQ estimation strictly

following the methodology proposed in Section II. Recall that

in order to estimate the FoQ or the BoQ curve in each cycle,

we need at least one critical point. When the data is limited,

however, there might not be a critical point for some cycles at

all. This can be problematic, as the accurate estimation of both

curves depends on the number of critical points we have. Thus,

it is desirable to get as many critical points as possible. In this

section, the data in the intermediate state (i.e. trajectory points

with speed between u and ū) are used to provide information

on acceleration and deceleration. With such information, more

critical points can be estimated.

The estimation of critical points using the intermediate

trajectory points follows two steps.
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1) Identify the set of accelerating and decelerating trajec-

tory points in each signal cycle p, respectively.

2) Estimate the critical points by fitting the acceleration

and deceleration curves.

In the first step, denote Ap and Dp as the set of ac-

celerating and decelerating trajectory points in signal cycle

p, respectively. These trajectory points in Ap and Dp are

determined by traversing each trajectory. Recall that in a

normal cycle, the trajectory points are very likely to follow

the order of states: accelerating, free flow state, decelerating,

stopped state. Hence, considering two consecutive trajectory

points in the same cycle where the earlier point j is an

intermediate trajectory point (j ∈ Ip), and the later point j′ is a

free flow trajectory point (j′ ∈ Vp) or an accelerating trajectory

point (j′ ∈ Ap) , we can deduce that the earlier trajectory

point j is accelerating and assign it into Ap; Otherwise if an

intermediate trajectory point j ∈ Ip is right after a free flow

trajectory point j′ ∈ Vp or a decelerating point j′ ∈ Dp in the

same cycle, the trajectory point j should be decelerating and

assigned into Dp. In the absence of free flow trajectory points

(e.g. when the sampling rate is very low), it is more difficult to

distinguish the accelerating and decelerating trajectory points.

In such cases, we use the speed information. In cycle p, if the

speed of a trajectory point is larger than the previous point

along the same trajectory, we classify it as an accelerating

trajectory point and assign it into set Ap. Otherwise we regard

it as a decelerating trajectory point and assign it into set Dp.

It is assumed that all the vehicles have a uniform and

constant acceleration rate a and deceleration rate d. Historical

trajectory points can be used to calibrate both a and d. For

a historical trajectory point j with speed vj , denote ∆xj as

the distance from the location of this trajectory point to the

location where the vehicle stops (if available), then for each

trajectory point j, it holds that

2a∆xj = v2j or − 2d∆xj = v2j (21)

Therefore, a and d can be estimated as

a =

∑

j∈Ā v2j

2
∑

j∈Ā ∆xj

(22)

d = −

∑

j∈D̄ v2j

2
∑

j∈D̄ ∆xj

(23)

where Ā and D̄ denote the trajectory points in A and D if

∆xj is available, respectively. Note that even in scenarios

with very low penetration rates and sampling rates, given a

sufficiently long period of time, we can still obtain enough

trajectory points for Ā and D̄.

In the second step, we estimate the critical points using data

points in Ap and Dp. The estimation of the critical points of

the FoQ and BoQ curve with intermediate trajectory points

are similar. In the rest of this section, for simplicity, we only

present the estimation of the FoQ critical points. To adapt the

following approach to the estimation of the BoQ curve, we

only need to replace Ap and a with Dp and d, respectively.

With the constant acceleration assumption, the accelerating

trajectory can be represented as a parabola.

x(t) =
1

2
at2 + bt+ c (24)

Then the estimation of the FoQ critical points follows two

steps. In the first step, the accelerating trajectory Eq.(24) is

estimated using the intermediate trajectory points in the set

Ap+1. In the second step, the critical points are determined

with the assistance of Eq.(24). For presentation simplicity, the

two steps are described in details in Appendix A.

V. SIMULATION SETTINGS

This section describes the two datasets for evaluation: 1)

the Lankershim dataset from the NGSIM project for undersat-

urated scenarios, and 2) the simulated data for oversaturated

scenarios based on an arterial of Wehntalerstrasse, Zurich,

Switzerland.

A. Under-saturated scenario: the Lankershim dataset from the

NGSIM project

In the Lankershim dataset from the NGSIM project, all lanes

with straight movements are considered (2 lanes). The study

area is shown in Fig.3. The vehicle trajectory data correspond

to the southbound trajectories from 8:30 a.m. to 8:45 a.m. (10

cycles) on June 16, 2005, see in Fig.4.

Fig. 3. The study area of the Lankershim dataset of NGSIM.

B. Over-saturated scenario: simulated dataset on Wehntaler-

strasse, Switzerland

This dataset (thereafter called Wehntalerstrasse dataset) is

based on the simulation of an arterial at Wehntalerstrasse,

Zurich, Switzerland using VISSIM. We consider two intersec-

tions: 1) the intersection between Wehntalerstrasse and Ein-

fangstrasse (Intersection 1, upstream), and 2) the intersection

between Wehntalerstrasse and Glaubtenstrasse (Intersection 2,
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Fig. 4. The vehicle trajectories in the Lankershim dataset.

downstream). The considered arterial link has two lanes. The

layout of the simulation is shown in Fig.5. This simulation

model is calibrated and validated based on empirical measure-

ments on Nov. 16, 2014. The simulated trajectory is illustrated

in Fig.6 (13 cycles).

Fig. 5. The study area of the Wehntalerstrasse dataset.

C. Parameters for the simulation and evaluation criteria

TABLE II
PARAMETERS FOR SIMULATION

Parameter Lankershim dataset Wehntalerstrasse dataset

uf [km/hr] 60 60
w [km/hr] 23.8 16.8
kjam [veh/km] 200 250
Tf 17 40
γ 0.5 0.5
ρ 0.1 0.1
λ1 1 1
λ2 1 1
λ3 0.5 0.5
u [m/s] 1 1
ū [m/s] 5 5
Tstep[s] 2 2

The parameters for both scenarios are summarized in Table

II. The performance of the proposed methodology is evaluated

Fig. 6. The vehicle trajectories in the Wehntalerstrasse dataset.

by the mean estimation error, i.e. the average absolute differ-

ence between the estimated queue length and the actual queue

length, i.e.

MAE =
1

tf − t0

∫ tf

t0

|Q(t)− Q̂(t)| (25)

where Q̂(t) is the estimated queue length at time t and Q(t)
is the ground truth queue length.

For the Lankershim dataset, the average queue length over

time of the studied area is 3.0 cars, which means that if we

estimate the queue length always as zero, we will get an MAE

of 3.0 cars. For the Wehntalerstrasse dataset, the average queue

length over time is 25.0 cars.

The model is solved using MATLAB with CVX toolbox

[45], [46], a solver for convex optimization problems. The

algorithm used by CVX tool box is the interior point method

[47]. 10 random seeds are evaluated for each comparison.

VI. CASE STUDY AND RESULTS

This section shows the performance of the proposed method

at both sites. Section VI-A shows the results for an isolated

intersection. Section VI-B evaluates the benefit of considering

a piecewise linear BoQ instead of a linear BoQ. Section

VI-C demonstrates the benefit of considering the trajectory

points in the intermediate state. The value of considering flow

information is discussed in Section VI-D.

A. Results for an isolated intersection

In this section, the proposed methodology is evaluated at

Intersection 2 in Fig.3 and Fig.5 for undersaturated case

and oversaturated case, respectively. The resulting MAEs are

shown in Fig.7. The penetration rate is set to vary between

0.05 and 1. The sampling rate is chosen to vary between

0.05s−1 and 1s−1. We found that the performance of the

proposed methodology is not very sensitive to the sampling

rate when the sampling rate is higher than 0.2s−1. Therefore

for illustration convenience, we only show the results with

sampling rates 0.05s−1 and 1s−1. We can also see from
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(b) Wehntalerstrasse dataset

Fig. 7. Performance of the proposed methodology for an isolated intersection.

Fig.7 that the proposed methodology is more sensitive to the

penetration rate.

It can be seen from Fig.7a) and Fig.7b) that the estimation

error decreases with the increase in penetration rate. The

proposed methodology performs well for a relatively low

penetration rate (0.1) and a low sampling rate (0.05s−1), with

the MAE less than 1.5 car for the Lankershim dataset and

5.2 cars for the Wehntalerstrasse dataset. This is expected,

as for the undersaturated scenarios, the average queue length

is small. Therefore, the error cannot be too large. For the

oversaturated scenarios, however, as the absolute number of

vehicles is large, having a penetration rate of 0.1 still gives

sufficient critical points. However, the performance of the

proposed methodology deteriorates as the penetration rate

drops from 0.1 to 0.05, This is expected, because there are

very few critical points, or even vehicle trajectories, in many

cycles for such a low penetration rate. In such scenarios, it is

hard to use deterministic methods to estimate the queue using

only connected vehicle data. One solution could be stochastic

models that can provide more robust results [20], [29]. We

may also need other sources of information for queue length

estimation in such scenarios.

The marginal benefit of having more connected vehicles

decreases with the increase in the penetration rate. This sug-

gests that the information provided by 40% can already yield

satisfactory estimation results. We can also observe an error of

on average 1 or 2 cars even for the 100% penetration rate and

sampling rate of 1s−1. This is because the driver behaviors

in reality are stochastic and heterogeneous. The drivers do

not exactly behave according to the traffic models. Note that

here we assume the real penetration rate is not available to

the proposed methodology. In addition, we perform the queue

estimation for both lanes as a whole, which relies on the

assumption that the queue length on both lanes are similar.

However, the queue length may not be balanced on both lanes

in reality. We may adapt the proposed methodology to lane-

based queue estimation to improve the accuracy.

Comparing Fig.7a) and Fig.7b), we can see that the differ-

ence of the MAE between the two cases is small for moderate

penetration rates (larger than 0.4). This is expected, as the

estimation error of the queue length usually depends more

on the last few vehicles in the queue, rather than the actual

queue length. If the last few vehicles are all conventional

vehicles, we tend to underestimate the queue length. Therefore,

the estimation errors in the undersaturated scenarios and

oversaturated scenarios are similar.

To get more detailed understanding of the proposed method-

ology, we demonstrates the time space diagram (Fig. 8a, Fig.

8c, Fig. 8e, and Fig. 8g) and the estimation of queue lengths

(Fig. 8b, Fig. 8d, Fig. 8f, and Fig. 8h) of both sites with

penetration rates (pr) of 0.2 and 1.0 for a particular random

seed (42). In the time-space diagram, the green dashed lines

represent all the trajectories that provide the ground truth,

whereas the blue solid lines represent the trajectories of con-

nected vehicles that we use for queue estimation. It can be seen

from the time space diagrams (Fig. 8a, Fig. 8c, Fig. 8e, and

Fig. 8g) that the proposed methodology is able to accurately

estimate the FoQ and BoQ curve based on the information

available. In scenarios with low penetration rates, the proposed

methodology might fail to estimate the last few vehicles due

to the lack of information. This can be verified from the queue

length estimation (Fig. 8b, Fig. 8d, Fig. 8f, and Fig. 8h) where

the proposed methodology tends to underestimate the queue

length for scenarios with relatively low penetration rate. We

can also see from Fig. 8b), Fig. 8d), Fig. 8f), and Fig. 8h) that

even if the queue profiles are perfectly estimated, there could

still be errors in the queue estimation due to the imbalance

of the queue length on different lanes. Comparing Fig.8b) and

Fig.8d) with Fig.8f) and Fig.8h), we can also see that the queue

estimation process is more sensitive to low penetration rate in

undersaturated scenarios than in oversaturated scenarios. This

is The estimation error can be large, if very few vehicles arrive

at the intersection, e.g. the fourth and sixth cycle in Fig.8a)

and Fig.8b).

The cycle-by-cycle maximum queue length is shown in

Table III and IV. It can be seen that the proposed proposed

methodology can in general successfully estimate the FoQs,

BoQs and queue lengths, even if the penetration rate is low.
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(a) Lankershim dataset, pr = 0.2, time space diagram
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(c) Lankershim dataset, pr = 0.2, time space diagram
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(d) Lankershim dataset, pr = 0.2, queue length

(e) Wehntalerstrasse dataset, pr = 1.0, time space diagram
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(f) Wehntalerstrasse dataset, pr = 1.0, queue length

(g) Wehntalerstrasse dataset, pr = 1.0, time space diagram
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(h) Wehntalerstrasse dataset, pr = 1.0, queue length

Fig. 8. Illustration of the time space diagrams and queue lengths. On the time space diagram, the green trajectories represent all the vehicle trajectories,
whereas the blue trajectories represent the trajectory of connected vehicles. The bold black curves represent the FoQs and BoQs.
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TABLE III
CYCLE-BY-CYCLE MAXIMUM QUEUE LENGTHS FOR LANKERSHIM

DATASET (SAMPLING RATE IS 1s−1)

.

pr = 0.2 pr = 1.0
Cycle Actual Estimated Error Estimated Error

1 11.0 11.9 0.9 11.4 0.4
2 19.0 14.6 4.4 17.9 1.1
3 17.0 12.2 4.8 13.1 3.9
4 2.0 0.0 2.0 1.8 0.2
5 10.0 3.9 6.1 10.7 0.7
6 4.0 0.0 4.0 3.9 0.1
7 7.0 2.6 4.4 2.5 4.5
8 15.0 13.3 1.7 15.0 0.0
9 4.0 3.2 0.8 2.0 2.0

10 7.0 1.1 5.9 5.0 2.0

TABLE IV
CYCLE-BY-CYCLE MAXIMUM QUEUE LENGTHS FOR

WEHNTALERSTRASSE DATASET (SAMPLING RATE IS 1s−1)

.

Cycle Actual
pr = 0.2 pr = 1.0

Estimated Error Estimated Error

1 31.0 28.6 2.4 28.9 2.1
2 30.0 29.9 0.1 29.9 0.1
3 30.0 27.9 2.1 27.5 2.5
4 47.0 42.8 4.2 43.4 3.6
5 50.0 46.6 3.4 46.1 3.9
6 50.0 47.9 2.1 46.0 4.0
7 60.0 54.6 5.4 54.4 5.6
8 63.0 58.6 4.4 58.7 4.3
9 56.0 52.6 3.4 51.1 4.9

10 55.0 50.1 4.9 50.6 4.4
11 52.0 48.5 3.5 49.0 3.0
12 31.0 25.3 5.7 28.4 2.6
13 27.0 26.4 0.6 25.9 1.1

B. Value of considering piecewise linear BoQ

In order to evaluate the benefit of considering the piecewise

linear BoQ curve, we compare the results with a state-of-art

method [26] that assumes constant demand within a cycle,

and thus a linear BoQ between the maximum queue length and

the minimum queue length1. However, note that the demand in

both datasets is not constant within a signal cycle, because it is

affected by the traffic signal in the downstream intersection. In

scenarios with a more uniform demand within the signal cycle,

the two methods yield similar results. We test the scenarios

with penetration rates (pr) of 0.2 and 0.8, and sampling rate

(sr) of 1s−1, 0.2s−1 and 0.05s−1. The results are shown in

Fig.9. The results for the proposed algorithm and the algorithm

in [26] are shown in the blank bar and the shaded bar,

respectively. Note that the algorithm in [26] is based on sample

travel times, assuming that the arrival times on two virtual lines

are available. Therefore, the results for different sampling rates

are the same.

It can be seen that considering a piecewise linear BoQ can

improve the accuracy in estimation (up to 0.6 car and 16%).

This shows that we can reduce the systematic errors caused by

non-uniform arrivals. It is also shown that the improvement is

in general larger for scenarios with higher sampling rates and

higher penetration rates. This is because in such scenarios, the

1In undersaturated scenarios, the method in [26] estimates a linear BoQ, as
the minimum queue length is 0. While in oversaturated scenarios, the resulting
BoQ from [26] can have two linear segments.

(a) Lankershim dataset

(b) Wehntalerstrasse dataset

Fig. 9. Value of considering piecewise linear BoQ.

BoQ is more likely to be non-linear.

C. Value of considering acceleration and deceleration

The value of considering the intermediate state is shown

in Fig.10. The shaded bars represent the estimation results

of the extended methodology considering intermediate state

proposed in Section IV, and the white bars represent the esti-

mation results of the general methodology without including

acceleration and deceleration information.

We can conclude that the method proposed in Section IV

successfully reduces the estimation error in all scenarios tested.

The improvement is up to 0.1 car and 6%. Generally speaking,

the benefit of this method is larger in scenarios with low

penetration rates and/or low sampling rates. In such scenarios,

the reported trajectory points are very few. Hence, to get

sufficient critical points, the intermediate state should be taken

into account. However, in scenarios with high penetration rates

and/or high sampling rates, e.g. pr = 0.8 and sr = 1s−1,

the benefit of considering the intermediate state is marginal.

Therefore, it is advised to consider the intermediate state only

if either the sampling rate or the penetration rate is low.

D. Value of integrating flow information

This section evaluates the value of integrating the upstream

departure information at the arterial level by comparing the
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(a) Lankershim dataset

(b) Wehntalerstrasse dataset

Fig. 10. Value of considering acceleration and deceleration.

extended methodology for the arterial level (Section III) to the

general methodology. The departure flow from Intersection 1

at both sites is integrated with a Robertson’s platoon dispersion

model. The results are shown in Fig.11.

Fig.11 shows that the flow information from the upstream

intersection improves the performance of the algorithm in

all scenarios tested. The improvement is up to 0.2 car and

16%. It can also be seen that trend is similar in both types

of scenarios. However, the algorithm benefits more from

the flow information in the undersaturated scenarios. This

is because in undersaturated scenarios, there are not many

trajectories. Therefore, additional information given by the

upstream intersection is more valuable.

VII. SENSITIVITY ANALYSIS OF THE PROPOSED

METHODOLOGY

In this section, we analyze various aspect of the proposed

methodology. First, the sensitivity to the model parameters

is analyzed in Section VII-A. Second, the robustness of the

proposed algorithm is evaluated in Section VII-B. Finally,

the computation time of the proposed algorithm is tested in

Section VIII-B. For presentation simplicity, the results of this

section are only based on the Lakershim dataset (Section V-

A). The results of the Wehntalerstrasse dataset (Section V-B)

exhibit similar properties.

(a) Lankershim dataset

(b) Wehntalerstrasse dataset

Fig. 11. Value of flow information.

A. Sensitivity analysis to model parameters

This section discusses the sensitivity of the proposed

methodology to the model parameters: the regularization term

λ1, λ2 and λ3, the time step Tstep for the BoQ estimation,

the lower speed bound u, the upper speed bound ū, and the

parameters for the fundamental diagram w, uf and kjam. The

aim is to evaluate the impact of each parameter on the per-

formance of the proposed methodology if it deviates from the

optimal values. To do this, we use a One-at-a-time sensitivity

analysis method. Specifically, we change one parameter at

each time and fix the other parameters at their optimal value,

and observe how this influences the performance. In this way,

we obtain the local sensitivity to this parameter. Note that

this local sensitivity analysis is already enough for practical

applications, because we do not expect the parameter values

to deviate a lot from the optimal values.

In the rest of this subsection, λ1, λ2 and λ3 are chosen

to vary between 0.5 and 2, Tstep between 1s and 10s, the

lower speed bound u between 1m/s and 6m/s, the upper speed

bound ū between 6m/s and 10m/s, uf between 50km/h and

70km/h, w between 15km/hr and 25km/hr, and kjam between

160veh/km and 240veh/km.

The results show that the proposed methodology is not

sensitive to the regularization factors λ1, λ2 and λ3, the

upper and lower speed bounds u and ū, the free flow speed

uf and the backward wave speed w. This is expected, as

the regularization factors λ1 and λ2 penalize the FoQ and

BoQ curves if they misclassify the stopped state and free-
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Fig. 12. Sensitivity analysis to model parameters. Sampling rate = 1.0s−1.

flow states; λ3 controls the number of pieces in the piecewise

linear BoQ curve. In reality, as there are not many trajectory

points, the probability of misclassification and the number of

pieces in the piecewise linear BoQ curve are both quite small.

The free flow speed uf and the backward wave speed w can

be fitted from the trajectory points, therefore their specific

values are not important for the model. For the upper and

lower speed bounds u and ū, the probability of the trajectory

points falling into the speed range of [1m/s, 3m/s] and [8m/s,

10m/s] is small if the links are not oversaturated. Therefore

the proposed method is not sensitive to the specific values of

the speed bounds. However, in scenarios with over-saturated

links where the vehicles frequently accelerate and decelerate,

these two parameters might be important.

Fig.12 shows the sensitivity analysis for the sensitive pa-

rameters, kjam and Tstep. As is shown in Fig. 12a), the model

is sensitive to the jam density kjam. This is reasonable, as

the jam density is used to calculate the queue length from

the BoQ and FoQ curves. Inaccurate jam density will lead

to inaccurate queue length estimation, even if the BoQ and

FoQ curves are accurate. It is shown in Fig. 12b) that the

proposed methodology is also sensitive to Tstep. If Tstep is

too large, there would be a large discretization error in the

BoQ curve. Hence, the queue estimation error increases. It is

also observed that the proposed methodology performs similar

for a Tstep of 1s to 3s. This is because these values of Tstep

are already smaller than the vehicle headway. So the marginal

benefit of further reducing Tstep is negligible. This suggests

that the value of Tstep should be chosen as 1-3s, and the value

of kjam should be as accurate as possible (e.g. obtained from

the real data).

B. Robustness to measurement errors

Fig. 13. Sensitivity to the measurement errors, where small error represents
a standard error of 2m for location and 0.5m/s for speed, and large error
represents a standard error of 10m for location and 2m/s for speed.

Due to the errors in the measurement devices, the location

and speed information received by the central controller may

be inaccurate. This section tests how the errors in location

affects the performance of the proposed methodology. It is

assumed that both the location and speed errors follow a

Gaussian distribution with mean 0, which means that there

are no systematic errors. The standard deviation of the location

measurement is assumed to vary between 0 and 10m. This is

because the normal GPS devices provide an accuracy of 7.8

meters at 95% confidence level [48], and the accuracy can

also be enhanced by map-matching [49], Kalman filter [6],

or data fusion with other in-vehicle sensors [50]. The variance

of the speed errors is assumed to be between 0 and 2m/s.

The location errors and the speed errors are assumed to

be independent. The errors at different time steps are also

assumed to be independent.

The effects of the measurement errors are shown in Fig.13.

It can be seen that the mean absolute error increases only

slightly with the standard deviation of the measurement error

(up to 2% for small errors and 7% for large errors). Therefore,

the proposed model is robust to measurement errors.

VIII. IMPLEMENTATION DETAILS

A. Online Implementation

In this section, we present the online implementation details

of the proposed methodology for real-time queue estimation.

For simplicity of the presentation, we only describe the details

for the general methodology in Section II. The extensions in

Section III-IV can be treated in a similar way.
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At time t, we define a cycle p as an “active cycle”, if

the queue due to the red signal in cycle p is still active

at time t, i.e. the remaining queue of cycle p is positive

(FOQp(t) − BOQp(t) > 0). Note that there could be more

than one active cycles at each time t, as the proposed method-

ology can be used for both undersaturated and oversaturated

scenarios. Then, estimating the queue length at time t can

be formulated as calculating the FoQ and BoQ curves of all

active cycles, using the available trajectory information up to

time t. Let us denote the set of all the active cycles at time t
as Pt. The general implementation framework is summarized

into Algorithm 1, as follows.

Algorithm 1 General Online Implementation Framework of

the Algorithm

Initialize: P0 = ∅,
1: for t = Te, 2Te, · · · do
2: if t− Te < rp ≤ t then
3: Pt = Pt−Te ∪ {p}

4: for p ∈ P do
5: Update Sp, Vp, Fp and Bp with newly received trajectory

points, and obtain FOQp and BOQp

6: if FOQp(t− Te)−BOQp(t− Te) > 0
and FOQp(t)−BOQp(t) ≤ 0 then

7: Pt+Te = Pt\{p}

8: Calculate queue length Q(t) using Eq.(17)

In Algorithm 1, Te represents the time step to perform queue

estimation. At each time t, the algorithm first check if there

is a new cycle (lines 2-3) and update the set of active cycles

P accordingly. Line 5 represents the general methodology, for

which there are two ways to implement. The first approach,

hereafter named direct implementation approach, applies the

exact procedure described in Section II. We update the sets of

trajectory points Sp and Vp based on Section II-A, calculate

the critical points based on Section II-B, and obtain the

FoQ curve and BoQ curve by solving Eq.(4)-(8) (Section II-

C) and Eq.(10)-(16) (Section II-D), respectively. It will be

shown in Section VIII-B that this implementation approach

is sufficiently efficient for most real-time traffic control (e.g.

signal control) algorithms.

The second approach, hereafter named simplified implemen-

tation approach, further reduces the computation time and the

memory requirement. Specifically, we have three simplifica-

tions. First, instead of the entire set of trajectory points, we

only store the mean and total number of the trajectory points

of vehicle m in state s (stopped or free flow) in each cycle p,

denoted as (t̄sm,p, x̄
s
m,p) and ns

m,p, respectively. These values

are updated every time when new trajectory information is

received. Then, the FoQ and BoQ critical points are calculated

in a similar way as in Section II-B where Jm∩Sp is replaced

by the stopped mean trajectory point and Jm ∩ Vp is replaced

by the free flow trajectory points. Second, when calculating the

set of stopped (or free flow) trajectory points Sp (or Vp), we

only keep the first and the last stopped (or free flow) trajectory

points of each vehicle in cycle p, which can be seen as the

supporting vectors for constraints Eq.(6) and Eq.(14) (or Eq.(7)

and (13)). Third, we only keep the critical points, stopped and

trajectory points with a time stamp shortly before t (i.e. in

range (t−δt, t]). This is because the BoQ and FoQ curves are

influenced mainly by the information around time t.
After the FoQ and BoQ curve for cycle p is obtained, we

check if the cycle p is still active (i.e. queue of cycle p is fully

discharged) by comparing the obtained FOQ and BOQ curve.

If cycle p is no longer active, we remove cycle p from the

set of active cycles. This procedure is illustrated in lines 6-7

in Algorithm 1. After FOQ and BOQ curves are calculated

for all the active cycles, the queue length is calculated using

Eq.17 (line 8).

B. Comparison between the two implementation approaches

The two online implementation approaches are tested on the

Intersection 2 of Lankershim and Wehntalerstrasse datasets.

From the description of the general framework and two online

implementation approaches, the simplified approach requires

significantly less memory than the direct approach, as only

a small fraction of trajectory points need to be stored. In

this subsection, we evaluate the average time and the mean

absolute error of both approaches. The results are summarized

in Fig. 14. Fig. 14a) shows the average computation time in

one time step, and Fig. 14b) shows the mean absolute error of

the online solution of both approaches compared to the ground

truth. Here, δt is chosen as 10s.
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Fig. 14. Comparison between two online implementation approaches: the
direct approach and the simplified approach.

It can be seen from Fig.14 that the direct approach can

yield satisfactory results within 2s and the simplified approach

takes less than 0.8s. This shows that both approaches are
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sufficiently efficient for most applications (e.g. signal con-

trol). The simplified approach performs similarly to the direct

approach in terms of the estimation accuracy (only up to

5% worse). However, the simplified approach significantly

reduces the computation time. The improvement is up to 18%

for Lankershim dataset and 54% for Wehntalerstrasse. This

shows that the simplified approach performs especially well

for oversaturated scenarios. Another observation is that the

computation time increases as the penetration rate and the

sampling rate increase. This is expected, as the amount of

information increases, thus the optimization model has more

variables. Our experiments also show that the results are not

sensitive to the size of the discretization time step, thus we

can choose a smaller discretization time for a better accuracy.

IX. CONCLUSION

This paper proposes a methodology to estimate the queue

length in a connected vehicle environment. A convex model

is formulated to calculate a linear FoQ curve and a piecewise

linear BoQ curve. The queue length can be represented as the

difference between the two curves. This paper further proposes

a framework to perform arterial level estimation, reusing the

estimated discharging rate of the upstream intersection . The

cases with low sampling rate are also handled by utilizing the

trajectory data in the intermediate state.

A validation experiment with the Lankershim dataset and

Wehntalerstrasse dataset shows that the convex model per-

forms well. The average estimation error is within 1.5 cars

for undersaturated scenarios and 5.2 cars for oversaturated

scenarios, with penetration rates larger than 0.1 and sampling

rates higher than 0.05s−1. Compared to a state-of-art method

that assumes linear BoQ, the proposed algorithm improves

the estimation accuracy by up to 16%. For an arterial, the

performance of the proposed methodology is further enhanced

by the departure flow information at the upstream intersection,

with an improvement of up to 16%. It is also shown that the

proposed methodology works well under the low sampling

rate, and is relatively robust to measurement errors.

This paper relies on the assumption of a fundamental

diagram and a few parameters. It is shown that the proposed

methodology is only sensitive to the assumed jam density

and the time step for back of queue estimation Tstep. It is

expected that the performance of the proposed methodology

is not sensitive to the shape of the fundamental diagram, as

long as the jam density is well calibrated.

We further propose two online implementation approaches

for real-time queue estimation. Results show that the direct

approach that uses the exact offline algorithm takes less than

2s for one estimation step, and an simplified approach takes

less than 0.8s for each estimation step. This shows that the

convexity of the method ensures the efficiency in computation,

which is sufficient for most applications.

The output of the proposed methodology is the queue

profile, which can be used in trajectory reconstruction, delay

evaluation, flow and density estimation, etc. The proposed

methodology can be beneficial to designing and evaluating

signal control algorithms, which is considered as the future

work of the authors.

APPENDIX A

INCLUSION OF THE INTERMEDIATE STATES FOR CASES

WITH LIMITED DATA (CONTINUED)

This appendix elaborates the procedure for estimating the

FoQ critical points when the sampling rates are low. Particu-

larly, we consider three cases:

1) There are stopped trajectory points but no free flow

trajectory points, i.e. set Vp+1 ∩ Jm = ∅ and set

Sp ∩ Jm 6= ∅;

2) There are free flow trajectory points but no stopped

trajectory points, i.e. set Vp+1 ∩ Jm 6= ∅ and set

Sp ∩ Jm = ∅;

3) There are neither free flow trajectory points nor stopped

trajectory points, i.e. set Vp+1 ∩ Jm = ∅ and set Sp ∩
Jm = ∅.

For case 1) and 2), we assume that there is at least one

trajectory point in the set Ap+1. For case 3), we assume that

there are at least two trajectory points in Ap+1 ∩ Jm for at

least one vehicle trajectory m. This is the least requirement to

guarantee that we can reconstruct at least one critical point.

The procedure has two steps. In the first step, we estimate

the accelerating trajectory, i.e. the value of b and c in Eq.(24).

In the second step, the critical points are obtained based on the

accelerating trajectory. In the rest of this section, we explain

the procedure for the three cases, respectively.

For case 1), we denote the line fitted from the stopped

trajectory points in set Jm ∩ Sp as x(t) = lpm. This line has

a slope of zero, as it represents the stopped state. Then the

following two properties should hold. First, Eq.(24) should be

tangent to line x(t) = lpm. This is because both the location

and the speed are continuous. Second, the distance between

Eq.(24) and the trajectory points in set Jm ∩Ap+1 should be

minimized.

Based on these two properties, we can build an optimization

model for trajectory m.

min
∑

j∈Jm∩Ap+1

(
1

2
at2j + btj + c− xj)

2 (26)

s.t. 2ac− b2 = 2alpm (27)

where the constraints and the objective function correspond

to the two properties, respectively. The decision variables are

b and c. Although Eq.(26) and Eq.(27) are not convex, the

optimal solution of b and c can be represented in a closed

form. Therefore, it is not necessary to solve the model Eq.(26)

and Eq.(27) in practice.

With the estimated trajectory in the intermediate state,

we can reconstruct the trajectory in the free flow state as

a tangent line to the parabola Eq.(24) with slope uf . With

a basic calculation, the critical point can be represented as
(uf − 2b

2a
, lpm

)

.

For Case 2), let us denote the trajectory fitted from the

free-flow trajectory points in set Jm ∩ Vp+1 as the line x =
up
mt + ηpm. Similarly to Case 1) in Section IV, the parabola

Eq.(24) should also satisfy the following two requirements.

1) Eq.(24) should be tangent to line x = up
mt+ηpm. This is

because both the location and the speed are continuous.
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2) The distance between Eq.(24) and the trajectory points

in set Jm ∩Ap+1 should be minimized.

Then we formulate the following optimization model

min
∑

j∈Jm∩Ap+1

(1

2
at2j + (b+ up

m)tj + c− xj

)2

(28)

s.t. 2ac− b2 = 2aηpm (29)

Model Eq.(28) and Eq.(29) can also be transformed into a

cubic equation and solved analytically. Then the critical point

can be represented as
(uf − 2b

2a
, c−

b2

2a

)

.

For Case 3), as there are no trajectory points in either

the free flow state or the stopped state, we only require that

the distance between Eq.(24) and the trajectory points in set

Jm ∩Ap+1 be minimized. Hence we have the following non-

constrained optimization problem.

min
∑

j∈Jm∩Ap+1

(1

2
at2j + btj + c− xj

)2

(30)

Model Eq.(30) is a convex model, which can be transformed

into a set of linear equations. Then the critical point can be

represented as
(uf − 2b

2a
, c−

b2

2a

)

.
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