
Queue Locks on Cache Coherent Multiprocessors

Peter Magnusson Anders Landin� Erik Hagersteny

Swedish Institute of Computer Science Sun Microsystems

Large-scale shared-memory multiprocessors typically
have long latencies for remote data accesses. A key
issue for execution performance of many common ap-
plications is the synchronization cost. The communi-
cation scalability of synchronization has been improved
by the introduction of queue-based spin-locks instead of
Test&(Test&Set). For architectures with long access
latencies for global data, attention should also be paid
to the number of global accesses that are involved in
synchronization.

We present a method to characterize the perfor-
mance of proposed queue lock algorithms, and apply
it to previously published algorithms. We also present
two new queue locks, the LH lock and the M lock. We
compare the locks in terms of performance, memory re-
quirements, code size, and required hardware support.
The LH lock is the simplest of all the locks, yet requires
only an atomic swap operation. The M lock is superior
in terms of global accesses needed to perform synchro-
nization and still competitive in all other criteria. We
conclude that the M lock is the best overall queue lock
for the class of architectures studied.

1 Introduction

A major issue in designing and programing multi-
processors is the cost of synchronization. Traditionally,
this area of research has focused on hardware primi-
tives and their implementation. In recent years, how-
ever, several researchers have demonstrated that what
were perceived as hardware problems could be solved
in software using simple synchronization primitives as
building blocks.

The di�culties involved in designing synchroniza-
tion primitives vary greatly with the nature of the un-
derlying hardware. The earliest work in the area as-
sumed that the most powerful atomic primitive was a
read or a write [7, 9]. For various reasons, we are not
interested in such a restriction: to begin with, such an
algorithm can never be bounded [1]. The ine�ciency of
these algorithms prompted development of more pow-
erful hardware primitives.

�psm@sics.se, landin@sics.se. Surface mail: SICS, Box 1263,
164 28 KISTA, Sweden.

yErik.Hagersten@eng.sun.com. Work done while at SICS.

These primitives, such as atomic swap, were suf-
�ciently powerful to implement trivial locking algo-
rithms. The common problem with these locks, such
as the Test&(Test&Set) lock [15], is that they required
O(N2) network transactions to service N processors
attempting to enter a critical section simultaneously.
In some cases these locks were a major contributor to
network contention, including the problem of so-called
\hot-spots" [14].

To remedy this, Goodman suggested the queue-
on-sync bits [5], which involves local spinning on a
synchronization ag, thereby eliminating the O(N2)
network operations. This solution was meant to be
implemented in hardware, but Mellor-Crummey and
Scott [11] and Andersson [2] implemented similar con-
cepts in software.

The queueing principle addresses the scalability of
a lock in terms of number of contending processors.
Another scalability issue is performance|large shared
memory architectures are today designed with some
form of memory hierarchy. This implies a large cost
di�erence between accessing local �rst-level caches and
memory on remote nodes. This problem will be exas-
perated by the continuous performance improvements
of microprocessors.

This paper has two main contributions. First, we
analyze queueing locks from the perspective of perfor-
mance on a large cache-coherent shared-memory mul-
tiprocessor. Second, we present a method of analysis
that is more analytical than previous approaches, al-
lowing us to draw more general conclusions about the
performance of a synchronization algorithm. Also, we
demonstrate the usefulness of this approach in algo-
rithm design by using it to guide the formulation of
two new queueing spin lock algorithms.

The paper is organized as follows. In section 2 we
present our approach to analyzing queue lock perfor-
mance, and, in section 3, we apply this method to pre-
viously published queue locks, the LH lock, and the M
lock. Finally, we summarize the characteristics of all
the locks in section 4 and conclude in section 5.

A longer version of this paper contains details of the
study that we could not present here [10]. Wherever
material is described as omitted, the reader is referred
to the full paper.

2 Lock characterization

Comparing locks has previously been done either
by comparing the complexity, such as determining
whether acquiring a lock is O(P) or O(logP), by run-
ning some form of test on real hardware, or by simu-
lation. These approaches have several limitations. A
general O() statement is useful mostly for theoretical
scalability. In reality, this is seldom an issue|the con-
stants involved are more important. Comparing locks
on real hardware is made di�cult by the absence of
some primitives on suitable platforms. In some pub-
lished studies, the implementation of the locks being
compared bears little resemblance to the published
pseudo-code.

Running a simulation is a useful approach, but as a
method, simulation should be used with care. The way
the simulation is designed and implemented becomes
an additional set of assumptions in the analysis.

Our primary concern is the number of global ac-
cesses of the algorithms, which is the dominant perfor-
mance impediment on a large multiprocessor. At the
same time we want to keep memory requirements at
a minimum, as well as the overhead of the locks when
there is no contention (for instance when they are su-
peruous).

By hand-assembling the algorithms into a generic
RISC-like assembler, and counting the number and
types of operations each execution path requires, we
can describe the cost of each critical path for every lock.
Comparing the critical paths then allows us to make
general statements about the strengths and weaknesses
of the di�erent algorithms.

2.1 Architectural assumptions

We assume a cache-coherent shared memory archi-
tecture, i.e., memory addresses can be read from and
written to by any processor with the hardware main-
taining consistency. The cache coherency protocol is
presumed be of the write invalidate type, i.e., all other
copies are invalidated upon writes and data is repli-
cated in the caches upon multiple reads. Finally, we
assume our memory to be sequentially consistent [8].
We expect most of the results to hold for weaker mem-
ory models as well, but we do not explore the issue in
this paper.

Since we're interested in large machines, we assume
that the principal distinction in memory access times
is that between cache hits and misses. Therefore, it is
the number and type of global memory accesses that
will decide an algorithm's performance in relation to
the size of the machine.

The interesting case for lock performance is when

the locks are used frequently. This does not necessar-
ily imply contention. Therefore, we assume that any
(small) state that was copied into the cache upon the
previous lock access is presumed to still reside in the
cache unless another processor has written to that spe-
ci�c memory address (cache line). This is a local access.
Any other access is global.

2.2 Generic processor

Each algorithm has been hand translated into
\pseudo assembler", assuming a RISC-like processor.
The time taken for each segment of code is divided up
into generic operations: read, write, swap, execute sim-
ple instruction, and branches. A given architecture is
characterized by atomic time units for individual op-
erations. The time to execute a read is r, a write w,
a swap s, a fetch-and-increment a, a clear-if-equal c,
and a compare-and-swap x. Whether the operation is
in local or global (remote) memory is indicated by suf-
�xes. For instance, sl is local swap and xg a global
compare-and-swap.

The compare-and-swap operation compares the old
value with a parameter, and overwrites it if they are
equal, returning true. Otherwise, the old value is left
unchanged and the operation returns false. Clear-if-
equal is similar, but always writes a zero.

The branch prediction is presumed to be statically
given, i.e., all branch instructions contain a bit indi-
cating whether the compiler or library code predicts
the branch will be taken. Correctly predicted branches
take time bc, and incorrectly predicted take bc.

If any instructions are executed that is not a read,
write, swap, or branch then this is counted as i.

The pseudo-assembler code for the locks, with tim-
ing, is omitted in this paper.

2.3 Timing analysis

We divide the timing elements of a lock into the dif-
ferent execution paths. Consider �gure 1. Processor 2
acquires the lock for the �rst time (1), spending time tl
in the lock algorithm (lock). It then enters its critical
section. Next, processor 1 attempts to take the lock
and enqueues (2). The time for this operation is not
critical, since the processor has to wait anyway. Next,

P 1

tl
P 2

tnq

td

1 cs

q2

3 4

5 cs 6
tr trl

7 cs 8
tr

8 cs 9
trtl

Figure 1: Timing components of a queue lock

processor 2 completes its critical section and signals to
the next processor in the queue (if any) that the lock
is free (3). This takes time tnq (notice-queue). Proces-
sor 1 now proceeds to come o� the queue (5), taking
time td to do so (detect). This once more is on the
critical path. Processor 2, meanwhile, does any clean-
up required (4) prior to proceeding with non-critical
code. The time spent here is not part of the sequential
component, and is in any case reected in the following
two cases.

Processor 1 is now in its critical section. If more
processors were to enter the queue, steps (3) and (5)
would be repeated every time the lock was passed down
the queue. We call this cost the hand-o� cost of the
queuing algorithm, tho = tnq + td. When there is con-
tention for the lock, the hand-o� cost will be the part
of the sequential execution that will be spent inside the
lock algorithm.

In the example, processor 1 now releases the lock
(6), taking time tr (release). Later on, processor 1
retakes the lock (7), with no other processor having
taken the lock in-between, spending time trl (re-lock).
After its critical section, it releases the lock (8), tr.
This is the optimistic case, taking topt = trl+ tr. Since
no component can be done in parallel, all the time
spent in the lock is critical. The optimistic case is in a
sense the cost of unnecessary locking.

Finally, processor 2 also takes (8) and releases the
lock (9), but must this time spend time tl to take the
lock. This is the pessimistic case, tpes = tl + tr. It
reects the cost of a lock that is only sporadically used.

There are two cases that we do not distinguish: tak-
ing a lock that, when we last had it, a queue formed,
tlq . In the �gure, this would be (8). Also, the time to
release the lock when there is a queue, case (4). These
distinctions are not important in pratice. In [10] the
distinction is made.

2.4 Memory requirements

We classify memory requirements into two types:
pointers and ags. Space requirements are propor-
tional to the total number of locks (L), the total num-
ber of processors (P), the number of processors cur-
rently in a queue (Pq), the maximum number of pro-
cessors that conceivably could try for a lock simultane-
ously (Pmax), the maximum number of locks a single
processor might hold at the same time (n), and the
current average number of locks held by a processor
(navg). Pointers are not necessarily full address space
pointers|typically an o�set in a data structure will be
su�cient. A ag has only two states, so requires only

a single bit.1 Typically, whether or not to allocate a
full cache line for a ag or a pointer (in order to reduce
false sharing) will depend on their number and use.

3 Lock analysis

In this section we describe and compare some previ-
ously published queue locks. Also, we present two new
locks, the LH lock and the M lock.

For lack of space, pseudo code for previously pub-
lished algorithms are not given in this paper.

3.1 Anderson's queue lock

Anderson describes an array-based lock for shared-
memory multiprocessors [2]. A similar approach was
independently developed by Graunke and Thakkar (see
section 3.2). An array of ags is used to allocate a
unique ag for each processor that might attempt to
take the lock. This ag is cached and the processor
can thus read-spin locally, relieving the network. The
previous processor in the queue selectively releases the
lock for the next processor. A side e�ect of this ap-
proach is guaranteed fairness, i.e., there is no possibil-
ity of starvation. Anderson's lock requires an atomic
fetch-and-increment operation.

The critical paths of Anderson's lock are:

tho = 2rl + rg + 2wg + 3i+ bc + bc=2 (1)

topt = 5rl + 3wl + al + 5i+ bc (2)

tpes = 4rl + 2wl + rg + wg + ag + 5i+ bc (3)

The optimistic case is particular in this lock. Since
elements in the lock array are used sequentially regard-
less of whether there is a queue or not, the lock must
have been taken Pmax times by the local processor for
the entire state to be in the cache. Consequently, for
mixed usage topt will be almost as bad as tpes.

3.2 Graunke and Thakkar's queue lock

Graunke and Thakkar [6], independently from An-
derson, developed a queue lock with similar character-
istics.

The lock requires only atomic swap. Whereas An-
derson's lock requires a �xed allocation of lock ags
equal to the maximum number of processors that will
ever contend for the lock, Graunke and Thakkar's lock
requires a �xed allocation of lock ags equal to the
number of processors regardless of their contention pat-
terns.

1In practice its smallest size is dictated by the atomic oper-
ations available. A minimal size close to 1 bit is achievable by
locking a vector of ags.

The critical paths for the GT lock are:

tho = 3rl + rg + wg + 3
1

2
i + bc + bc=2 (4)

topt = 7rl +wl + sl + 8i + bc (5)

tpes = 6rl +wl + rg + sg + 8i+ bc (6)

3.3 The MCS lock

Mellor-Crummey and Scott have described a queue-
based spin lock that spins on local data, requires
O(N + P) space, and guarantees FIFO [11, 12]. A
global pointer is maintained for each lock. If there is
a queue, this pointer points to a record allocated by
the enqueued processor. Subsequent processors that
wish to queue on the lock update the pointer to point
to a new record, and subsequently update the record
previously pointed to to complete the link. The lock
requires an atomic clear-if-equal primitive.

Mellor-Crummey and Scott also describe a version
of the MCS lock that only requires an atomic swap.
This version has the disadvantage that fairness is no
longer guaranteed, and it is slightly more complex.

Critical paths for the MCS lock are:

tho = rl + 2rg + wg + 2bc + bc=2 (7)

topt = 5rl +wl + cl + sl + 2bc + bc (8)

tpes = 5rl +wl + cl + sg + 2bc + bc (9)

Notice that the clear-if-equal instruction is done
only locally in any critical path.

The version of the MCS lock that uses only the swap
primitive, though more complex, has very similar crit-
ical paths. In equations 8 and 9 above, cl is replaced
with sl + i. Equation 7 is una�ected. The complicated
cases occur when a processor that releases a lock er-
roneously detects that the queue is empty. In other
words, no additional global operations are induced in
the critical paths.

3.4 The LH lock

The main objective for the LH lock is to minimize
hand-o� cost. The releasing processor should not need
to make any global memory accesses in order to de-
termine where to write for the next processor to be
noti�ed. This implies that the state of the queue upon
acquiring the lock must be allowed to change without
a�ecting the hand-o� code.

Once a ag has been set to indicate that the lock
is free, the processor has two choices. Either synchro-
nize (in some manner) with the next processor, or just
release the lock and go away. The LH lock selects the
latter route. By choosing not to synchronize, the LH

lh acquire(int **L, **I, **P)

f **I = 1;

atomic f /* swap */
*P = *L;

*L = *I; g
while (**P != 0) ; /* spin */ g

lh release(int **I, **P)

f **I = 0;

*I = *P; g

Figure 2: The LH lock

algorithm can release a lock by marking a ag free and
discarding the ag. This means that the release code
ignores whether or not there is a queue (we obviously
cannot do the same on acquire).

If there is no queue, ownership of the ag must be
picked up by some other processor. In the meantime,
the queue data structure must refer to the ag since it
is the only item that indicates that the lock is free.

From this reasoning, the LH ag falls neatly in place.
We acquire a lock by switching a ag with the lock. If
the ag we receive is set, we spin on it|it will eventu-
ally be released by the processor before us in the queue.
If it is not set, we're free to enter the critical section.
The ag we gave to the lock is obviously set, prevent-
ing other processors from entering. When we release
the lock, we clear the ag we initially put in the lock
and then discard any reference to it. If a processor has
tried to take the lock after us, it will be spinning on
this ag. We keep the ag previously owned by the
lock and can reuse it the next time we try to take a
lock.

In other words, the processors and locks share a
name-space of (L+P) ags, where L is the number of
locks and P is the number or processors. Locks each
own a (free) ag initially. Processors can arrive and
leave dynamically, as long as they contribute/dispose
of ags in an orderly manner.

Figure 2 shows the pseudo-C code for the LH-lock.
The same lock has been developed independently by
Craig [3].

Each lock requires an initial global pointer, L, that
points to a global memory space for a ag. The ag is
initially set to free.

The location of the pointer is statically known by
all processors. In addition, each processor requires two
pointers, I and P, as well as a space for a ag, for
each lock that will be held. If a processor will require
holding at most n locks at once, it will need n sets of I,
P, and a ag. These cannot be allocated dynamically,
but must be permanent.

Consider �gure 3, where processor 1 has the lock.

Process 1

I

P

1

Process 2

I

P

1

Process 3

I

P

10

L

globals

locals

Figure 3: Enqueueing on the simple LH-lock

local

remote

I

L

B

A

B L

A

B

I A

L B

I A

(1) (2)

Figure 4: Cache behaviour of the simple LH lock

Here, I and P refer to di�erent sets of pointers in each
context. The ags they point to are globally accessible.
Each processor spins on the ag pointed to by its local
P, and releases the lock by clearing the ag pointed to
by its local I. L points to the last ag in the queue.

The cache behaviour of the LH lock is curious. Upon
entry to a lock, the locations of the ags owned by the
processor and the lock will depend upon their usage in
the previous two locks. Consider �gure 4. The initial
state is the worst case, i.e., there has been previous
contention for the lock. The ag owned by the lock is
located remotely, and the ag owned by the processor
is replicated remotely (at the processor that held the
lock immediately before we last held it).

We now assume no further contention. After the
�rst acquire/release of the lock, the ag previously
owned by the lock is now replicated locally, and the
ag owned by the lock resides locally. After the second
acquire/release, both ags reside locally.

If, after (1) in �gure 4, the lock is acquired by an-
other processor, both L and B will migrate. Thus, the
next time around the processor will be back in the
worst-case initial state.

The critical paths are:

tho = rl + wg + rg + bc + bc=2 (10)

topt = 5rl + 4wl + sl + bc (11)

tpes = 4rl + 3wl + rg +wg + sg + bc (12)

3.5 The M lock

To improve the LH lock we need to understand why
it requires an additional two global accesses in the pes-
simistic case. The answer has already been given in

m acquire(struct lock *Q, int **I, **K)

f int old id;

**I = 1;

atomic f /* swap */
*P = Q->L;

old id = Q->id;

Q->L = *I;

Q->id = myid; g
if (old id > 0)

if (*K)

free flag(*K);

while (**P != 0) /* spin */ ; g

m release(struct lock *Q, int **I, **K)

f int failed = 0;

**I = 0;

atomic f /* compare-and-clear */
if (Q->id == myid) f

Q->id = 0;

g else

failed = 1; g
if (failed)

if (*K) f
*I = *K;

*K = 0;

g else

*I = alloc flag(); g

Figure 5: m acquire() and m release()

�gure 4. The aggressive method of enqueueing spoils
the cache behaviour. The processors exchange owner-
ship of ags on each acquire/release, therefore forcing
an unnecessary global read/write on each exchange.

If the processor could know upon acquire that there
is no queue, then a global read could be avoided. Sim-
ilarly, if the processor knew that there was no queue
upon release, it would not be necessary to switch ags
with the lock. This would eliminate the the global
write when *I is written to in the next use of the lock.

The idea is that if, upon releasing the lock, no queue
has formed, then we do not need to exchange a ag with
the lock. If we can avoid the switch, we will retain an
already localized ag for the next acquire. However,
this manipulation must be done o� the critical path.
In particular, it must not delay the hand-o� time. The
reason is that if there's a queue, L will no longer be
local, and hence we will be inducing a global access in
the critical path. This is in fact one of the problems
with the MCS lock, where an \optimization" is to read
the local pointer that, if a queue has formed, will no
longer be local. Therefore, we wish to keep the core
advantage of the LH lock, namely, that only a single
global write is needed to notify that the lock is free.

In order to ascertain that the queue has indeed not
changed, it is not su�cient to compare *L with *I. The
reason is that once we've released the ag pointed to

Hand-o� (tnq + td) Optimistic (trl + tr) Pessimistic (tl + tr)
Anderson rl + wg + 3i 2wl + rl + al + 5i rg +wg + ag + 2wl + 5i

GT 2rl + 31
2
i 3rl + sl + 8i 2rl + wl + rg + sg + 8i + bc

MCS rg + bc rl + sl + cl + bc + bc rl + wl + sg + cl + 2bc + bc
LH 0 rl + 3wl + sl 3wl + wg + sg + rg + bc
M i wl + sl + cl + 2i+ bc 2wl + cl + sg + 2i + 2bc

Baseline rl + rg + wg + bc + bc=2 4rl + wl + bc 4rl

Table 1: Summary of queue lock performance for critical paths

Anderson MCS GT LH M
Hand-o� (tnq + td) rg + 2wg 2rg + wg rg + wg rg + wg rg + wg

Pessimistic (tl + tr) rg +wg + ag sg rg + sg rg + wg + sg sg
Optimistic (trl + tr) 16 14 19 12 14

Lines of code 15 18 18 11 24+
Atomic operations fetch and inc c & c (swap) swap swap swap + c & c
Number of ags LPmax Pq + navgP L(P + 1) + Pq L+ nP (n+ 1)P

Number of pointers L + Pq + navgP L + Pq + navgP L(P + 1) + Pq L+ nP (n+ 1)P + Pq + L

Table 2: Queue lock comparison

by *I, we're creating a racing condition for the value
of *L.

Therefore, we must uniquely identify the processor
that last modi�ed *L. We do this by merging two values
into *L|the pointer to a ag, and the id of the proces-
sor that last changed the value. Only if this value has
changed do we write back the old pointer value. This
is easily arranged with 64-bit or even 32-bit integers.

The algorithm for the M lock is shown in �gure 5.
The trailing *K maintains an old *P value. Notice that
free flag() is called when the processor is about to
spin anyway, and alloc flag() is called only when a
queue has formed. This way, both segments of code
are outside the critical paths. As with the previous
version, myid is numbered 1 and up.

If a queue forms, the processor that began the queue
\volunteers" a ag. Upon leaving the queue, it may
or may not still have a ag in *K. If not, it needs to
allocate one. Processors that join an existing queue,
however, simply replace *I with an old *P after leaving
the queue.

The critical paths of the �nal M lock are:

tho = rl + rg + wg + i + bc + bc=2 (13)

topt = 4rl + 2wl + sl + cl + 2i+ 2bc (14)

tpes = 4rl + 2wl + cl + sg + 2i + 2bc (15)

4 Comparison of locks

Table 1 summarizes the critical paths for all the
locks we've looked at in this paper. The \baseline"
entry contains the minimum of all the studied locks,

and has been subtracted from all the locks to facili-
tate comparison. In table 2, we include only the global
accesses from table 1, together with other important
characteristics of each lock. As the tables indicate,
we have six criteria: performance for the three critical
paths, size of code, atomic operation requirements, and
memory requirements. In this discussion, we consider
only the version of the MCS lock that is fair: this is
reasonable, since we are searching for a general lock
(i.e., library implemention).

Two of the critical paths, hand o� and pessimistic,
are easy to draw conclusions from. For large multipro-
cessors, global memory accesses will be considerably
more expensive than any of the other operations, and
so we need only consult the �rst two rows of table 2.
Here, the M lock is superior or equivalent to all the
alternatives.

The third critical path, the optimistic case, is more
dependent on architectural details. If, as an example,
we assume the following relative costs:

bc = 2bc = 2i = 2wl = 2rl = sl = cl = al (16)

then we arrive at the values in the third row in table 2.
The simple design of the LH lock pays o�, but the MCS
and M locks are only 16% slower.

The code size is clearly in favour of the LH lock.
The 24+ entry for the M lock means that, in addition
to 24 lines of code, there are 2 procedure calls. This
is more than twice as much as the LH lock, with the
MCS and GT locks in-between. The smaller the code,
the less of an impact for in-lining the locks.

The compare-and-clear can be just as easily imple-

mented as atomic swap on current architectures, such
as the R4000 and Alpha [13, 4]. Hence we are not
too concerned with the atomic operation requirements.
Nevertheless, if only an atomic swap is available, only
the LH and GT locks qualify.

Memory requirements fall into two categories:
O(LP) vs O(L + P). One of the motivations for de-
veloping the MCS lock was indeed that it is O(L+P),
and the LH and M locks also achieve this.

Anderson's lock is clearly not competitive any more,
requiring O(LP) memory, a fetch-and-increment prim-
itive, and more global operations than the other locks.
The GT lock also requires O(LP) memory, and it's ad-
vantage of requiring only an atomic swap primitive is
equaled by the LH lock.

The MCS lock is competitive, but requires two
global reads for hand-o� compared to one read for the
LH and M locks. With weaker consistency models,
writes will typically be handled by a write bu�er, thus
global reads will dominate in large machines with fast
processors.

This discussion makes evident that the M lock is ei-
ther clearly superior or acceptable. It's drawbacks are
more complex code and its requirement of a compare-
and-clear primitive. It requires only O(L+P) memory,
and is either clearly faster or competitive in all critical
paths of execution.

5 Conclusion

We have presented a detailed discussion of the per-
formance, memory requirements, code size, and mini-
mal hardware support for previously published queue
locks, including two new locks. The performance of
the locks was studied by deducing the important criti-
cal paths and comparing the time required for all locks
along these paths in terms of the primitive operations
required.

We conclude that for a class of architectures, large
cache-coherent shared-memory multiprocessors, the M
lock is the overall preferred choice. If code require-
ments are tight and we do not wish the overhead of pro-
cedure calls, the LH lock provides good performance
for smaller architectures and requires only an atomic
swap.

Acknowledgments

We'd like to thank the SICS sponsors for their con-
tinued support: ABB, Swedish Defense Material Ad-
ministration, IBM Sweden, CelsiusTech, Ericsson, and
Telia.

References

[1] R. Alur and G. Taubenfeld. Results about fast mutual
exclusion. In Proceedings of the 1992 Real-Time Sym-

posium, Phoenix, Arizona, December 2-4, pages 12{21.
IEEE, 1992.

[2] T. E. Anderson. The Performance of Spin Lock Al-
ternatives for Shared-Memory Multiprocessors. IEEE

Transactions on Parallel and Distributed Systems,
1(1):6{16, January 1990.

[3] T. S. Craig. Building FIFO and Priority-Queueing
Spin Locks from Atomic Swap. Technical Re-
port 93-02-02, Department of Computer Science
and Engineering, FR-35, University of Washing-
ton, Feb. 1993. Available via anonymous ftp from
\cs.washington.edu" as \tr/1993/02/UW-CSE-93-02-
02.PS.Z".

[4] Digital Equipment Corp. Alpha Architecture Hand-

book, 1992.

[5] J. R. Goodman, M. K. Vernon, and P. Woest.
E�cient Synchronization Primitives for Large-scale
Cache-Coherent Multiprocessors. In ASPLOS, pages
64{75, 1989.

[6] G. Graunke and S. Thakkar. Synchronization Al-
gorithms for Shared-Memory Multiprocessors. IEEE

Computer, 23(6):60{69, June 1990.

[7] L. Lamport. Time, Clocks and the Ordering of Events
in a Distributed System. Communications of the

ACM, 21(7):558{565, 1978.

[8] L. Lamport. How to Make a Multiprocessor Computer
that Correctly Executes Multiprocess Programs. IEEE
Transactions on Computers, 28(9):690{691, Septem-
ber 1979.

[9] G. Le Lann. Distributed systems: towards a formal
approach. In IFIP Congress, North Holland, pages
155{160, 1977.

[10] P. Magnusson, A. Landin, and E. Hagersten. E�cient
software synchronization on large cache coherent mul-
tiprocessors. Technical report, Swedish Institute of
Computer Science, February 1994.

[11] J. Mellor-Crummey and M. Scott. Algorithms for Scal-
able Synchronization on Shared-Memory Multiproces-
sors. ACM Transactions on Computer Systems, pages
21{65, 1991.

[12] J. Mellor-Crummey and M. Scott. Synchronization
Without Contention. In ASPLOS, pages 269{278,
1991.

[13] MIPS R4000 Microprocessor User's Manual, 1991.

[14] G. F. P�ster and A. Norton. \Hot Spot" Contention
and Combining in Multistage Interconenction Net-
works. IEEE Trans. Comput., October 1985.

[15] L. Rudolph and Z. Segall. Dynamic Decentralized
Cache Schemes for MIMD Parallel Processors. In
ISCA, pages 340{347, June 1984.

