
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Queueing models for bandwidth-sharing disciplines

Lieshout, P.M.D.

Publication date
2008
Document Version
Final published version

Link to publication

Citation for published version (APA):
Lieshout, P. M. D. (2008). Queueing models for bandwidth-sharing disciplines.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:24 Aug 2022

https://dare.uva.nl/personal/pure/en/publications/queueing-models-for-bandwidthsharing-disciplines(2f90e21c-bde1-48d1-940a-95135294cdc1).html

Queueing Models for

Bandwidth-Sharing Disciplines

Queueing Models for Bandwidth-Sharing Disciplines /

Pascal Merijn Daniël Lieshout, 2008

Proefschrift Universiteit van Amsterdam

Gedrukt door Ponsen & Looijen B.V.

ISBN 978-90-6464-270-8

THOMAS STIELTJES INSTITUTE

FOR MATHEMATICS

Part of this research has been funded by the Dutch BSIK/BRICKS project

Queueing Models for

Bandwidth-Sharing Disciplines

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus prof. dr. D.C. van den Boom

ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen in de Agnietenkapel

op vrijdag 5 september 2008, te 12:00 uur

door

Pascal Merijn Daniël Lieshout

geboren te Amsterdam

Promotiecommissie:

Promotores: prof. dr. M.R.H. Mandjes

prof. dr. ir. S.C. Borst

Overige leden: prof. dr. R.J. Boucherie

prof. dr. C.A.J. Klaassen

dr. R. Núñez Queija

dr. A.A.N. Ridder

dr. P.J.C. Spreij

prof. dr. ir. J. van der Wal

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Dankwoord

Dit proefschrift is het resultaat van het door mij verrichte onderzoek in de periode

november 2004 tot juli 2008. Ik heb deze periode ervaren als een ontzettend leuke

tijd waarin ik veel heb geleerd. Hoewel alleen mijn naam op de omslag staat, had ik

het niet kunnen schrijven zonder de hulp van velen.

Allereerst wil ik graag mijn promotores Michel Mandjes en Sem Borst bedanken

voor de begeleiding. Ik heb onze samenwerking altijd als erg plezierig ervaren. Daar-

naast wil ik mijn collega’s van PNA2 van het CWI bedanken. Mede dankzij jullie

kijk ik terug op een fijne periode bij het CWI. Ook wil ik mijn collega’s van het

Korteweg-de Vries Instituut voor Wiskunde (UvA) bedanken.

Mijn familie en vrienden wil ik bedanken voor alle steun van de afgelopen jaren.

Ook al begrepen jullie waarschijnlijk nooit veel van wat ik vertelde over mijn onder-

zoek, toch hadden jullie een feilloos vertrouwen in mij. Als laatste wil ik graag Diana

bedanken voor haar onvoorwaardelijke liefde en steun.

Amsterdam, juli 2008

Pascal Lieshout

Contents

1 Introduction 1

1.1 Modeling of communication networks 1

1.2 Basic queueing models . 5

1.3 Scheduling in network nodes . 8

1.4 Rate control by end-users . 11

1.5 Queues analyzed at the burst-level . 17

1.6 Queues analyzed at the flow-level . 20

1.7 Literature overview . 23

1.8 Outline . 27

I Gaussian queues with differentiated bandwidth sharing 31

2 Gaussian methodology 33

2.1 Preliminaries on Gaussian random variables 33

2.2 Gaussian input . 35

2.3 Large deviations for Gaussian processes 37

2.4 Gaussian queues . 42

2.5 Brownian queues . 45

3 Simple networks of Brownian queues 59

3.1 Preliminaries . 60

3.2 Two-node parallel queue . 62

3.3 Two-node tandem queue . 73

3.4 Two-class priority queue . 83

4 Delay in Generalized Processor Sharing 87

4.1 Queueing model . 88

4.2 Bounds on the virtual delay probability 88

4.3 Decay rate of the virtual delay probability 91

iv Contents

5 Selection of optimal weights in Generalized Processor Sharing 99

5.1 Preliminaries . 100

5.2 Partitioning of the stable region . 103

5.3 Analysis of the admissible region . 105

5.4 Brownian inputs . 110

5.5 Numerical analysis . 122

II Flow-level models for bandwidth-sharing networks 127

6 Importance Sampling in rate-sharing networks 129

6.1 Preliminaries . 131

6.2 Free M/M/1-PS process . 135

6.3 Most probable path . 137

6.4 New input distributions . 138

6.5 Simulation results . 139

6.6 Discussion . 146

Appendix . 146

7 Flow-level performance of linear networks 149

7.1 Queueing model . 150

7.2 Unweighted proportional fairness . 151

7.3 Fluid and diffusion models . 154

7.4 Single bottleneck node . 156

7.5 Two bottleneck nodes and equal weights: workload invariance 159

7.6 Two bottleneck nodes and equal weights: approximations 162

7.7 Unequal service rates . 167

7.8 Discussion . 168

8 Flow-level performance of traffic-splitting networks 169

8.1 Queueing model . 170

8.2 Static setting . 172

8.3 Flow-level dynamics . 175

8.4 Comparison with static and flow-level load balancing 182

Bibliography 185

Summary 199

Samenvatting 203

About the author 207

Chapter 1

Introduction

Current communication networks are evolving towards integrated-services networks,

implying that they are expected to support a wide range of heterogeneous services,

including data, video, and voice-applications, but also more demanding multimedia

applications, such as gaming, remote surgery, video-conferencing, etc. In order to

provide proper service to each application, it is important that the available service

capacity is shared among the various traffic classes in a suitable manner.

In this monograph we analyze mathematical models for bandwidth sharing in such

multi-service networks. In particular, we focus on i) explicit scheduling in network

links, and ii) bandwidth sharing as a consequence of the end-to-end rate control by

end-users. In the former case certain traffic classes may receive preferential treat-

ment in network links, thereby offering service differentiation. In the latter case the

bandwidth sharing is strongly affected by the protocol that governs the transfer of

traffic along the end-to-end route. Part I of this thesis is devoted to case i), whereas

Part II considers case ii). For both cases, various bandwidth-sharing disciplines can be

identified for either implementing or modeling bandwidth sharing. We apply queueing

theory as a tool to analyze the performance of several such mechanisms.

1.1 Modeling of communication networks

In this section we show how a communication network may be modeled as a queueing

system, i.e., a network of queues. To see the connection with a queueing system, it

is important to distinguish between 1) the network itself, and 2) the traffic of the

applications that it supports. Below we first describe the basic characteristics of 1)

and 2), before making the connection with a queueing system.

1.1.1 Network characteristics

We focus on a wired communication network that supports several heterogeneous

applications. These networks consist of nodes that communicate over links. Nodes

2 Introduction

are computers, switches, routers, servers and other devices. Some nodes are classified

as end-users, which provide the interface between the users and the network. Other

nodes, e.g. switches and routers, are not identified with any user, but forward traffic as

it is sent between users. Links are physical channels over which traffic is transmitted.

We assume that all traffic in the network is digitized, i.e., traffic consists of small

packets. Such networks are commonly referred to as packet-switched networks.

1.1.2 Traffic characteristics

Below we mention four important properties that network traffic usually obeys.

Stationarity

Traffic on network links, averaged over suitable time periods, typically exhibits sys-

tematic variations. These variations usually follow a daily pattern, with a clearly

identifiable busy period, which can last several hours. During this busy period, traf-

fic arrival processes approximately show stationary behavior in the sense that the

statistical properties are nearly time-invariant. Therefore, a cumulative traffic input

process is usually modeled as a stochastic process with stationary increments, see also

Section 1.5. This implies that the statistical properties of traffic are assumed to be

constant for an indefinite period.

High level of aggregation

The input stream of each node in communication networks usually consists of a su-

perposition of a large number of individual streams. To give an indication, at the

core network, resources are commonly shared by thousands of users, whereas at the

access of a network, the number of aggregated streams is typically at least in the

order of tens.

Streaming and elastic traffic

The majority of traffic can broadly be categorized into streaming and elastic traffic,

each having its own Quality-of-Service (QoS) requirements, see [157].

Streaming traffic is produced by audio and video applications for both real-time

communication and reproduction of stored sequences. Usually, the transmission rate

has some intrinsic time profile, which may either be nearly constant or highly bursty,

depending on the specific application. In both these cases, the application-level QoS

is mainly determined by integrity of the time profile, making small packet delay and

low loss crucial requirements.

Elastic traffic, on the other hand, results from the transfer of digital documents

such as Web pages, files and e-mails. In contrast to streaming traffic, the transmission

1.1 Modeling of communication networks 3

rate can be adapted over time, based on the level of congestion in the network, because

these applications are typically more tolerant of packet delays.

Time scale separation

In packet-switched networks it is common to distinguish between different time scales.

At the lowest level, the packet-level, the main interest concerns the individual packets

that are transmitted through the network. At the highest level, the flow-level, we

leave out all the packet-level details, and consider the sequence of all packets from the

beginning of a transfer until the end as a single flow. During a transfer, periods in

which bursts of packets are sent usually alternate with intervals in which no packets

are transmitted, which gives rise to an intermediate time scale, the burst-level.

At the packet-level we deal with the fluctuations of the packet arrivals within a

burst. At the burst-level we consider the fluctuations of the level of activity of users,

as opposed to the flow-level, where we focus on the fluctuations of the number of users.

If one, in case of elastic traffic, is interested in the performance as perceived by

end-users, then it is appropriate to study models at the flow-level. In this case chief

interests concern sojourn times (time between arrival and departure) of flows, but

also include issues of fairness (concerning bandwidth sharing among various types of

flows) and bandwidth utilization. In contrast, if one aims to study the performance

as perceived by end-users in case of streaming traffic, then it is more appropriate

to apply analysis at the packet-level or the burst-level. Now one typically studies

the performance (of a system) in terms of packet losses (due to buffer overflow) and

packet delays. Despite the fact that burst-level models leave out the packet-level

details, they lend themself very well for this goal, the underlying idea being that

the packet loss probability can be approximated by the buffer overflow probability,

whereas the packet delay can be approximated by the virtual delay, i.e., the delay

experienced by a packet having arrived at an arbitrary point in time.

Below we discuss the main characteristics of each of these three levels. We refer

to [82, 159] for more details concerning the various levels.

Packet-level characteristics

Measurements of network traffic as performed over the past decade showed [110, 152]

that traffic at the packet-level, but also at the burst-level and the flow-level, is typically

highly variable, or bursty, over a wide range of times scales. Such traffic is known to

be long-range dependent (LRD), meaning that the autocorrelations decay relatively

slowly, see Chapter 2 for formal definitions. Traffic exhibiting long-range dependence

can claim a substantial part of the available capacity for a relatively long period. In

the absence of a protection mechanism, this can prevent other traffic from receiving

proper service.

Several papers offered explanations for traffic to be LRD, see e.g. [46, 47, 150, 174].

4 Introduction

These papers argue that LRD may be caused by the fact that certain traffic charac-

teristics are heavy-tailed. In particular, it is indicated that file sizes and transmission

times of files in the Internet, which are typical examples of flows, may have infi-

nite variance. However, LRD may also be due to other traffic-related or user-related

characteristics, see e.g. [47, 174] for an overview.

As opposed to traffic exhibiting long-range dependence, traffic can also be short-

range dependent (SRD). In this case the autocorrelations decay relatively quickly,

implying that SRD traffic behaves smoothly over long time scales. Not surprisingly,

SRD is intimately related to traffic with light-tailed properties.

Flow-level characteristics

As mentioned before, measurements at various locations of flow sizes showed that their

distribution has a heavy tail in general. The precise distribution clearly depends on

the type of flow under consideration. A reasonable fit to the shape of the heavy tail

is provided by the Pareto distribution:P(size > x) ≈ α

xβ
, for large values of x,

where 1 < β ≤ 2 to ensure that this distribution has a finite mean and infinite

variance, and α is some positive constant.

The above distribution has the property that the majority of the flows is small,

whereas most of the traffic volume is contained in the large flows. This property has

also been verified by extensive measurements, see e.g. [46, 73].

A typical and important example of a light-tailed flow size distribution is the

exponential distribution:P(size > x) = e−λx, x ≥ 0,

where λ > 0 is the rate parameter. It is easy to verify that this distribution has finite

mean 1/λ and variance 1/λ2. Generalizations of the exponential distribution, such as

phase-type distributions, are other examples of distributions with light tails.

Burst-level characteristics

In packet-switched networks traffic is divided into small packets that are sent over the

network. When considering somewhat larger time scales, traffic may approximately

be viewed as a continuous flow of fluid, thereby neglecting the discrete nature of

the relatively small packets. In particular, there is usually an alternation of inactive

periods, in which no packets are sent, and active periods, in which bursts of packets

are transmitted, such that the generated traffic can be modeled as an On-Off source.

The notions of heavy-tailedness (light-tailedness) and LRD (SRD) are closely re-

lated in case of an On-Off source as well. If the On-period or Off-period are drawn

from a distribution having infinite variance, then the On-Off process can shown to be

1.2 Basic queueing models 5

LRD, see [38]. Other results can be found in e.g. [79]. In case both the On-period

and Off-period have a light-tailed distribution, the On-Off process is SRD.

1.1.3 Queueing system

We now relate the elements described above to a queueing system. In general, a

queueing system describes a system where limited resources are used to perform cer-

tain tasks. These resources are often referred to as servers, whereas the tasks to

be performed can be viewed as customers that arrive to the servers, each of them

bringing along a certain amount of work to be executed by the servers.

Sections 1.1.1 and 1.1.2 indicate how a communication network can be represented

by a queueing system. Clearly, the nodes of the network correspond to the available

resources in a queueing system. Depending on whether we analyze the network at

packet-, flow-, or burst-level, we see that a customer can be identified with a packet,

flow, or burst of packets, respectively.

In this monograph we study communication systems at either the burst-level or

the flow-level. In other words, we leave out all packet-level details, and focus on

somewhat larger time scales. In particular, in Part I we analyze models at the burst-

level, implying that we assume the number of flows to be fixed in the system, whereas

in Part II we study models at the flow-level, thus assuming the number of flows to be

variable.

Important references on queueing theory are e.g. Asmussen [12], Cohen [44], and

Tijms [163]. In e.g. [100, 101, 171] it is shown how queueing theory can be applied to

communication networks.

1.2 Basic queueing models

Before presenting various bandwidth-sharing disciplines in the next two sections, we

first need to introduce some queueing theory terminology, which we do in the context

of the classical G/G/1 queue and the fluid queue.

1.2.1 Classical G/G/1 queue

The most basic queueing model is the single-server queue. In this system customers

arrive one at a time. The time between two consecutive arrivals is called the inter-

arrival time. In practice one assumes that the sequence of interarrival times consists

of independent and identically distributed (i.i.d.) random variables. As reflected by

the name of this model, there is one server, which works at some predefined speed

c. The service requirements of customers are assumed to be i.i.d. random variables.

Moreover, the sequences of interarrival times and service requirements are assumed

to be independent. As soon as a customer is completely served, it leaves the system.

6 Introduction

0

Q(t)

tt1 t2 t3 t4

Figure 1.1: An example of the workload process {Q(t), t ≥ 0} in a classical G/G/1

queue.

The above model is usually referred to as the G/G/1 queue, a notation that is

due to Kendall [92]. Here the first G reflects that the interarrival time distribution is

of a general form, whereas the second G indicates that the same holds for the service

requirement distribution. In the special case of Poisson arrivals, i.e., exponentially

distributed interarrival times, we denote the model as the M/G/1 queue, where the

M stands for memoryless or Markovian. If the service requirements are exponentially

distributed as well , we obtain the well-known M/M/1 queue.

Clearly, as long as there are customers in the system, the server works at the

predefined speed c, which is enough to describe the evolution of the queue length.

Figure 1.1 shows a typical sample path of the workload process {Q(t), t ≥ 0} (i.e.,

the sum of the service requirements of all the customers in the system) in a classical

G/G/1 queue with unit capacity. Here ti denotes the time at which the ith customer

arrives. The heights of the small dashed lines represent the corresponding service

requirements of these customers. These jumps in the workload process illustrate that

traffic, in a classical G/G/1 queue, arrives instantaneously.

We remark that the G/G/1 queue is a widely used model in various fields of

research. For example, many problems in inventory, risk theory, communication net-

works, etc., can often be reformulated in terms of these classical queueing systems,

see e.g. [12].

1.2.2 Fluid queue

In Section 1.1 we already mentioned that network traffic is inherently bursty. When

studying traffic at the burst-level, traffic is usually modeled as a continuous fluid flow,

thereby neglecting the discrete nature of relatively small packets. More generally, fluid

models may be valuable when a separation of time scales applies. That is, fluctuations

1.2 Basic queueing models 7

0

0

0

1

1

t

t

t

r1

r2

Q(t)

Figure 1.2: An example of the workload process {Q(t), t ≥ 0} in a fluid queue fed by

a superposition of two On-Off sources.

around a certain drift on a shorter time scale may sometimes be neglected on a longer

time scale. The main difference with classical queues is that traffic does not arrive

instantaneously, but gradually over time.

On-Off source

A popular way of modeling bursty traffic is by means of On-Off sources, as there is

usually an alternation between periods in which packets are sent, and in which no

packets are transmitted, see e.g. [11, 43, 102, 54, 160, 180].

Figure 1.2 illustrates an example in which a fluid queue with unit capacity is fed

by a superposition of two On-Off sources. It is assumed that both sources generate

traffic at constant rate r1 = r2 = 1 in On-periods, and that the buffer is empty at time

zero. Therefore, we find that the total workload Q(t) at time t ≥ 0, with Q(0) = 0,

builds up with rate one if both sources are active, remains constant if only one of the

sources is transmitting, or drains with rate one if both sources are silent.

Reflection of a process

One way to model the workload process of a queue, either with instantaneous or

gradual input, is to define it as the reflection at zero of some process {A(t)−ct, t ≥ 0},
where {A(t), t ≥ 0} is a continuous-time stochastic process, denoting the amount of

traffic entering the system in the interval [0, t], and c > 0 is the service capacity of

8 Introduction

the node. By reflection at zero we mean that the workload at time t ≥ 0 can be

represented as

Q(t) = A(t)− ct− inf
0≤s≤t

{A(s)− cs}

= sup
0≤s≤t

{A(t)−A(s)− c(t− s)} ≥ 0,

given that we start with an empty system, i.e., Q(0) = 0. The reflection at zero

ensures that the workload process is non-negative.

The above-mentioned approach will be applied in this monograph to analyze

queues at the burst-level. In particular, in Part I we assume A(t) to be a so-called

Gaussian process. Gaussian processes cover both SRD and LRD traffic, see Chapter 2

for more details.

Figure 1.3 depicts an example of the reflection of the process {B(t)− ct, t ≥ 0} at

zero, where B(t) is a so-called Brownian motion, which is a special case of a Gaussian

process. Brownian motions, and Gaussian processes in general, play an important

role in this monograph.

1.3 Scheduling in network nodes

An instrument that can be used to accomplish service differentiation, is the so-called

scheduling mechanism. Such a mechanism has to be implemented in the switches or

routers of a network, and it determines for each arriving packet at what time it is

forwarded to the next router or switch on its route. The goal of these mechanisms is

to implement differentiated sharing or ensure fairness, such that the proper QoS can

be provided to each application.

The most important packet-based scheduling mechanisms in current communica-

tion networks are variants of Weighted Fair Queueing (WFQ) and Weighted Round-

Robin (WRR). Both WFQ and WRR are weighted versions of standard Round-Robin

(RR) scheduling, where the various traffic classes may receive different service quotas,

as specified by class-specific service weights. In this section, we focus on an ideal fluid-

based variant of WFQ, the so-called Generalized Processor Sharing (GPS) discipline.

In other words, GPS assumes that traffic of the various classes is infinitely divisible

and that it can serve several classes simultaneously. In reality, however, traffic con-

sists of small packets which have to be processed sequentially, implying that GPS is

a convenient idealization, but not implementable. In [148, 149] it was shown that

WFQ, which is implementable, closely approximates the behavior of GPS. Therefore,

we expect that results for GPS carry over to WFQ, especially the ones that relate to

burst-level performance metrics.

1.3 Scheduling in network nodes 9

t

B(t) − ct

0

0
t

Q(t)

Figure 1.3: An example of the reflection of the process {B(t) − ct, t ≥ 0} at zero,

where B(t) is a Brownian motion.

1.3.1 Generalized Processor Sharing

Assume that there are M different traffic classes that require service at a particular

node in the network with service rate c. Each class is assigned a weight φi, i =

1, . . . ,M . Without loss of generality, assume that the weights add up to one, i.e.,
∑M

i=1 φi = 1. The GPS weight φi determines the guaranteed service rate φic for class

i. If all classes are backlogged, i.e., if the queues of all classes are non-empty, then

class i receives service at rate φic.

Let us first assume that each of the traffic classes consists of flows that generate

instantaneous traffic bursts. In that case a class either fully uses its allocated share of

the service capacity or does not use any service capacity. In the latter case, its service

share becomes available to the other backlogged classes, and is also shared according

to these weights. That is, denoting the set of backlogged classes by B, the service rate

allocated to class i ∈ B equals

φic
∑

j∈B φj
≥ φic,

10 Introduction

class

class

class

n1

n2

c

nM

1

2

M

φ1

φ2

φM

1

1

1

2

2

2

Figure 1.4: GPS mechanism

see Figure 1.4 for an illustration.

In case of fluid input for some class, some subtleties may arise, as a class may

then receive service equal to its input rate, without being backlogged. A more formal

description of GPS is therefore given in [148, 149]. Let Si(s, t) denote the amount of

traffic of class i served in the time interval [s, t], i = 1, . . . ,M . If the queue of class i

is backlogged in the corresponding interval, then GPS satisfies the following property:

Si(s, t)

Sj(s, t)
≥ φi

φj
, i, j = 1, . . . ,M, i 6= j. (1.1)

Obviously, there is equality in (1.1) if class j is also continuously backlogged in the

interval [s, t].

From the above we conclude that GPS achieves statistical multiplexing gains by re-

allocating capacity from non-backlogged classes. Note that GPS is a work-conserving

scheduling discipline, i.e., the server always works at maximum speed if at least one

of the queues is non-empty. Also, notice that GPS aims to describe the performance

at the burst-level, where the population of flows may be assumed nearly static.

Assigning weight one to a single class, implies that the other classes can only be

served if there is no traffic of this single class queued; i.e., priority queueing can be

regarded as a special case of GPS. By assigning positive weights to all classes, GPS is

capable of protecting a class against starvation when some other class ‘misbehaves’,

as opposed to priority scheduling, where the low-priority classes may be excluded

from service over substantial time intervals. Therefore, GPS can be regarded as a

protection mechanism.

We already mentioned that measurements showed that network traffic is typically

highly variable or bursty over a wide range of times scales, which underscores the

importance of a protection mechanism like GPS.

We remark that the GPS model is in fact a special case of the coupled processors

model [45]. Also, the GPS discipline shows resemblance with so-called cycle stealing

policies, see [145] for more details.

1.4 Rate control by end-users 11

1.4 Rate control by end-users

In the previous section we focused on ‘explicit scheduling’ (of packets) in a network

node. We now assume that bandwidth sharing is a consequence of the end-to-end rate

control by end-users. In that case the bandwidth shares are strongly affected by the

protocol that governs the transfer of packets along the end-to-end route. Hence, there

is ‘implicit scheduling’. In the current Internet, the dominant transport protocols are

variants of the Transmission Control Protocol (TCP).

TCP is capable of providing both error control and congestion control. In order

to guarantee error control, the receiver sends an acknowledgment (ack) to the source

after each (group of) correctly received packet(s). In case the source does not receive

an ack before a time-out occurs or it receives a duplicate ack indicating that some

packet is missing, the packet is assumed to be lost. When a packet is lost or when

a negative ack (indicating that the packet contains errors) is received, the source

retransmits the lost packet.

The congestion control of TCP is based on a so-called window size, which specifies

the maximum number of packets that can be sent by the source without having

received an ack. TCP infers the level of congestion in the network from the returned

ack’s. In case packets are lost, TCP concludes that the level of congestion is high and

reduces the window size. In contrast, in case no packets are lost, TCP concludes that

the network is lightly loaded and increases the window size up to some maximum.

A TCP-based data transfer starts with a slow-start phase, in which the window

size increases at an exponential rate over time. Next follows a congestion-avoidance

phase, in which the window size increases linearly at rate 1/RTT, where RTT stands

for the round-trip time of each correctly received ack. Note that this is effectively

done by increasing the window size W by 1/W for each acknowledged packet. We

refer to [83, 106] for more details concerning TCP.

We remark that the congestion-avoidance phase of TCP can in fact be viewed

as a special case of the family of Additive-Increase-Multiplicative-Decrease (AIMD)

congestion control protocols, in which the window size increases linearly when no

losses occur, whereas the window size is reduced by a multiplicative factor when a

loss is detected, see [139].

Below we first discuss two single-node flow-level systems that may properly model

the bandwidth sharing realized by TCP in a common link, namely: Processor Sharing

(PS) and Discriminatory Processor Sharing (DPS). Recall that at the flow-level we

leave out packet-level details, and focus on somewhat larger time scales.

1.4.1 Processor Sharing

The last decade, the PS discipline has emerged as a useful paradigm for evaluating

the performance of a variety of resource allocation mechanisms. Under the PS dis-

12 Introduction

c/n

c/n

c/n

c

1

2

n

Figure 1.5: PS mechanism

cipline, the server simultaneously serves each of the n users present with rate c/n,

see Figure 1.5 for an illustration. While the PS discipline originally emerged as an

idealization of RR scheduling mechanisms in time-shared computer systems [99], in

recent years the PS discipline has received renewed attention as a convenient ab-

straction for modeling the flow-level performance of bandwidth-sharing protocols in

packet-switched networks, in particular TCP. During the congestion-avoidance phase,

all active users receive approximately equal bandwidth, assuming they have identical

access rates and RTTs. This motivates the use of PS to model the dynamic behavior

of TCP flows sharing a common link, see e.g. [18, 81, 135, 136, 141, 158]. Here it is

assumed that, at the moment a flow-level transition takes place, the allocation of the

transmission rates to the individual flows adapts instantly. We remark that this is an

idealization, as under TCP the adaptation does not occur instantly, but takes some

time. More references on PS can be found in [36, 143].

Although the PS model provides valuable insights, it critically relies on the as-

sumption that the service capacity is equally shared among competing flows, i.e., it

assumes fair sharing. In [10] it was, however, argued that the actual service rates re-

alized by TCP may show substantial variation among flows with heterogeneous RTTs

and access rate limitations, implying that the PS model is not always appropriate. In

the next subsection we therefore discuss DPS, which models differentiated bandwidth

sharing.

1.4.2 Discriminatory Processor Sharing

The DPS discipline, which is closely related to PS, is useful for modeling the flow-

level performance of bandwidth-sharing protocols such as TCP in packet-switched

networks. In addition, DPS provides a natural framework for modeling the flow-

level performance of differentiated bandwidth-sharing disciplines such as WFQ and

WRR. Hence, DPS is appropriate for modeling differentiated bandwidth sharing. For

applications of DPS in communication networks, see e.g. [1, 10, 40, 42].

1.4 Rate control by end-users 13

class

class

class

n1

n2 c

nM

1

2

M

κM

κM

κM

κ1

κ1

κ1

κ2

κ2

κ2

1

1

1

2

2

2

Figure 1.6: DPS mechanism

Assume that there are M classes of flows that require service at a particular node

in the network. Let ni denote the number of class-i flows, i = 1, . . . ,M . Each

class of flows is assigned a non-negative weight κi, i = 1, . . . ,M . Without loss of

generality, assume that the weights add up to one, i.e.,
∑M

i=1 κi = 1. The M classes

are simultaneously served, and each of the ni flows of class i receives a service rate

κic
∑M

j=1 κjnj

, i = 1, . . . ,M,

see Figure 1.6 for an illustration.

In case of DPS the service rate is, as opposed to GPS, in addition to the weights,

determined by the number of flows in the system. Hence, the DPS discipline serves to

evaluate the flow-level performance. In case κi = κ, i = 1, . . . ,M , i.e., if all weights

are equal, then DPS reduces to PS. We remark that DPS models are much harder to

analyze than PS models.

We argued before that heterogeneous RTTs have an impact on bandwidth sharing

realized by TCP. In fact, in TCP the classes with lower RTTs obtain a higher share

of the bandwidth [10]. Hence, by setting the DPS class weights inversely proportional

to the respective RTTs, DPS is useful to examine the dynamic behavior of TCP flows

sharing a common link.

Although PS and DPS can be used for modeling the flow-level performance of

bandwidth-sharing protocols in packet-switched networks, they do not explicitly take

into account that a flow may require service at several nodes simultaneously, meaning

that it receives the same rate at each of these nodes. For example, consider the so-

called linear network depicted in Figure 1.7. This network consists of L nodes and

supports L+1 classes of users: class-i users require service at node i only, i = 1, . . . , L,

14 Introduction

1 2 L

Figure 1.7: A linear bandwidth-sharing network.

whereas class-(L+ 1) users require service at all L nodes simultaneously.

In the remainder of this section we represent the network as a set of nodes L =

{1, . . . , L}, where node l ∈ L has finite capacity cl > 0. We distinguish a total number

M of classes in the network, where flows of class i use the same route ri, consisting of

a particular nonempty subset of nodes, i = 1, . . . ,M . As mentioned above, in case a

class requires service at multiple nodes, we assume that users of this class need to be

served simultaneously at these nodes. Let S(l) denote the set of classes that require

service at node l, l = 1, . . . , L.

Below we discuss two sharing policies that are able to capture the above-mentioned

effects, namely: Alpha-Fair Sharing (AFS) and Balanced Fairness (BFS). We note

that AFS covers both PS and DPS as special cases. It is remarked that PS is also a

special case of BFS.

1.4.3 Alpha-Fair Sharing

When the network is in state n = (n1, . . . , nM) ∈ NM
0 \{~0}, with nj denoting the

number of class-j users in the network, the AFS service rate x∗i allocated to each of

the class-i users is obtained by solving the following optimization problem [140]:

max
∑M

i=1 niUi(xi) (1.2)

subject to
∑

i∈S(l) nixi ≤ cl, l = 1, . . . , L

over xi ≥ 0, i = 1, . . . ,M,

where the utility function Ui(xi) is defined by

Ui(xi) =

{

κi
x1−α

i

1−α if α ∈ (0,∞)\{1};
κi log xi if α = 1.

(1.3)

The κis are non-negative weights, and α ∈ (0,∞) can be interpreted as a fairness

coefficient. The cases α → 0, α → 1 and α → ∞ correspond to allocations which

achieve maximum throughput, proportional fairness, and max-min fairness, respec-

tively. In [146] it has also been shown that the case α = 2, with additional class

weights set inversely proportional to the respective RTTs, provides a reasonable mod-

eling abstraction for the bandwidth sharing realized by TCP. Bandwidth sharing in a

1.4 Rate control by end-users 15

network with AFS is thus evaluated in terms of a utility function, an approach that

was first introduced in [89], but we also refer to [88, 107].

Let si(n) := nix
∗
i denote the service rate allocated to class i under an AFS policy

when the network is in state n, i = 1, . . . ,M . In general no closed-form solution for

si(n) is known, and one has to obtain it numerically. A few exceptions are known in

which there are explicit expressions: linear, grid, and cyclic networks, see [23].

If we consider a single-node network with capacity c, then it can be verified that

the solution of the optimization problem (1.2) is given by [14]

x∗i =
κ

1/α
i c

∑M
j=1 κ

1/α
j nj

, i = 1, . . . ,M.

In this case we observe that the capacity is shared according to a vector of weights

κ
1/α
i , i = 1, . . . ,M , in a DPS fashion, i.e., AFS covers DPS (and PS).

As we will argue in Section 1.6, the flow-level performance of AFS networks is

hard to analyze in general. To gain insight, a theoretical sharing policy has been

constructed [25], known as BFS, which provides performance results that are insensi-

tive to the detailed traffic characteristics. In particular, BFS is constructed in such a

way that the performance only depends on the various traffic characteristics through

the average load of each class, which is defined as the product of the class-dependent

arrival rate of flows and the class-dependent average service requirement of a flow,

given that flows arrive according to a Poisson process.

1.4.4 Balanced Fairness

Let φi(n) denote the capacity allocated to class i when the network is in state n ∈ NM
0 ,

i = 1, . . . ,M , under BFS. An allocation is said to be balanced if for all states n, with

ni, nj > 0,

φi(n)

φi(n− ej)
=

φj(n)

φj(n− ei)
, i, j = 1, . . . ,M, (1.4)

where ei represents the M -dimensional unit vector whose components are equal to 0

except for component i which is equal to 1, i = 1, . . . ,M . Define the capacity set

C =







y ≥ 0 :
∑

i∈S(l)

yi ≤ cl, l = 1, . . . , L







.

Note that φ(n) ∈ C for all n ∈ NM
0 \{~0}. There are several allocations that satisfy the

balance property (1.4), but there exists a unique allocation such that φ(n) belongs

to the boundary of the capacity set C in any state n ∈ NM
0 \{~0}. This allocation is

commonly referred to as the BFS allocation.

16 Introduction

All balanced service rates can be expressed in terms of a unique balance function

Φ(·), so that Φ(0) = 1 and

φi(n) =
Φ(n− ei)

Φ(n)
, ∀n : ni > 0, i = 1, . . . ,M.

Hence, characterization of Φ(n) implies that φ(n) is characterized as well. Define

Φ(n) = 0 if n /∈ NM
0 . It can be shown [27] that

Φ(n) = max
l=1,...,L

∑

k∈S(l) Φ(n− ek)

cl
, n ∈ NM

0 \{~0},

so that Φ(·) can be obtained recursively. There exist a few networks for which explicit

formulae are known for Φ(·), but in general no explicit expressions are available, which

implies that we have to obtain them recursively. In this case it is clear that for large

state spaces it is time-consuming to obtain Φ(·).
As mentioned earlier, the advantage of BFS is that it makes the flow-level analysis

tractable, see Section 1.6. Besides being an interesting concept in its own, BFS can

also be viewed as an approximation tool. The performance of a network under max-

min fairness and proportional fairness is often accurately approximated by that under

BFS, see [24].

1.4.5 Extensions

Below we show that the above descriptions of AFS and BFS can be extended.

Access-link rate limitations

So far we assumed that flow rates are constrained by the network links only. In

practice this is not true, as the rate of a flow may additionally be constrained by

a fixed maximum that represents, for instance, the user’s access-link rate. These

additional constraints can easily be incorporated in utility maximization problems

such as (1.2), so that AFS can cope with this. BFS can also be extended such that it

covers access-link rate limitations [25].

In Chapter 6 we consider an alternative approach for modeling class-dependent

rate limitations in AFS networks. That is, we first determine the AFS allocation

(without access-link rate constraints), and then truncate the resulting rates at the

access-link rates. It can be verified that these two methods result in different alloca-

tions. We prefer the latter approach, as in general this allows fairly explicit analysis,

whereas this is considerably harder under the former method, see also [14].

Multi-path routing

We assumed above that each class of users corresponds to a unique route in the

network. However, in practice it is likely that some classes of users have multiple

1.5 Queues analyzed at the burst-level 17

alternative paths through the network. The question that arises is how flows are

routed in those cases. Several papers address this question by studying multi-path

utility maximization problems, see e.g. [74, 90, 95, 96, 121, 164, 170, 172]. In [22, 84,

108, 109] it was shown how BFS can be applied in networks with multi-path routing.

Chapter 8 considers multi-path routing in a simple AFS or BFS network.

1.5 Queues analyzed at the burst-level

In Part I we study communication networks at the burst-level. When analyzing

systems at the burst-level, it is often assumed that traffic approximately behaves as a

continuous stream of work, thereby neglecting the discrete nature of the small packets,

i.e., the traffic behaves as fluid, see Section 1.1.

Although this monograph deals with the performance of bandwidth-sharing disci-

plines, the first two chapters of Part I, Chapters 2 and 3, do not consider such mech-

anisms. In particular, in Chapter 2 we study a single-node queue, whereas Chapter 3

analyzes a two-node parallel queue and a two-node tandem queue. We have incorpo-

rated these two chapters as we develop techniques there that are extensively used in

Chapters 4 and 5, where we study a two-class GPS model. The aim of this section is

to give a flavor of the methods used and results derived throughout Part I.

1.5.1 Single-node queue

To gain insight into fluid queues, we first consider a single-node network with capacity

c. Let A := {A(t), t ∈ R} be a continuous-time stochastic process, with A(0) ≡ 0.

Also, let A(s, t) := A(t)−A(s) denote the amount of traffic entering the system in the

interval [s, t], t > s. Note that A(t) (−A(t)) denotes the amount of traffic generated in

the interval [0, t] ([t, 0]) if t ≥ 0 (t ≤ 0). Furthermore, assume that A has stationary

increments, i.e., A(t) − A(s) has the same distribution as A(t − s) for t > s ≥ 0.

Let Q(t) denote the buffer content at time t of this fluid queue. As a first step to

understand this fluid queue, let us consider the discrete-time setting. In particular,

consider the buffer content of the queue at time t = 0. Let A−i denote the amount of

work arriving at the −ith epoch, i = 1, 2, Also, let Q−i denote the buffer content

at time −i, i = 0, 1, Then using Lindley’s recursion, we find

Q0 = max{Q−1 +A−1 − c, 0}
= max{max{Q−2 +A−2 − c, 0}+A−1 − c, 0}
= max{Q−2 +A−2 +A−1 − 2c, A−1 − c, 0}
= . . .

= max







Q−i +
i
∑

j=1

A−j − ic,
i−1
∑

j=1

A−j − (i− 1)c, . . . , A−1 − c, 0







.

18 Introduction

In queueing theory, one is often interested in the behavior of a system after initial

effects have vanished, i.e., when the system is in steady state. This corresponds to

letting −i → −∞. Therefore, we need to impose assumptions to ensure that the

buffer content does not blow up, i.e., we need assumptions for stability of the system.

First note that, due to the assumption of stationary increments, the mean arrival rate

at the queue equals µ := EA−1 . It is then intuitively clear that a sufficient condition

for stability of the system is that the mean arrival rate µ is smaller than the capacity

c of the system. In case this stability condition is satisfied, there exists a random

−i < 0 such that Q−i = 0, and we thus find that Q0 converges in distribution to the

random variable

sup
i≥0







i
∑

j=1

A−j − ci







. (1.5)

Equation (1.5) suggests that Q(0) converges in distribution to

Q := sup
t≥0
{A(−t, 0)− ct} , (1.6)

given that µ < c. This can be shown to be correct, but it is somewhat harder to

prove. Equation (1.6) is often referred to as Reich’s formula [155]. The steady-state

distribution is thus equivalent to the distribution of the supremum of the so-called

free process {A(−t, 0) − ct, t ≥ 0}. Note that this free process can be negative, but

that the supremum of it is always non-negative, as the free process equals 0 at time

t = 0. This implies that the steady-state distribution lives on [0,∞).

We remark that if the arrival process A is time-reversible, then supt≥0 {A(t)− ct}
has the same distribution as Q. Also, note that, due to the assumption of stationary

increments, Q(t) converges in distribution to Q for all t ∈ R .

1.5.2 Tandem queue

We proceed with more complex systems: tandem queues. We first analyze the two-

node tandem queue, before studying tandem queues with an arbitrary number of

nodes. In this fluid queue, traffic is first served with rate c1 at the first queue, and

then immediately sent to the second queue where it is served with rate c2. To exclude

the trivial case where the second buffer is continuously empty, we assume that c1 > c2.

Let us focus on the steady-state distribution of the content of the two buffers.

Clearly, the steady-state first buffer content can be represented as

Q1 = sup
t≥0
{A(−t, 0)− c1t} ,

given that µ < c1. It requires more work to obtain the steady-state buffer content

distribution of the second queue. A crucial observation is that the aggregate buffer

1.5 Queues analyzed at the burst-level 19

content, i.e., the content of the first and second buffer combined, drains with rate

c2, see e.g. [87]. Hence, we find that the steady-state total buffer content can be

expressed as

Q1,2 = sup
t≥0
{A(−t, 0)− c2t} ,

given that µ < c2.

It is noted that both Q1 and Q1,2 relate to the same time point (t = 0), meaning

that (Q1, Q1,2) has the ‘correct’ joint distribution. We thus find that Q2 = Q1,2−Q1,

i.e., the second buffer content is equal to the total buffer content minus the first buffer

content. From the above we conclude that the steady-state second buffer content can

be written as

Q2 = sup
t≥0
{A(−t, 0)− c2t} − sup

t≥0
{A(−t, 0)− c1t} ,

given that µ < c2.

The above reasoning also applies in case of an arbitrary number of nodes. Let us

assume that we have an L-node tandem queue, with L > 1 . Furthermore, assume

that c1 > . . . > cL > µ to guarantee that none of the queues is always empty and

that the system is stable. Then we find [87] that the steady-state buffer contents can

be represented as

Q1 = sup
t≥0
{A(−t, 0)− c1t} ;

Ql = Q1,...,l −Q1,...,l−1 = sup
t≥0
{A(−t, 0)− clt} − sup

t≥0
{A(−t, 0)− cl−1t} ,

for l = 2, . . . , L.

1.5.3 Priority queue

The priority queue is closely related to the tandem queue, as can be seen as follows.

Consider a single-node queue with capacity c, where M different classes of users

compete for service, each one of them having its own buffer. Let {Ai(t), t ∈ R}
denote the input process with stationary increments of class i, with Ai(0) ≡ 0, and

let µi := EAi(1), i = 1, . . .M . Also, let Ai(s, t) := Ai(t)−Ai(s) for t > s.

Assume that lower indexed classes have priority over higher indexed classes, i.e.,

traffic of class i is only served if no traffic of class j is in the system, j = 1, . . . , i− 1.

This means that the class-i traffic does not ‘see’ traffic of class j, j = i + 1, . . . ,M ,

at all. The steady-state total buffer content of classes 1 up to m is therefore given by

Q1,...,m = sup
t≥0

{

m
∑

i=1

Ai(−t, 0)− ct
}

, m = 1, . . . ,M,

20 Introduction

given that the stability condition
∑m

i=1 µi < c is satisfied. As Q1,...,m, m = 1, . . . ,M ,

all relate to the same time point (t = 0), we thus find that Qp = Q1,...,p −Q1,...,p−1,

p = 2, . . . ,M . It is now straightforward to derive that the steady-state buffer contents

can be expressed as

Q1 = sup
t≥0
{A1(−t, 0)− ct} ;

Qm = sup
t≥0

{

m
∑

i=1

Ai(−t, 0)− ct
}

− sup
t≥0

{

m−1
∑

i=1

Ai(−t, 0)− ct
}

, m = 2, . . . ,M.

1.5.4 Generalized Processor Sharing queue

In Chapters 4 and 5 we consider a two-class GPS queue with capacity c, assuming

that each class has its own buffer. As before, let {Ai(t), t ∈ R} denote the external

input process of class i and φi the GPS weight of class i, i = 1, 2. Since the GPS

discipline is work-conserving, a first observation is that the steady-state total buffer

content can be represented as

Q1,2 = sup
t≥0
{A1(−t, 0) +A2(−t, 0)− ct} ,

given that µ1 + µ2 < c. If Si(s, t) denotes the amount of service received by class-i

users in the interval [s, t], t > s, then we find that the steady-state ith buffer content

can alternatively be written as

Qi = sup
si≥0
{Ai(−si, 0)− Si(−si, 0)} , i = 1, 2.

Clearly, Si(−t, 0) is strongly affected by Aj(−t, 0) and φj , i, j = 1, 2, and it is therefore

hard to give a closed-form expression for Si(−t, 0), implying that Qi remains elusive

in general. This illustrates why a two-class GPS system is, compared to a priority

queue, very hard to analyze. GPS systems with more than two classes will therefore

be even harder to analyze. We remark that there exist cases in which Qi is tractable,

as a GPS system is a special case of a coupled processors model, whose solution gives

rise to so-called boundary value problems in case of two classes, see e.g. [71, 72].

1.6 Queues analyzed at the flow-level

In Part II we analyze queueing models at the flow-level, meaning that, as opposed

to the previous section, we also have to take the random nature of the flows into

account. We assume that both the interarrival times of flows and the corresponding

service requirements are drawn from some distribution. In this section we present

some well-known results for queueing models that are analyzed at the flow-level. We

mainly focus on queues where classes share capacity according to DPS, AFS and BFS.

1.6 Queues analyzed at the flow-level 21

In the remainder of this section we assume that there are M classes of flows that

compete for bandwidth in a network. We assume that class-i flows arrive according to

a Poisson process of rate λi, and have exponentially distributed service requirements

with mean ν−1
i , i = 1, . . . ,M . Let the average load of class i be denoted by ρi := λi/νi.

Furthermore, let N(t) = (N1(t), . . . , NM (t)) denote the state of the network at time

t, with Ni(t) denoting the number of class-i flows.

1.6.1 M/M/1-Discriminatory Processor Sharing queue

We first consider an M -class DPS queue with unit capacity. This implies that N(t)

is a Markov process with transition rates:

q(n, n+ ei) = λi; q(n, n− ei) = νi
niκi

∑M
j=1 njκj

, i = 1, . . . ,M,

where n ∈ NM
0 . We assume that the total load of the system is smaller than the

available capacity, i.e.,
∑M

i=1 ρi < 1, so that the process N(t) is stable.

Depending on whether we have equal class weights, i.e., κi = κ, i = 1, . . . ,M , or

unequal class weights, one needs to use different techniques to determine the flow-level

performance of the M/M/1-DPS queue, which is illustrated below.

Equal class weights

In case of equal class weights DPS reduces to PS. It can be verified that the transition

rates are independent of κ in that case, and that the steady-state distribution of N(t)

is given by [16]

π(n) = π(n1, . . . , nM) =

(

1−
M
∑

i=1

ρi

)(

∑M
i=1 ni

n1, n2, . . . , nM

)

M
∏

i=1

ρni
i , n ∈ NM

0 , (1.7)

where we write
(

∑M
i=1 ni

n1, n2, . . . , nM

)

=

(

∑M
i=1 ni

)

!
∏M

i=1(ni!)
.

Here π(n) denotes the fraction of the time that the network is in state n in the long-

run. We remark that (1.7) in fact also holds in case of generally distributed service

requirements. Using (1.7), we can also determine the mean number of flows of each

class in the system:ENi =

∞
∑

n1=1

· · ·
∞
∑

nM=1

niπ(n) =
ρi

1−∑M
i=1 ρi

, i = 1, . . . ,M.

Exploiting Little’s formula, we can derive the mean sojourn time of each class:ESi = ENi/λi =
1/νi

1−∑M
i=1 ρi

, i = 1, . . . ,M.

22 Introduction

Unequal class weights

In case of unequal class weights no explicit expression is available for the steady-state

distribution of N(t), implying that it is considerably harder to obtain expressions forENi and ESi , i = 1, . . . ,M .

In [154] it was shown that one can obtain the mean number of users of each class

by solving the following set of linear equations for ENi :ENi − λ
M
∑

j=1

κj

λj

λ ENi + λi

λ ENj

κjνj + κiνi
= ρi, i = 1, . . . ,M,

where λ :=
∑M

i=1 λi. In general the expression for ENi , i = 1, . . . ,M , is very cumber-

some. Only in case M = 2 one can find clean expressions:EN1 =
ρ1

1− ρ1 − ρ2

(

1 +
ν1ρ2 (κ2 − κ1)

κ1ν1(1− ρ1) + κ2ν2(1− ρ2)

)

;

EN2 =
ρ2

1− ρ1 − ρ2

(

1 +
ν2ρ1 (κ1 − κ2)

κ1ν1(1− ρ1) + κ2ν2(1− ρ2)

)

.

Clearly, using Little’s formula, we can obtain an expression for ESi , i = 1, . . . ,M .

1.6.2 Alpha-Fair Sharing networks

We proceed by considering a general network topology where capacity is shared ac-

cording to AFS, see Section 1.4.3. Now N(t) is a Markov process with transition

rates:

q(n, n+ ei) = λi; q(n, n− ei) = νisi(n), i = 1, . . . ,M,

where n ∈ NM
0 . In Theorem 1 of [23] it was shown that an AFS network is stable if

∑

i∈S(l) ρi < cl, l = 1, . . . , L, see also [169, 176] for instance. That is, the network is

stable if no individual link is overloaded.

In Section 1.4 we already mentioned that only for linear, grid, and cyclic networks

explicit expressions are known for si(n), i = 1, . . . ,M . Hence, it seems reasonable to

expect that only for some of these special networks closed-form expressions can be

derived for the corresponding steady-state distribution of N(t), the mean number of

users and mean sojourn time of each class. So far only for linear networks and grid

networks these have been found [23, 135], given equal node capacities and unweighted

proportional fairness (α = 1). In fact, in [25] it was shown that the performance of

AFS networks is tractable only in case of unweighted proportional fairness in homo-

geneous hypercubes. That is, even under the simplest Markovian assumptions the

performance of most AFS networks has remained elusive so far. Fortunately, the

performance of networks becomes much more tractable in case of BFS.

1.7 Literature overview 23

1.6.3 Balanced Fairness Sharing networks

We now focus on networks where capacity is shared according to BFS, see Sec-

tion 1.4.4. In this case N(t) is a Markov process with transition rates:

q(n, n+ ei) = λi; q(n, n− ei) = νiφi(n), i = 1, . . . ,M,

where n ∈ NM
0 . In [24] the authors showed that the network is stable under BFS

if
∑

i∈S(l) ρi < cl, l = 1, . . . , L, i.e., the same stability condition as in the previous

subsection.

From the balance property (1.4) it may be readily verified that the steady-state

distribution of N(t) equals

π(n) = π(n1, . . . , nM) =
1

G(ρ)
Φ(n)

M
∏

i=1

ρni
i , n ∈ NM

0 , (1.8)

where the normalization constant G(ρ) equals

G(ρ) = G(ρ1, . . . , ρM) =

∞
∑

n1=0

. . .

∞
∑

nM=0

Φ(n)

M
∏

i=1

ρni
i .

We mention that (1.8) is in fact valid for much more general traffic characteristics.

Equation (1.8) is insensitive to all traffic characteristics beyond the traffic loads ρis

provided that flows are generated within sessions. A session consists of a finite, ran-

dom number of flows separated by intervals of inactivity referred to as think times.

The number of flows per session, flow sizes and think times may have arbitrary distri-

butions, and need not be independent. The only requirement is that sessions arrive

as a Poisson process, see [25] for more details. We note that this result is valid for

any network topology.

From Little’s formula it follows thatENi = ρi

∂G(ρ)
∂ρi

G(ρ)
= ρi

∂ logG(ρ)

∂ρi
, i = 1, . . . ,M,

i.e., characterization of G(ρ) implies that ENi , i = 1, . . . ,M , is known as well. The

problem is, however, that it is often extremely hard to derive an explicit expression

for G(ρ). In fact, there exist only a couple of network topologies for which G(ρ) is

known, viz. linear and tree networks, see [27, 29].

1.7 Literature overview

Below we review the most important results that have appeared on GPS, DPS, AFS,

and BFS, respectively. Recall that some elementary results were already presented in

Sections 1.5 and 1.6.

24 Introduction

1.7.1 Generalized Processor Sharing

We first review the available literature on GPS. Although the selection of GPS weights

is, at least from an operational point of view, a key problem, most of the work on

GPS describes the queueing performance of a GPS system for fixed weights. Parekh &

Gallager [148, 149] performed the first mathematical analysis of GPS. They derived

deterministic worst-case delay guarantees for leaky-bucket controlled traffic. This

approach was revisited in Pereira et al. [153], where a so-called fractal leaky-bucket is

used to shape traffic. The authors argued that such a leaky bucket is more effective

in case of traffic exhibiting long-range dependence. Again deterministic worst-case

delay guarantees are derived. Subsequent papers focused on statistical performance

guarantees, such as loss probabilities, delay characteristics and workload distributions.

The exact analysis of GPS is in general intractable. Hence, most of the other work on

GPS is based on asymptotic approximations. We mention the most important results

below.

Yaron & Sidi [175] and Zhang et al. [179] derived bounds for GPS queues fed by so-

called exponentially-bounded burstiness traffic. Bertsimas et al. [20], Massoulié [133],

and Zhang [177, 178] established large deviations results for light-tailed traffic, i.e.,

SRD, sources. So-called large-buffer asymptotics for heavy-tailed traffic, i.e., LRD,

processes were obtained in Borst et al. [32, 33] and Kotopoulos et al. [103]. Van

Uitert & Borst [166, 167] extended these results to networks of GPS queues. Borst

et al. [34, 35] analyzed the buffer asymptotics in a two-class GPS system with a

mixture of heavy-tailed and light-tailed traffic. Dȩbicki & Mandjes [49] and Dȩbicki

& Van Uitert [51] derived the logarithmic large-buffer asymptotics for a two-class

GPS system with Gaussian inputs.

Mannersalo & Norros [132] developed accurate approximations for the overflow

probabilities in a so-called many-sources asymptotic regime, see Chapter 2. They

considered a GPS system shared by two heterogeneous classes of Gaussian sources,

with a relatively large number of sources in both classes. The obtained approximations

were validated by extensive simulations. Mandjes & Van Uitert [129] further justified

and refined these approximations, and established an interesting connection with

tandem queues fed by Gaussian traffic, see also Mandjes & Van Uitert [130]. For the

special case of Brownian inputs, Mandjes [126] showed the exactness of the resulting

decay rates.

Giordano et al. [66] proposed a fast simulation approach for the evaluation of the

loss probability in a GPS scheduler. The proposed algorithms are based on the large

deviations results of Zhang [177].

In the literature hardly any results are available on the delay asymptotics in a

GPS system. Paschalidis [151] focused on a two-class GPS system, in a discrete-time

setting, in which the input traffic was assumed to be SRD, and derived the logarithmic

delay asymptotics using known logarithmic large-buffer asymptotics.

1.7 Literature overview 25

As mentioned earlier, the inverse problem of mapping the QoS requirements

on suitable GPS weights has received considerably less attention in the literature.

Dukkipati et al. [56] and Panagakis et al. [147] developed algorithms to allocate opti-

mal weights to leaky-bucket constrained traffic with deterministic service guarantees,

in the presence of best-effort traffic, i.e., weights are chosen such that the throughput

of the best-effort class is maximized. Again for leaky-bucket regulated traffic, Elwalid

& Mitra [60] first derived the admissible region for a two-class GPS system for fixed

weights (i.e., all combinations of flows that satisfy the QoS for both classes), and

then showed that nearly the entire realizable region (i.e., the union of the admissible

regions over all possible weight values) is obtained by selecting either one or two spe-

cific weights. Further results along these lines may be found in Kumaran et al. [105].

Guillemin & Dupuis [71] considered a class with smooth traffic and a class with bursty

traffic (in the context of ATM networks), and conducted simulation experiments in

which it was shown that the throughput of the bursty traffic class is hardly affected

in case the smooth traffic class is prioritized.

We finally mention the thesis of Van Uitert [165], where one can find an excellent

overview of performance analysis aspects of GPS.

The above references illustrate that the GPS queue is well studied. However,

two important problems have not been been addressed in the literature so far. The

first problem is to quantify the performance gain that can be achieved by using GPS

instead of priority queueing. The second problem deals with the derivation of the delay

asymptotics in case of a continuous-time setting and/or LRD traffic, thus generalizing

the results of [151]. The main goal of Part I of this thesis is to solve these two problems.

1.7.2 Discriminatory Processor Sharing

DPS was introduced in Kleinrock [99] as a multi-class extension of PS. The analysis

of the DPS discipline is much harder compared to that of the PS discipline, which is

reflected by the fact that results for DPS are scarce in literature. O’Donovan [144] was

the first to derive expressions for the expected conditional sojourn times, assuming

Poisson arrivals and generally distributed service requirements (with finite second

moments). The author showed that the expected conditional sojourn times can be

found as a solution of a system of integrodifferential equations. Unfortunately, [144]

contained an error, and the corrected form of the equations appeared in Fayolle et

al. [63]. In case of exponentially distributed service requirements, the authors also

derived explicit expressions for the expected conditional sojourn times and obtained

the expected unconditional sojourn times from a system of linear equations.

In case of exponentially distributed service requirements, Rege & Sengupta [154]

derived the moments of the steady-state queue length distribution as the solutions

to linear equations. These results were further extended to phase-type distributions

in Van Kessel et al. [93]. Kim & Kim [98] derived the moments of the sojourn times

26 Introduction

as the solutions to linear equations, again in case of exponentially distributed service

requirements. Haviv & Van der Wal [78] extended these results (for the mean sojourn

times) to phase-type distributions, where the DPS weights may depend both on class

and phase.

Fayolle et al. [63] also showed that the so-called slowdown in a DPS system ap-

proaches the slowdown of the PS system, as the service requirement tends to infinity.

This result was strengthened in Avrachenkov et al. [13], where the authors derived the

asymptotic slope of the expected conditional sojourn time of a class and the asymp-

totic bias. In [13] it was also shown that the expected queue lengths of all classes are

finite under the usual stability condition that the total load is less than the capacity

of the node, regardless of the higher moments of the service requirements. We also

refer to Borst et al. [37] where the authors considered a different asymptotic regime

in which DPS exhibits some sort of insensitivity.

Van Kessel et al. [94] considered a DPS queue with general service requirements

and assumed a so-called time-scale decomposition, implying that the flow dynamics of

the various classes occur on separate time scales. The analysis of this limiting regime

results in explicit expressions for the queue length distributions.

Grishechkin [68] studied the DPS queue in heavy traffic, assuming finite second

moments of the service requirement distributions. Rege & Sengupta [154] derived a

heavy-traffic limit theorem, assuming exponentially distributed service requirements.

This theorem was extended to phase-type distributions in [93]. Altman et al. [10]

studied the DPS queue in overload. For results on weight setting and more references

on DPS we refer to the survey paper of Altman et al. [9].

1.7.3 Alpha-Fair Sharing

AFS networks were first considered by Massoulié & Roberts [135, 136] and are useful

for modeling the dynamic interaction among competing elastic flows that traverse

several links. Most of the available results deal with the stability of the system. De

Veciana et al. [169] and Ye [176] showed that, assuming Poisson arrivals and exponen-

tially distributed service requirements, weighted max-min fairness and proportional

fairness achieve stability, given that no individual link is overloaded. Bonald & Mas-

soulié [23] extended this result to the class of AFS policies as introduced by Mo &

Walrand [140]. Massoulié [134] further generalized it to phase-type service require-

ment distributions. Bramson [39] showed that max-min fairness guarantees stability

of the network in case of general distributed service requirements and renewal ar-

rival processes, given that the above-mentioned stability condition holds. Gromoll

& Williams [69, 70] extended this stability result to AFS policies for some special

topologies.

While valuable stability results have been established, it is very hard to derive

other explicit results, as illustrated in Bonald & Proutière [25]. In fact, even under the

1.8 Outline 27

simplest Markovian assumptions the distribution of the number of users in the network

has remained intractable in all but a few special networks [23, 135]. The available

results therefore are limited to a mean-field approximation of max-min fairness in a

homogeneous star network in Fayolle et al. [62], a fluid limit analysis of AFS policies

in Kang et al. [85] and Kelly & Williams [91], and the behavior of AFS networks in

overload in Egorova et al. [58].

The above illustrates that the flow-level performance of general AFS network

topology is not well understood. Although it is known that the performance of AFS

networks is often accurately estimated by that of BFS networks, see Bonald et al. [24],

this is not always useful, as only for a few BFS networks explicit expressions are

available for the mean number of users. Therefore, interesting research directions

include 1) the development of novel approximations. Furthermore, 2) the case of

AFS when a flow may choose between alternative routes or can use several routes

simultaneously, so-called traffic splitting, remains largely to be evaluated. We finally

remark that 3) so far hardly any techniques have been developed to estimate rare

event probabilities in AFS networks. In Part II of this thesis we will focus on the

three above-mentioned problems.

1.7.4 Balanced Fairness

The notion of BFS was introduced by Bonald & Proutière [25], and was initially

applied to wired networks with single-path routing. In [26, 27, 29, 30, 31] the authors

derived some approximations and bounds on performance measures for BFS, and

discussed various computational aspects.

BFS can also be applied to wired networks with multi-path routing. Similar to the

previous subsection, one needs to distinguish between the cases that a flow may choose

between alternative routes or can split its traffic over several routes simultaneously.

The first case we refer to as load balancing at the flow-level, whereas the second case we

refer to as load balancing at the packet-level. Optimal BFS load balancing at the flow-

level utilizing local state information was addressed in Bonald et al. [22]. Jonckheere

& Virtamo [84] showed that one can achieve even better performance if capacity

allocation and load balancing are optimized jointly. BFS load balancing at the packet-

level was introduced in Leino & Virtamo [108]. A comparison between packet-level

and flow-level BFS load balancing was conducted in Leino & Virtamo [109].

1.8 Outline

This thesis consists of two parts. In Part I, consisting of Chapters 2-5, we study

bandwidth sharing as a result of explicit packet scheduling in network nodes. In

particular, our goal is to analyze a mechanism that can implement differentiated

sharing. In contrast, Part II, consisting of Chapters 6-8, considers bandwidth sharing

28 Introduction

as a consequence of the rate control by end-users.

As stated in Section 1.2, when analyzing the burst-level performance it is common

to model the input processes as fluid. In Part I of this monograph we consider Gaus-

sian input processes, which are a general and versatile class of fluid input processes,

covering a broad range of correlation structures, including both SRD and LRD traffic.

In Chapter 2 we first present the machinery that we need to analyze queues with

Gaussian input. We also illustrate the use of this machinery for a single queue with

Brownian input (a special case of Gaussian input). We determine the joint distribution

function of the workloads at two different times, which also allows us to calculate

their covariance and exact large-buffer asymptotics. The nature of these asymptotics

depends on the model parameters, i.e., there are different regimes. By using sample-

path large deviations, these regimes can be interpreted: we explicitly characterize the

most likely way for the buffers to fill, given that some large buffer level is reached.

This chapter is partly based on [115].

In the next chapter we analyze simple networks of Brownian queues, namely: a

two-node parallel queue and two-node tandem queues. Using the methodology of

Chapter 2, we derive for both systems the joint distribution function of the workloads

of the first and second queue, and obtain their exact large-buffer asymptotics. We

show that different regimes of asymptotics exist, and interpret these. It is also shown

that one can use similar techniques to derive results for a two-class priority queue.

The results on the parallel queue and the tandem queue are published in [114].

Although Chapters 2 and 3 do not have a direct relation to bandwidth sharing at

first sight, they are very useful, as we develop techniques there that are extensively

used in Chapters 4 and 5, where we consider a two-class GPS queue. In particular,

we deal with the two open problems mentioned in Section 1.7.1.

Chapter 4 studies the probability that the virtual delay of a particular class exceeds

some threshold. We first derive bounds on this probability for general input processes,

and use these to obtain the delay asymptotics in the important case of Gaussian

inputs. We show that, depending on the GPS weights, three kinds of asymptotics

appear. The results of this chapter are published in [116].

In Chapter 5 we study the choice of optimal GPS weights. In order to do so, we

first characterize the admissible region of the system for fixed GPS weights. Then

we obtain the realizable region by taking the union of the admissible regions over all

possible GPS weights. The results indicate that nearly the entire realizable region

can be obtained by strict priority scheduling disciplines, i.e., the results suggest that

the weight-setting is not so crucial, and that simple priority strategies may suffice for

practical purposes. This chapter is based on [118], while a short version appeared

in [120].

In Part II, which consists of the remaining three chapters of this thesis, we analyze

models at the flow-level. In Chapters 6-8 it is assumed that bandwidth is shared

according to an AFS policy, and we study the three open problems mentioned in

1.8 Outline 29

Section 1.7.3. We assume that flows arrive according to a Poisson process, and have

exponentially distributed service requirements.

In Chapter 6 we consider a general AFS network topology and focus on the prob-

ability that, conditional on the network population being in a given state at time

zero, the network is in some set of states after some predefined time. In particular,

we assume that the underlying event is rare, so that the corresponding probability

is small. As in general no explicit expressions are known for this probability, an at-

tractive approach may be to resort to Monte Carlo (MC) simulation. However, due

to the rarity of the event under consideration, ‘naive’ MC simulation is inefficient.

A natural approach to speed up the simulation is to use Importance Sampling (IS).

The idea underlying IS is to simulate the system with a new set of input probability

distributions, i.e., new interarrival and service time distributions, such that the rare

event becomes more likely. We devise an IS scheme to obtain an unbiased estimate

of the corresponding probability in a fast way. The results of this chapter appeared

in [119].

In the next chapter we analyze a special network: a linear network, again as

in Figure 1.7. We first explicitly derive the Laplace-Stieltjes Transform (LST) of the

joint workload process at the various nodes in case of unweighted proportional fairness.

Next we study the performance of this network by focusing on the mean number of

users of each class. In case of unweighted proportional fairness, these can explicitly be

derived, whereas in all other cases these are intractable. In this chapter we therefore

derive approximations for the mean number of users of each class, by assuming that

one or two of the nodes are heavily loaded. In case of a single heavily loaded node we

exploit the fact that this node approximately behaves as a two-class DPS model. In

case that there are two nodes critically loaded, we rely on the observation that the

joint workload process at these nodes is asymptotically independent of the fairness

coefficient α, provided all classes have equal weights. This chapter is based on [113].

Chapter 8 considers a stylized network in which, besides classes of users that use

specific routes, one class of users can split its traffic over several routes. We consider

load balancing at the packet-level, implying that traffic of this class of users can be

divided among several routes at the same time. Assuming that load balancing is

based on an AFS policy, we show that the network has different types of dynamics.

In particular, we show that some classes of users, depending on the state of the

network, share capacity according to DPS, whereas each of the remaining classes

of users behaves as in a single-class single-node model. We compare the flow-level

performance of this network with that of a similar network, where load balancing

is based on BFS. We derive explicit expressions for the number of users under BFS,

and show by conducting extensive simulation experiments that these provide accurate

approximations for the ones under AFS. Furthermore, we examine the performance

gain that can be achieved by using packet-level load balancing instead of flow-level

load balancing. The results of this chapter are partly published in [112].

Part I

Gaussian queues with

differentiated bandwidth sharing

Chapter 2

Gaussian methodology

Part I of this thesis is mainly devoted to differentiated bandwidth sharing in network

links. In particular, our goal is to study a single-node system that operates under the

GPS discipline. As explained in Chapter 1, such systems are typically analyzed at the

burst-level. At this time scale traffic that enters the system approximately behaves as

a continuous stream of work, i.e., as fluid. We consider a general and versatile class

of fluid input processes, viz. the class of Gaussian inputs. The present chapter serves

as an introductory chapter, in which we present the basic concepts and machinery

that are needed in this part. Furthermore, we illustrate the use of this machinery on

a simple system. We refer to [127] for an overview on queues with Gaussian input,

so-called Gaussian queues.

2.1 Preliminaries on Gaussian random variables

Before introducing Gaussian inputs in Section 2.2, we first explain the concept of

Normal (or Gaussian) random variables. In addition, we discuss some well-known

properties of these variables in this section. Below we present the results that are of

importance in Part I.

A Normal random variable X with mean µ and variance σ2 has density

1√
2πσ

e−
(x−µ)2

2σ2 ,

which is denoted by X ∼ N(µ, σ2). The Moment Generating Function (MGF) of X

is given byE esX = eµs+σ2s2/2, s ∈ R .
In the special case of µ = 0 and σ = 1, we call X standard Normal. Throughout Part

I, we denote the density function of a standard Normally distributed variable X by

φ(x) :=
1√
2π
e−

x2

2 ,

34 Gaussian methodology

its distribution function by

Φ(x) :=

∫ x

−∞
φ(y)dy,

and the corresponding tail distribution by Ψ(x) := 1− Φ(x). A well-known (double)

inequality is (see page 5 of [137]):

1

x+ 1/x
φ(x) ≤ Ψ(x) ≤ 1

x
φ(x), x > 0. (2.1)

It follows that, for x→∞,

Ψ(x) ∼ 1√
2πx

e−x2/2 =: ζ(x), (2.2)

where we write f(x) ∼ g(x) when f(x)/g(x)→ 1 if x→∞.

A random variable X is d-variate Normally distributed, d ∈ N , with d-dimensional

mean vector µ and (non-singular) d× d covariance-matrix

Σ =











VarX1 C ov(X1, X2) . . . C ov(X1, Xd)C ov(X1, X2) VarX2 . . . C ov(X2, Xd)
...

...
. . .

...C ov(X1, Xd) C ov(X2, Xd) . . . VarXd











, (2.3)

i.e., X ∼ Nd(µ,Σ), if X has density

1

(2π)d/2
√

det(Σ)
exp

(

− (x− µ)TΣ−1(x− µ)

2

)

,

where det(Σ) is the determinant of the matrix Σ, and Σ−1 denotes the inverse of Σ.

Suppose now that (Y,X) is (q + d)-variate Normally distributed, where Y is q-

dimensional and X is d-dimensional. The mean vector µ and covariance matrix Σ are

partitioned as follows:

µ =

(

µY

µX

)

, with sizes

(

q × 1

d× 1

)

;

Σ =

(

ΣY Y ΣY X

ΣXY ΣXX

)

, with sizes

(

q × q q × d
d× q d× d

)

.

Then the random variable (Y |X = x), for some x ∈ R d , is Normally distributed with

mean vector µ and covariance matrix Σ, where

µ = µY + ΣY XΣ−1
XX(x− µX), (2.4)

2.2 Gaussian input 35

and

Σ = ΣY Y − ΣY XΣ−1
XXΣXY ,

i.e., (Y |X = x) ∼ Nq

(

µ,Σ
)

. The above indicates that knowing the value of X to be

x alters the mean vector and the covariance matrix of Y , as Y ∼ Nq(µY ,ΣY Y). It

is noted that, as opposed to the conditional mean µ, the conditional variance Σ does

not depend on the value x.

2.2 Gaussian input

In the previous section we introduced Normal random variables. Below we explain

the connection between these and Gaussian input.

Let {A(t), t ∈ R} be an input process, with A(0) ≡ 0. Also, let A(s, t) := A(t)−
A(s) denote the amount of traffic arriving in [s, t], s < t. Note that A(t) (−A(t))

denotes the amount of traffic generated in the interval [0, t] ([t, 0]) if t ≥ 0 (t ≤ 0).

The input process A(t) is called a Gaussian process with stationary increments, if for

all s < t, A(s, t) is Normally distributed with mean µ · (t− s) and variance v(t− s),
where µ := EA(1) and v(t−s) := VarA(s, t). Hence, the entire probabilistic behavior

of the Gaussian input process can be expressed in terms of a mean traffic rate µ and

a variance function v(·) : R+ → R+ . The assumption of stationary increments entails

that the law of A(s, t) only depends on the length of the interval, and not on its

position. We also define the centered process A(t) := A(t)− µt.
The class of Gaussian inputs is extremely rich, and this richness is best illustrated

by the variety of possible choices for the variance function v(·), see Chapter 2 of [127]

for more details. The variance function fully determines the correlation structure. To

see this, first note that, assuming 0 < s < t, we haveC ov(A(s), A(t)) = C ov(A(s), A(s) +A(s, t)) = VarA(s) + C ov(A(s), A(s, t)).

Then, using thatVarA(t) = Var(A(s) +A(s, t)) = VarA(s) + VarA(s, t) + 2C ov(A(s), A(s, t)),

we find that

Γ(s, t) := C ov(A(s), A(t)) = C ov(A(s), A(t)) =
1

2
(v(t) + v(s)− v(t− s)).

Throughout Part I we impose the following (weak) assumptions on v(·).

Assumption 2.2.1 The variance function v(·) satisfies:

A1 v(·) ∈ C1([0,∞));

A2 For some α < 2 it holds that v(t)t−α → 0, as t→∞;

A3 v(·) is strictly increasing.

36 Gaussian methodology

We need the first two assumptions to apply certain techniques, which will be defined

in Section 2.3. Assumption A3 is needed in the proofs of some lemmas and theorems.

It is noted that various measurement studies have confirmed that A1-A3 are natural

assumptions.

The class of Gaussian inputs covers a broad range of correlation structures. Im-

portantly, Gaussian models include both SRD and LRD traffic. We say that A(·)
exhibits long-range dependence if

∞
∑

k=1

C ov(A(0, 1), A(k, k + 1)) =∞,

and that A(·) is SRD otherwise (<∞).

Closely related to the notion of LRD, is the notion of self-similarity. A process

A(·) is self-similar with Hurst parameter H, H ∈ (0, 1), if

a−HA(at)
d
= A(t), ∀a > 0,

where
d
= denotes equality in distribution.

We now mention two examples of Gaussian inputs that are of importance in this

monograph, both satisfying A1-A3. We start with a fractional Brownian motion

(fBm), which has variance function v(t) = t2H , with H ∈ (0, 1), implying that fBm

exhibits self-similarity with Hurst parameter H. For H ∈ (0, 1/2) it is easy to show

that fBm is LRD, whereas forH ∈ (1/2, 1) fBm is SRD. In the special case ofH = 1/2,

fBm reduces to an ordinary Brownian motion, which has independent increments.

This illustrates that the notions of self-similarity and LRD are related in some cases,

but not equivalent. Another example of Gaussian inputs is the integrated Ornstein

Uhlenbeck (iOU) process, which has variance function v(t) = t−1+e−t. It is an easy

exercise to show that iOU exhibits short-range dependence.

We remark that Gaussian inputs are often useful as approximations of well-known

non-Gaussian input processes. We say that an input process {Ã(t), t ∈ R} with

stationary increments has the Gaussian counterpart {A(t), t ∈ R} if A(·) is Gaussian

and furthermore E Ã(t) = EA(t) and VarÃ(t) = VarA(t) for all t. In other words,

Ã(·) inherits the correlation structure of A(·). Typical examples are the Gaussian

counterpart of the Poisson stream, the M/G/∞ input model, and the purely periodic

stream. For more details we refer to Section 2.5 of [127].

A natural question that arises is whether Gaussian traffic describes real traffic

accurately. Before addressing this question, let us first recall four main characteristics

of real traffic. Typically, 1) it can be assumed that the real traffic input process is

stationary, at least over suitable time periods. Furthermore, 2) the aggregation level

at the core network is usually quite high, as the total input stream to each node

in the network consists of a superposition of a large number of individual streams.

We already argued in the previous chapter that extensive measurements showed that

2.3 Large deviations for Gaussian processes 37

3) network traffic exhibits significant positive correlation over a wide range of time

scales, and 4) the traffic rate is bursty over a wide range of time scales, i.e., it exhibits

extreme irregularity.

Let us now verify whether Gaussian inputs can capture these four properties.

Clearly, Gaussian sources have stationary increments, so property 1) is fulfilled. Gaus-

sian traffic arises as limiting process of the superposition of a large number of inde-

pendent traffic sources, and is thus appropriate if the aggregation level is sufficiently

large. In [64] it was empirically shown that a relatively low aggregation level is al-

ready sufficient for Gaussianity. A complicating issue is the fact that elastic traffic

is controlled through feedback loops like TCP. In [97] it was, however, argued that

(non-feedback) Gaussian traffic models are still justified as long as the level of aggre-

gation is sufficiently large (both in time and number of flows), implying that property

2) is satisfied. Properties 3) and 4) are respectively satisfied if the arrival process

is LRD and if the traffic rate process behaves irregularly at small time scales (i.e.,

it could have non-differentiable trajectories). Clearly, not all Gaussian inputs satisfy

these last two properties, but for example fBm with H > 1/2 is a suitable candidate.

An issue associated with Gaussian traffic is that the cumulative input process will

be (locally) decreasing, whereas the amount of real traffic generated in some interval

cannot be negative. This fact may seem troublesome at first sight, however, similar

problems appear in different settings. For example, consider the situation where the

number of successes in n Bernoulli trials is approximated by a Gaussian random

variable for large n. In this case the real distribution of the number of successes is

also closely approximated by a Normal distribution, which has R , i.e., also negative

values, as support. Although the cumulative input process will be (locally) decreasing,

this occurs with a small probability, as the cumulative input process typically has a

positive drift. In addition, as we will see in Section 2.4, the steady-state buffer content

of a Gaussian queue can always be evaluated and lives on [0,∞).

Above we provided qualitative arguments suggesting that Gaussian inputs can

describe real network traffic accurately. For more validation and justification of this

claim we refer to [138] and Chapter 3 of [127].

2.3 Large deviations for Gaussian processes

In this section we consider large deviation results for Gaussian processes. As we will

see below, large deviations are closely related to rare events. To explain the concept

of large deviations in general, we start with a number of results relating to a finite-

dimensional setting. Next we consider the infinite-dimensional framework, which is

the one corresponding to Gaussian processes, and present the theorems that are of

interest in this monograph. This section is based on Chapter 4 in [127].

38 Gaussian methodology

2.3.1 Finite-dimensional framework: Cramér’s theorem

Consider a sequence of i.i.d. random variables X1, . . . , Xn that are distributed like a

random variable X, which has mean µ := EX, with −∞ < µ <∞. The law of large

numbers states that the sample mean n−1
∑n

i=1Xi converges to µ almost surely as

n → ∞. Let us now focus on the probability that, although n → ∞, this sample

mean does deviate severely from µ. Below we wish to analyze:

P(1

n

n
∑

i=1

Xi > x

)

,

for x > µ, where n and x are fixed.

Define the MGF of X by M(θ) := E eθX , and assume that the MGF is finite in a

neighborhood of 0, so that all moments of X are finite. It is now straightforward to

show thatP(1

n

n
∑

i=1

Xi > x

)

= P (eθ
Pn

i=1 Xi > enθx
)

(2.5)

≤ e−nθxE eθ
Pn

i=1 Xi = e−nθx(M(θ))n,

for any θ ≥ 0, where we use the Markov inequality: P(Y ≥ y) ≤ EY/y for any non-

negative random variable Y , where EY < ∞. As (2.5) holds for any θ ≥ 0, it also

holds for the θ that gives the tightest upper bound:P(1

n

n
∑

i=1

Xi > x

)

≤ inf
θ≥0

e−nθx(M(θ))n = exp

(

−n sup
θ≥0

(θx− logM(θ))

)

. (2.6)

Equation (2.6) is known as the Chernoff bound and shows that the probability that

the sample mean exceeds µ decays exponentially as n increases, i.e., the decay rate,

or equivalently, the rate function equals:

J(x) := sup
θ≥0

(θx− logM(θ)) ,

where J(x) is referred to as the Fenchel-Legendre transform of logM(θ). Here J(x)

can be interpreted as a cost function: the larger the distance to the mean µ is, the

higher the cost are. It is an easy exercise to show that J(x) > 0 if x 6= µ, J(µ) = 0,

and J(·) is convex, see Exercise 4.1.1 in [127].

In turns out that the Chernoff bound is tight on a logarithmic scale. Before

we state this result, known as Cramér’s theorem [52], we first need the following

definition.

Definition 2.3.1 A sequence Y1, Y2, . . . obeys the large deviations principle (LDP)

with rate function K(·) if:

2.3 Large deviations for Gaussian processes 39

(a) For any closed set F ,

lim sup
n→∞

1

n
log P(1

n

n
∑

i=1

Yi ∈ F
)

≤ − inf
x∈F

K(x);

(b) For any open set G,

lim inf
n→∞

1

n
log P(1

n

n
∑

i=1

Yi ∈ G
)

≥ − inf
x∈G

K(x).

Theorem 2.3.2 [Cramér] Let Xi ∈ R be i.i.d. random variables, distributed as a

random variable X with mean µ and MGF M(θ) = E eθX that is finite in a neighbor-

hood of 0. Then X1, X2, . . . obeys the LDP with rate function J(·).

Using Theorem 2.3.2 and the fact that J(·) is convex, it can be proved that

lim
n→∞

1

n
log P(1

n

n
∑

i=1

Xi > x

)

= −J(x). (2.7)

Hence, Cramér’s theorem gives information on the logarithm of the probability, rather

than the probability itself. From (2.7) we conclude thatP(1

n

n
∑

i=1

Xi > x

)

= f(x, n)e−nJ(x),

where f(x, n) is not given explicitly, but known to be subexponential, i.e.,

lim
n→∞

log f(x, n)

n
= 0.

In the absence of an explicit expression for f(x, n), one may use the approximationP(1

n

n
∑

i=1

Xi > x

)

≈ e−nJ(x). (2.8)

We remark that in some cases this approximation may be inaccurate, as some poly-

nomial function nα, where α can be both positive and negative, or a function of the

type exp
(

n1−ǫ
)

, where ǫ is a small positive number, can be part of f(x, n). However,

often this approximation is useful to gain insight.

Let us now consider the probability that n−1
∑n

i=1Xi is contained in some set B.

Then we find the approximationP(1

n

n
∑

i=1

Xi ∈ B
)

≈ e−n infx∈B J(x).

40 Gaussian methodology

That is, the rate function is determined by the most likely point in the set B, i.e., the

point x∗ := arg infx∈B J(x). Clearly, if µ ∈ B then x∗ = µ and infx∈B J(x) = 0.

As may be expected, Theorem 2.3.2 can also be extended to a multivariate, say

d-dimensional with d ∈ N , version. Let 〈a, b〉 denote the inner product
∑d

i=1 aibi.

Theorem 2.3.3 [Multivariate Cramér] Let Xi ∈ R d be i.i.d. d-dimensional ran-

dom variables, distributed as a random variable X with mean µ and MGF M(θ) =E e〈θ,X〉 that is finite in a neighborhood of 0. Then the sequence X1, X2, . . . obeys the

LDP with rate function Jd(·), where

Jd(x) := sup
θ∈Rd

(〈θ, x〉 − logM(θ)). (2.9)

Considering the specific case that X is d-dimensional Normally distributed with

mean vector µ and non-singular covariance matrix Σ, see Section 2.1, we find that

logM(θ) = log E e〈θ,X〉 = 〈θ, µ〉 + 1
2θ

TΣθ. Consequently, with (x − µ)T := (x1 −
µ1, . . . , xd − µd), we deduce that

θ∗ = Σ−1(x− µ) and Jd(x) =
1

2
(x− µ)TΣ−1(x− µ),

where θ∗ denotes the optimizer in (2.9). The following theorem follows directly from

the above, and will be used in Chapter 3. We refer to Exercise 4.1.9 in [127] for more

details.

Theorem 2.3.4 Let (X,Y) ∼ N2(0,Σ), for a non-degenerate 2-dimensional covari-

ance-matrix Σ. Then,

(i) − limn→∞
1
n log P (1

n

∑n
i=1Xi ≥ x

)

= 1
2x

2/(ΣXX)2;

(ii) − limn→∞
1
n log P (1

n

∑n
i=1Xi ≥ x, 1

n

∑n
i=1 Yi ≥ y

)

= infa≥x infb≥y Λ(a, b),

where Λ(a, b) := 1
2

(

a b
)

Σ−1

(

a

b

)

and x, y > 0.

2.3.2 Infinite-dimensional framework: Schilder’s theorem

Below we present an extension of Cramér’s theorem that relates to an infinitely-

dimensional setting: the generalized version of Schilder’s theorem [15]. Whereas

‘Cramer’ can be applied to describe the likelihood of a sample mean of Normal random

variables or vectors attaining a rare value, ‘Schilder’ describes the large deviations of

the sample mean of Gaussian processes.

Let A1(·), A2(·), . . . be a sequence of i.i.d. Gaussian processes, distributed as a

Gaussian process with variance function v(·). For large values of n it is clear that the

sample mean path n−1
∑n

i=1Ai(t) approaches µt almost surely, where µ := EA1(1).

2.3 Large deviations for Gaussian processes 41

‘Schilder’ can be applied to determine the probability that the sample mean path

deviates from some mean path. In particular, it characterizes the exponential decay

rate of the sample mean path being contained in some specific set.

We continue with a description of the framework of Schilder’s sample-path large

deviations principle (LDP) (see [15], and also Theorem 1.3.27 of [53] for a more

detailed treatment). Below we assume that the processes A1(·), A2(·), . . . are centered,

but it is clear that the results for centered processes can be translated immediately

into results for non-centered processes. Define the path space Ω as

Ω :=

{

ω : R → R , continuous, ω(0) = 0, lim
t→∞

ω(t)

1 + |t| = lim
t→−∞

ω(t)

1 + |t| = 0

}

, (2.10)

which is a separable Banach space by imposing the norm

||ω||Ω := sup
t∈R |ω(t)|

1 + |t| .

We note that in [7] it was pointed out that Ai(·) can be realized on Ω under Assump-

tion A2. Then one can construct a reproducing kernel Hilbert space R ⊆ Ω, consisting

of elements that are roughly as smooth as the covariance function Γ(s, ·); for details,

see [8]. We start from a ‘smaller’ space R∗, defined by

R∗ :=

{

ω : R → R , ω(·) =

n
∑

i=1

aiΓ(si, ·), ai, si ∈ R , n ∈ N} .

The inner product on this space R∗ is, for ωa, ωb ∈ R∗, defined as

〈ωa, ωb〉R :=

〈

n
∑

i=1

aiΓ(si, ·),
n
∑

j=1

bjΓ(sj , ·)
〉

R

=

n
∑

i=1

n
∑

j=1

aibjΓ(si, sj); (2.11)

notice that this implies 〈Γ(s, ·),Γ(·, t)〉R = Γ(s, t). This inner product has the follow-

ing useful property, which is known as the reproducing kernel property,

ω(t) =
n
∑

i=1

aiΓ(si, t) =

〈

n
∑

i=1

aiΓ(si, ·),Γ(t, ·)
〉

R

= 〈ω(·),Γ(t, ·)〉R.

From this we introduce the norm ||ω||R :=
√

〈ω, ω〉R. The closure of R∗ under this

norm is defined as space R. Now we can define the rate function:

I(ω) :=

{

1
2 ||ω||2R if ω ∈ R;

∞ otherwise.
(2.12)

42 Gaussian methodology

Theorem 2.3.5 [Generalized Schilder] Let Ai(·) ∈ Ω be i.i.d. centered Gaussian

processes, with variance function v(·) satisfying Assumptions A1 and A2. Then the

sequence A1(·), A2(·), . . . obeys the LDP with rate function I(·).

Recall that an LDP consists of an upper and lower bound, which apply to closed and

open sets, respectively. We will use Theorem 2.3.5 for certain open sets (to be defined

in the next chapters). It can be verified that these sets U are such that

inf
ω∈U

I(ω) = inf
ω∈U

I(ω),

where U is the closure of U . The way to prove this is to show that an arbitrarily

chosen path in U can be approximated by a path in U , see [142] and Appendix A

of [130].

Now consider the probability that the sample mean path of n i.d.d. Gaussian

processes is contained in some set of paths E. Then ‘Schilder’ yields the approximation

P(1

n

n
∑

i=1

Ai(·) ∈ E
)

≈ exp

(

−n inf
f∈E

I(f)

)

. (2.13)

Hence, the decay rate is dominated by the path in the set E that minimizes I(f),

i.e., the path f∗ = arg inff∈E I(f). We refer to f∗ as the most probable path (MPP),

as the decay rate of (2.13) is fully determined by the likelihood of this most likely

path in E. That is, given that the sample mean path is contained in the set E, with

overwhelming probability this happens by a path that is close to f∗.

A problem that arises is that, as we saw above, there is only an explicit expression

for I(f) available if f corresponds to a linear combination of covariance functions.

Another difficulty is that the optimization should be performed over all paths f ∈ E,

which are infinitely dimensional objects. Nevertheless, if we find such a minimizing

path f∗, then this is useful in order to gain insight into the dynamics of a problem.

In Section 2.5 we explicitly derive the MPPs in a simple system.

There exists also a version of Schilder’s theorem relating to multi-dimensional

Gaussian processes. In particular, we will use the framework that corresponds to

two-dimensional Gaussian processes in Chapters 3 and 4. The formulation of this

framework is nearly identical to the above, but more involved, and is therefore left out.

2.4 Gaussian queues

Consider the process {A(t)− ct, t ≥ 0}, where A(t) is a Gaussian process and c > 0

is a scalar. The reflection of this process at zero is referred to as a Gaussian queue.

Due to the stationary increments, it is clear that a sufficient condition for stability

of this system is that µ < c. In Chapter 1 we already argued that the steady-state

2.4 Gaussian queues 43

buffer content of such a queue can be represented as

Q := sup
t≥0
{A(−t, 0)− ct},

given that this stability condition is satisfied.

As mentioned before, an inherent conceptual problem of Gaussian queues is that

the input process can be negative. However, irrespective of whether A(t) corresponds

to negative traffic or not, Q can always be evaluated and lives on [0,∞).

We remark that Gaussian queues are in general hard to analyze. In particular,

only the cases of the Brownian motion and the Brownian bridge (that is, a standard

Brownian motion conditioned on B(1) = 0) result in explicit expressions for the

steady-state buffer content distribution, see Section 2.5. To gain insight, one often

resorts to either approximations or asymptotics.

2.4.1 Approximation

As the steady-state buffer content distribution of Gaussian queues is intractable in

general, this has motivated the derivation of approximations for the situation of a

general correlation structure. Let us focus on the overflow probability P(Q > b), with

b ≥ 0. In e.g. [65, 127] the following approximation was suggested:P(Q > b) ≈ exp

(

− inf
t≥0

(b+ (c− µ)t)2

2v(t)

)

.

The above approximation is obtained by using thatP(Q > b) = P(sup
t≥0
{A(−t, 0)− ct} > b

)

≈ sup
t≥0

P(A(−t, 0) > b+ ct),

realizing that A(−t, 0) ∼ N(µt, v(t)), and subsequently applying the Chernoff bound.

It is noted that the analysis of Chapter 5 is based on this approximation. Interest-

ingly, it turns out that the approximation is exact for the Brownian motion and the

Brownian bridge, see Example 5.4.2 in [127].

2.4.2 Asymptotics

The relevance of asymptotics can best be illustrated by considering two examples

of interest. We already mentioned in Chapter 1 that both packet losses (due to

buffer overflow) and packet delay strongly determine the QoS as perceived by users.

Particularly for data applications, the loss is only allowed to exceed some specific

value with extremely small probability. Hence, the (exponential) decay rate of the loss

probability is an important performance measure, as it can be used to approximate

the loss probability. Similarly, for most real-time applications the delay can only

44 Gaussian methodology

exceed some specific threshold with extremely small probability, implying that the

decay rate of the delay probability is also a useful measure.

Asymptotics may clearly serve as approximations of the probabilities of interest,

and they have the important additional advantage that they often provide useful qual-

itative insights, while they remain computationally tractable. Recall that asymptotics

are closely connected to the probabilities of rare events. Typically, the most likely

way for a rare event to occur is fairly simple, and can be directly deduced from the

results, as will be illustrated in the next section.

Two types of asymptotics are widely used, namely: large-buffer asymptotics and

many-sources asymptotics. Within each of these two regimes, we also distinguish

between logarithmic and exact asymptotics. Below we briefly discuss each of the

four cases of asymptotics. As a side remark we mention that in practice most (real-

time) applications do not tolerate large delays, hence the large-buffer asymptotics are

not always appropriate. It can be argued that in those situations the many-sources

asymptotic regime is more justified.

Logarithmic large-buffer asymptotics

In order to find the logarithmic large-buffer asymptotics, we need to derive a function

f1(b) ∈ R+ , such that

log P(Q > b) ∼ −f1(b), b→∞, (2.14)

i.e., we need to find the decay rate.

Exact large-buffer asymptotics

In case the logarithmic large-buffer asymptotics are characterized, i.e., f1(b) is known,

it follows from (2.14) thatP(Q > b) ∼ g1(b)e−f1(b), b→∞,

where the function g1(b) is such that

lim
b→∞

log g1(b)

f1(b)
= 0.

If the functions f1(b) and g1(b) are both explicitly found, then we say that one has

determined the exact large-buffer asymptotics. It is clear that the exact asymptotics

are more refined than the logarithmic asymptotics, i.e., if the exact asymptotics are

known, then they effectively also yield the logarithmic asymptotics. Exact asymp-

totics are often considerably harder to obtain though.

2.5 Brownian queues 45

B(·)
c

Figure 2.1: Single-node queue

Logarithmic many-sources asymptotics

In order to find the logarithmic many-sources asymptotics, we need to derive a func-

tion f2(b) ∈ R+ , such that

1

n
log P(Qn > nb) ∼ −f2(b), n→∞, (2.15)

where Qn denotes the steady-state buffer content of the queue under consideration

in a system with n i.i.d. inputs, and where the link capacity is also scaled by n, i.e.,

c← nc. We note that the decay rates f1(b) and f2(b) are not necessarily equal.

Exact many-sources asymptotics

From (2.15) it follows thatP(Qn > nb) ∼ g2(b, n)e−nf2(b), n→∞,

where g2(b, n) is typically not calculated, but known to be a subexponential func-

tion. In case both f2(b) and g2(b, n) are explicitly known, one has found the exact

many-sources asymptotics. Again, the exact asymptotics are more refined than the

logarithmic asymptotics.

2.5 Brownian queues

In the remainder of this chapter we consider the reflection of the process {B(t)−ct, t ≥
0}, where B(t) is a standard Brownian motion (with B(0) ≡ 0), denoting the amount

of traffic entering the system in the interval [0, t], and c > 0 is the service capacity

of the node. The reflection of {B(t)− ct, t ≥ 0} at zero is referred to as a Brownian

queue, which is a special kind of Gaussian queue, see Figure 2.1 for an illustration.

Ordinary Brownian input plays an important role in this monograph, as the use of

Brownian input often results in explicit expressions for performance measures, thereby

providing valuable insight. Brownian motions can be used to approximate weakly-

dependent traffic streams, cf. also the celebrated ‘Central Limit Theorem in functional

form’. Its mean and variance function are characterized through µ = 0 and v(t) = t,

respectively. It can be verified that Γ(s, t) = C ov(B(s), B(t)) = min{|s|, |t|} if s, t ≥ 0

or s, t < 0, and Γ(s, t) = 0 otherwise. Let B(s, t) = B(t) − B(s) denote the amount

of traffic generated in the interval [s, t], s < t. The goal of this section is to show how

46 Gaussian methodology

the machinery that was presented earlier in this chapter can be used. We remark that

some of the results that are derived below are already known, as the Brownian queue

has been well-studied in the past, see e.g. [2, 3, 4, 75]. However, those results were

obtained in a completely different and perhaps less transparent manner.

2.5.1 Useful properties

We already mentioned that the steady-state buffer content distribution of a Brownian

queue is tractable. In fact, in [156] it was shown that it is exponentially distributed

with mean 1/(2c). That is,P(Q ≤ b) = P(sup
t≥0
{B(−t, 0)− ct} ≤ b

)

= P(sup
t≥0
{B(0, t)− ct} ≤ b

)

= P (∀t ≥ 0 : B(t) ≤ b+ ct) = 1− e−2bc, (2.16)

with b, c ≥ 0, i.e., the probability that a standard Brownian motion stays below the

function b+ ct for all t ≥ 0, equals 1− exp(−2bc).

Another useful property is that [125]P(∀t ∈ [0, 1] : B(t) ≤ b+ ct|B(1) = 0) = 1− e−2b(b+c), (2.17)

with b, c ≥ 0, i.e., the probability that a Brownian bridge stays below the function

b + ct, for all t ∈ [0, 1], equals 1 − exp(−2b(b + c)). We can exploit (2.17) to derive

that [125]P (∀t ∈ [0, u] : B(t) ≤ b+ ct|B(u) = x)

= P (∀s ∈ [0, 1] : B(su) ≤ b+ csu|B(u) = x)

= P (∀s ∈ [0, 1] :
√
uB(s) ≤ b+ csu|√uB(1) = x

)

= P(∀s ∈ [0, 1] : B(s) ≤ b√
u

+ cs
√
u|B(1) =

x√
u

)

= P(∀s ∈ [0, 1] : B(s) ≤ b√
u

+ cs
√
u− sx√

u

∣

∣

∣

∣

B(1) = 0

)

,

= P(∀s ∈ [0, 1] : B(s) ≤ b√
u

+

(

c
√
u− x√

u

)

s

∣

∣

∣

∣

B(1) = 0

)

= 1− e−2 b√
u

�
b√
u

+c
√

u− x√
u

�
, (2.18)

with b, c, u ≥ 0 and x ∈ [0, b+ cu], where we use that a standard Brownian motion is

self-similar with H = 1/2. The above results can also easily be extended to general

Brownian input, with drift µ > 0 and variance v(t) = λt, λ > 0, as we will see below

and in the next chapters.

2.5 Brownian queues 47

The rate function given in Equation (2.12) simplifies considerably in case of stan-

dard Brownian input. Using (2.11) and the definition of Γ(s, t) for standard Brownian

input, it can be shown (see Theorem 5.2.3 of [52]) that (2.12) is equivalent to

I(ω) =

{

1
2

∫∞
−∞(ω′(t))2dt if ω ∈ R;

∞ otherwise.
(2.19)

In the remainder of this section we analyze the transient behavior of a Brownian

queue. In particular, we explicitly derive the joint distribution function

p(b, T) := P(Q0 > b0, QT > bT),

where b0, bT ≥ 0, b = (b0, bT), T > 0, and Qt denotes the workload at time t ≥ 0,

assuming that the workload process is in stationarity at t = 0. This also allows us

to explicitly calculate the covariance of Q0 and QT . By setting b0 = b, bT = αb,

and T = γb, with α, γ ≥ 0, and letting b → ∞, we also obtain the exact large-buffer

asymptotics, i.e., we find a function f(·) such that P(Q0 > b,Qγb > γb)/f(b)→ 1 as

b→∞. It turns out that the nature of the asymptotics depends on the value of α, γ,

and the service rate c of the queue, i.e., there are various regimes. These regimes can

be further interpreted relying on Schilder’s sample-path large deviations theorem. In

particular, we obtain the MPP, i.e., the most likely way for the buffer to fill.

2.5.2 Joint distribution function

In this subsection we derive a closed-form expression for p(b, T). It turns out that it is

easier to first calculate p(b, T) := P(Q0 ≤ b0, QT ≤ bT). Recall that Φ(·) denotes the

distribution function of a standard Normal random variable. According to Reich’s

formula [155],

Q0 = sup
t≥0
{B(−t, 0)− ct} and QT = sup

s≥0
{B(T − s, T)− cs}. (2.20)

Hence, we find that

p(b, T) = P(sup
t≥0
{B(−t, 0)− ct} ≤ b0, sup

s≥0
{B(T − s, T)− cs} ≤ bT

)

= P(∀s, t ≥ 0 : B(−t, 0) ≤ b0 + ct, B(T − s, T) ≤ bT + cs)

= P(∀s, t ≥ 0 : B(T, t+ T) ≤ b0 + ct, B(0, s) ≤ bT + cs),

where the last line is obtained by using time reversibility of Brownian motion. Now,
conditioning on the value of B(0, T), we obtain that

p(b, T) =

Z bT +cT

−∞
P(∀s ∈ [0, T) : B(0, s) ≤ bT + cs|B(0, T) = x)×P(∀t ≥ 0 : ∀s ≥ T : B(T, t + T) ≤ b0 + ct, B(0, s) ≤ bT + cs|B(0, T) = x)

dP(N(0, T) ≤ x).

48 Gaussian methodology

Let us first focus on the first term in the above integral. Using (2.18), we obtain thatP(∀s ∈ [0, T) : B(0, s) ≤ bT + cs|B(0, T) = x)

= 1− exp (−2bT c− 2bT (bT − x)/T) . (2.21)

Proceeding with the second term in the integral, we find thatP(∀t ≥ 0 : ∀s ≥ T : B(T, T + t) ≤ b0 + ct, B(0, s) ≤ bT + cs|B(0, T) = x)

= P(∀t ≥ 0 : ∀s ≥ T : B(T, T + t) ≤ b0 + ct, B(T, s) ≤ bT + cs− x)
= P(∀s, t ≥ 0 : B(T, T + t) ≤ b0 + ct, B(T, T + s) ≤ bT + (s+ T)c− x)
= P(∀s, t ≥ 0 : B(0, t) ≤ b0 + ct, B(0, s) ≤ bT + (s+ T)c− x)
= P(∀t ≥ 0 : B(0, t) ≤ min{b0, bT + cT − x}+ ct).

Exploiting (2.16), we deduce thatP(∀t ≥ 0 : ∀s ≥ T : B(T, T + t) ≤ b0 + ct, B(0, s) ≤ bT + cs|B(0, T) = x)

= P(∀t ≥ 0 : B(0, t) ≤ min{b0, bT + cT − x}+ ct)

=

{

1− exp(−2b0c) if x ≤ bT + cT − b0;
1− exp(−2(bT + cT − x)c) if x > bT + cT − b0.

(2.22)

Theorem 2.5.1 For each b0, bT , T ≥ 0,

p(b, T) = −Φ
(

k1(b, T)
)

+ e−2bT cΦ
(

k2(b, T)
)

+

e−2b0cΦ
(

k3(b, T)
)

+ e−2(b0+bT)cΦ
(

k4(b, T)
)

,

where

k1(b, T) =
−bT − cT − b0√

T
; k2(b, T) =

bT − cT − b0√
T

;

k3(b, T) =
−bT − cT + b0√

T
; k4(b, T) =

−bT + cT − b0√
T

.

Proof: Using (2.21) and (2.22), we obtain that p(b, T) equals

∫ bT +cT−b0

−∞

(

1− exp

(

−2bT c− 2
bT (bT − x)

T

))

×

(1− exp(−2b0c)) dP(N(0, T) ≤ x)
+

∫ bT +cT

bT +cT−b0

(

1− exp

(

−2bT c− 2
bT (bT − x)

T

))

×

(1− exp(−2(bT + cT − x)c)) dP(N(0, T) ≤ x).

2.5 Brownian queues 49

It is a straightforward exercise to show that the first integral is equal to

(1− exp(−2b0c))

(

Φ

(

bT + cT − b0√
T

)

− exp(−2bT c)Φ

(−bT + cT − b0√
T

))

,

whereas the second integral equals

1− Φ

(−bT − cT − b0√
T

)

− Φ

(

bT + cT − b0√
T

)

+

exp(−2bT c)

(

Φ

(−bT + cT − b0√
T

)

+ Φ

(

bT − cT − b0√
T

)

− 1

)

.

Using that P(Qi ≤ bi) = 1 − exp(−2bic), i = 0, T , see (2.16), and that 1 − Φ(x) =

Φ(−x), the stated follows from

p(b, T) = 1− P(Q0 ≤ b0)− P(QT ≤ bT) + p(b, T). ✷

2.5.3 Covariance function

In the previous subsection we derived a closed-form expression for p(b, T). This result

also allows us to calculate the covariance of Q0 and QT , i.e., C ov(Q0, QT), which we

present in the next theorem.

Theorem 2.5.2 For each T ≥ 0,

θ(T) := C ov(Q0,QT) (2.23)

=

(

−c
2T 2

2
− T +

1

2c2

)

(

1− Φ(c
√
T)
)

+ φ(c
√
T)

(

cT
√
T

2
+

√
T

2c

)

.

Proof: First recall that C ov(Q0, QT) = EQ0QT − EQ0EQT . Then use the well-

known fact that Q0 and QT are both exponentially distributed with mean 1/(2c),

i.e., EQ0EQT = 1/(4c2). Hence, we are left with the computation of EQ0QT . Using

Theorem 2.5.1, we find thatEQ0QT =

∫ ∞

0

∫ ∞

0

p(b, T)db0dbT

= −
∫ ∞

0

∫ ∞

0

Φ
(

k1(b, T)
)

db0dbT +

∫ ∞

0

∫ ∞

0

e−2bT cΦ
(

k2(b, T)
)

db0dbT

+

∫ ∞

0

∫ ∞

0

e−2b0cΦ
(

k3(b, T)
)

db0dbT

+

∫ ∞

0

∫ ∞

0

e−2(b0+bT)cΦ
(

k4(b, T)
)

db0dbT .

By interchanging the order of integration, and applying integration by parts, straight-

forward (though tedious) calculus yields that

−
∫ ∞

0

∫ ∞

0

Φ
(

k1(b, T)
)

db0dbT (2.24)

50 Gaussian methodology

= −
(

T

2
+
c2T 2

2

)

(

1− Φ(c
√
T)
)

+
cT
√
T

2
φ(c
√
T);

∫ ∞

0

∫ ∞

0

e−2bT cΦ
(

k2(b, T)
)

db0dbT (2.25)

=

(

1

2c2
− T

2

)

(

1− Φ(c
√
T)
)

+

√
T

2c
φ(c
√
T);

∫ ∞

0

∫ ∞

0

e−2b0cΦ
(

k3(b, T)
)

db0dbT (2.26)

=

(

1

2c2
− T

2

)

(

1− Φ(c
√
T)
)

+

√
T

2c
φ(c
√
T);

∫ ∞

0

∫ ∞

0

e−2(b0+bT)cΦ
(

k4(b, T)
)

db0dbT

=

(

T

2
− 1

4c2

)

(

1− Φ(c
√
T)
)

+
1

4c2
Φ(c
√
T)−

√
T

2c
φ(c
√
T). (2.27)

Adding up (2.24)-(2.27), and subtracting 1/(4c2) yields the stated. ✷

It is noted that θ(0) = VarQ0 = 1/(4c2), which is equivalent to the variance of

an exponentially distributed variable with mean 1/(2c), as required. Also, note that

limT→∞ θ(T) → 0, as Q0 and QT become less and less correlated as T → ∞. The

following proposition summarizes three properties of θ(·). This proposition implies

that (1− θ(·))/VarQ0 is a distribution function on [0,∞).

Proposition 2.5.3 θ(·) is non-increasing, convex and non-negative on [0,∞).

Proof: θ(T) is non-increasing on [0,∞) if θ′(T) ≤ 0, i.e.,

−
(

1 + c2T
)

(

1− Φ(c
√
T
)

+ c
√
Tφ
(

c
√
T
)

≤ 0,

which is equivalent to

φ
(

c
√
T
)

1− Φ
(

c
√
T
) ≤ c

√
T +

1

c
√
T
. (2.28)

Likewise, θ(T) is convex on [0,∞) if θ′′(T) ≥ 0, i.e.,

−c2
(

1− Φ(c
√
T
)

+
c√
T
φ
(

c
√
T
)

≥ 0,

or equivalently,

φ
(

c
√
T
)

1− Φ
(

c
√
T
) ≥ c

√
T . (2.29)

2.5 Brownian queues 51

Recalling the standard equality (2.1), it is easily seen that both (2.28) and (2.29)

hold. Since θ(T) is non-increasing and limT→∞ θ(T) → 0, we also must have that

θ(T) is non-negative. ✷

The next proposition presents the exact asymptotics of θ(T).

Proposition 2.5.4 If T →∞,

θ(T) ∼ 4

c5T
√
T
φ
(

c
√
T
)

. (2.30)

Proof: First use that [5]

(1− Φ(g(x))) ∼
(

1

g(x)
− 1

(g(x))3
+

3

(g(x))5
− 15

(g(x))7

)

φ(g(x)) (2.31)

if g(x) is increasing and x → ∞. Using (2.31) and Theorem 2.5.2, it can then be

verified that

θ(T) ∼
(

4

c5T
√
T

+
16 1

2

c7T 2
√
T
− 7 1

2

c9T 3
√
T

)

φ
(

c
√
T
)

∼ 4

c5T
√
T
φ
(

c
√
T
)

.

We note that the correct exact asymptotics of θ(T) can only be obtained, if all four

terms of the right-hand side of (2.31) are used. ✷

Remark: The correlation coefficient of Q0 and QT is given by

ρ(T) := C or(Q0, QT) =
C ov(Q0, QT)√VarQ0

√VarQT
= 4c2θ(T), (2.32)

as both Q0 and QT are exponentially distributed with mean 1/(2c). Note that ρ(0) =

1 and limT→∞ ρ(T) → 0. Due to (2.32), we also have that ρ(T) is non-increasing,

convex and non-negative on [0,∞), and that

ρ(T) ∼ 16

c3T
√
T
φ
(

c
√
T
)

.

Hence, the exponential decay rate of both θ(T) and ρ(T) equals
(

c2T
)

/2.

It is noted that Theorem 2.5.2 and Propositions 2.5.3 and 2.5.4 have already

(partly) appeared (for ρ(T), instead of θ(T)) in [4]. However, it is noted that our

derivations are completely different compared to the ones given in [4]. We rely on

Reich’s formula to obtain the results, whereas [4] does not use this formula implicitly.

It turns out that Proposition 2.5.3 also extends to the class of Lévy inputs, i.e., arrival

processes with stationary, independent increments, see Theorem 3.6 in [61]. This class

comprises, besides Brownian input, also compound Poisson input as special case.

52 Gaussian methodology

2.5.4 Exact large-buffer asymptotics

In this subsection we derive the exact asymptotics of p(b, T). We first present the

following useful lemma.

Lemma 2.5.5 Let b0 = b, bT = αb and T = γb, with α, γ ≥ 0. If b→∞, then

Φ(k1(b, T)) ∼ −ζ(k1(b, T));

Φ(k2(b, T)) ∼







−ζ(k2(b, T)) if α < 1 + cγ;

1/2 if α = 1 + cγ;

1 otherwise;

Φ(k3(b, T)) ∼







−ζ(k3(b, T)) if α > 1− cγ;
1/2 if α = 1− cγ;
1 otherwise;

Φ(k4(b, T)) ∼







−ζ(k4(b, T)) if α > cγ − 1;

1/2 if α = cγ − 1;

1 otherwise,

where ζ(·) is as defined in (2.2).

Proof: First determine for which values of bT /b0 = α, ki(b, T), i ∈ {1, 2, 3, 4}, is

positive or negative. Note that k1(b) is always negative. Hence, we obtain 1 + cγ,

1 − cγ and cγ − 1 as critical values from ki(b), i = 2, 3, 4, respectively. Next use the

fact that Φ(−u) ∼ ζ(u) and Φ(u) ∼ 1 as u→∞. Observe that Φ(0) = 1/2. ✷

We remark that −ζ(ki(b, T)) is positive in Lemma 2.5.5, as ζ(ki(b, T)) is negative

in the listed cases, i = 1, . . . , 4. Define

γ(b, T) := 2b0c+
(−bT − cT + b0)

2

2T
.

Theorem 2.5.6 Let b0 = b, bT = αb, T = γb, with α, γ ≥ 0. Suppose cγ > 1.
For b→∞,

p(b, T) ∼

8>>>>>>><>>>>>>>:
e−2(b0+bT)c if 0 ≤ α <

�√
cγ − 1

�2
;�

1− 1√
2πk2(b,T)

− 1√
2πk3(b,T)

�
e−2(b0+bT)c if α =

�√
cγ − 1

�2
;�

− 1√
2πk2(b,T)

− 1√
2πk3(b,T)

�
e−γ(b,T) if

�√
cγ − 1

�2
< α < 1 + cγ;�

1
2
− 1√

2πk3(b,T)

�
e−2bT c if α = 1 + cγ;

e−2bT c if α > 1 + cγ.

2.5 Brownian queues 53

Proof: We only prove the last statement, as the other four statements follow in a

similar way. We have to prove that

p(b, T)e2bT c → 1 as b→∞, for α > 1 + cγ.

From Lemma 2.5.5 we obtain that for α > 1 + cγ,

Φ(k1(b, T)) ∼ −ζ(k1(b, T)); Φ(k2(b, T)) ∼ 1;

Φ(k3(b, T)) ∼ −ζ(k3(b, T)); Φ(k4(b, T)) ∼ −ζ(k4(b, T)).

Now straightforward calculus shows that, as b→∞,

Φ(k1(b, T)) = o
(

e−2bT c
)

,

and the same applies for Φ(k3(b, T))e−2b0c and Φ(k4(b, T))e−2(b0+bT)c. Using that

Φ(k2(b, T)) ∼ 1, Theorem 2.5.1 implies the stated. ✷

The following two theorems can be proven in a similar fashion as Theorem 2.5.6.

Theorem 2.5.7 Let b0 = b, bT = αb, T = γb, with α, γ ≥ 0. Suppose cγ = 1.

For b→∞,

p(b, T) ∼























e−2b0c if α = 0;
(

− 1√
2πk2(b,T)

− 1√
2πk3(b,T)

)

e−γ(b,T) if 0 < α < 1 + cγ;
(

1
2 − 1√

2πk3(b,T)

)

e−2bT c if α = 1 + cγ;

e−2bT c if α > 1 + cγ.

Theorem 2.5.8 Let b0 = b, bT = αb, T = γb, with α, γ ≥ 0. Suppose cγ < 1.

For b→∞,

p(b, T) ∼



































e−2b0c if 0 ≤ α < 1− cγ;
(

1
2 − 1√

2πk2(b,T)

)

e−2b0c if α = 1− cγ;
(

− 1√
2πk2(b,T)

− 1√
2πk3(b,T)

)

e−γ(b,T) if 1− cγ < α < 1 + cγ;
(

1
2 − 1√

2πk3(b,T)

)

e−2bT c if α = 1 + cγ;

e−2bT c if α > 1 + cγ.

2.5.5 Most probable path

In the previous subsection it was shown that the nature of the large-buffer asymptotics

strongly depends on the model parameters α, γ, and c, i.e., there are multiple regimes.

In this subsection we will interpret these regimes by exploiting sample-path large

54 Gaussian methodology

deviations results. Schilder’s theorem, as introduced in Section 2.3, implies that the

exponential decay rate of the joint overflow probability is characterized by the path

that minimizes the decay rate. Among all paths such that the buffer exceeds b0 and

bT at time 0 and T respectively, this is the MPP: informally speaking, given that this

rare event occurs, with overwhelming probability (b0, bT) is reached by a path ‘close

to’ the MPP.

In order to apply ‘Schilder’, we feed the single-node network by n i.i.d. standard

Brownian sources. The link rate and buffer thresholds are also scaled by n: nc, nb0
and nbT , respectively. Using (2.20), pn(b, T) can be expressed as

P(1

n

n
∑

i=1

Bi(·) ∈ S
)

,

where

S := {f ∈ Ω|∃s, t ≥ 0 : −f(−t) > b0 + ct, f(T)− f(T − s) > bT + cs} ,

and Ω is as defined in Equation (2.10).

We already argued in Section 2.3 that we can replace ‘>’ by ‘≥’ in S, which

is denoted as the set S, without any impact on the decay rate of pn(b, T). From

‘Schilder’ it then follows that

J(b, T) := − lim
n→∞

1

n
log pn(b, T) = inf

f∈S
I (f) = inf

f∈S

I (f).

As we will see below, depending on the value of b0, bT , c, and T , various regimes of

asymptotics exist. Recall from Section 2.3 that knowledge of the MPP automatically

implies that the decay rate is characterized, as the MPP translates in the decay rate

through Equation (2.19). In the remainder of this subsection we explicitly derive

J(b, T) by determining the MPPs corresponding to the various regimes.

Let us first define

U := {f ∈ Ω|∃t ≥ 0 : −f(−t) ≥ b0 + ct} ;

V := {f ∈ Ω|∃s ≥ 0 : f(T)− f(T − s) ≥ bT + cs} ,
i.e., U (V) is the collection of all paths that yield a buffer content of at least b0 (bT)

at time 0 (T). It follows that S is a subset of both U and V , i.e., S ⊆ U and S ⊆ V ,

implying that

J(b, T) ≥ inf
f∈U

I(f); J(b, T) ≥ inf
f∈V

I(f). (2.33)

From the above it follows that there is equality in one of the inequalities of (2.33), if

either the MPP in U or V (or both) is also contained in the set S.

2.5 Brownian queues 55

Fortunately, the MPPs in U and V are already available, see e.g. [7]. The MPP

in U is given by, for r ∈ [−b0/c, 0],

f∗(r) = E (B(r)| −B(−b0/c) = 2b0).

The MPP is only specified on the interval [−b0/c, 0], because outside this interval the

MPP generates traffic with mean rate µ = 0. Using (2.4), it can then be verified that,

for r ∈ [−b0/c, 0], (f∗)′(r) = 2c, whereas the derivative of this path is equal to zero

outside this interval. In other words, the buffer starts to build up with constant rate

2c− c = c at time −b0/c, which leads to Q0 = (b0/c)c = b0, as required. Let us now

determine the cost of this MPP. Using (2.19), we find that

I(f∗) =
1

2

b0
c

(2c)2 = 2b0c.

The MPP in V has a similar structure as the one above, but now the buffer grows

with constant rate c in the interval [T − bT /c, T], which eventually gives QT = bT , as

required. The cost of this path can be derived in a similar manner and equal 2bT c.

We are now ready to provide some explanation for each of the regimes of Theo-

rems 2.5.6-2.5.8. Let us start with the regime α ≥ 1 + cγ in Theorems 2.5.6-2.5.8.

Using that α = bT /b0 and γ = T/b0, it is easily seen that we can rewrite α ≥ 1 + cγ

as bT − cT ≥ b0. Subsequently, it is straightforward to show that the MPP in V is

also contained in S under this regime, i.e., overflow of the buffer at time T implies

overflow at time 0 without any additional effort. As the MPP in the set V is contained

in S ⊆ V , it is also the MPP in the set S. In other words, J(b, T) is equal to 2bT c,

given that bT − cT ≥ b0. The MPP is depicted in Figure 2.2 (top, left).

Next consider the regime 0 ≤ α ≤ 1− cγ in Theorems 2.5.7-2.5.8, or equivalently

bT ≤ b0− cT . In this case one can verify that the MPP in the set U is also contained

in the set S, and therefore it is the MPP in S. Thus, overflow at time 0 implies

overflow at time T without any extra effort. We conclude that J(b, T) equals 2b0c,

given that bT ≤ b0 − cT . The MPP is depicted in Figure 2.2 (top, right).

We proceed with the regime 0 ≤ α ≤ (
√
cγ−1)2 in Theorem 2.5.6, or equivalently

T ≥ (
√
b0 +

√
bT)2/c. Consider the path that is such that the buffer builds up

with rate c in the interval [−b0/c, 0], empties with rate c in the interval (0, b0/c), is

empty in the interval [b0/c, T − bT /c), and is growing again with rate c in the interval

[T − bT /c, T], i.e., the MPP of U and V combined. It can be verified that this path is

contained in the set S if T ≥ (
√
b0 +
√
bT)2/c. In Section 2.5.6 we show that this path

is in fact the MPP in S. In that case, J(b, T) can be obtained by using (2.19), and

equals 2b0c + 2bT c. Clearly, this is no surprise, as the path consists of the MPP of

U and V . Note that this suggests that Q0 and QT behave (almost) independently if,

compared to b0 and bT , T is large enough, as may be expected. The MPP is depicted

in Figure 2.2 (bottom, left).

56 Gaussian methodology

0

Q0

b0

bT

c

bT − cT

QT

T − bT/c T
t

0

Q0 QT

−b0/c

b0

c

−c
b0 − cT

bT

T
t

0−b0/c

c

Q0

b0

−c

b0/c T − bT/c

c

QT

bT

T
t

0−b0/c

c

Q0

b0

(bT − b0)/T

bT

QT

T
t

Figure 2.2: The most probable storage paths in {Q0 ≥ b0, QT ≥ bT }.

We now focus on the remaining regimes of Theorems 2.5.6-2.5.8. Consider the

path that is such that the buffer builds up with rate c in the interval [−b0/c, 0], and

grows with rate (bT−b0)/T in the interval (0, T]. Clearly, this path yields Q0 = b0 and

QT = bT , and is thus contained in S. In Section 2.5.6 we show that this path is in fact

the MPP for the remaining regimes. Assuming that this is indeed the case, J(b, T)

is obtained by using (2.19), and equals γ(b, T). The MPP is depicted in Figure 2.2

(bottom, right).

The following two theorems are presented without proof, as they summarize the

above-mentioned statements.

Theorem 2.5.9 Suppose cT > b0. Then it holds that

J(b, T) ∼



















2(b0 + bT)c if 0 ≤ bT ≤
(√

cT −
√
b0

)2

;

γ(b, T) if
(√

cT −
√
b0

)2

< bT < b0 + cT ;

2bT c if bT ≥ b0 + cT.

Theorem 2.5.10 Suppose cT ≤ b0. Then it holds that

J(b, T) ∼







2b0c if 0 ≤ bT ≤ b0 − cT ;

γ(b, T) if b0 − cT < bT < b0 + cT ;

2bT c if bT ≥ b0 + cT.

2.5 Brownian queues 57

2.5.6 Discussion

Using Theorems 2.5.6-2.5.8, the logarithmic large-buffer asymptotics can easily be

derived as well. That is, we need to find a function J∗(bα, Tγ), with bα ≡ (b, αb) and

Tγ ≡ γb, such that

lim
b→∞

− log P (Q0 > b,Qγb > αb)

J∗(bα, Tγ)
= 1,

where α, γ ≥ 0. With b = b0, αb = bT , i.e., bα = b, and γb = Tγ = T , it is not hard to

see that J∗(bα, Tγ) equals J(b, T); compare Theorems 2.5.6-2.5.8 with Theorems 2.5.9-

2.5.10, respectively. Indeed, since we assumed that in the many-sources framework

the standard Brownian sources are i.i.d., and because a standard Brownian motion

is characterized by independent increments, J∗(bα, Tγ) and J(b, T) should match, see

for instance Example 7.4 in [65]. Recall that in the previous subsection we argued

that the paths depicted in Figure 2.2 are MPPs in the set S. From the above we

conclude that this is indeed correct.
In the analysis we assumed that the input process was a standard Brownian mo-

tion, i.e., no drift and v(t) = t. We now show how the results can be extended to
general Brownian input, with drift µ > 0 and variance v(t) = λt, λ > 0. Clearly, we
should have that c > µ > 0 to ensure stability. We denote the input process of a
general Brownian motion by {B∗(t), t ∈ R}. Then

p(b, T) = P �sup
t≥0
{B∗(−t, 0)− ct} > b0, sup

s≥0
{B∗(T − s, T)− cs} > bT

�
= P (∃s, t ≥ 0 : B∗(−t, 0) > b0 + ct, B∗(T − s, T) > bT + cs)

= P �∃s, t ≥ 0 : B(−t, 0) >
b0√
λ

+
(c− µ)t√

λ
, B(T − s, T) >

bT√
λ

+
(c− µ)s√

λ

�
.

Hence, in order to generalize the results of this section, it follows that we have to set

c← (c− µ)/
√
λ and bi ← bi/

√
λ, i = 0, T there. In order to generalize the results of

Section 2.5.3 on the covariance, in addition we need to multiply the right-hand side

of (2.23) and (2.30) by
√
λ
√
λ = λ. The results on the correlation coefficient can be

generalized in a similar way.

In this section we studied the joint distribution function of the workloads at time

0 and time T , the covariance of these workloads, large-buffer asymptotics, and the

MPP leading to overflow. It is noted that one may also derive an explicit expression

for

q(b, T) := P(QT > bT |Q0 = b0),

by using p(b, T), see [115] for more details.

Chapter 3

Simple networks of Brownian queues

In the previous chapter we considered a Brownian queue, i.e., a single-node network

with Brownian input. Before analyzing GPS systems in Chapters 4 and 5, we first

need to gain more insight by extending the results of Chapter 2 to more complicated

systems. In particular, in this chapter we study simple networks of Brownian queues,

namely: a two-node parallel Brownian queue and a two-node tandem Brownian queue.

In addition, we consider priority queueing in a two-class Brownian queue, which is in

fact a special case of GPS scheduling.

The case of networks of Brownian queues has, compared to single Brownian queues,

been studied considerably less. In [125] and [50] a two-node tandem queue is ana-

lyzed: [125] derives the joint distribution function of the first and total queue length,

whereas [50] focuses on the distribution function of the second queue. Also, several

papers consider the more general case of tandem systems with Lévy input. We remark

that the solution presented in [87] and [48] is in terms of a joint Laplace transform;

no explicit expression for the joint distribution function is given. In [86] it is shown

that a tandem system with dependent or independent Lévy inputs to the nodes can

be seen as a special case of a parallel queue with dependent Lévy inputs to the nodes.

The case where different types of Brownian inputs compete for service on a single

link is not well-understood either. In [130, 131] a two-class priority queue is consid-

ered, and the decay rate of the overflow probability of the low-priority class is derived.

We also refer to [128] for related results on priority queueing. In [126, 129, 132] a

two-class GPS system is analyzed, and the decay rate of the overflow probability of a

particular class is obtained.

Besides the use of Brownian motions as input processes, they also appear in the

analysis of queueing models where the input process is no Brownian motion. Multi-

dimensional reflected Brownian motions are often used to approximate the joint queue

length or joint workload processes of open networks under heavy-traffic conditions,

see e.g. [77, 122].

The remainder of the chapter is organized as follows. In Section 3.1 we present

60 Simple networks of Brownian queues

B(·)

B(·)

B(·)

cI

cII

B(·)
c1 c2

Figure 3.1: Left: Two-node parallel queue. Right: Two-node tandem queue

a detailed description of the two-node tandem queue, as well as a closely related

two-node parallel queue. We also give formal implicit expressions for the overflow

probabilities. In Section 3.2 the two-node parallel queue is analyzed: we derive an

exact expression for the joint distribution function, large-buffer asymptotics, and

the most probable path (MPP). Then we argue that the two-node parallel queue is

closely related to the two-node tandem queue. Exploiting this property, we obtain in

Section 3.3 similar results for the tandem system. In Section 3.4 we consider another

related system, viz. the two-class priority queue.

3.1 Preliminaries

In this section we first describe our main queueing models: the two-node parallel queue

and the two-node tandem queue. We proceed by presenting an implicit expression for

the joint overflow probability in each of the two models.

3.1.1 Queueing models

Section 3.2 considers a two-node parallel queue with service rate cI at queue I, and

cII at queue II. Traffic that enters the system has to be served at both queues I and

II, which is done in parallel; see Figure 3.1 for an illustration. The case cI = cII being

trivial, we assume without loss of generality that cI > cII > 0.

We assume that the input process is a standard Brownian motion {B(t), t ≥ 0},
with B(0) ≡ 0. Recall that this implies that B(s, t) = B(t)−B(s) ∼ N(0, t− s), i.e.,

the amount of traffic that enters in the interval [s, t] is standard Normally distributed

with mean 0 and variance t− s.
In Section 3.3 we consider a two-node tandem queue, again with standard Brow-

nian input. Thus, the output of the first queue is fed into the second queue; see

Figure 3.1. Assume constant service rates c1 and c2, respectively. To avoid the trivial

situation of the second queue remaining empty, it is assumed that c1 > c2 > 0. We

note that this model corresponds to the heavy-traffic limit of the two-node tandem

queue with Poisson arrivals, see [125].

3.1 Preliminaries 61

3.1.2 Joint overflow probabilities

In this subsection we present an implicit expression for the joint overflow probability

in each of the two queueing models.

Let QI and QII denote the steady-state workload of queues I and II, respectively,

in the two-node parallel queue. We study the joint distribution of the steady-state

workloads of queues I and II:P(QI > bI, QII > bII). (3.1)

Note that if bII < bI, then (due to cI > cII) the event {QI > bI} automatically implies

{QII > bII}. Hence, we concentrate on bII ≥ bI. Reich’s formula [155] states that

QI = sup
s≥0
{−B(−s)− cIs} and QII = sup

t≥0
{−B(−t)− cIIt}. (3.2)

Let s∗ and t∗ denote an optimizing s and t in (3.2). Now, −s∗ (−t∗) can be interpreted

as the beginning of the busy period of queue I (queue II) containing time 0. Hence,

cI > cII implies that s∗ ≤ t∗, and therefore (3.1) can be rewritten as P (B(·) ∈ S),

where

S := {f ∈ Ω|∃t ≥ 0 : ∃s ∈ [0, t] : −f(−s) > bI + cIs,−f(−t) > bII + cIIt} , (3.3)

and Ω is as defined in Equation (2.10).

In the two-node tandem queue we focus on the joint probability that the stationary

workloads of the first and second queue, Q1 and Q2, respectively, exceed thresholds b1
and b2, with b1, b2 ≥ 0. For any queue in which traffic leaves the first queue as fluid,

the steady-state total workload QT in the two-node tandem queue behaves as a single

queue emptied at rate c2, see e.g. [130] and references therein. As a consequence,

Q1 = sup
s≥0
{−B(−s)− c1s} and QT = sup

t≥0
{−B(−t)− c2t}. (3.4)

Like for the parallel system, we have that the optimizing s is not larger than the op-

timizing t in (3.4). Hence, for bT ≥ b1 ≥ 0, P(Q1 > b1, QT > bT) equals P (B(·) ∈ T),

with

T := {f ∈ Ω|∃t ≥ 0 : ∃s ∈ [0, t] : −f(−s) > b1 + c1s,−f(−t) > bT + c2t} . (3.5)

Note that (3.3) and (3.5) coincide if c1 = cI, c2 = cII, b1 = bI, and bT = bII. We will

exploit this property in Section 3.3. Evidently, the distribution of (Q1, QT) uniquely

determines the distribution of (Q1, Q2). Using that Q2 = QT − Q1, we obtain thatP(Q1 > b1, Q2 > b2), with b1, b2 ≥ 0, equals P (B(·) ∈ U), where

U :=







f ∈ Ω

∣

∣

∣

∣

∣

∣

∃t ≥ 0 : ∃s ∈ [0, t] : ∀u ∈ [0, t] :

−f(−s) > b1 + c1s,

f(−u)− f(−t) > b2 + c2t− c1u







. (3.6)

62 Simple networks of Brownian queues

3.2 Two-node parallel queue

In this section we focus on the two-node parallel queue. We derive the joint distri-

bution function of queues I and II, large-buffer asymptotics, and the MPP leading to

overflow.

3.2.1 Joint distribution function

In this subsection we derive an exact expression for p(b) := P(QI > bI, QII > bII),

with b ≡ (bI, bII). For the sake of brevity, write χ ≡ χ(b) := (bII−bI)/(cI−cII). Recall

that Φ(·) denotes the distribution function of a standard Normal random variable,

φ(·) := Φ′(·), and Ψ(·) := 1 − Φ(·). We first present the main theorem of this

subsection.

Theorem 3.2.1 For each bII ≥ bI ≥ 0,

p(b) = −Ψ(k1(b)) + Ψ(k2(b))e
−2bIcI +

Ψ(k3(b))e
−2bIIcII + (1−Ψ(k4(b)))e

−2(bI(cI−2cII)+bIIcII),

where

k1(b) :=
bI + cIχ√

χ
; k2(b) :=

−bI + cIχ√
χ

;

k3(b) :=
bI + (cI − 2cII)χ√

χ
; k4(b) :=

−bI + (cI − 2cII)χ√
χ

.

Proof: In [125] an expression was derived for p(b) := P(QI ≤ bI, QII ≤ bII) in case of

standard Brownian input. We give a short sketch of the proof. First note that, due

to time-reversibility arguments,

p(b) = P(∀t ≥ 0 : B(t) ≤ min{bI + cIt, bII + cIIt}).

Let y ≡ y(b) := bI + cIχ. Hence, (χ, y) is the point where bI + cIt and bII + cIIt
intersect, see Figure 3.2 for an illustration. For t ∈ [0, χ] the minimum is given by
bI + cIt, whereas for t ∈ [χ,∞) the minimum is bII + cIIt. Now, conditioning on the
value of B(χ), being Normally distributed with mean 0 and variance χ, one obtains
that p(b) equalsZ y

−∞

1√
χ

φ

�
x√
χ

� P(∀t ∈ [0, χ] : B(t) ≤ bI+cIt|B(χ) = x)P(∀t ≥ 0 : B(t) ≤ y−x+cIIt)dx.

The first probability in the above integral can be obtained by using (2.18), whereas the

second probability is obtained by using (2.16). After substantial calculus we obtain

that p(b) equals

Φ(k1(b)− Φ(k2(b))e
−2bIcI − Φ(k3(b))e

−2bIIcII + Φ(k4(b))e
−2(bI(cI−2cII)+bIIcII).

3.2 Two-node parallel queue 63

χ

y

bI + cIt

bII + cIIt

bII

bI

t

Figure 3.2: Illustration for the proof of Theorem 3.2.1.

Again using (2.18), we find that P(Qi > bi) = e−2bici , i = I, II. The stated now

follows from

p(b) = 1− P(QI ≤ bI)− P(QII ≤ bII) + p(b). ✷

3.2.2 Exact large-buffer asymptotics

In this subsection we derive the exact asymptotics of the joint buffer content dis-

tribution. We write as before f(u) ∼ g(u) when f(u)/g(u) → 1 if u → ∞. Also,

let

α+ :=
cI

2cI − cII
; α0 :=

2cII − cI
cII

; α− :=
cI − 2cII
2cI − 3cII

.

It can be verified that α0 < 0 < α− < α+ < 1 if cI > 2cII, whereas 0 ≤ α0 < α+ < 1

if cI ≤ 2cII. Let us first present the following useful lemma.

Lemma 3.2.2 Let bI = αb and bII = b, with α ∈ [0, 1]. If b→∞, then

Ψ(k1(b)) ∼ ζ(k1(b));

Ψ(k2(b)) ∼







ζ(k2(b)) if α < α+;

1/2 if α = α+;

1 otherwise;

Ψ(k3(b)) ∼







ζ(k3(b)) if α > α0;

1/2 if α = α0;

1 otherwise;

64 Simple networks of Brownian queues

1−Ψ(k4(b)) ∼







1 if α < α− and cI > 2cII;

1/2 if α = α− and cI ≥ 2cII;

−ζ(k4(b)) otherwise.

Proof: First determine for which values of bI/bII = α, ki(b), i ∈ {1, 2, 3, 4}, is positive

or negative. Note that k1(b) is always positive, given that bII ≥ bI ≥ 0. Also, k4(b) is

always negative if cI ≤ 2cII and bI > 0. Hence, we obtain α+, α0 and α− as critical

values from ki(b), i = 2, 3, 4, respectively. Next use the fact that Ψ(u) ∼ ζ(u), where

ζ(·) is as defined (2.2), and Ψ(−u) ∼ 1 as u→∞. Observe that Ψ(0) = 1/2. ✷

Define

β(b) :=
1√
2π

(

− 1

k1(b)
+

1

k2(b)
+

1

k3(b)
− 1

k4(b)

)

; γ(b) :=
(bIIcI − bIcII)2

2(bII − bI)(cI − cII)
.

Straightforward calculus also shows the following equalities:

exp

(

−k1(b)
2

2

)

= exp

(

−k2(b)
2

2

)

exp (−2bIcI)

= exp

(

−k3(b)
2

2

)

exp (−2bIIcII)

= exp

(

−k4(b)
2

2

)

exp (−2(bI(cI − 2cII) + bIIcII))

= exp
(

−γ(b)
)

. (3.7)

Theorem 3.2.3 Let bI = αb and bII = b, with α ∈ [0, 1]. Suppose cI > 2cII. For

b→∞,

p(b) ∼



























e−2(bI(cI−2cII)+bIIcII) if α ∈ [0, α−);
1
2e

−2(bI(cI−2cII)+bIIcII) if α = α−;

β(b)e−γ(b) if α ∈ (α−, α+);
1
2e

−2bIcI if α = α+;

e−2bIcI if α ∈ (α+, 1].

Proof: We only prove the first statement, as the other four statements follow in a

similar way. We have to prove that

p(b) exp(2(bI(cI − 2cII) + bIIcII))→ 1 as b→∞, for α ∈ [0, α−).

From Lemma 3.2.2 we obtain that for α ∈ [0, α−),

Ψ(k1(b)) ∼ ζ(k1(b)); Ψ(k2(b)) ∼ ζ(k2(b));

Ψ(k3(b)) ∼ ζ(k3(b)); 1−Ψ(k4(b)) ∼ 1− ζ(k4(b)).

3.2 Two-node parallel queue 65

Now it can be checked from (3.7) that, as b→∞,

Ψ(k1(b)) = o
(

e−2(bI(cI−2cII)+bIIcII)
)

,

and the same applies for Ψ(k2(b))e
−2bIcI and Ψ(k3(b))e

−2bIIcII . With 1−Ψ(k4(b)) ∼ 1,

Theorem 3.2.1 implies the stated. ✷

Theorem 3.2.4 Let bI = αb and bII = b, with α ∈ [0, 1]. Suppose cI < 2cII. For

b→∞,

p(b) ∼



























e−2bIIcII if α ∈ [0, α0);
1
2e

−2bIIcII if α = α0;

β(b)e−γ(b) if α ∈ (α0, α+);
1
2e

−2bIcI if α = α+;

e−2bIcI if α ∈ (α+, 1].

Proof: The proof is similar to that of Theorem 3.2.3. ✷

Remark: Note that for cI = 2cII, one obtains α0 = 0. It can be verified that in this

special case Theorem 3.2.4 reduces to

p(b) ∼



















e−2bIIcII if α = 0;

β(b)e−γ(b) if α ∈ (0, α+);
1
2e

−2bIcI if α = α+;

e−2bIcI if α ∈ (α+, 1].

3.2.3 Most probable path

In the previous subsection it was shown that the nature of the large-buffer asymp-

totics strongly depends on the model parameters α, cI and cII, i.e., there are dif-

ferent regimes. In this subsection we will interpret and explain these regimes by

using sample-path large deviations. In particular, by using Schilder’s theorem (The-

orem 2.3.5), we show that in each of these regimes the system has a typical (most

likely) behavior, and we characterize this behavior for each regime.

Schilder’s theorem implies that the exponential decay rate of the joint overflow

probability in the parallel system is characterized by the path in S that minimizes

the decay rate. Among all paths such that queue I exceeds bI and queue II exceeds

bII, this is the MPP: informally speaking, given that this rare event occurs, with

overwhelming probability (bI, bII) is reached by a path ‘close to’ the MPP. The goal of

this subsection is to find the MPP in S, and to relate its form to the regimes identified

in Section 3.2.2.

Consider the two-node parallel queue as described before. Now, in order to apply

‘Schilder’, we feed this network by n i.i.d. standard Brownian sources. The link rates

66 Simple networks of Brownian queues

and buffer thresholds are also scaled by n: ncI, ncII, nbI and nbII respectively. Now,

pn(b) := P(QI,n > nbI, QII,n > nbII) can be expressed as

P(1

n

n
∑

i=1

Bi(·) ∈ S
)

.

As mentioned in Chapter 2, we can replace ‘>’ by ‘≥’ in S, the resulting set being

denoted by S, without any impact on the decay rate. From ‘Schilder’ it then follows

that

J(b) := − lim
n→∞

1

n
log pn(b) = inf

f∈S
I(f) = inf

f∈S
I(f) = inf

t≥0
inf

s∈[0,t]
Υ(s, t), (3.8)

with

Υ(s, t) := inf
f∈S

s,t
I(f) and S

s,t
:= {f ∈ Ω| − f(−s) ≥ bI + cIs,−f(−t) ≥ bII + cIIt} ,

and I(·) as defined in (2.19), using the fact that the decay rate of a union of events

is the minimum of the decay rates of the individual events.

We first show how, for fixed s, t, with 0 ≤ s ≤ t, the infimum of Υ(s, t) over S
s,t

can be computed. Define

g1(s) :=
bIIs

bI + (cI − cII)s
and g2(s) := s

cI
cII

+
bI − bII
cII

, s ≥ 0.

Note that g1(·) is a concave function, whereas g2(·) is a linear function. Furthermore,

g1(s) > g2(s) if s < χ, g1(s) = g2(s) if s = χ, and otherwise g1(s) < g2(s). Also,

define

A1 := {(s, t)|0 ≤ s ≤ t ≤ g1(s)};
A2 := {(s, t)|0 ≤ s ≤ t ≤ g2(s)};
A3 := {(s, t)|t > max{g1(s), g2(s)}, s ≥ 0}.

Note that A := {(s, t)|0 ≤ s ≤ t} = A1 ∪ A2 ∪ A3, for disjoint A1, A2 and A3, as

illustrated in Figure 3.3.

Lemma 3.2.5 For t ≥ 0, and s ∈ [0, t],

Υ(s, t) =











h1(t) := (bII+cIIt)
2

2t if (s, t) ∈ A1;

h2(s) := (bI+cIs)
2

2s if (s, t) ∈ A2;

h3(s, t) := (bI+cIs)
2

2s + (bII+cIIt−bI−cIs)
2

2(t−s) if (s, t) ∈ A3.

Proof: The proof is analogous to Lemma 3.4 of [130]. First note that the values of

the Brownian input at times −s and −t are bivariate Normally distributed, i.e., as

3.2 Two-node parallel queue 67

χ

−bII−bI
cII

g1(s)

g2(s)

s = t

A1

A3

A2

0
s

t

Figure 3.3: The partitioning of A.

(−B(−s),−B(−t)). Now, by using Theorem 2.3.4, we find for y, z ∈ R and t ≥ 0,

s ∈ [0, t],

Υ(s, t) = inf
y≥bI+cIs

inf
z≥bII+cIIt

Λ(y, z), (3.9)

with

Λ(y, z) =
1

2

(

y z
)

(

s s

s t

)−1(
y

z

)

.

One can show that if

y0 := E (−B(−s)| −B(−t) = bII + cIIt) ≥ bI + cIs,

or, equivalently, t ≤ g1(s), then the optimum in (3.9) is attained at (y∗, z∗) = (y0, bII+

cIIt). Hence, the rate function is independent of s, and given by Λ(y0, bII + cIIt) =

h1(t).

In a similar way, if

z0 := E (−B(−t)| −B(−s) = bI + cIs) ≥ bII + cIIt,

or, after rewriting, t ≤ g2(s), then the optimum in (3.9) is attained at (y∗, z∗) =

(bI +cIs, z0). The rate function is then given by Λ(bI +cIs, z0) = h2(s) (independently

of t).

68 Simple networks of Brownian queues

If y0 < bI + cIs and z0 < bII + cIIt, then the optimum in (3.9) is attained at

(y∗, z∗) = (bI + cIs, bII + cIIt). It is readily verified that this yields h3(s, t) for t >

max{g1(s), g2(s)}. ✷

In order to obtain J(b), it follows from (3.8) that we have to compute

inf
(s,t)∈A

Υ(s, t). (3.10)

We will obtain (3.10) by first deriving

inf
(s,t)∈A1

Υ(s, t) = inf
(s,t)∈A1

h1(t); (3.11)

inf
(s,t)∈A2

Υ(s, t) = inf
(s,t)∈A2

h2(s); (3.12)

inf
(s,t)∈A3

Υ(s, t) = inf
(s,t)∈A3

h3(s, t), (3.13)

and subsequently taking the minimum of (3.11)-(3.13) (recall that A = A1∪A2∪A3).

We start by computing (3.11).

Area A1

The optimization over A1 reduces to

inf
(s,t)∈A1

Υ(s, t) = inf
(s,t)∈A1

h1(t) = inf
t∈[0,χ]

h1(t). (3.14)

It can be verified that h1(t) is strictly decreasing on the interval [0, bII/cII), and strictly

increasing on the interval (bII/cII,∞). Therefore, if bII/cII ≤ χ then t∗ = bII/cII and

s∗ ∈ [g−1
1 (t∗), t∗], whereas otherwise t∗ = s∗ = χ.

Lemma 3.2.6 Expression (3.14) equals







2bIIcII if cI ≤ 2cII and bI/bII ∈ [0, α0];

γ(b) if cI ≤ 2cII and bI/bII ∈ (α0, 1];

γ(b) if cI > 2cII.

Proof: The condition bII/cII ≤ χ is equivalent to bI/bII ≤ (2cII − cI)/cII = α0. Note

that α0 is only non-negative if cI ≤ 2cII. Hence, evaluation of (3.14) for t∗ = bII/cII
proves the first statement. Similarly, evaluation of (3.14) for t∗ = χ proves the second

statement. ✷

3.2 Two-node parallel queue 69

Area A2

The approach is very similar to above. We are to solve the following optimization

problem:

inf
(s,t)∈A2

Υ(s, t) = inf
(s,t)∈A2

h2(s) = inf
s∈[χ,∞)

h2(s). (3.15)

The function h2(s) has a global minimum that is attained at s = bI/cI. Thus, if

bI/cI ≥ χ, then s∗ = bI/cI and t∗ ∈ [s∗, g2(s∗)], whereas otherwise s∗ = t∗ = χ. The

following lemma is proven analogously to Lemma 3.2.6.

Lemma 3.2.7 Expression (3.15) equals

{

γ(b) if bI/bII ∈ [0, α+);

2bIcI if bI/bII ∈ [α+, 1].

Area A3

Now we are to solve the following optimization problem:

inf
(s,t)∈A3

Υ(s, t) = inf
(s,t)∈A3

h3(s, t) = inf
s≥0

inf
t>max{g1(s),g2(s)}

h3(s, t).

We can divide area A3 in two parts, namely: s ∈ [0, χ] and t ∈ (g1(s),∞), and

s ∈ (χ,∞) and t ∈ (g2(s),∞) (see Figure 3.3). Let us start with the second part:

inf
s∈(χ,∞)

inf
t∈(g2(s),∞)

h3(s, t). (3.16)

Clearly, (3.16) is bounded from below by

inf
s∈(χ,∞)

inf
t∈(g2(s),∞)

h2(s).

One can show that h3(s, t) reduces to h2(s) if t = g2(s) (s ∈ [χ,∞)). Therefore,

analogously to area A2, if bI/cI ≥ χ, then s∗ = bI/cI and t∗ = g2(s
∗) = (2bI− bII)/cII,

whereas otherwise s∗ = t∗ = χ. We thus obtain the following result.

Lemma 3.2.8 Expression (3.16) equals

{

γ(b) if bI/bII ∈ [0, α+);

2bIcI if bI/bII ∈ [α+, 1].

We now turn to the first part:

inf
s∈[0,χ]

inf
t∈(g1(s),∞)

h3(s, t). (3.17)

70 Simple networks of Brownian queues

First concentrate on the minimum of h3(s, t) over t ≥ 0, which is attained at

t =
bII − bI
cII

+ s
2cII − cI
cII

=: g3(s)

if s ∈ [0, χ] (for s > χ it is attained at t = g2(s), but this case is irrelevant here). Note

that g3(s) is linearly decreasing (increasing) if cI > 2cII (cI < 2cII). Also, g3(χ) = χ.

Hence, we have to distinguish between two cases:

• First concentrate on cI > 2cII. Then g3(s) > g1(s) for all s ∈ [0, χ) (as g3(s) is

non-increasing and g3(χ) = χ). Substituting t = g3(s) in (3.17) gives

inf
s∈[0,χ]

b2I + 2bI(cI − 2cII)s+ 4bIIcIIs+ (cI − 2cII)
2s2

2s
. (3.18)

This is minimized for s∗ = bI/(cI − 2cII) and t∗ = g3(s
∗) = (bII − 2bI)/cII if

bI/(cI − 2cII) ≤ χ, whereas otherwise s∗ = χ = t∗.

• Next consider cI ≤ 2cII. In this case it is not clear a priori whether g3(s) ≥ g1(s)
for all s ∈ [0, χ). For the moment assume that this is true. Then (3.18) is again

appropriate, and this is minimized for s∗ = bI/(2cII−cI) and t∗ = g3(s) = bII/cII
if bI/(2cII − cI) ≤ χ, whereas otherwise s∗ = χ = t∗. Now, in the former case

it can be checked that g3(s
∗) = g1(s

∗) = bII/cII, and in the latter case we find

g3(s
∗) = g1(s

∗) = χ, i.e., the minimizers satisfy g3(s
∗) ≥ g1(s

∗), and hence we

are done.

This reasoning leads to the following result.

Lemma 3.2.9 Expression (3.17) equals















2(bI(cI − 2cII) + bIIcII) if cI > 2cII and bI/bII ∈ [0, α−];

γ(b) if cI > 2cII and bI/bII ∈ (α−, 1];

2bIIcII if cI ≤ 2cII and bI/bII ∈ [0, α0];

γ(b) if cI ≤ 2cII and bI/bII ∈ (α0, 1].

Exponential decay rate

In order to find J(b), we have to determine the minimum of (3.11)-(3.13). This

minimum can be obtained by combining Lemmas 3.2.6-3.2.9. From this, we already

see that the minimum depends on the value of bI/bII ∈ [0, 1] and the sign of cI − 2cII.

We now present an exact expression for the rate function J(b). We start with the

case cI > 2cII.

3.2 Two-node parallel queue 71

Theorem 3.2.10 Suppose cI > 2cII. Then it holds that

J(b) =







2(bI(cI − 2cII) + bIIcII) if bI/bII ∈ [0, α−];

γ(b) if bI/bII ∈ (α−, α+);

2bIcI if bI/bII ∈ [α+, 1].

Proof: By combining Lemmas 3.2.6-3.2.9, we find that there exist two critical values

of bI/bII ∈ [0, 1], given that cI > 2cII: α− and α+. Recall from Section 3.2.2 that

0 < α− < α+ < 1 if cI > 2cII. Now, if bI/bII ∈ [0, α−], then it follows from

Lemmas 3.2.6-3.2.9 that J(b) = min
{

2(bI(cI − 2cII) + bIIcII), γ(b)
}

. Straightforward

calculus shows that the first argument is smaller for these values of bI/bII. Similarly,

if bI/bII ∈ (α−, α+), then J(b) = γ(b). Finally, if bI/bII ∈ [α+, 1], then J(b) =

min
{

2bIcI, γ(b)
}

. Applying straightforward calculus yields that the first argument is

smaller if bI/bII ∈ (α+, 1]. ✷

Schilder’s theorem says that knowledge of the MPP f∗ for the buffers to fill, also

implies that the exponential decay rate is known: J(b) = I(f∗). Luckily, we do not

have to derive the MPPs corresponding to the three decay rates of Theorem 3.2.10,

because we have already implicitly obtained them. The values of −s∗ and −t∗, where

s∗ and t∗ are the optimizers in Sections 3.2.3-3.2.3 associated with the three decay

rates of Theorem 3.2.10, can be interpreted as the time where the first and second

queue, respectively, start to build up in the corresponding MPP.

The s∗ and t∗ associated with the decay rate of the first regime in Theorem 3.2.10

are s∗ = bI/(cI − 2cII) and t∗ = (bII − 2bI)/cII, see Section 3.2.3. Hence, in the MPP

of the first regime, queue I starts to build up at −s∗, whereas queue II starts to build

up at −t∗. The MPP is given by, for r ∈ [−t∗, 0],

f∗(r) = E (B(r)| −B(−s∗) = bI + cIs
∗,−B(−t∗) = bII + cIIt

∗) .

Using (2.4) it can be verified that

(f∗)′(r) = 2cII if r ∈ [−t∗,−s∗);
(f∗)′(r) = 2(cI − cII) if r ∈ [−s∗, 0].

Applying ‘Schilder’, i.e., using (2.19), one can verify that, as expected,

I(f∗) =
1

2

(

(2cII)
2(t∗ − s∗) + (2(cI − cII))2s∗

)

= 2(bI(cI − 2cII) + bIIcII),

so f∗ is indeed the MPP. Note that given service rates cI and cII at queues I and II,

respectively, with cI > 2cII, the MPP yields QI(0) = bI and QII(0) = bII. Also note

that we have not specified the MPP outside [−t∗, 0], because outside this interval

the MPP produces traffic according to the average rate EB(1), which equals 0 (we

are dealing with standard Brownian input), and therefore this does not affect I(f∗).

72 Simple networks of Brownian queues

Below we will therefore not specify the MPPs outside [−t∗, 0] either (for different

values of t∗).

The s∗ and t∗ associated with the decay rate of the second regime in Theo-

rem 3.2.10 are s∗ = t∗ = (bII − bI)/(cI − cII) = χ, see Sections 3.2.3-3.2.3, i.e., in

the second regime, both queues I and II start to build up at −t∗. The MPP is given

by, for r ∈ [−t∗, 0],

f∗(r) = E (B(r)| −B(−t∗) = bI + cIt
∗) . (3.19)

Using (2.4), it can be verified that this MPP is such that traffic enters the network

with constant rate (bI/(bII − bI))(cI − cII) + cI in the interval [−t∗, 0], and this yields

QI(0) = bI and QII(0) = bII. Using (2.19), we find

I(f∗) =
1

2

(

bI
bII − bI

(cI − cII) + cI

)2

t∗ = γ(b),

so f∗ is indeed the MPP.

The s∗ and t∗ associated with the decay rate of the third regime in Theorem 3.2.10

are s∗ = t∗ = bI/cI, see Section 3.2.3, i.e., in the third regime, both queues start to

build up at −t∗. The MPP is given by, for r ∈ [−t∗, 0],

f∗(r) = E (B(r)| −B(−t∗) = bI + cIt
∗) .

Again, using (2.4), we find that this MPP is such that traffic is produced at constant

rate 2cI in the interval [−t∗, 0], and this givesQI(0) = bI andQII(0) = (bI/cI)(2cI−cII).
Note that QII(0) is larger than bII if bI/bII ∈ (α+, 1], so there is indeed exceedance of

bII. From (2.19), it follows that

I(f∗) =
1

2
(2cI)

2 t∗ = 2bIcI,

as required.

Theorem 3.2.11 Suppose cI ≤ 2cII. Then it holds that

J(b) =







2bIIcII if bI/bII ∈ [0, α0];

γ(b) if bI/bII ∈ (α0, α+);

2bIcI if bI/bII ∈ [α+, 1].

Proof: The proof is similar to that of Theorem 3.2.10. ✷

The s∗ and t∗ associated with the decay rate of the first regime in Theorem 3.2.11

are s∗ = t∗ = bII/cII, see Section 3.2.3. Hence, in the MPP corresponding to the first

regime of Theorem 3.2.11, both queues start to build up at −t∗. The MPP is given

by, for r ∈ [−t∗, 0],

f∗(r) = E (B(r)| −B(−t∗) = bII + cIIt
∗) .

3.3 Two-node tandem queue 73

Using (2.4), we find that traffic is generated at a constant rate 2cII in the interval

[−t∗, 0], and this results in QI(0) = (bII/cII)(2cII−cI) > bI and QII(0) = bII. Applying

‘Schilder’, yields

I(f∗) =
1

2
(2cII)

2 t∗ = 2bIIcII.

The MPPs corresponding to the second and third regime are similar to the MPPs

corresponding to the second and third regime of Theorem 3.2.10.

3.2.4 Discussion

Using Theorems 3.2.3 and 3.2.4, the logarithmic large-buffer asymptotics follow di-

rectly as well. That is, we need to find a function J∗(bα), with bα ≡ (αb, b), such

that

lim
b→∞

− log P (QI > αb,QII > b)

J∗(bα)
= 1,

where α ∈ [0, 1]. With αb = bI and b = bII, i.e., bα = b, it is not hard to see that J∗(bα)

equals J(b); compare Theorems 3.2.10 and 3.2.11 with Theorems 3.2.3 and 3.2.4,

respectively. As we already argued in the previous chapter, since we assumed that in

the many-sources framework the standard Brownian sources are i.i.d., and because a

standard Brownian motion is characterized by independent increments, J∗(bα) and

J(b) should match.

In the analysis of the two-node parallel queue we assumed that the input process

was a standard Brownian motion, i.e., no drift and v(t) = t. We now show how the

results can be extended to general Brownian input, with drift µ > 0 and variance

v(t) = λt, λ > 0. Clearly, we should have that cI > cII > µ > 0 to ensure stability.

We denote the input process of a general Brownian motion by {B∗(t), t ∈ R}. Then,

analogously to (3.3), p(b) = P(B∗(·) ∈ S) = P(B(·) ∈ S∗), with

S∗ :=

{

f ∈ Ω

∣

∣

∣

∣

∣

∃t ≥ 0 : ∃s ∈ [0, t] :
−f(−s) > bI+(cI−µ)s√

λ
;

−f(−t) > bII+(cII−µ)t√
λ

}

.

Hence in order to generalize the results of Section 3.2 to general Brownian input, we

have to set ci ← (ci − µ)/
√
λ and bi ← bi/

√
λ, i = I, II.

3.3 Two-node tandem queue

In this section we focus on the two-node tandem queue. Exploiting the results of

the two-node parallel queue in Section 3.2, we derive similar results for the two-node

tandem queue.

74 Simple networks of Brownian queues

3.3.1 Joint distribution function

In this subsection we derive an exact expression for q(b) := P(Q1 > b1, Q2 > b2), with

b ≡ (b1, b2). In Section 3.1.2 we argued that p(bI, bII) equals q(bT) := P(Q1 > b1, QT >

bT), with bT ≡ (b1, bT), given that bI = b1, bII = bT , cI = c1 and cII = c2. In a first

step to obtain q(b), we derive qf (bT) := −∂q(bT)/∂b1. With mild abuse of notation,

we also write qf (bT) = P(Q1 = b1, QT > bT). Define τT ≡ τ (bT) := (bT −b1)/(c1−c2)
and τ ≡ τ (b2) := b2/(c1 − c2).

Lemma 3.3.1 For each bT ≥ b1 ≥ 0,

qf (bT) = −∂ℓ1(bT)

∂b1
φ(ℓ1(bT)) + 2c1Ψ(ℓ2(bT))e−2b1c1 +

∂ℓ2(bT)

∂b1
φ(ℓ2(bT))e−2b1c1 +

∂ℓ3(bT)

∂b1
φ(ℓ3(bT))e−2bT c2 +

2(c1 − 2c2)(1−Ψ(ℓ4(bT)))e−2(b1(c1−2c2)+bT c2) −
∂ℓ4(bT)

∂b1
φ(l4(bT))e−2(b1(c1−2c2)+bT c2),

where

ℓ1(bT) :=
b1 + c1τT√

τT
; ℓ2(bT) :=

−b1 + c1τT√
τT

;

ℓ3(bT) :=
b1 + (c1 − 2c2)τT√

τT
; ℓ4(bT) :=

−b1 + (c1 − 2c2)τT√
τT

.

Proof: Use Theorem 3.2.1, with bI = b1, bII = bT , cI = c1 and cII = c2, to obtain

q(bT). Then recall that qf (bT) = −∂q(bT)/∂b1. We extensively use the chain rule:

∂Ψ(f(u))

∂u
= −∂f(u)

∂u
φ(f(u)).

Applying straightforward calculus now gives the desired result. ✷

Note that

q(b) = P(Q1 > b1, QT > b2 +Q1)

=

∫ ∞

b1

qf (x)dx, (3.20)

where x ≡ (x, b2 + x). Define

m1(b) :=
b1 + c1τ√

τ
; m2(b) :=

−b1 + c1τ√
τ

; m4(b) :=
−b1 + (c1 − 2c2)τ√

τ
.

We directly present the main theorem on tandem queues.

3.3 Two-node tandem queue 75

Theorem 3.3.2 For each b1, b2 ≥ 0,

q(b) =
c2

c1 − c2
Ψ(m1(b)) + Ψ(m2(b))e

−2b1c1 +

c1 − 2c2
c1 − c2

(1−Ψ(m4(b)))e
−2(b1(c1−c2)+b2c2).

Proof: Use (3.20) in combination with Lemma 3.3.1. Note that qf (x) consists of six

terms. Let us start with the first term:
∫ ∞

b1

−∂ℓ1(x)
∂x

φ(ℓ1(x))dx = Ψ(ℓ1(x))
∣

∣

∣

∞

b1
= −Ψ(m1(b)). (3.21)

Similarly, for the second and third term:Z ∞

b1

�
2c1Ψ(ℓ2(x))e−2c1x +

∂ℓ2(x)

∂x
φ(ℓ2(x))e−2c1x

�
dx = −Ψ(ℓ2(x))e−2c1x

���∞
b1

= Ψ(m2(b))e
−2b1c1 . (3.22)

Proceeding with the fourth term:
∫ ∞

b1

∂ℓ3(x)

∂x
φ(l3(x))e

−2c2(b2+x)dx =

∫ ∞

b1

∂ℓ3(x)

∂x

1√
2π
e−

ℓ1(x)2

2 dx

=

∫ ∞

b1

∂ℓ1(x)

∂x

1√
2π
e−

ℓ1(x)2

2 dx

= −Ψ(ℓ1(x))
∣

∣

∣

∞

b1
= Ψ(m1(b)); (3.23)

here the first equality in (3.23) follows from the fact that

e−ℓ3(x)2/2e−2c2(b2+x) = e−ℓ1(x)2/2,

whereas the second equality holds due to ∂ℓ3(x)/∂x = ∂ℓ1(x)/∂x. We decompose the
fifth term into two parts:

2(c1 − 2c2)(1−Ψ(ℓ4(x)))e−2(x(c1−c2)+b2c2)

= 2(c1−c2)(1−Ψ(ℓ4(x)))e−2(x(c1−c2)+b2c2)+2c2(Ψ(ℓ4(x))−1)e−2(x(c1−c2)+b2c2).

Now, taking the first decomposed fifth term and the sixth term:

∫ ∞

b1

(

2(1−Ψ(ℓ4(x)))(c1−c2)e−2(x(c1−c2)+b2c2)−∂ℓ4(x)
∂x

φ(ℓ4(x))e
−2(x(c1−c2)+b2c2)

)

dx

= −(1−Ψ(ℓ4(x)))e
−2(x(c1−c2)+b2c2)

∣

∣

∣

∞

b1

= (1−Ψ(m4(b)))e
−2(b1(c1−c2)+b2c2). (3.24)

76 Simple networks of Brownian queues

We are left with the second decomposed fifth term:

∫ ∞

b1

2c2(Ψ(ℓ4(x))− 1)e−2(x(c1−c2)+b2c2)dx

=
c2

c1 − c2

∫ ∞

b1

2(c1 − c2)(Ψ(ℓ4(x))− 1)e−2(x(c1−c2)+b2c2)dx

=
c2

c1 − c2
Ψ(m1(b))−

c2
c1 − c2

(1−Ψ(m4(b)))e
−2(b1(c1−c2)+b2c2); (3.25)

here the second equality in (3.25) is obtained by applying integration by parts, but

requires tedious calculus. Adding up (3.21)-(3.25) yields the stated. ✷

Remark: For b1 > 0 and b2 = 0, we find q(b1, 0) = P(Q1 > b1) = exp (−2b1c1) in
Theorem 3.3.2, i.e., the well-known exponential distribution with mean 1/(2c1). For
b1 = 0 and b2 > 0, Theorem 3.3.2 yields

q(0, b2) = P(Q2 > b2)

=
c1

c1 − c2
Ψ

�
c1√

c1 − c2

√
b2

�
+

c1 − 2c2

c1 − c2
e−2b2c2

�
1−Ψ

�
c1 − 2c2√

c1 − c2

√
b2

��
,

which is in line with Theorem 4.3 in [50].

3.3.2 Exact large-buffer asymptotics

In this subsection we derive the exact asymptotics of the joint buffer content distri-

bution. Define

α+ :=
c1

2c1 − c2
; α− :=

c1 − 2c2
2c1 − 3c2

.

It can be verified that 0 < α− < α+ < 1 if c1 > 2c2, and 0 < α+ < 1 if c1 ≤ 2c2. Recall

that ζ(x) =
(√

2πx
)−1

exp(−x2/2). First we present the counterpart of Lemma 3.2.2.

Lemma 3.3.3 Let b1 = αb and b2 = (1− α)b, with α ∈ [0, 1]. If b→∞, then

Ψ(m1(b)) ∼ ζ(m1(b));

Ψ(m2(b)) ∼







ζ(m2(b)) if α < α+;

1/2 if α = α+;

1 otherwise;

1−Ψ(m4(b)) ∼







1 if α < α− and c1 > 2c2;

1/2 if α = α− and c1 ≥ 2c2;

−ζ(m4(b)) otherwise.

3.3 Two-node tandem queue 77

Proof: The proof is as in Lemma 3.2.2. ✷

Define

θ(b) :=
1√
2π

(

c2
c1 − c2

1

m1(b)
+

1

m2(b)
− c1 − 2c2

c1 − c2
1

m4(b)

)

; (3.26)

δ(b) :=
(b1(c1 − c2) + b2c1)

2

2b2(c1 − c2)
. (3.27)

The following equalities can shown to hold true:

exp

(

−m1(b)
2

2

)

= exp

(

−m2(b)
2

2

)

exp (−2b1c1)

= exp

(

−m4(b)
2

2

)

exp (−2(b1(c1 − c2) + b2c2))

= exp
(

−δ(b)
)

. (3.28)

The proof of the following two theorems is similar to the proof of Theorem 3.2.3, but

now requires Lemma 3.3.3 and Equations (3.26)-(3.28). We omit the proofs.

Theorem 3.3.4 Let b1 = αb and b2 = (1 − α)b, with α ∈ [0, 1]. Suppose c1 > 2c2.

For b→∞,

q(b) ∼



























c1−2c2

c1−c2
e−2(b1(c1−c2)+b2c2) if α ∈ [0, α−);

1
2

c1−2c2

c1−c2
e−2(b1(c1−c2)+b2c2) if α = α−;

θ(b)e−δ(b) if α ∈ (α−, α+);
1
2e

−2b1c1 if α = α+;

e−2b1c1 if α ∈ (α+, 1].

Theorem 3.3.5 Let b1 = αb and b2 = (1 − α)b, with α ∈ [0, 1]. Suppose c1 ≤ 2c2.

For b→∞,

q(b) ∼











θ(b)e−δ(b) if α ∈ [0, α+);
1
2e

−2b1c1 if α = α+;

e−2b1c1 if α ∈ (α+, 1].

Remark: We note that for c1 < 2c2 and b1 = 0 (α = 0) the asymptotics are not

given by θ(b) exp(−δ(b)), as it can be verified that θ(b) equals 0 in this special case.

Therefore we have to rely here on the sharper asymptotic
(√

2πu
)−1

exp(−u2/2) −
Ψ(u) ∼

(√
2πu3

)−1
exp(−u2/2). Using this, it can be shown [50] that

q(0, b2) ∼
1√
2π

(

c1 − c2
b2

)3/2
4c2

c21(c1 − 2c2)2
e
− c21

2(c1−c2)
b2 .

78 Simple networks of Brownian queues

3.3.3 Most probable path

Similar to the parallel system, the large-buffer asymptotics now depend on the model

parameters α, c1 and c2. Again, we will interpret the corresponding regimes by

determining the structure of the MPPs.

We feed n i.i.d. standard Brownian sources into the tandem system, and also scale

the link rates and buffer thresholds by n: nc1, nc2, nb1 and nb2 respectively. By

using (3.6), we can write

qn(b) := P(Q1,n > nb1, Q2,n > nb2) = P(1

n

n
∑

i=1

Bi(·) ∈ U
)

.

Define the set U as U , but with >’ replaced by ‘≥’. Clearly, U ⊆ U∗ ⊆ V , with

U
∗

:= {f ∈ Ω|∃t ≥ 0 : ∃s ∈ [0, t] : −f(−s) ≥ b1+c1s, f(−s)−f(−t) ≥ b2+c2t−c1s};

V := {f ∈ Ω|∃t ≥ 0 : ∃s ∈ [0, t] : −f(−s) ≥ b1 + c1s,−f(−t) ≥ b1 + b2 + c2t}.

Hence, ‘Schilder’ gives

K(b) := − lim
n→∞

1

n
log qn(b) = inf

f∈U
I(f) = inf

f∈U
I(f) ≥ inf

f∈V
I(f). (3.29)

Let the MPP in the set V be denoted by f∗. If f∗ ∈ U , then there is clearly equality

in (3.29).

Theorem 3.3.6 Suppose c1 > 2c2. Then it holds that

K(b) =







2(b1(c1 − c2) + b2c2) if b1/(b1 + b2) ∈ [0, α−];

δ(b) if b1/(b1 + b2) ∈ (α−, α+);

2b1c1 if b1/(b1 + b2) ∈ [α+, 1].

Proof: Consider Theorem 3.2.10 with cI = c1, cII = c2, bI = b1 and bII = b1 + b2, i.e.,

we have U ⊆ V = S. The MPPs (in S = V) corresponding to each of the regimes

of Theorem 3.2.10 were derived in Section 3.2.3. It can easily be checked that these

MPPs are also contained in U , and consequently they are the MPPs in U . This

implies that K(b) is given by Theorem 3.2.10. ✷

Theorem 3.3.7 Suppose c1 ≤ 2c2. Then it holds that

K(b) =

{

δ(b) if b1/(b1 + b2) ∈ [0, α+);

2b1c1 if b1/(b1 + b2) ∈ [α+, 1].

3.3 Two-node tandem queue 79

−b2−b1
c2

−b2−b1
c2

− b1
c1−2c2

− b1
c1−2c2

Q1(t)

Q2(t)

b2

b1

c1 − 2c2

c2

c1 − c2

first

t

t

0

0

− b2
c1−c2

− b2
c1−c2

Q1(t)

Q2(t)

b2

b1

b1
b2

(c1 − c2)

c1 − c2

second

t

t

0

0

−b1
c1

−b1
c1

Q1(t)

Q2(t)

b1
c1

(c1 − c2)

b1

b2

c1

c1 − c2

third

t

t

0

0

Figure 3.4: The most probable storage path in {Q1 ≥ b1, Q2 ≥ b2} corresponding to

each of the regimes of Theorem 3.3.6. The most probable storage path corresponding

to each of the two regimes of Theorem 3.3.7, is also given by the most probable storage

paths of the last two regimes of Theorem 3.3.6.

Proof: Consider Theorem 3.2.11 with cI = c1, cII = c2, bI = b1 and bII = b1 + b2.

Again, the MPPs corresponding to the second and third regime of Theorem 3.2.11,

are also contained in the set U , so K(b) is given by Theorem 3.2.11 for b1/(b1 + b2) ∈
(α0, 1]. However, the MPP corresponding to the first regime, i.e., b1/(b1+b2) ∈ [0, α0],

is not contained in U , so we need a different approach here. In order to obtain a

workload in queue 2 at least as large as b2 at time 0, queue 2 needs to start building

up at −τ = −b2/(c1 − c2) at the latest. The set U can now be rewritten as

{

f ∈ Ω

∣

∣

∣

∣

∃t ≥ τ : ∃s ∈ [0, t] : ∀u ∈ [0, t] :
−f(−s) ≥ b1 + c1s,

f(−u)− f(−t) ≥ b2 + c2t− c1u

}

,

which is contained in

{f ∈ Ω|∃t ≥ τ : ∃s ∈ [0, t] : −f(−s) ≥ b1 + c1s,−f(−t) ≥ b1 + b2 + c2t} =: W.

Using the results of Section 3.2.3, with bI = b1, bII = b1 + b2, cI = c1 and cII = c2,

one can show that if b1/(b1 + b2) ∈ [0, α+) and c1 ≤ 2c2, then the MPP in W is

given by (3.19). As (3.19) is contained in U , it is also the MPP in U , implying that

K(b) = δ(b). ✷

80 Simple networks of Brownian queues

Figure 3.4 depicts for each of the regimes of Theorem 3.3.6 the most likely way

for the buffers to fill. Clearly, the most likely way for the buffers to fill for each of the

two regimes of Theorem 3.3.7, coincides with the most probable storage paths of the

last two regimes of Theorem 3.3.6. Interestingly, three types of MPPs are possible.

In the first type queue 2 starts to build up earlier than queue 1, but they reach b1
and b2 at the same time. In the second type both queues start to grow at the same

time, and reach b1 and b2 at the same time, whereas in the third type both queues

start to build up at the same time, but at the time queue 1 reaches b1, queue 2 is

strictly larger than b2.

Remark: If we set b1 > 0 and b2 = 0, then Theorems 3.3.6 and 3.3.7 giveK(b) = 2b1c1,

which indeed is the exponential decay rate of the overflow probability in a single

queue with standard Brownian input, emptied at rate c1. For b1 = 0 and b2 > 0,

Theorems 3.3.6 and 3.3.7 yield

K(b) =

{

2b2c2 if c1 > 2c2;
c2
1

2(c1−c2)
b2 otherwise,

which is in line with Section 4.1 in [130].

3.3.4 Discussion

As in the two-node parallel queue, we can derive the logarithmic large-buffer asymp-

totics by using Theorems 3.3.4 and 3.3.5. That is, we need to obtain a function

K∗(bα), with bα ≡ (αb, (1− α)b), such that

lim
b→∞

− log P (Q1 > αb,Q2 > (1− α)b)

K∗(bα)
= 1,

where a ∈ [0, 1]. With b1 = αb and b2 = (1−α)b, i.e., bα = b, it is not hard to see that

K∗(bα) and K(b) coincide; compare Theorems 3.3.6 and 3.3.7 with Theorems 3.3.4

and 3.3.5, respectively.

Again the results can also be generalized immediately to general Brownian input.

Assuming that c1 > c2 > µ > 0, this is done by setting ci ← (ci − µ)/
√
λ and

bi ← bi/
√
λ, i = 1, 2.

The main approach used in this section relies on the fact that Brownian motions

are characterized by stationary independent increments. Therefore, it can be ex-

pected that our approach is also valid for other input processes that have stationary

independent increments (and an LDP). In subsequent research we showed that the

asymptotics results can indeed be extended to the class of spectrally-positive Lévy in-

puts, i.e., input processes with stationary independent increments which do not have

negative jumps [19]. This class covers Brownian motion and compound Poisson input

as important special cases. As these results are somewhat out of the scope of this

3.3 Two-node tandem queue 81

monograph, we decided to only include the main findings, and to leave out details

and proofs.

Below we associate with A(·) = {A(t), t ≥ 0} the spectrally-positive Lévy input

process of the tandem, where A(0) ≡ 0. As before, assume that both service rates

(i.e., c1 and c2) are larger than µ := EA(1) > 0 to ensure stability, and that c1 > c2 to

avoid the trivial situation that the second queue is always empty. Spectrally-positive

Lévy processes are uniquely given through their Laplace exponent κ(·):E e−sA(t) = etκ(s), s ≥ 0.

If κ(s) also exists for some negative s, then the Lévy process is called light-tailed,

as the tail of the distribution of A(1) decays exponentially or faster. If κ(s) is only

defined for non-negative s, then the process is called heavy-tailed, as the tail of the

distribution of A(1) decays more slowly than any exponential.

For the case of light-tailed Lévy input, we prove that the probability

πα(b) := P(Q1 > αb,Q2 > (1− α)b),

with α ∈ (0, 1), decays essentially exponentially, and we identify the corresponding

decay rate

− lim
b→∞

1

b
log πα(b).

Recall that we already obtained the decay rate for the special case of Brownian

input, see Theorems 3.3.6 and 3.3.7. In order to prove that πα(b) decays exponentially

for the general case of light-tailed Lévy input, we can exploit similar ideas as before.

However, we also need to rely on an alternative approach, as explicit calculations

seem no longer possible in this case.

Before presenting the next two theorems, we first need to define some notation.

Let ϑ(s) := κ(s)+c1s. Also, let ϑ̄ be infs ϑ(s), and s̄ the minimizing argument. Define

t̄ as the (non-zero) root of ϑ(t) = (c1 − c2)t. Furthermore, let s(α) be the solution to

ϑ′(s) = −(c1 − c2)α/(1 − α); t(α) is defined as ϑ(s(α))/(c1 − c2). Let s− < 0 solve

ϑ(s) = 0, and s+ < 0 is defined as the smaller solution to ϑ(s)/(c1 − c2) = t̄. Finally,

define

γ+ := − ϑ′(s−)

c1 − c2 − ϑ′(s−)
; γ− := − ϑ′(s+)

c1 − c2 − ϑ′(s+)
.

Theorem 3.3.8 Suppose s̄ < t̄. Then it holds that

− lim
b→∞

1

b
log πα(b) =







−αs+ − (1− α)t̄ if α ≤ γ−;

−αs(α)− (1− α)t(α) if γ− < α < γ+;

−αs− if α ≥ γ+.

82 Simple networks of Brownian queues

Theorem 3.3.9 Suppose s̄ ≥ t̄. Then it holds that

− lim
b→∞

1

b
log πα(b) =

{ −αs(α)− (1− α)t(α) if α < γ+;

−αs− if α ≥ γ+.

The proof of these two theorems is along the following lines. Relying on the

classical Chernoff bound, we find a lower bound to this decay rate in the form of the

solution of a convex programming problem. The analysis of this lower bound is based

on the joint Laplace transform E e−sQ1−tQ2 , for (s, t) ∈ R 2
+ , see [48]. In the light-tailed

case, however, this expression is valid for some (s, t) 6∈ R 2
+ as well. These (s, t) provide

us with the crucial information to identify a lower bound on the decay rate. Relying

on sample-path large deviations for Lévy processes [6], it is shown that this lower

bound is actually tight. To this end, we construct a trajectory whose rate function

coincides with the solution of the above-mentioned convex programming problem; as

this trajectory is ‘feasible’ (in that it is such that indeed queue 1 exceeds αb and

queue 2 exceeds (1−α)b), this yields the desired result. Recall that, in the Brownian

case, a pictorial illustration of the paths to overflow is given in Figure 3.4; the paths

in the non-Brownian case look similar. It is a straightforward exercise to show that

Theorems 3.3.8 and 3.3.9 coincide with Theorems 3.3.6 and 3.3.7, respectively, in case

of standard Brownian input. The interested reader can find more details in [117].

In the case of heavy-tailed Lévy input the above line of reasoning does not apply.

The rare event of joint overflow is then typically the result of just a single big jump,

rather than a sequence of somewhat unlikely outcomes. In other words, the event of

interest is essentially due to one large service requirement. In order for the workload

of queue 1 to exceed αb, and for the workload of queue 2 to exceed (1 − α)b, with

overwhelming probability this is due to a single job, whose size is roughly of the order

b. This idea leads to a procedure that provides the exact asymptotics of πα(b) in the

heavy-tailed case.

The theorem below identifies the exact asymptotics of πα(b) in the case of com-

pound Poisson input with regularly varying jobs. That is, jobs arrive according to a

Poisson process of rate ν, and the jobs D1, D2, . . . are i.i.d. samples from a distribution

with P(D > b) = b−δL(b), for some δ > 1 and L(·) being a slowly varying function,

i.e., L(b)/L(tb)→ 1 for b→∞, for any t.

Theorem 3.3.10 As b→∞,

πα(b) ∼ ν

c1 − µ
1

δ − 1

(

c1 − µ
c1 − c2

− α
(

c2 − µ
c1 − c2

))1−δ

· b1−δL(b).

The proof consists of a lower bound that focuses on the probability of the single

most likely event, in conjunction with an upper bound that shows that all other

scenarios (for instance those with multiple big jumps) yield negligible contributions.

3.4 Two-class priority queue 83

The lower bound is relatively straightforward, and provides interesting insights into

the way the rare event under consideration occurs. The upper bound requires more

work; the line of reasoning resembles that of earlier papers, e.g. [17, 181]. For more

details we refer to [117].

3.4 Two-class priority queue

In the previous section we analyzed joint overflow in the first and second queue of

a tandem system. This analysis was possible due to the fact that we had explicit

knowledge of both the first buffer and total buffer contents. In this section we use the

same arguments to solve the two-class priority system. We remark that the similarity

between tandem and priority systems was already observed, see e.g. [59].

We consider a priority queue with service rate c, fed by traffic of two classes, each

with its own queue. Traffic of class h does not ‘see’ class l, and therefore class h is

referred to as the high-priority class, whereas the other class l is referred to as the

low-priority class. The input process of class i is a Brownian motion {Bi(t), t ∈ R},
i = h, l. Throughout this section it is assumed that Bh(·) is independent of Bl(·).
The mean traffic rate of class i is denoted by µi, and the variance function of class i

is given by vi(t) = λit, with λi > 0, i = h, l. It turns out that in this priority setting

we cannot restrict ourself, without loss of generality, to centered processes, as was the

case in the parallel and tandem settings, see also [130]. That is, we cannot assume,

without loss of generality, that µl = µh = 0. To ensure stability, we assume that

µh + µl < c. Also Γh(s, t) and Γl(s, t) are as defined before.

Remark: Notice that the above setting also covers the case where the number of

sources of both classes are not equal. Assume for instance that there are n i.i.d. Brow-

nian high-priority sources and nκ, with κ > 0, i.i.d. Brownian low-priority sources.

Multiplying µl and vl(·) by κ, and applying the fact that the Normal distribution is

infinitely divisible, we arrive at n i.i.d. Brownian sources for both classes.

It is well-known that the steady-state workload of a single queue with Brownian

input having mean rate µ and v(t) = λt, is exponentially distributed with mean

λ/(2(c− µ)). Since class h is not influenced by class l, it is also clear how the high-

priority steady-state buffer content Qh behaves: it is exponentially distributed with

mean λh/(2(c−µh)). Also, due to the work-conserving property of the priority queue,

the steady-state total workload QT := Ql + Qh is characterized: it is exponentially

distributed with mean (λl +λh)/(2(c−µl−µh)). However, no closed-form expressions

for the joint overflow probabilitiesP(Qh > bh, QT > bT), (3.30)

84 Simple networks of Brownian queues

and P(Qh > bh, Ql > bl), (3.31)

where bT ≥ bh, bl ≥ 0 are scalars, are known.

In contrast to the two-class parallel and two-class tandem queue, where we were

able to obtain closed-form expression for the joint overflow probabilities, it is now hard

to derive explicit expressions for (3.30) and (3.31), if possible at all. Fortunately, we

are able to calculate the corresponding decay rates by using a version of ‘Schilder’ that

relates to two-dimensional Gaussian processes. The description of this framework is

nearly similar to the one presented in Chapter 2, but slightly more involved. We

refer to [130] for a complete description of this setting. Since one requires similar

techniques as were used before to derive the decay rates, we present the theorems

below without proof.

Reich’s formula [155] states that

Qh = sup
s≥0
{−Bh(−s)− cs} and QT = sup

t≥0
{−Bh(−t)−Bl(−t)− ct}. (3.32)

Let s∗ and t∗ denote an optimizing s and t in (3.32). Now, −s∗ (−t∗) can be inter-

preted as the beginning of the busy period of Qh (QT) containing time 0. Clearly

s∗ ≤ t∗, and therefore (3.30) can be rewritten as P(Bh(·), Bl(·)) ∈ Z), with

Z :=







f ∈ Ω× Ω

∣

∣

∣

∣

∣

∣

∃t ≥ 0 : ∃s ∈ [0, t] :

−fh(−s) > bh + cs;

−fh(−t)− fl(−t) > bT + ct







, (3.33)

where

f(t) = (fh(t), f l(t)) :=

(

fh(t)− µht√
λh

,
fl(t)− µlt√

λl

)

.

Using that Ql = QT −Qh, (3.31) can be expressed as P(Bh(·), Bl(·)) ∈ Z∗), with

Z∗ :=







f ∈ Ω× Ω

∣

∣

∣

∣

∣

∣

∃t ≥ 0 : ∃s ∈ [0, t] : ∀u ∈ [0, t] :

−fh(−s) > bh + cs;

fh(−u)− fh(−t)− fl(−t) > bl + ct− cu







. (3.34)

In order to apply ‘Schilder’, we feed this network by n i.i.d. high-priority Brownian

sources and n i.i.d. low-priority Brownian sources. The link rates and buffer thresholds

are also scaled by n: nc, nbh, nbl, and nbT , respectively.

Using (3.33), P(Qh,n > nbh, QT,n > nbT) can be expressed as

P((1

n

n
∑

i=1

Bh,i(·),
1

n

n
∑

i=1

Bl,i(·)
)

∈ Z
)

.

3.4 Two-class priority queue 85

From ‘Schilder’ it follows that

M(b) := − lim
n→∞

1

n
log P(Qh,n > nbh, QT,n > nbT) = inf

f∈Z
I(f),

where b = (bh, bT).

Similarly, using (3.34), we can write

P(Qh,n > nbh, Ql,n > nbl) = P((1

n

n
∑

i=1

Bh,i(·),
1

n

n
∑

i=1

Bl,i(·)
)

∈ Z∗
)

.

Hence, ‘Schilder’ gives

N(b̃) := − lim
n→∞

1

n
log P(Qh,n > nbh, Ql,n > nbl) = inf

f∈Z∗
I(f),

where b̃ = (bh, bl).

Define

β− =
λh(c− µh − 2µl)− λl(c− µh)

λh(c− µh − 3µl)− λl(3c− 3µh − µl)
;

β0 =
λh(c− µh − 2µl)− λl(c− µh)

(λh + λl)(c− µl − µh)
;

β+ =
c− µh

c− µh + µl
.

It can be verified that β− = β0 = 0 < β+ < 1 if (λh − λl)c = λh(µh + 2µl) − λlµh,

β− < 0 < β0 < β+ < 1 if (λh−λl)c > λh(µh+2µl)−λlµh, and β0 < 0 < β− < β+ < 1

if (λh − λl)c < λh(µh + 2µl)− λlµh. Also, let

p(t) :=
(bh + (c− µh)t)2

2λht
+

(bT − bh − µlt)
2

2λlt
,

and

γ :=

√

λh(bT − bh)2 + λlb2h
λhµ2

l + λl(c− µh)2
.

Theorem 3.4.1 Suppose (λh − λl)c < λh(µh + 2µl)− λlµh. Then it holds that

M(b) =











2(bT λh(c−µh−µl)+bh(λl(c−µh)−λh(c−µh−2µl)))
λh(λh+λl)

if bh/bT ∈ [0, β−];

p(γ) if bh/bT ∈ (β−, β+);
2(c−µh)bh

λh
if bh/bT ∈ [β+, 1].

86 Simple networks of Brownian queues

Theorem 3.4.2 Suppose (λh − λl)c ≥ λh(µh + 2µl)− λlµh. Then it holds that

M(b) =











2(c−µh−µl)bT

λh+λl
if bh/bT ∈ [0, β0];

p(γ) if bh/bT ∈ (β0, β+);
2(c−µh)bh

λh
if bh/bT ∈ [β+, 1].

Theorem 3.4.3 Suppose (λh − λl)c < λh(µh + 2µl)− λlµh. Then it holds that

N(b̃) =











2(blλh(c−µh−µl)+bh(λl(c−µh)+λhµl))
λh(λh+λl)

if bh/(bh + bl) ∈ [0, β−];

p(γ) if bh/(bh + bl) ∈ (β−, β+);
2(c−µh)bh

λh
if bh/(bh + bl) ∈ [β+, 1].

Theorem 3.4.4 Suppose (λh − λl)c ≥ λh(µh + 2µl)− λlµh. Then it holds that

N(b̃) =

{

p(γ) if bh/(bh + bl) ∈ [0, β+);
2(c−µh)bh

λh
if bh/(bh + bl) ∈ [β+, 1].

Chapter 4

Delay in Generalized Processor Sharing

In the previous two chapters we considered (simple networks of) Brownian queues.

As mentioned before, the goal of Chapters 2 and 3 was to develop techniques that can

be used to analyze GPS systems. In this chapter we will exploit these techniques to

derive the delay asymptotics in a GPS system, which was one of the problems stated

in Section 1.7.

In the literature, hardly any results are available on the delay asymptotics in a

GPS system. A two-class GPS system, in a discrete-time setting, in which the input

traffic is assumed to be SRD, was studied in [151], and the logarithmic asymptotics

of the probability that the delay exceeds some large value were derived. In this

chapter we generalize the results of [151] by deriving the delay asymptotics in case of

a continuous-time setting and/or LRD traffic.

We first derive bounds on the delay probability in a two-class GPS system with

general input processes, assuming that the inputs have stationary increments. We

focus on a two-class system, as the majority of the traffic can broadly be catego-

rized into streaming and elastic traffic, see e.g. [157], each one having its own QoS

requirements. We next consider the situation of n input processes of both classes,

scale the link capacity with n as well, and let n grow large. This many-sources regime

is motivated by the fact that, particularly in the core of the network, resources are

commonly shared by a large number of flows at the same time. In this many-sources

framework, we apply Schilder’s sample-path large deviations theorem to calculate the

decay rates of these bounds in the important case of Gaussian inputs, which cover

both SRD and LRD traffic. We note that this work is related to [129], where the au-

thors derive (lower bounds on) the decay rate of the overflow probability in a two-class

GPS system; for other related work, see [7, 126, 132]. We show that there exist two

closed intervals of GPS weight values in which the bounds are tight: one containing

the special case that class 1 has priority, and the other containing the case that class

2 has priority. For the remaining middle interval, we derive bounds on the decay rate.

In the special case of Brownian inputs we obtain transparent closed-form expressions.

88 Delay in Generalized Processor Sharing

The remainder of this chapter is organized as follows. In Section 4.1 we describe

the two-class GPS model. In Section 4.2 we derive bounds on the delay probability. In

Section 4.3 we specialize to Gaussian traffic in a many-sources setting: using Schilder’s

theorem and the bounds mentioned above, we derive (bounds on) the corresponding

decay rate.

4.1 Queueing model

In this chapter we consider a two-class GPS system, served with rate c. Each class

has its own queue, and is assigned a weight φi ≥ 0, i = 1, 2. Without loss of generality

it is assumed that φ1 + φ2 = 1. The weight φi determines the guaranteed minimum

rate φic for class i. If a class does not fully use this minimum rate, then the excess

capacity becomes available for the other class. Note that GPS is a work-conserving

scheduling discipline, i.e., the server works at full speed as long as at least one of the

queues is non-empty.

We focus on the delay experienced by a packet (‘fluid molecule’) of a particular

class, say class 1, having arrived at an arbitrary point in time, the so-called virtual

delay. We assume that the system is stable, so that the delay is bounded almost

surely. Also, without loss of generality we assume that the packet arrives at time 0.

We denote the delay experienced by this packet by D1 ≡ D1(0). Clearly,

p(d) := P(D1 > d) = P(Q1 > S1(0, d)), (4.1)

where Qi ≡ Qi(0) is the steady-state workload of class i, and Si(s, t) is the amount

of service received by class i in the interval (s, t]. Let Xi(s, t) be the amount of traffic

generated by class i in the interval [s, t]. Throughout this chapter we assume that

X1(s, t) is independent of X2(s, t), so C ov(X1(s, t), X2(s, t)) = 0, s ≤ t.

4.2 Bounds on the virtual delay probability

In this section we derive bounds on p(d), which apply to all input processes that have

stationary increments; stationarity of the increments means that the distribution of

Xi(s, s+ t) does not depend on s, but just on the interval length t. We will use these

bounds in Section 4.3 to derive (bounds on) the exponential decay rate of p(d) in the

many-sources setting.

To derive a lower bound on p(d), we need to find an upper bound on S1(0, d), as

follows from (4.1). As S1(0, d) ≤ cd − S2(0, d), this is equivalent to finding a lower

bound on S2(0, d). Now, we have to distinguish between two scenarios: (i) queue 2 is

continuously backlogged in the interval (0, d] and (ii) queue 2 is empty at some time

in (0, d]. In case (i) we have that S2(0, d) = φ2cd, because the second class receives

at least its guaranteed service rate in the interval (0, d], and class 1 is continuously

4.2 Bounds on the virtual delay probability 89

backlogged by definition (otherwise it cannot experience a delay of d), thus claiming

at least its guaranteed rate in the interval (0, d]. In case (ii) we need a different

approach to derive a lower bound on S2(0, d). Let z denote the last time in (0, d] that

the second queue was empty, that is z := max{v ∈ (0, d] : Q2(v) = 0}. This yields

S2(0, d) = S2(0, z) + S2(z, d) = Q2 +X2(0, z) + φ2c(d− z)
≥ inf

u∈(0,d]
{X2(0, u) + φ2c(d− u)}. (4.2)

Note that (4.2) will not exceed φ2cd. That is, it is also a lower bound on S2(0, d) in

case (i). Therefore, we find the following upper bound:

S1(0, d) ≤ cd− S2(0, d) ≤ cd− inf
u∈(0,d]

{X2(0, u) + φ2c(d− u)}.

Hence, we obtain

p(d) ≥ P(Q1 > cd− inf
u∈(0,d]

{X2(0, u) + φ2c(d− u)}
)

. (4.3)

So far no explicit expressions have been found for the steady-state buffer content

distribution of a particular class in a GPS system. In other words: we do not know

the distribution of Q1, which makes the lower bound (4.3) not very useful; we would

rather like to have a bound that is in terms of the input processes X1 and X2 only.

Using that, for b ≥ 0,

P(Q1 > b) = P⋃
x≥0

{Q1 +Q2 > x+ b,Q2 ≤ x}



 ,

we find that (4.3) can be rewritten as

p(d) ≥ P0�[
x≥0

�
Q1 + Q2 > x + cd− inf

u∈(0,d]
{X2(0, u) + φ2c(d− u)}, Q2 ≤ x

�1A . (4.4)

But now observe that Q1 + Q2 is the steady-state workload of the total queue, and

hence, due to the work-conserving nature of GPS, Reich’s identity [155] implies that

Q1 +Q2 = sup
t≥0
{X1(−t, 0) +X2(−t, 0)− ct} . (4.5)

Also, again by Reich’s identity,

Q2 = sup
s≥0
{X2(−s, 0)− S2(−s, 0)} . (4.6)

The negative of the optimizing t (s), denoted by t∗ (s∗), can be interpreted as the

beginning of the busy period of the total (second) queue containing time 0. Clearly,

90 Delay in Generalized Processor Sharing

this entails that s∗ ≤ t∗. Now, using (4.5) and (4.6), we have that (4.4) can be

expressed as

p(d) ≥ P ∃x ≥ 0, t ≥ 0 : ∀s ∈ [0, t] : ∀u ∈ (0, d] :

X1(−t, 0) +X2(−t, u) > x+ ct+ φ1cd+ φ2cu;

X2(−s, 0) ≤ x+ S2(−s, 0)



 . (4.7)

From (4.7) we conclude that, in order to find a lower bound on p(d) that only

depends on the input processesX1 andX2, we have to find a lower bound on S2(−s, 0).

Lemma 4.2.1 p(d) is lower bounded by

P ∃x ≥ 0, t ≥ 0 : ∀s ∈ [0, t] : ∀u ∈ (0, d] :

X1(−t, 0) +X2(−t, u) > x+ ct+ φ1cd+ φ2cu;

X2(−s, 0) ≤ x+ φ2cs



 .

Proof: Since−s∗ denotes the beginning of the the busy period, queue 2 is continuously

backlogged in the interval (−s∗, 0], and therefore S2(−s∗, 0) ≥ φ2cs
∗. This implies

that the right-hand side of (4.7) is lower bounded by the stated, and therefore also

p(d). ✷

Likewise, to derive an upper bound on p(d) we need to find a lower bound on

S1(0, d). A first lower bound on S1(0, d) is clearly given by S1(0, d) ≥ cd − Q2 −
X2(0, d). This is a direct implication of the fact that, in an interval (0, d], a queue

never claims more than the workload at time 0, increased by the amount of traffic

arriving at this queue in (0, d].

Lemma 4.2.2 p(d) is upper bounded byP (∃t ≥ 0 : X1(−t, 0) +X2(−t, d) > ct+ cd) .

Proof: Since S1(0, d) ≥ cd−Q2 −X2(0, d), we have

p(d) ≤ P(Q1 > cd−Q2 −X2(0, d)) = P(Q1 +Q2 > cd−X2(0, d)).

Using (4.5), it is easily seen that the right-hand side is equivalent to the stated. ✷

Class 1 can only experience a delay of d if class 1 is continuously backlogged in the

interval (0, d]. This implies that S1(0, d) ≥ φ1cd, from which we deduce the following

second upper bound.

Lemma 4.2.3 p(d) is upper bounded by

P0B� ∃x ≥ 0, t ≥ 0 : ∀s ∈ [0, t] : ∃v ∈ [0, s] :

X1(−t, 0) + X2(−t, 0) > x + ct + φ1cd;

X1(−s,−v) + X2(−s, 0) ≤ x + cs− φ1cv

1CA .

4.3 Decay rate of the virtual delay probability 91

Proof: Since S1(0, d) ≥ φ1cd, we have that p(d) ≤ P(Q1 > φ1cd). In Section 3 of [129]

it is shown that P(Q1 > φ1cd) is upper bounded by the stated. ✷

Notice the similarity between the lower bound of Lemma 4.2.1 and the upper

bound of Lemma 4.2.3.

4.3 Decay rate of the virtual delay probability

In this section we derive (bounds on) the decay rate of the virtual delay probability in

case of Gaussian inputs. We consider a many-sources setting, where the link capacity

is scaled proportionally to the number of sources. In the special case of Brownian

inputs we obtain closed-form expressions.

4.3.1 Gaussian input traffic

Let class i consist of a superposition of n, n ∈ N , i.i.d. flows (or: sources), i = 1, 2;

the analysis can easily be extended to the case of an unequal number of sources, see

the remark in Section 3.4. Let the service capacity be nc. A class-i flow behaves as

a Gaussian process with stationary increments {Ai(t), t ∈ R}, with Ai(0) ≡ 0. Also,

let the mean traffic rate and variance function of a single class-i flow be denoted by

µi > 0 and vi(·) : R+ → R+ , respectively, i = 1, 2. This mean rate and variance curve

fully characterize the probabilistic behavior of the traffic process Ai(·). To guarantee

stability we assume that µ1 + µ2 < c. With Ai(s, t) := Ai(t) − Ai(s) denoting the

amount of traffic generated by a single flow of type i in the interval [s, t], Ai(s, t) has

a Normal distribution with EAi(s, t) = µi · (t − s) and VarAi(s, t) = vi(t − s). As

before, Ai(t) := Ai(t)− µit denotes the centered process. Recall that the covariance

function Γi(s, t) can be written as

Γi(s, t) := C ov (Ai(s), Ai(t)) = C ov
(

Ai(s), Ai(t)
)

=
1

2
(vi(s) + vi(t)− vi(t− s)) , (4.8)

for all 0 < s < t. We impose Assumptions A1-A3 on vi(·), i = 1, 2, see Chapter 2.

4.3.2 Decay rate

In this subsection we derive (bounds on) the decay rate corresponding to the virtual

delay probability

pn(d) := P(Q1,n > S1,n(0, d)), n→∞,

where Q1,n ≡ Q1,n(0) is the steady-state class-1 buffer content and S1,n(0, d) is the

amount of service received in the interval (0, d] by class 1, in a system with n class-i

inputs, i = 1, 2, that has service capacity nc.

92 Delay in Generalized Processor Sharing

Using ‘Schilder’ in a two-dimensional framework, it follows that

J(d) := − lim
n→∞

1

n
log pn(d) = inf

f∈L
I(f) = inf

f∈L
I(f), (4.9)

where the open (closed) set L (L) consists of all paths (f1, f2) that give a delay larger

(larger or equal) than d. Recall that we refer to the path in L (and likewise in L)

that minimizes the decay rate, i.e., f∗ = (f∗1 , f
∗
2), as the most probable path (MPP).

Informally speaking, given that the rare event occurs, with overwhelming probability

a delay of d is achieved by a path ‘close to’ the MPP, cf. [7].

Recall that in Section 4.2 we derived bounds on p(d). In this subsection we will

exploit these bounds, to derive (lower bounds on) J(d). Note that the decay rates of

the upper (lower) bounds on p(d) are lower (upper) bounds on J(d) for all φ2 ∈ [0, 1].

Class 2 in overload

We first focus on the regime φ2 ∈ [0, µ2/c], i.e., class 2 in overload, and we derive an

exact expression for the decay rate of pn(d). Recall that S1(d) ≥ φ1cd is required in

order to have a delay of d. This yields

pn(d) ≤ P(Q1,n ≥ nφ1cd) ≤ P(Qnφ1c
1,n ≥ nφ1cd),

where Qa
1,n ≡ Qa

1,n(0) denotes the stationary workload of queue 1 if it is served in

isolation at constant rate a.

Lemma 4.3.1 If φ2 ∈ [0, µ2/c], then

J(d) = inf
t≥0

(φ1cd+ (φ1c− µ1)t)
2

2v1(t)
. (4.10)

Let t∗ be the optimizer in the above equation. Then, the MPP is given by

f∗1 (r) =

{ −E (A1(r, 0)|A1(−t∗, 0) = φ1c(t
∗ + d)) for r ≤ 0;E (A1(0, r)|A1(−t∗, 0) = φ1c(t

∗ + d)) for r > 0;

f∗2 (r) =

{ −E (A2(r, 0)|A1(−t∗, 0) = φ1c(t
∗ + d)) for r ≤ 0;E (A2(0, r)|A1(−t∗, 0) = φ1c(t

∗ + d)) for r > 0.
(4.11)

Proof: The decay rate JL(d) of P(Qnφ1c
1,n ≥ nφ1cd) in case φ2 ∈ [0, µ2/c] is given in

Theorem 6.1 of [129]. Note that because P(Qnφ1c
1,n ≥ nφ1cd) is an upper bound on

the delay probability, its decay rate JL(d) is a lower bound on J(d). In addition, in

Section 6 of [129] the authors derived the MPP f̃ = (f̃1, f̃2) corresponding to JL(d)

using (2.12). The decay rate JL(d) is given by (4.10) and f̃ is given by (4.11). What

is left to show is that J(d) = JL(d) and f∗ = f̃ .

4.3 Decay rate of the virtual delay probability 93

Finding an upper bound JU (d) on J(d) is a matter of computing the rate function

(‘cost’) of a path in L, i.e., a path that produces a delay of at least d. Using (2.4), it

can be verified that

f̃1(r) = µ1r −
(φ1cd+ (φ1c− µ1)t

∗)

v1(t∗)
Γ1(−r, t∗) for r ∈ (−t∗, 0];

f̃2(r) = µ2r for r ∈ (−t∗, d].
This path is such that, at time 0, queue 1 has buffer content φ1cd (as Q1(−t∗) = 0),

and such that queue 2 continuously claims service rate φ2c in the interval (0, d] (as

µ2 ≥ φ2c), i.e., a service rate φ1c is available for class 1 in the interval (0, d]. Hence,

we conclude that the path f̃ results in a delay of exactly d, i.e., f̃ ∈ L, implying that

f∗ = f̃ and, using (2.12), JU (d) = JL(d) = J(d). ✷

Class 2 in underload

We now consider the regime φ2 ∈ (µ2/c, 1] and derive the decay rate J(d). In the

analysis below the following critical class 2 weight is of importance:

φF
2 :=

µ2

c
+
v′2(d− r∗) + v′2(t

∗ + r∗)

2(v1(t∗) + v2(t∗ + d))

((

1− µ1 + µ2

c

)

t∗ +
(

1− µ2

c

)

d

)

, (4.12)

where t∗ is minimizer of

inf
t≥0

(c(t+ d)− µ1t− µ2(t+ d))2

2v1(t) + 2v2(t+ d)
, (4.13)

and where r∗ is maximizer of

sup
r∈(−t∗,d]

v′2(d− r) + v′2(t
∗ + r). (4.14)

Note that φF
2 > µ2/c, as v′(·) > 0 by Assumption A3, and possibly larger than 1.

The next theorem presents the exact decay rate in case φ2 ∈ [φF
2 , 1] (if this interval

is non-empty).

Lemma 4.3.2 If φ2 ∈ [φF
2 , 1], then

J(d) = inf
t≥0

(c(t+ d)− µ1t− µ2(t+ d))2

2v1(t) + 2v2(t+ d)
. (4.15)

Let t∗ be the optimizer in the above equation. Then, the MPP is given by

f∗
1 (r) =

(
−E (A1(r, 0)|A1(−t∗, 0) + A2(−t∗, d) = c(t∗ + d)) for r ≤ 0;E (A1(0, r)|A1(−t∗, 0) + A2(−t∗, d) = c(t∗ + d)) for r > 0;

f∗
2 (r) =

(
−E (A2(r, 0)|A1(−t∗, 0) + A2(−t∗, d) = c(t∗ + d)) for r ≤ 0;E (A2(0, r)|A1(−t∗, 0) + A2(−t∗, d) = c(t∗ + d)) for r > 0.

(4.16)

94 Delay in Generalized Processor Sharing

Proof: Lemma 4.2.2 gives an upper bound on the delay probability. The decay rate

JL(d) of this upper bound and the corresponding MPP f̃ , the latter obtained by

using (2.12), are well known (see for instance [7]), and given by (4.15) and (4.16),

respectively. Below we show that JL(d) = J(d), or equivalently, that f̃ ∈ L if [φF
2 , 1]

(similarly to the proof of Lemma 4.3.1).
Using (2.4), it can be verified that

f̃1(r) = µ1r −
Γ1(−r, t∗)

v1(t∗) + v2(t∗ + d)
((c− µ2)(t

∗ + d)− µ1t
∗) for r ∈ (−t∗, 0];

f̃2(r) = µ2r−
Γ2(t

∗, t∗ + d)− Γ2(t
∗ + r, t∗ + d)

v1(t∗) + v2(t∗ + d)
((c− µ2)(t

∗ + d)− µ1t
∗) for r ∈ (−t∗, d];

g2(r) :=
df̃2(r)

dr
= µ2 +

v′
2(d− r) + v′

2(t
∗ + r)

2v1(t∗) + 2v2(t∗ + d)
((c− µ2)(t

∗ + d)− µ1t
∗) ,

i.e., g2(·) represents the input rate of the path f̃2, which is derived using (4.8). Note

that −t∗ denotes the beginning of the busy period of the total queue, i.e., Q1(−t∗) =

Q2(−t∗) = 0. Hence, if the input rate of class 2 is smaller than the guaranteed

minimum rate φ2c for all r ∈ (−t∗, d], then clearly queue 2 is empty in the interval

(−t∗, d]. Let

r∗ := arg max
r∈(−t∗,d]

g2(r),

i.e., r∗ is the maximizer of (4.14). Then queue 2 is empty in the interval (−t∗, d] if

φ2 ≥ g2(r∗)/c = φF
2 . Now, note that the path f̃ is such that

Q1 +Q2 = Q1 = cd− f̃2(d) =

∫ d

0

(c− g2(r))dr,

in case φ2 ∈ [φF
2 , 1]. As class 2 only uses rate g2(r) ≤ φ2c in this case, this implies

that rate c − g2(r) is available for the first class, r ∈ (−t∗, d]. It is not hard to see

that, given Q1(0) =
∫ d

0
(c− g2(r))dr and service rate c− g2(r) for the first class, the

experienced delay in steady state is exactly d. This proves that f̃ ∈ L, i.e., f∗ = f̃

and J(d) = JL(d). ✷

We now focus on the remaining interval of weights: φ2 ∈
(

µ2/c, φ
F
2

)

. We have not

succeeded in finding the exact decay rate in this middle regime, but we present two

lower bounds; it is noted that lower bounds on the decay rate, which correspond to

upper bounds on the probability pn(d), are usually of practical interest, as typically

the network has to be designed such that pn(d) is small.

Clearly, the decay rate of Lemma 4.3.2 is also a lower bound on J(d) in case

φ2 ∈ (µ2/c, φ
F
2), as it is independent of φ2 (see proof of Lemma 4.3.2). However, the

corresponding path f∗ is not necessarily contained in L, and therefore it is not known

whether the bound is tight.

We proceed by presenting a second lower bound on J(d).

4.3 Decay rate of the virtual delay probability 95

Lemma 4.3.3 J(d) is lower bounded by

inf
x≥0

inf
t≥0

sup
s∈[0,t]

inf
v∈[0,s]

inf
z1≥x+ct+φ1cd
z2≤x+cs−φ1cv

Λ(z1, z2),

where

Λ(z1, z2) := 1
2

(

z1 − (µ1 + µ2)t

z2 − (µ1 + µ2)s+ µ2v

)T

Σ−1

(

z1 − (µ1 + µ2)t

z2 − (µ1 + µ2)s+ µ2v

)

,

and

Σ =

(

v1(t) + v2(t) Γ1(s, t)− Γ1(v, t) + Γ2(s, t)

Γ1(s, t)− Γ1(v, t) + Γ2(s, t) v1(s− v) + v2(s)

)

.

Proof: Let the exact decay rate of the upper bound in Lemma 4.2.3 be denoted by

JL(d). Define the set of paths

Ss,t,v,x :=

{

f ∈ Ω× Ω

∣

∣

∣

∣

∣

−f1(−t)− f2(−t) ≥ x+ ct+ φ1cd;

f1(−v)− f1(−s)− f2(−s) ≤ x+ cs− φ1cv

}

,

where

S :=
⋃

x≥0

⋃

t≥0

⋂

s∈[0,t]

⋃

v∈[0,s]

Ss,t,v,x,

f(t) = (f1(t), f2(t)) := (f1(t) − µ1t, f2(t) − µ2t) is the centered path, and Ω is

as defined in Equation (2.10). Then using Lemma 4.2.3 and ‘Schilder’ (recall that

Schilder’s theorem relates to centered Gaussian inputs), we obtain that

J(d) ≥ inf
f∈S

I(f) = JL(d) ≥ inf
x≥0

inf
t≥0

sup
s∈[0,t]

inf
v∈[0,s]

inf
f∈Ss,t,v,x

I(f).

The last inequality above was given in Theorem 4.1 of [129]. We now focus on the

calculation of inff∈Ss,t,v,x I(f) for fixed s, t, v and x. Recognize that Λ(z1, z2) is the

large deviations rate function of the bivariate random variable

(A1(−t, 0) +A2(−t, 0), A1(−s,−v) +A2(−s, 0)).

Finally, using Theorem 2.3.4,

inf
f∈Ss,t,v,x

I(f) = inf
z1≥x+ct+φ1cd
z2≤x+cs−φ1cv

Λ(z1, z2).

This proves the stated. ✷

The following theorem summarizes Lemmas 4.3.1-4.3.3.

96 Delay in Generalized Processor Sharing

Theorem 4.3.4 Suppose that class-1 and class-2 sources are Gaussian inputs. Then,

under Assumptions A1-A3,

J(d) =

{

(i) inft≥0
(φ1cd+(φ1c−µ1)t)

2

2v1(t) for φ2 ∈ [0, µ2/c];

(iii) inft≥0
(c(t+d)−µ1t−µ2(t+d))2

2v1(t)+2v2(t+d) for φ2 ∈ [φF
2 , 1],

and (ii) J(d) ≥

max

8<:inf
t≥0

(c(t + d)− µ1t− µ2(t + d))2

2v1(t) + 2v2(t + d)
, inf

x≥0
inf
t≥0

sup
s∈[0,t]

inf
v∈[0,s]

inf
z1≥x+ct+φ1cd
z2≤x+cs−φ1cv

Λ(z1, z2)

9=;
for φ2 ∈ (µ2/c, φ

F
2), where Λ(z1, z2) is as in Lemma 4.3.3.

4.3.3 Brownian inputs

For most Gaussian inputs that satisfy A1-A3 there does not exist a closed-form ex-

pression for (bounds on) the decay rates as presented in Theorem 4.3.4. In case of

Brownian inputs, however, we can derive explicit expressions for (bounds on) the de-

cay rate J(d). Brownian motions can be used to approximate weakly-dependent traffic

streams as suggested by the celebrated Central Limit Theorem in functional form, see

also [126]. We let the variance functions be characterized through vi(t) = λit, with

λi > 0, i = 1, 2.

Straightforward calculus shows that (4.13) is minimized for

t∗ =

{

d
(

c−µ2

c−µ1−µ2
− 2 λ2

λ1+λ2

)

if µ2

c + 2λ2

λ1+λ2

(

1− µ1+µ2

c

)

≤ 1;

0 otherwise.

Since v′i(t) = λi, we obtain from (4.12) that

φF
2 = min

{

µ2

c
+

2λ2

λ1 + λ2

(

1− µ1 + µ2

c

)

, 1

}

.

The following theorem characterizes the decay rate J(d).

Proposition 4.3.5 Suppose that class-1 and class-2 sources are Brownian inputs.

Then,

J(d) =

{

(i) 2φ1cd
φ1c−µ1

λ1
for φ2 ∈ [0, µ2/c];

(iii) 2d
(

c−µ1−µ2

λ1+λ2

)(

(c−µ2)λ1+µ1λ2

λ1+λ2

)

for φ2 ∈ [φF
2 , 1],

and (ii) J(d) ∈h
1
2
d
�

(φ1c+(φ1c−µ1)u∗)2

λ1u∗ + (φ2c−µ2)2

λ2
u∗
�

, 1
2
d
�

(φ1c+(φ1c−µ1)u∗)2

λ1u∗ + (φ2c−µ2)2

λ2
(u∗ + 1)

�i

4.3 Decay rate of the virtual delay probability 97

for φ2 ∈ (µ2/c, φ
F
2), with the ‘critical time scale’ u∗ given by

u∗ :=
φ1c

√

(φ1c− µ1)2 + (φ2c− µ2)2
λ1

λ2

.

Proof: Straightforward calculus shows that the optimizer of Lemma 4.3.1 is

t∗ =
φ1cd

φ1c− µ1
,

from which we obtain (i). In Lemma 4.3.2 the optimizer is

t∗ = d

(

c− µ2

c− µ1 − µ2
− 2

λ2

λ1 + λ2

)

,

which yields (iii). The lower bound in (ii) follows from Lemma 4.3.3, and was proved

in Theorem 5.6 of [126]. The upper bound in (ii) is a matter of calculating the cost

of a path in L. Consider the following path:

f1(r) =

{ −E (A1(r, 0)|A1(−t∗, 0) = φ1c(t
∗ + d)) for r ≤ 0;E (A1(0, r)|A1(−t∗, 0) = φ1c(t

∗ + d)) for r > 0;

f2(r) =

{ −E (A2(r, 0)|A2(−t∗, d) = φ2(t
∗ + d)) for r ≤ 0;E (A2(0, r)|A2(−t∗, d) = φ2c(t
∗ + d)) for r > 0,

where t∗ = u∗d. Using (2.4), it can be verified that this path is such that class 1

produces traffic at constant rate φ1c(t
∗ + d)/t∗ > φ1c in the interval (−t∗, 0] and

at constant rate µ1 elsewhere, whereas class 2 produces traffic at constant rate φ2c

in the interval (−t∗, d] and at constant rate µ2 elsewhere. This obviously leads to

Q1(0) = φ1cd (as Q1(−t∗) = Q2(−t∗) = 0), and thus a delay of d, as class 2 con-

tinuously claims its guaranteed rate in the interval (−t∗, d]. Using (2.19), the decay

rate associated with f is therefore given by I(f̃1, f̃2), with f̃i(t) := (fi(t)− µit)/
√
λi,

i = 1, 2 (recall that (2.19) relates to standard Brownian inputs), which is equivalent

to the desired expression. ✷

Chapter 5

Selection of optimal weights in

Generalized Processor Sharing

In the previous chapter we derived the delay asymptotics in a GPS queue, which

was one of the problems mentioned in Section 1.7. In this chapter we turn to the

other problem mentioned. That is, in contrast to the previous chapter, where the

GPS weights were assumed to be fixed beforehand, we now analyze the selection of

optimal GPS weights.

The problem of mapping the QoS requirements on suitable GPS weights has re-

ceived little attention in the literature, see the overview in Chapter 1. The results

of [60] on the weight setting problem rely on the restrictive assumption of leaky-bucket

controlled traffic. The contribution of this chapter is that we extend their results on

the weight setting to a general and versatile class of input processes, covering a broad

range of correlation structures, viz. the class of Gaussian inputs.

We consider a two-class GPS system with Gaussian traffic sources. The QoS

criterion is that the loss probability should be kept below some class-specific value.

The large deviations approximations of [132] on GPS for Gaussian inputs are the

key tool in our analysis. As a first step, we use these approximations to find the

admissible region for class 1 for fixed weights, i.e., all numbers of sources n1, n2 of

class 1 and class 2 such that the QoS requirement of class 1 is met. By taking the

intersection of the admissible region of both classes, we then obtain the admissible

region (of the system), i.e., all combinations of flows that satisfy the QoS for both

classes. In the special case of Brownian inputs, we explicitly determine the boundary

of the admissible region.

We then explicitly derive the realizable region as the union of the admissible

regions over all possible weight values, in case of Brownian inputs. A remarkable

finding is that nearly the entire realizable region is achieved by one of the strict pri-

ority scheduling disciplines. A further key observation is that the QoS requirements

and the buffer thresholds fully determine which class should have high priority, if

100 Selection of optimal weights in Generalized Processor Sharing

such a strict priority policy would be imposed. Importantly, the above two remark-

able conclusions also hold for general Gaussian inputs. In the absence of an explicit

description of the boundary of the realizable region, we have relied on extensive nu-

merical experimentation.

The above results indicate that from an efficiency point of view GPS does not

outperform a simple priority discipline. In other words, it suggests that there is

hardly any efficiency improvement to be achieved by implementing GPS (compared to

priority scheduling), in that the admissible region corresponding to some GPS weight

vector, is contained in the admissible region corresponding to one of the priority cases.

It is worth pointing out one important caveat. By assigning positive weights to all

classes, GPS is capable of protecting a class against starvation when some other class

misbehaves, as opposed to priority scheduling, where the low-priority class may be

excluded from service over substantial time intervals.

The remainder of this paper is organized as follows. In Section 5.1 we describe our

two-class GPS model with Gaussian inputs, and review the Mannersalo-Norros ap-

proximations [132] for loss probabilities, which consist of three regimes. In Section 5.2

the stable region is partitioned into three subsets, each subset corresponding to one

of the three regimes. Using the partitioning of the stable region and the Mannersalo-

Norros approximations, we derive the admissible region in Section 5.3. In Section 5.4

we consider Brownian inputs, and explicitly derive the boundary of the admissible re-

gion and the boundary of the realizable region. In Section 5.5 we perform numerical

analysis. In particular, we consider systems shared by two types of applications with

heterogeneous QoS requirements, and numerically derive the realizable regions.

5.1 Preliminaries

In this section we introduce the notation of the two-class GPS model and discuss

Gaussian sources. Then we present approximations for the overflow probabilities.

5.1.1 Queueing model

We consider a model with two queues that share a server of rate c. Traffic of class i

is buffered in queue i, i = 1, 2. The scheduling discipline is GPS, with weight φi ≥ 0

assigned to class i, i = 1, 2. Without loss of generality we assume that φ1 + φ2 = 1.

The weight φi determines the guaranteed minimum rate for class i. If a class does not

fully use the minimum rate, then the excess capacity becomes available to the other

class.

5.1.2 Gaussian input traffic, overflow probabilities

As our first goal in Sections 5.2 and 5.3 is to characterize the admissible region (for

a given weight vector), we first present the Mannersalo-Norros approximations [132]

5.1 Preliminaries 101

for the overflow probabilities for given numbers of sources of both classes.

Let class 1 (class 2) consist of a superposition of n1 (n2) i.i.d. flows (or: sources),

modeled as Gaussian processes with stationary increments. Clearly n1, n2 ∈ N 0 , but

for convenience we let n1, n2 ∈ R+ . We denote the mean traffic rate and variance

function of a single class-i flow by µi > 0 and vi(·) : R+ → R+ , respectively, for

i = 1, 2; this mean rate and variance curve fully characterize the probabilistic behavior

of the flow. Hence, if Ai(s, t) denotes the amount of traffic generated by a single flow

of type i in the interval [s, t], then EAi(s, t) = µi · (t− s) and VarAi(s, t) = vi(t− s).
To guarantee stability we assume that n1µ1 + n2µ2 ≤ c (which we refer to as the

‘capacity constraint’). We impose Assumptions A1-A3 on vi(·), see Chapter 2.

The derivation of the admissible regions relies on the Mannersalo-Norros approx-

imations [132] for the overflow probabilities; these require Assumptions A1 and A2.

On the basis of extensive simulation experiments, Mannersalo & Norros [132] showed

the accuracy of their approximations. Assumption A3 is needed in the proofs of some

lemmas.

Let Qi denote the stationary buffer content in the GPS model of class i, and

△i(n1, n2) the Mannersalo-Norros approximation of − log P(Qi > Bi). Define

ψ(t|n1, n2) :=
1

2
inf
t≥0

(b1 + (c− n1µ1 − n2µ2)t)
2

n1v1(t) + n2v2(t)
. (5.1)

We impose the following assumption on ψ(t|n1, n2).

Assumption 5.1.1 For any (n1, n2) ∈ R 2
+ such that n1µ1 + n2µ2 ≤ c, ψ(t|n1, n2)

has a unique minimizer tF (n1, n2).

Clearly, tF (n1, n2) depends on (n1, n2), but for ease of notation, we will denote it by

tF in the remainder of this chapter. Due to Assumption A2, for any (n1, n2) ∈ R 2
+

such that n1µ1 + n2µ2 ≤ c, limt→0 ψ(t|n1, n2) = limt→∞ ψ(t|n1, n2) = ∞, and thus

a minimizer tF of ψ(t|n1, n2) clearly exists, but it is not necessarily unique. We per-

formed extensive numerical experiments with the often used variance functions vi(·),
e.g., fractional Brownian motions, and the Gaussian counterpart of the Anick-Mitra-

Sondhi (AMS) [11] model (see also Section 5.5), and observed that tF was unique in

all considered cases, making this uniqueness assumption a weak assumption. In fact,

it turned out to be a non-trivial exercise to find a situation with multiple minimizers,

see Figure 5.1 for a rare example with two minimizers. By slightly increasing (n1, n2),

we see that the minimizing t jumps from 0.2775 to 32.3631. For a related example,

see Section 5 of [124].

Also, define

φF
2 :=

n2µ2

c
+

(

n2v2(t
F)
(

b1 + (c− n1µ1 − n2µ2)t
F
)

ctF (n1v1(tF) + n2v2(tF))

)

. (5.2)

102 Selection of optimal weights in Generalized Processor Sharing

-4 -2 2 4
Log@tD

0.0038

0.0039

0.0041

0.0042

0.0043

-4 -2 2 4
Log@tD

0.0032

0.0036

0.0038

0.004

Figure 5.1: Left: The function ψ(t|n1, n2) evaluated with parameters n1 = n2 = 1, c =

1, b1 = 0.04, µ1 = 0.4, µ2 = 0.5, v1(t) = t0.55 and v2(t) = 1.45t1.98. The minimizers

are tF1 = 0.2775 and tF2 = 27.6741, with ψ(tF1 |1, 1) = ψ(tF2 |1, 1) = 0.00377. Right:

The same setting, but now with n1 = n2 = 1.01. The minimizer is tF = 32.3631, with

ψ(tF |1.01, 1.01) = 0.00310.

Due to the uniqueness of tF , φF
2 is unique as well, and is larger than n2µ2/c. Then

△1(n1, n2) =

8>><>>: (i) 1
2

inft≥0
(b1+(φ1c−n1µ1)t)2

n1v1(t)
for φ2 ∈ [0, n2µ2

c
];

(ii) 1
2

inft≥0

�
(b1+(φ1c−n1µ1)t)2

n1v1(t)
+ (φ2c−n2µ2)2t2

n2v2(t)

�
for φ2 ∈ (n2µ2

c
, φF

2);

(iii) 1
2

inft≥0
(b1+(c−n1µ1−n2µ2)t)2

n1v1(t)+n2v2(t)
for φ2 ∈ [φF

2 , 1].

The approximations △2(n1, n2) are analogous; evidently, we can now approximateP(Qi > Bi) by exp (−△i(n1, n2)). We now heuristically explain the three regimes (i),

(ii), (iii). As the first and the third have the easiest explanation we start there, before

turning to the second regime.

In regime (i) we have that φ2c ≤ n2µ2. That is, the mean traffic rate generated

by class 2 exceeds the guaranteed rate of service to class 2 (we call this: class 2

in overload). Therefore, it is very likely that type-2 sources claim their guaranteed

service rate φ2c essentially all the time. Hence, overflow in queue 1 resembles overflow

in a FIFO queue with service rate φ1c. The approximation △1(n1, n2) of regime (i) is

based on this principle, cf. [7]. The minimizing t represents the (most likely) length

of the interval between the epoch queue 1 starts to build up, until it reaches buffer

content b1.

Regime (iii) requires φ2 to be at least as large as φF
2 . It can be verified (by using

the explicit formulae for conditional means of Normal random variables) that φF
2 is

equal to the value of φ2 for whichE (A2(−tF , 0)|A1(−tF , 0) +A2(−tF , 0) = b1 + ctF
)

= φ2ct
F . (5.3)

Hence, if φ2 ≥ φF
2 , conditioned on the total queue building up b1 in tF time units,

then all this traffic is in queue 1, and queue 2 is essentially empty.

5.2 Partitioning of the stable region 103

Regime (ii) applies if class 2 is underloaded, but φ2 ≤ φF
2 . When the total queue

reaches level b1, it is now very likely that the queue of class 2 is non-empty. Hence,

an additional constraint must be imposed to keep the buffer content of queue 2 small.

The approximation is such that the flows of class 1 generate b1+φ1ct, while the class-2

sources generate φ2ct (i.e., the class-2 sources claim their guaranteed rate). Note that

in the approximation it is used that the interval in which the class-2 sources claim

rate φ2c coincides with the interval in which queue 1 builds up. For a refinement of

this approximation we refer to [129], which allows scenarios in which the first queue

starts to build up before the second queue reaches traffic rate φ2c.

5.2 Partitioning of the stable region

In order to derive the admissible region (for given weights) of the two-class GPS

system, we have to determine the admissible region of each class separately and then

take the intersection of these two regions. In Sections 5.2 and 5.3, without loss of

generality, we focus on the admissible region of the first class (i.e., the set of sources

(n1, n2) for which the class-1 sources receive the desired QoS), as the second one can

be treated in the same fashion. Before the admissible region of the first class can be

obtained, which we will do in Section 5.3, we first determine all (n1, n2) for which (i)

φ2 ∈ [0, n2µ2/c], (ii) φ2 ∈ (n2µ2/c, φ
F
2) and (iii) φ2 ∈ [φF

2 , 1], thus partitioning the

stable region T := {(n1, n2) : n1µ1 +n2µ2 ≤ c} into three sets. In these three sets we

can use the approximation of △1(n1, n2) presented in Section 5.1.2.

Lemma 5.2.1 Let φ1 ∈ (0, 1). Then T = T i
1(φ1) ∪ T ii

1 (φ1) ∪ T iii
1 (φ1) for disjoint

non-empty T i
1(φ1), T

ii
1 (φ1) and T iii

1 (φ1), where

T i
1(φ1) :=

�
(n1, n2) ∈ T : n2 ≥

φ2c

µ2

�
;

T ii
1 (φ1) :=

(
(n1, n2) ∈ T : n2 <

φ2c

µ2
,

b1 + (φ1c− n1µ1)t
F

n1v1(tF)
>

(φ2c− n2µ2)t
F

n2v2(tF)

)
;

T iii
1 (φ1) :=

(
(n1, n2) ∈ T : n2 <

φ2c

µ2
,

b1 + (φ1c− n1µ1)t
F

n1v1(tF)
≤ (φ2c− n2µ2)t

F

n2v2(tF)

)
,

such that regime (j) applies in T j
1 (φ1), for j ∈ {i, ii, iii}.

Proof: T i
1(φ1) follows from the fact that we must have φ2 ∈ [0, n2µ2/c]. In order to

be in T ii
1 (φ1) we must have that φ2 ∈ (n2µ2/c, φ

F
2), or equivalently n2 < φ2c/µ2 and

φ2 < φF
2 . The latter inequality can be rewritten as

φ2 <
n2µ2

c
+

(

n2v2(t
F)
(

b1 + (c− n1µ1 − n2µ2)t
F
)

ctF (n1v1(tF) + n2v2(tF))

)

.

104 Selection of optimal weights in Generalized Processor Sharing

Multiply both sides with ctF , and rearrange the right-hand side to obtain

φ2ct
F <

(

n2v2(t
F)
(

b1 + ctF − n1µ1t
F
)

n1v1(tF) + n2v2(tF)

)

+
n1v1(t

F)n2µ2t
F

n1v1(tF) + n2v2(tF)
.

Multiplying both sides with n1v1(t
F) + n2v2(t

F) and collecting ‘equivalent terms’

leads to

n1v1(t
F)
(

φ2ct
F − n2µ2t

F
)

< n2v2(t
F)
(

b1 + φ1ct
F − n1µ1t

F
)

.

Dividing both sides by n1v1(t
F) and n2v2(t

F) respectively gives

b1 + (φ1c− n1µ1)t
F

n1v1(tF)
>

(φ2c− n2µ2)t
F

n2v2(tF)
. (5.4)

The characterization of T iii
1 (φ1) follows similarly.

In case φ1 ∈ (0, 1), all three sets are non-empty, and this proves the stated. Note

that T = T iii
1 (0) for φ1 = 0 and T = T i

1(1) for φ1 = 1. ✷

Now consider the boundary between T ii
1 (φ1) and T iii

1 (φ1), i.e., combinations of

(n1, n2) such that (5.4) holds with equality. For most of the vi(·) curves we considered,

this boundary could not be explicitly expressed in terms of a function f1(n2) = n1;

to compute the boundary, one needs to resort to numerical methods. However, some

characteristics of f1(·) can be derived and are presented in the following lemma.

Lemma 5.2.2 The following statements can be made about f(·):
(I) f1(0) = 0;

(II) f1(φ2c/µ2) = φ1c/µ1;

(III) f1(·) only intersects the capacity constraint at (n1, n2) = (φ1c/µ1, φ2c/µ2);

(IV) f1(·) only intersects the line n2 = φ2c/µ2 at (n1, n2) = (φ1c/µ1, φ2c/µ2);

(V) f1(·) only intersects the n1-axis and n2-axis at (n1, n2) = (0, 0).

Proof: If (n1, n2) = (0, 0), then we have clearly equality in (5.4) (as both sides

have value ∞), so this gives (I). We continue with (II). Take the point (n1, n2) =

(φ1c/µ1, φ2c/µ2). Then it follows that tF = ∞, as vi(t) is increasing in t by A3,

i = 1, 2. Plugging tF = ∞ in (5.4), we find that there is equality there, no matter

the value of b1. We proceed with (III). Note that f1(·) is the line where △1(n1, n2) of

regimes (ii) and (iii) have equal values. Next define S := {(n1, n2)|n1µ1 +n2µ2 = c}.
We find that for all (n1, n2) ∈ S we have that △1(n1, n2) of regime (iii) equals 0

(as vi(t) is increasing in t by A3, i = 1, 2). Now note that the only (n1, n2) ∈ S for

which △1(n1, n2) of regime (ii) equals zero is (φ1c/µ1, φ2c/µ2). Thus, line f1(·) only

intersects the capacity constraint at (n1, n2) = (φ1c/µ1, φ2c/µ2). We prove (IV) in a

similar fashion. If n2 = φ2c/µ2, then for regime (ii):

△1(n1, φ2c/µ2) =
1

2
inf
t≥0

(b1 + (φ1c− n1µ1)t)
2

n1v1(t)
,

5.3 Analysis of the admissible region 105

n1

n2

cap

f1

φ2c
µ2

φ1c
µ1

T i
1(φ1)

T ii
1 (φ1) T iii

1 (φ1)

Figure 5.2: The typical partitioning of the stable region T

whereas for regime (iii):

△1(n1, φ2c/µ2) =
1

2
inf
t≥0

(b1 + (φ1c− n1µ1)t)
2

n1v1(t) + φ2c
µ2
v2(t)

.

These two can only be equal if n1 = φ1c/µ1 as then the optimizer is t = ∞, and we

obtain △1(φ1c/µ1, φ2c/µ2) = 0 for regimes (ii) and (iii). We conclude with (V). If

n1 = 0 or n2 = 0 (but not both), then △1(n1, n2) of regime (ii) equals ∞, whereas

△1(n1, n2) of regime (iii) is bounded. Hence, except for (n1, n2) = (0, 0), f1(·) cannot

intersect the n1-axis and n2-axis. ✷

In our numerical experiments with the often used variance functions vi(·), e.g.,

fractional Brownian motions, the Gaussian counterpart of the AMS model, and oth-

ers as presented in [7], we observed that f1(·) is strictly increasing, as depicted in

Figure 5.2.

5.3 Analysis of the admissible region

In this section we analyze the admissible region of the first class (for given weights),

i.e., all combinations of (n1, n2) that satisfy △1(n1, n2) ≥ δ1, for some δ1 > 0. We

show that this set consists of three disjoint subsets: S1(φ1) = Si
1(φ1) ∪ Sii

1 (φ1) ∪
Siii

1 (φ1), with Sj
1(φ1) ⊂ T j

1 , j ∈ {i, ii, iii}, which we derive below. Finally, we present

our main result that characterizes the boundary of S1(φ1). Again we concentrate

on S1(φ1), but of course S2(φ1) can be treated analogously, thus determining the

admissible region S(φ1) := S1(φ1) ∩ S2(φ1).

106 Selection of optimal weights in Generalized Processor Sharing

5.3.1 Region Si
1(φ1)

We define Si
1(φ1) as the subset of T i

1(φ1) (see Section 5.2), for which △1(n1, n2) ≥ δ1.
That is,

△1(n1, n2) =
1

2
inf
t≥0

(b1 + (φ1c− n1µ1)t)
2

n1v1(t)
≥ δ1.

Rearranging and collecting terms yields

n1 ≤ max

{

n1 : ∀t ≥ 0 : Xtn
2
1 + Ytn1 + Zt ≥ 0

}

,

where

Xt := µ2
1t

2;

Yt := −2b1µ1t− 2φ1cµ1t
2 − 2δ1v1(t);

Zt := b21 + φ2
1c

2t2 + 2b1φ1ct.

This eventually leads to

n1 ≤ nQ1

1 := max

{

n1 : n1 ≤ inf
t≥0

−Yt −
√

Y 2
t − 4XtZt

2Xt

}

= inf
t≥0

−Yt −
√

Y 2
t − 4XtZt

2Xt
, (5.5)

and

n1 ≤ max

{

n1 : n1 ≥ inf
t≥0

−Yt +
√

Y 2
t − 4XtZt

2Xt

}

=∞.

Clearly, n1 ≤ ∞ always holds, so this constraint is redundant. It is noted that

△1(φ1c/µ1, n2) of regime (i) equals 0, as it is minimized for t = ∞ by A3. Since we

require that △1(n1, n2) ≥ δ1 > 0, this implies that nQ1

1 < φ1c/µ1. An example of a

set Si
1(φ1) is depicted in Figure 5.3 (top, left).

5.3.2 Region Sii
1 (φ1)

In this regime Sii
1 (φ1) consists of all combinations (n1, n2) in T ii

1 (φ1) such that

△1(n1, n2) =
1

2
inf
t≥0

(

(b1 + (φ1c− n1µ1)t)
2

n1v1(t)
+

(φ2c− n2µ2)
2t2

n2v2(t)

)

≥ δ1.

Proceeding in the same manner as above, this reduces to

n2 ≤ g1(n1) := inf
t≥0

−Yt −
√

Y 2
t − 4XtZt

2Xt
, (5.6)

5.3 Analysis of the admissible region 107

n1

n2

cap

φ2c
µ2

φ1c
µ1

nQ1

1
n1

n2

cap

g1

 f1

φ2c
µ2

φ1c
µ1

nQ1

1 nI1
1

n1

n2

cap

f1

g1

h1

φ2c
µ2

φ1c
µ1

nQ1

1 nI1
1 nmax1

1

Figure 5.3: The typical partitioning of the admissible region of the first queue S1(φ1).

Top, left: Si
1(φ1). Top, right: Sii

1 (φ1). Bottom: Siii
1 (φ1).

where

Xt := µ2
2t

2/v2(t);

Yt :=
(b1 + (φ1c− n1µ1)t)

2

n1v1(t)
− 2φ2cµ2t

2

v2(t)
− 2δ1;

Zt := φ2
2c

2t2/v2(t).

As g1(·) plays an important role in describing the boundary of S1(φ1), the remainder

of this subsection is devoted to some structural properties of g1(·). First notice that

1

2
inf
t≥0

(

(b1 + (φ1c− n1µ1)t)
2

n1v1(t)
+

(φ2c− n2µ2)
2t2

n2v2(t)

)

≥ 1

2
inf
t≥0

(b1 + (φ1c− n1µ1)t)
2

n1v1(t)
+

1

2
inf
t≥0

(φ2c− n2µ2)
2t2

n2v2(t)
;

108 Selection of optimal weights in Generalized Processor Sharing

the first part of the right-hand side of the last equation coincides with the loss proba-

bility of regime (i). By definition all n1 ≤ nQ1

1 satisfy the loss constraint of regime (i).

Hence, all n1 ≤ nQ1

1 (∀n2) satisfy the loss constraint of regime (ii) as well. One can

easily see that if n2 = φ2c/µ2, then the loss probability of the middle regime reduces

to that of the first regime. Thus, this implies that g1(n
Q1

1) = φ2c/µ2 and that g1(·)
is only defined on the interval [nQ1

1 ,∞).

Lemma 5.3.1 g1(·) is strictly decreasing on the interval [nQ1

1 , φ1c/µ1].

Proof: First note that g1(·) corresponds to all possible combinations (n1, n2) for which

△1(n1, n2) of regime (ii) equals δ1, i.e., △1(n1, g1(n1)) = δ1. Consider (n1, n2) =

(a, b), with g1(a) = b, where nQ1

1 < a < φ1c/µ1 and b < φ2c/µ2, or equivalently

inf
t≥0

(

(b1 + (φ1c− aµ1)t)
2

2av1(t)
+

(φ2c− bµ2)
2t2

2bv2(t)

)

= δ1.

Let an optimizer be denoted by to. Now, consider the point (n1, n2) = (a+ ǫa, b+ ǫb),

with ǫa ∈ (0, φ1c/µ1 − a) and ǫb ∈ (0, φ2c/µ2 − b). Clearly,

inf
t≥0

(

(b1 + (φ1c− (a+ ǫa)µ1)t)
2

2(a+ ǫa)v1(t)
+

(φ2c− (b+ ǫb)µ2)
2t2

2(b+ ǫb)v2(t)

)

≤ (b1 + (φ1c− (a+ ǫa)µ1)t
o)2

2(a+ ǫa)v1(to)
+

(φ2c− (b+ ǫb)µ2)
2(to)2

2(b+ ǫb)v2(to)
< δ1.

Thus, we have that △1(a + ǫa, b + ǫb) < δ1, implying that it is impossible that

g1(a+ ǫa) = b+ ǫb. In the same manner we can also prove that it is impossible that

g1(a + ǫa) = b, g1(a) = b + ǫb, and g1(a − ǫã) = b − ǫb̃, with ǫã ∈ [0, a − nQ1

1) and

ǫb̃ ∈ [0, b), but not both 0. Hence, there must exist a value x > b such that we have

△1(a− ǫã, x) = δ1, i.e., g1(a− ǫã) = x, and there must exist a value y < b such that

we have △1(a + ǫa, y) = δ1, i.e., g1(a + ǫa) = y. This proves that g1(·) must be a

strictly decreasing function of n1 on the interval [nQ1

1 , φ1c/µ1]. ✷

In Section 5.2 we remarked that for the often used variance functions, the function

f1(·), which separates regime (ii) from regime (iii), is increasing on the interval

[0, φ2c/µ2], with f(φ2c/µ2) = φ1c/µ1. As g1(·) is strictly decreasing on the interval

[nQ1

1 , φ1c/µ1], with g1(n
Q1

1) = φ2c/µ2, we conjecture that f1(·) and g1(·) intersect at

a unique point (n1, n2) = (nI1
1 , n

I1
2), with nQ1

1 < nI1
1 < φ1c/µ1 and nI1

2 < φ2c/µ2; in

Section 5.4 we will show that for Brownian motion inputs this claim is true. We also

validated this conjecture by performing numerous numerical experiments with other

Gaussian inputs. In none of these cases a counter example could be found. Then a

typical shape of the region Sii
1 (φ1) would be like Figure 5.3 (top, right).

5.3 Analysis of the admissible region 109

5.3.3 Region Siii
1 (φ1)

Siii
1 (φ1) consists of all combinations of (n1, n2) in T iii

1 (φ1) such that

△1(n1, n2) =
1

2
inf
t≥0

(b1 + (c− n1µ1 − n2µ2)t)
2

n1v1(t) + n2v2(t)
≥ δ1.

Once again, standard rewriting yields

n2 ≤ h1(n1) = inf
t≥0

−Yt −
√

Y 2
t − 4XtZt

2Xt
, (5.7)

where

Xt := µ2
2t

2;

Yt := 2n1µ1µ2t
2 − 2δ1v2(t)− 2b1µ2t− 2cµ2t

2;

Zt := b21 + 2b1ct+ c2t2 + n2
1µ

2
1t

2 − 2b1n1µ1t− 2cn1µ1t
2 − 2δ1n1v1(t).

Let nmax1
1 denote the value of n1 that solves h1(n1) = 0. The following lemma states

some properties of h1(·).

Lemma 5.3.2 h1(·) is strictly decreasing on the interval [0, nmax1
1] and tighter than

the capacity constraint. Furthermore, g1(n1) ≥ h1(n1) for all n1 ∈ [nQ1

1 , nmax1
1].

Proof: The proof of the first statement is similar to Lemma 5.3.1. We now show that

h1(·) is tighter than the capacity constraint. If n1µ1 +n2µ2 = c (capacity constraint),

then △1(n1, n2) of regime (iii) equals 0, as the optimizer is tF =∞, due to A3. Note

that the line h1(·) are all (n1, n2) such that △1(n1, n2) of regime (iii) equals δ1, with

δ1 > 0. Hence, the capacity constraint cannot be part of h1(·), implying that h1(·) is

tighter than the capacity constraint, i.e., it lies below the capacity constraint.

We proceed with the proof of the last statement. We first prove that △1(n1, n2)

of regime (ii) is at least as large as the one of regime (iii), and then we use this to

show that g1(n1) ≥ h1(n1) for all n1 ∈ [nQ1

1 , nmax1
1]. Let a1 := b1 + (φ1c − n1µ1)t,

a2 := (φ2c−n2µ2)t, v1 := n1v1(t) and v2 := n2v2(t). It can be seen that it suffices to

prove that for all t ≥ 0,

a2
1

v1
+
a2
2

v2
≥ (a1 + a2)

2

v1 + v2
. (5.8)

Rearranging (5.8) yields a2
1v

2
2 + a2

2v
2
1 − 2a1a2v1v2 ≥ 0, which is equivalent to (a1v2 −

a2v1)
2 ≥ 0, thus proving △1(n1, n2) of regime (ii) is at least as large as the one of

regime (iii). Note that there is equality if a1v2 = a2v1, so in that case △1(n1, n2)

of regimes (ii) and (iii) coincide and they have the same optimizer tF . Recall from

Section 5.2 that a1v2 = a2v1, with t = tF , corresponds to the line f1(·).

110 Selection of optimal weights in Generalized Processor Sharing

By definition g1(n1) (h1(n1)) is the value of n2 where △1(n1, n2) of regime (ii)

((iii)) equals δ1. Let △1(n1, n2) of regime (x), with x ∈ {i, ii, iii}, be denoted by

△x
1(n1, n2). Since we proved that △1(n1, n2) of regime (ii) is at least as large as

the one of regime (iii), we have that △iii
1 (n1, g1(n1)) ≤ △ii

1 (n1, g1(n1)) = δ1 =

△iii
1 (n1, h1(n1)). In the same manner as Lemma 5.3.1, we can prove that △iii

1 (n1, n2)

decreases in n2 for fixed n1, given that n1µ1+n2µ2 ≤ c, implying that g1(n1) ≥ h1(n1)

for all n1 ∈ [nQ1

1 , nmax1
1]. ✷

By definition, for (n1, n2) = (f1(n2), n2) the approximations of △1(n1, n2) are

equal for regimes (ii) and (iii) (see previous lemma). Hence, if f1(·) and g1(·) intersect

at (nI1
1 , n

I1
2) (see Section 5.3.2), then this is also the point where f1(·) and h1(·)

intersect. Figure 5.3 (bottom) illustrates the region Siii
1 (φ1).

5.3.4 Region S1(φ1)

S1(φ1) can be obtained by taking the union of the three described regions, i.e.,

S1(φ1) = Si
1(φ1) ∪ Sii

1 (φ1) ∪ Siii
1 (φ1). We now state our main result, which follows

from Sections 5.3.1-5.3.3.

Theorem 5.3.3 The boundary of the admissible region of the first queue, S1(φ1), is

defined as follows:

0 ≤ n1 ≤ nQ1

1 : n2 = (c− n1µ1)/µ2;

nQ1

1 < n1 < nI1
1 : n2 = g1(n1);

nI1
1 ≤ n1 ≤ nmax1

1 : n2 = h1(n1).

5.4 Brownian inputs

For most Gaussian inputs that satisfy A1-A3 the boundary of S(φ1) cannot be explic-

itly computed; consequently, in those cases one has to rely on numerical techniques

(as will be done in the numerical examples in Section 5.5). For the ‘canonical model’

with Brownian inputs though, we have succeeded in finding closed-form expressions

for the boundary. As indicated in [126], Brownian motions can be used to approximate

weakly-dependent traffic streams, cf. also the celebrated ‘Central Limit Theorem in

functional form’. We let the variance functions be characterized through vi(t) = λit,

with λi > 0, i = 1, 2.

5.4.1 Region S1(φ1)

It is a matter of straightforward calculus to show that tF = b1/(c− n1µ1 − n2µ2).

Now, the Mannersalo-Norros approximation reduces to the following. The critical

5.4 Brownian inputs 111

weight φF
2 equals

1− n1λ1 − n2λ2

n1λ1 + n2λ2

(

1− n1µ1 + n2µ2

c

)

− n1µ1

c
. (5.9)

Then we get the approximations

△1(n1, n2) =











(i) 2b1
φ1c−n1µ1

n1λ1
for φ2 ∈ [0, n2µ2

c];

(ii) 1
2

(

(b1+(φ1c−n1µ1)t
∗)2

n1λ1t∗ + (φ2c−n2µ2)
2

n2λ2
t∗
)

for φ2 ∈ (n2µ2

c , φF
2);

(iii) 2b1
c−n1µ1−n2µ2

n1λ1+n2λ2
for φ2 ∈ [φF

2 , 1],

with the ‘critical time scale’ t∗ given by

b1
√

(φ1c− n1µ1)2 + (φ2c− n2µ2)2
n1λ1

n2λ2

. (5.10)

In [126] it was shown that the resulting expressions are ‘asymptotically exact’ in the

many-sources regime.

Let us first derive the function f1(·). Recall from Section 5.2 that f1(·) is equivalent

to all pairs of (n1, n2) that satisfy (5.4) with equality. Plugging in the expression for

tF and some rearranging yields

n1 =
cλ2(1 + φ1)− n2λ2µ2

φ2cλ1

n2
+ 2λ2µ1 − λ1µ2

=: f1(n2). (5.11)

It can easily be verified that f1(0) = 0 and f1(φ2c/µ2) = φ1c/µ1. The following

lemma states some properties of f1(·); define

ξ :=
(1 + φ1)µ1

φ1µ2
. (5.12)

Lemma 5.4.1 f1(·) is continuous and has a continuous derivative on the interval

[0, φ2c/µ2]. Furthermore, f1(·) is concave on [0, φ2c/µ2] if λ1 < ξλ2; f1(·) is convex

on [0, φ2c/µ2] if λ1 > ξλ2; f1(·) has a constant positive derivative on [0, φ2c/µ2] if

λ1 = ξλ2 and this derivative has the value φ1µ2/(φ2µ1).

Proof: For any given α, β and γ such that β 6= −γn2, note that

d2

dn2
2

1− αn2

β/n2 + γ
=
−2β(αβ + γ)

(β + γn2)3
=: p(n2). (5.13)

It is clear that p(n2) changes sign only at n2 = −β/γ. Now, let

α =
λ2µ2

cλ2(1 + φ1)
; β =

φ2cλ1

cλ2(1 + φ1)
; γ =

2λ2µ1 − λ1µ2

cλ2(1 + φ1)
.

112 Selection of optimal weights in Generalized Processor Sharing

Then, due to (5.11), f ′′(n2) = p(n2), and therefore f ′′1 (n2) changes sign only at

n2 = −β
γ

=
φ2cλ1

λ1µ2 − 2λ2µ1
. (5.14)

Note that expression (5.14) does not lie in [0, φ2c/µ2], so f1(·) is either convex or

concave on this interval. From (5.13) we conclude that there is concavity when λ1 <

ξλ2 (corresponding to αβ > −γ), and convexity otherwise. ✷

Subsequently, in order to fully characterize the areas Si
1(φ1), S

ii
1 (φ1), S

iii
1 (φ1),

we now derive nQ1

1 , g1(·) and h1(·). We do this by relying on (5.5), (5.6) and (5.7),

respectively. This yields

2φ1cb1
2b1µ1 + δ1λ1

=: nQ1

1 ; (5.15)

(φ2c− n2µ2)
2b21

n2λ2(δ21λ1 + 2b1δ1µ1)
+

2φ1cb1δ1
δ21λ1 + 2b1δ1µ1

=: g−1
1 (n2); (5.16)

2cb1
2b1µ2 + δ1λ2

− n1
2b1µ1 + δ1λ1

2b1µ2 + δ1λ2
=: h1(n1). (5.17)

Note that h1(·) is linear in n1 and that

h1(n
max1
1) = h1

(

2cb1
2b1µ1 + δ1λ1

)

= 0.

Due to Lemma 5.4.1, f1(·), g1(·) and h1(·) have a unique intersection point (n1, n2)

given by

(nI1
1 , n

I1
2) =

(

cb1(δ1λ2(1 + φ1) + 2b1µ2φ1)

(δ1λ1 + 2b1µ1)(δ1λ2 + b1µ2)
,

φ2cb1
δ1λ2 + b1µ2

)

. (5.18)

Now we have all the ingredients to describe the boundary of S1(φ1) explicitly. The

admissible region of the second queue can be treated analogously. Both are depicted

in Figure 5.4.

5.4.2 Region S(φ1)

A combination (n1, n2) is contained in S(φ1) if it satisfies the QoS requirements for

both classes. That is, if it is contained in S1(φ1) ∩ S2(φ1). In this subsection we

characterize the boundary of S(φ1). In the analysis below the ratios b1/b2 and δ1/δ2
turn out to be crucial. We therefore introduce b := b1/b2 and d := δ1/δ2. Let us first

mention some useful facts.

Lemma 5.4.2 If b < d (b > d) then h−1
2 (n1) > h1(n1) (h−1

2 (n1) < h1(n1)) for all n1

that satisfy h−1
2 (n1) ≥ 0 and h1(n1) ≥ 0.

5.4 Brownian inputs 113

n2

1

cap

n

φ2c
µ2

nQ1

1 nI1
1 nmax1

1

nI1
2

g1

h1

n2

n1

cap

nmax2
2

nI2
2

nQ2

2

nI2
1

φ1c
µ1

h−1
2

g−1
2

Figure 5.4: Left: S1(φ1). Right: S2(φ1).

Proof: We only prove the claim for b < d, as the claim for b > d follows analogously.

We know that

h1(n1) =
2cb1

2b1µ2 + δ1λ2
− n1

2b1µ1 + δ1λ1

2b1µ2 + δ1λ2
;

h−1
2 (n1) =

2cb2
2b2µ2 + δ2λ2

− n1
2b2µ1 + δ2λ1

2b2µ2 + δ2λ2
.

Now, h−1
2 (0) > h1(0) implies that

2cb2
2b2µ2 + δ2λ2

>
2cb1

2b1µ2 + δ1λ2
or b < d,

but we also have that h2(0) > h−1
1 (0) implies that

2cb2
2b2µ1 + δ2λ1

>
2cb1

2b1µ1 + δ1λ1
or b < d.

Since h1(·) and h−1
2 (·) are linear, this proves the stated for b < d. Note that h1(·)

and h−1
2 (·) are identical if b = d. ✷

Lemma 5.4.3 If b < d/2 (b > 2d) then nQ1

1 < nI2
1 (nQ1

1 > nI2
1) and nQ2

2 > nI1
2

(nQ2

2 < nI1
2). If d/2 ≤ b ≤ 2d then nQ1

1 ≥ nI2
1 and nQ2

2 ≥ nI1
2 .

Proof: We only prove the claim for b < d/2, as the claims for b > 2d and d/2 ≤ b ≤ 2d

follow in a similar fashion. Use the explicit expressions for nQ1

1 and nI2
1 . Thus,

nQ1

1 < nI2
1 is equivalent to

2φ1cb1
δ1λ1 + 2b1µ1

<
φ1cb2

δ2λ1 + b2µ1
or 2δ2b1λ1 + 2b1b2µ1 < δ1b2λ1 + 2b1b2µ1.

114 Selection of optimal weights in Generalized Processor Sharing

Omitting common terms and some rearranging directly yields b < d/2.

Likewise, it holds that nQ2

2 > nI1
2 if b < d/2, since

2φ2cb2
δ2λ2 + 2b2µ2

>
φ2cb1

δ1λ2 + b1µ2
or 2δ1b2λ2 + 2b1b2µ2 > δ2b1λ2 + 2b1b2µ2,

reduces to b < 2d. ✷

Combining the two previous lemmas leads to the conclusion that we have to dis-

tinguish between three cases: (a) b < d/2, (b) d/2 ≤ b ≤ 2d and (c) b > 2d. Below we

show that the shape of the boundary of S(φ1) depends on (a), (b) or (c) if φ1 ∈ (0, 1).

First we characterize the boundary of S(φ1) for φ1 = 0 and φ1 = 1. The boundary of

S(0) is given by

0 ≤ n1 ≤ nO
1 : n2 = nQ2

2 ;

nO
1 < n1 < nmax1

1 : n2 = h1(n1),

where nQ2

2 is evaluated at φ1 = 0, and nO
1 := h−1

1 (nQ2

2). The boundary of S(1) is

0 ≤ n1 ≤ nQ1

1 : n2 = h−1
2 (n1),

where nQ1

1 is evaluated at φ1 = 1.

Remark: One can easily show that S(0) ⊂ S(1) if b < d, S(1) ⊂ S(0) if b > d and

S(0) = S(1) if b = d.

In the following we show that there are different generic shapes of the boundary

of S(φ1), φ1 ∈ (0, 1), within each of the three cases.

Case b < d/2

It can easily be seen that the boundary of S(φ1) has four possible shapes in this case

(see Figure 5.5). The shape of the boundary ((a1), (a2), (a3) or (a4)) depends on the

value of φ1, but each shape occurs as will be shown in the following lemmas. Let nV
1

be the solution of g1(n1) = h−1
2 (n1). Furthermore, let nW

1 solve g1(n1) = g−1
2 (n1),

and let nW
2 = g1(n

W
1). Finally, define nX

1 := g−1
1 (nQ2

2).

Lemma 5.4.4 The boundary of S(φ1) has shape (a1) if φ1 ∈ [X3, 1), where

X3 :=
δ2λ2(δ1λ1 + 2b1µ1)

δ2λ2(δ1λ1 + 2b1µ1) + 2λ1µ2(δ1b2 − δ2b1)
. (5.19)

Proof: In order to have shape (a1) we must have that h−1
2 (nQ1

1) ≥ φ2c/µ2 for some

value of φ1 ∈ (0, 1). That is,

2cb2
δ2λ2 + 2b2µ2

− 2φ1cb1(δ2λ1 + 2b2µ1)

(δ2λ2 + 2b2µ2)(δ1λ1 + 2b1µ1)
≥ (1− φ1)c

µ2
. (5.20)

5.4 Brownian inputs 115

n2

n1

φ2c
µ2

nQ2

2

nQ1

1 nI1
1

h−1
2

g1

h1

nmax1
1 1

n2

n

nQ2

2

nQ1

1 nV
1 nmax1

1nI1
1

h−1
2

g1

h1

1

n2

n

nW
2

nI2
1 nW

1 nmax1
1

h−1
2

g1

h1

nI1
1nQ1

1

g−1
2

1

n2

n

nQ2

2

nI2
1

φ1c
µ1

nX
1 nI1

1 nmax1
1

h−1
2

g−1
2

g1

h1

Figure 5.5: Top, from left to right: shape (a1) and (a2). Bottom, from left to right:

shape (a3) and (a4).

One can easily show that this reduces to a constraint of the form −A+Bφ1 ≥ 0, with

A,B > 0. For φ1 = 0 the left-hand side of the constraint (5.20) is equivalent to

2cb2
δ2λ2 + 2b2µ2

− c

µ2
,

which is smaller than 0 (assuming that δ2, λ2 > 0). Hence, the constraint is not

satisfied. For φ1 = 1 the left-hand side of (5.20) equals

2cλ1(δ1b2 − δ2b1)
(δ2λ2 + 2b2µ2)(δ1λ1 + 2b1µ1)

,

116 Selection of optimal weights in Generalized Processor Sharing

which is larger than 0 if b/d < 1, which is true, as we required b < d/2. Thus, since

the constraint is a linear function of φ1, there must be value of φ1 ∈ (0, 1) for which

h−1
2 (nQ1

1) = φ2c/µ2. Straightforward calculus shows there is equality for φ1 = X3. ✷

Lemma 5.4.5 The boundary of S(φ1) has shape (a4) if φ1 ∈ (0, X1], where

X1 :=
δ22b

2
1λ2µ1

δ22b
2
1λ2µ1 + 2δ21b2λ1(δ2λ2 + 2b2µ2)

. (5.21)

Proof: The proof is analogous to that of Lemma 5.4.4. Shape (a4) occurs if there

exists a value of φ1 ∈ (0, 1) for which g−1
1 (nQ2

2) ≥ φ1c/µ1. This constraint can be

rewritten as A−Bφ1 ≥ 0, with A,B > 0. Since it is satisfied for φ1 = 0, but not for

φ1 = 1, there exists a unique value of φ1 ∈ (0, 1), X1, such that there is equality, i.e.,

g−1
1 (nQ2

2) = φ1c/µ1. ✷

Lemma 5.4.6 The boundary of S(φ1) has shape (a3) if φ1 ∈ (X1, X2), where X2 is

the value of φ1 such that nI2
2 = h−1

2 (nI2
1) = g1(n

I2
1).

Proof: The shape of the boundary is like (a3) if h−1
2 (nI2

1) < g1(n
I2
1) and if g−1

1 (nQ2

2) <

φ1c/µ1. The latter constraint is satisfied if φ1 > X1 (Lemma 5.4.5). In contrast to

the latter constraint, the former constraint does not reduce to a constraint that is a

linear function of φ1. It can be shown that there exists a unique value of φ1, X2, such

that h−1
2 (nI2

1) = g1(n
I2
1). The expression of X2 is not presented here (as it is quite

complicated); it depends on the parameters δ1, δ2, b1, b2, λ1, λ2, µ1 and µ2. Now, the

constraint is satisfied for all φ1 ∈ [0, X2).

We now show thatX2 ∈ (X1, X3). First recall that g1(n1) is defined on the interval

(nQ1

1 , nI1
1) in S1(φ1), whereas h−1

2 (n1) is defined on the interval [0, nI2
1] in S2(φ1).

Therefore, if g1(·) and h−1
2 (·) are part of the boundary of S(φ1), then they are defined

on (parts of) the mentioned intervals. If φ1 ∈ (0, X1], then g1(·) is defined on the

interval (nX
1 , n

I1
1), with nX

1 ≥ φ1c/µ1 (see shape (a4)). By definition nI2
1 < φ1c/µ1,

so this implies that g1(·) and h−1
1 (·) cannot intersect if φ1 ∈ (0, X1]. Furthermore,

if φ1 ∈ [X3, 1), then h−1
2 (n1) > g1(n1) for all n1 ∈ (nQ1

1 ,min{nI1
1 , n

I2
1 }) (see shape

(a1)), so X2 /∈ [X3, 1). Hence, we conclude that 0 < X1 < X2 < X3 < 1. ✷

Lemma 5.4.7 The boundary of S(φ1) has shape (a2) if φ1 ∈ [X2, X3).

Proof: One observes shape (a2) if h−1
2 (nQ1

1) < φ2c/µ2 and h−1
2 (nI2

1) ≥ g1(nI2
1). From

Lemmas 5.4.4 and 5.4.6 we know that this coincides with φ1 < X3 and φ1 ≥ X2

respectively. ✷

We now state our main result. The proof follows directly from Lemmas 5.4.4-5.4.7.

5.4 Brownian inputs 117

Proposition 5.4.8 If b < d/2, then the boundary of S(φ1) has

shape (a4) for 0 < φ1 ≤ X1;

shape (a3) for X1 < φ1 < X2;

shape (a2) for X2 ≤ φ1 < X3;

and shape (a1) for X3 ≤ φ1 < 1.

Here X1 is the value of φ1 such that g−1
1 (nQ2

2) = φ1c/µ1, X2 is the value of φ1 such

that nI2
2 = h−1

2 (nI2
1) = g1(n

I2
1), and X3 is the value of φ1 that solves h−1

2 (nQ1

1) =

φ2c/µ2.

Case d/2 ≤ b ≤ 2d

As proved in Lemma 5.4.3, this criterion leads to nQ1

1 ≥ nI2
1 and nQ2

2 ≥ nI1
2 . Now, the

boundary of S(φ1) can have three shapes ((b1), (b2) and (b3)). Shape (b1) is depicted

in Figure 5.6 (top, left). Shape (b2) corresponds to (a3), and (b3) to (a4).

As in the case of b < d/2, one can easily prove that each shape is observed. The

proofs are omitted as they are similar to the proofs of Lemmas 5.4.4 and 5.4.5. We

directly state the following proposition.

Proposition 5.4.9 If d/2 ≤ b ≤ 2d, then the boundary of S(φ1) has

shape (b3) for 0 < φ1 ≤ Y1;

shape (b2) for Y1 < φ1 < Y2;

and shape (b3) for Y2 ≤ φ1 < 1.

Here Y1 is the value of φ1 such that g−1
1 (nQ2

2) = φ1c/µ1 and Y2 coincides with the

value of φ1 such that g−1
2 (nQ1

1) = φ2c/µ2.

Case b > 2d

The last case is the counterpart of the first case. Therefore, the proofs are also omitted

in the following. Now, nQ1

1 > nI2
1 and nQ2

2 < nI1
2 . Define nY

1 := h−1
1 (nQ2

2), and let

nZ
1 be the solution of g−1

2 (n1) = h1(n). There are four possible shapes of S(φ1),

φ1 ∈ (0, 1). Shapes (c1) and (c2) are depicted in Figure 5.6. Shape (c3) corresponds

to (a3), and (c4) to (b1).

Proposition 5.4.10 If b > 2d, then the boundary of S(φ1) has

shape (c1) for 0 < φ1 ≤ Z1;

shape (c2) for Z1 < φ1 ≤ Z2;

shape (c3) for Z2 < φ1 < Z3;

and shape (c4) for Z3 ≤ φ1 < 1.

Here Z1 corresponds to the value of φ1 such that h−1
1 (nQ2

2) = φ1c/µ1, Z2 is the

value of φ1 that solves nI1
1 = h−1

1 (nI1
2) = g2(n

I1
2) and Z3 is the value of φ1 such that

g−1
2 (nQ1

1) = φ2c/µ2.

118 Selection of optimal weights in Generalized Processor Sharing

1

n2

n

φ2c
µ2

nQ2

2

nI2
1 nQ1

1 nI1
1 nmax1

1

h−1
2

g−1
2

g1

h1

n2

n1

nQ2

2

nI2
1

φ1c
µ1

nY
1 nmax1

1

h−1
2

g−1
2

h1

n2

1 n

nQ2

2

nI2
1 nZ

1 nmax1
1

h−1
2

g−1
2

h1

Figure 5.6: Top, from left to right: shape (b1) and (c1). Bottom: shape (c2).

5.4.3 The realizable region

Let R denote the realizable region, i.e.,

R :=
⋃

φ1∈[0,1]

S(φ1). (5.22)

In the following we show that we do not always need all values of φ1 ∈ [0, 1] to

compose R. We now state our main result.

Theorem 5.4.11 The realizable region R can be obtained as follows:

b < d/2 : R =
⋃

φ1∈(0,X2)∪{1}
S(φ1);

d/2 ≤ b ≤ d : R =
⋃

φ1∈(0,1]

S(φ1);

5.4 Brownian inputs 119

d < b ≤ 2d : R =
⋃

φ1∈[0,1)

S(φ1);

b > 2d : R =
⋃

φ1∈{0}∪(Z2,1)

S(φ1).

Proof: We only prove the first statement, as the other three statements can be proved

in a similar fashion. We already remarked above that S(0) ⊂ S(1) in case b < d/2.

Furthermore, in this case we also have that S(φ1) ⊂ S(1) for all values of φ1 ∈ [X2, 1).

To see this, compare the boundaries (a1) and (a2) with the boundary of S(1), and

recall that h−1
2 (·) > h1(·) if b < d/2. What is left to prove is that we need all values

of φ1 ∈ (0, X2) to compose R if b < d/2. Note that the boundary of S(φ1) has shape

(a3) if φ1 ∈ (X1, X2), implying that S(φ1) contains (nW
1 , nW

2), with h−1
2 (nW

1) < nW
2 ,

which cannot be part of S(1). From Lemma 5.4.6 it follows that for all values of

φ1 ∈ (X1, X2), n
W
1 (nW

2) increases (decreases) as φ1 increases (but not linearly),

implying that we need all values of φ1 ∈ (X1, X2) to compose R if b < d/2. Likewise,

shape (a4) is seen if φ1 ∈ (0, X1]. The point (nX
1 , n

Q2

2) will then be contained in

S(φ1), which cannot be contained in S(1) either. From Lemma 5.4.5 it follows that

as φ1 increases in the corresponding interval, nX
1 (nQ2

2) linearly increases (decreases),

implying that we also need all values of φ1 ∈ (0, X1] to compose R if b < d/2, thus

proving the first statement. ✷

Using Theorem 5.4.11, the boundary of R can now also be determined. Since

there are four possible cases in Theorem 5.4.11, it follows that the boundary of R can

have four different generic shapes. Below we discuss each one of these. Let us first

introduce some notation. From now on, we write z(φ1) if z depends on φ1. Note that

φ2 = 1 − φ1, thus if an expression contains φ2, we can easily rewrite it as function

of φ1.

Case b < d/2

Theorem 5.4.11 shows that we need all values of φ1 ∈ (0, X2) and φ1 = 1 to compose R

in this case. Straightforward calculus shows that all values of φ1 ∈ (0, X2) contribute

to the boundary of R in the following way:

φ1 ∈ (0, X1] : (n1, n2) = (g−1
1 (nQ2

2 (φ1)), n
Q2

2 (φ1)); (5.23)

φ1 ∈ (X1, X2) : (n1, n2) = (nW
1 (φ1), n

W
2 (φ1)), (5.24)

with

nH
1 := g−1

1 (nQ2

2 (0)) > 0; nQ2

2 (0) = h−1
2 (0);

g−1
1 (nQ2

2 (X1)) = nW
1 (X1); nQ2

2 (X1) = nW
2 (X1);

nW
2 (X2) = h−1

2 (nW
1 (X2)).

120 Selection of optimal weights in Generalized Processor Sharing

It can be shown that (5.23) corresponds to a function n2 = k1(n1) which linearly

decreases as n1 increases. Furthermore, (5.24) corresponds to a function n2 = k2(n1)

which non-linearly decreases as n1 increases. Recall that the boundary of S(1) is given

by the line h−1
2 (·) on some predefined interval, so also the contribution of φ1 = 1 to

the boundary of R can easily be derived. Moreover, k1(·), k2(·) and h−1
2 (·) perfectly

connect, as one can show that

∂n
Q2
2 (φ1)
∂φ1

∂g−1
1 (n

Q2
2 (φ1))

∂φ1

∣

∣

∣

∣

∣

φ1=X1

=

∂nW
2 (φ1)
∂φ1

∂nW
1 (φ1)
∂φ1

∣

∣

∣

∣

∣

φ1=X1

;
∂

nW
2 (φ1)
∂φ1

∂nW
1 (φ1)
∂φ1

∣

∣

∣

∣

∣

φ1=X2

=
∂h−1

2 (n1)

∂n1
,

see Figure 5.7 (top, left) for an illustration. We are now able to describe to boundary

of R, which follows from the above.

Proposition 5.4.12 If b < d/2, then the boundary of R, denoted by r1, is continuous.

The approach that is required to derive the boundary of R in the other cases is

very similar to that one in the current case. Therefore, we leave out the details in the

remaining three cases.

Case d/2 ≤ b ≤ d

Let n2 = k3(n1) and n2 = k4(n1) be functions that correspond to the following

equations, respectively:

φ1 ∈ (Y1, Y2) : (n1, n2) = (nW
1 (φ1), n

W
2 (φ1));

φ1 ∈ [Y2, 1) : (n1, n2) = (nQ1

1 (φ1), g
−1
2 (nQ1

1 (φ1))).

It can be shown that k3(·) is a non-linearly decreasing function, whereas k4(·) is a

linearly decreasing function. Furthermore, it can be shown that k1(·), k3(·) and k4(·)
connect perfectly, see Figure 5.7 (top, right). Recalling that Y1 = X1, we now have

all the ingredients to describe the boundary.

Proposition 5.4.13 If d/2 ≤ b ≤ d, then the boundary of R, denoted by r2, is

continuous.

Case d < b ≤ 2d

We directly state the result on the boundary of R, since it is very similar to the

previous case.

Proposition 5.4.14 If d < b ≤ 2d, then the boundary of R, denoted by r3, is con-

tinuous.

5.4 Brownian inputs 121

n2

n1

h−1
2 (0)

nH
1 nW

1 (X1) nW
1 (X2) nQ1

1 (1)

k1

k2

h−1
2

n2

n1

h−1
2 (0)

nH
1 nW

1 (Y1) nW
1 (Y2) nQ1

1 (1)

k1

k3

k4

h−1
2

n2

n
1

nQ2

2 (0)

nH
1 nW

1 (Y1) nW
1 (Y2) nmax1

1

k1

k3

k4

h1

n2

n
1

nQ2

2 (0)

nO
1 nW

1 (Z2) nW
1 (Z3) nmax1

1

h1

k5

k4

Figure 5.7: Top, from left to right: shape (r1) and (r2) (area below dotted line

represents S(1)). Bottom, from left to right: shape (r3) and (r4) (area below dotted

line represents S(0)).

Case b > 2d

Let n2 = k5(n1) be a function that corresponds to the following:

φ1 ∈ (Z2, Z3) : (n1, n2) = (nW
1 (φ1), n

W
2 (φ1)).

Recalling that Z3 = Y2, we now directly state the following proposition.

Proposition 5.4.15 If b > 2d, then the boundary of R, denoted by r4, is continuous.

122 Selection of optimal weights in Generalized Processor Sharing

Although Theorem 5.4.11 shows that we need a range of weights to obtain R,

the above results suggest that almost all of R is obtained by the priority scheduling

discipline, e.g., φ1 = 0 or φ1 = 1. This observation is established by comparing the

boundary of R with the boundaries of S(0) and S(1), and showing that at least one

of these two boundaries almost matches with the boundary of R. In particular, in

case b ≤ d, the admissible region S(1) covers most of R, whereas in case b > d the

region S(0) approximates R. We further explore this issue in the next section.

5.5 Numerical analysis

In this section we numerically compute the boundary of the realizable region for

two realistic examples of Gaussian inputs, with very diverse parameter settings. As

the inputs are non-Brownian, the boundary of the admissible region (and thus the

realizable region) has to be obtained numerically. The goal is to compare the realizable

region with the admissible region corresponding to the priority cases. Denoting by

|R|, |S(0)| and |S(1)| the number of different pairs (n1, n2), n1, n2 ∈ N 0 , that are

contained in sets R, S(0) and S(1), respectively, we define

O1 ≡
|S(1)|
|R| and O2 ≡

|S(0)|
|R| , (5.25)

i.e., Oi is a measure that indicates what fraction of the realizable region can be

obtained by prioritizing class i, i = 1, 2. Recall that S(0) ⊆ R and S(1) ⊆ R, hence

O1, O2 ∈ [0, 1]. The following examples illustrate that either S(0) or S(1) (or both)

covers most of the realizable region (as was the case for Brownian inputs, see Section

5.4), i.e., either O1 or O2 (or both) is almost equal to 1.

5.5.1 Example 1

Consider two traffic classes sharing a total capacity (c) of 10 Mbps. The first class

consists of data traffic, whereas the second class corresponds to voice traffic. Traffic

of the first class is modeled as fractional Brownian motion, i.e., v1(t) = αt2H1 , with

H1 ∈ (0, 1). The mean traffic rate µ1 is 0.2 Mbps and its variance function is given

by v1(t) = 0.0025t2H1 . In measurement studies it was frequently found that H1 lies

between, say, 0.7 and 0.85. Below we take H1 ∈ {0.5, 0.65, 0.8, 0.95}.
Traffic of the second class corresponds to the Gaussian counterpart of the AMS

model. In the AMS model work arrives from sources in bursts which have peak

rate h and exponentially distributed lengths with mean β−1. After each burst, the

source switches off for a period that is exponentially distributed with mean λ−1. The

variance curve of a single source is

v2(t) =
2λβh2

(λ+ β)3

(

t− 1

λ+ β
(1− exp(−(λ+ β)t))

)

. (5.26)

5.5 Numerical analysis 123

b1 b2 δ1 δ2 H1 O1 O2

0.1 0.5 6.9 13.8 0.5 1.000 0.863

0.1 0.5 6.9 13.8 0.65 1.000 0.945

0.1 0.5 6.9 13.8 0.8 0.995 0.984

0.1 0.5 6.9 13.8 0.95 0.969 0.993

0.1 0.5 13.8 6.9 0.5 1.000 0.686

0.1 0.5 13.8 6.9 0.65 1.000 0.778

0.1 0.5 13.8 6.9 0.8 1.000 0.836

0.1 0.5 13.8 6.9 0.95 1.000 0.880

0.5 0.1 6.9 13.8 0.5 0.562 1.000

0.5 0.1 6.9 13.8 0.65 0.746 1.000

0.5 0.1 6.9 13.8 0.8 0.828 1.000

0.5 0.1 6.9 13.8 0.95 0.879 1.000

0.5 0.1 13.8 6.9 0.5 0.823 0.999

0.5 0.1 13.8 6.9 0.65 0.942 1.000

0.5 0.1 13.8 6.9 0.8 0.990 0.998

0.5 0.1 13.8 6.9 0.95 0.997 0.966

Table 5.1: Sensitivity of O1 and O2 with respect to b1, b2, δ1, δ2 and H1. (Example 1).

µ1 O1 O2

0.25 0.995 0.983

0.3 0.995 0.981

0.35 0.995 0.980

0.4 0.995 0.979

0.45 0.987 0.970

0.5 0.980 0.963

Table 5.2: Sensitivity of O1 and O2 with respect to µ1. (Example 1).

We first choose h = 0.032, λ = 1/0.65 and β = 1/0.352 in (5.26), in line with the

parameters for coded voice used in [162]. Hence, the mean traffic rate of a source of

class 2 (µ2) is 0.011 Mbps. Note that traffic of class 1 is LRD (i.e., the autocorrelations

are non-summable), whereas the traffic of class 2 is SRD.

Table 5.1 shows the values of the performance measures O1 and O2 for multiple

combinations of b1, b2, δ1, δ2 and H1. Note that δi = 13.8 (δi = 6.9) corresponds to

an overflow probability of 10−6 (10−3) for class i, i = 1, 2. Table 5.1 shows that either

O1 or O2 (or both) is approximately equal to 1. Hence, this implies that most of R

can be obtained by giving priority to class 1 or 2. In case of O1 ≈ 1 and O2 ≈ 1, it

does not really matter which class to prioritize, in the sense that the realizable region

is almost completely obtained by applying one of the priority strategies.

One can expect that O1 and O2 are sensitive to the traffic characteristics. In order

to investigate this, we performed several experiments. Table 5.2 shows the values of

O1 and O2 for different values of µ1, given that b1 = 0.1, b2 = 0.5, δ1 = 6.9, δ2 = 13.8,

µ1 = 0.2, h = 0.032, λ = 1/0.65 and β = 1/0.352. The results show that O1 and O2

are only mildly affected by µ1.

Subsequently, we replace λ and β by αλ and αβ, respectively, in (5.26), with

124 Selection of optimal weights in Generalized Processor Sharing

H1 α O1 O2

0.5 2 1.000 0.846

0.5 4 1.000 0.837

0.5 8 1.000 0.836

0.5 16 1.000 0.838

0.65 2 0.999 0.931

0.65 4 0.999 0.928

0.65 8 0.999 0.933

0.65 16 0.999 0.938

0.8 2 0.993 0.974

0.8 4 0.993 0.977

0.8 8 0.992 0.985

0.8 16 0.993 0.992

0.95 2 0.965 0.989

0.95 4 0.959 0.993

0.95 8 0.955 0.998

0.95 16 0.952 1.000

Table 5.3: Sensitivity of O1 and O2 with respect to H1 and α. (Example 1).

α > 0. Note that by increasing α, one accelerates the fluctuation-level of the on-off

sources, while keeping the mean traffic rate µ2 constant. Table 5.3 shows the values of

O1 and O2 for multiple combinations of H1 and α, assuming that b1 = 0.1, b2 = 0.5,

δ1 = 6.9, δ2 = 13.8, µ1 = 0.2, h = 0.032, λ = 1/0.65 and β = 1/0.352. Table 5.3

shows that the values of O1 and O2 are hardly sensitive to the value of α, but very

sensitive to H1. It seems that class 1 is dominating, which can be explained from the

fact that traffic of class 1 is LRD, whereas traffic of class 2 is SRD.

In addition to the parameter values presented in Tables 5.1-5.3, we have considered

many other parameter values for the Bis, δis, µis, H1, α, and c. The result that

priority strategies cover nearly the entire realizable region appears to remain valid.

5.5.2 Example 2

In this example we let the two traffic classes share a total capacity of 100 Mbps.

Both traffic classes consist of data traffic, where the first class has a high access rate

and the second class has a somewhat lower access rate. Recall that the data rate of

the class-i user access-channel in a network is known as the access rate of the class-i

user, i = 1, 2. The speed of the access-channel determines how fast (or the maximum

rate) the class-i user can inject data into a network. The variance functions are given

by 0.5625t2H1 and 0.0025tH2 , so both classes are modeled as fractional Brownian

motions.

Table 5.4 shows the values of O1 and O2 for different combinations of b1, b2, δ1,

δ2 and H1, assuming that H2 = 0.8, µ1 = 3 and µ2 = 0.2. Table 5.5 shows the values

of O1 and O2 for different combinations of µ1 and µ2, assuming that b1 = 1, b2 = 4,

δ1 = 6.9, δ2 = 18.4, H1 = 0.8 and H2 = 0.65. Finally, Table 5.6 shows the values of

O1 and O2 for different combinations of H1 and H2, assuming that b1 = 1, b2 = 4,

5.5 Numerical analysis 125

b1 b2 δ1 δ2 H1 O1 O2

1 4 6.9 18.4 0.5 0.992 0.876

1 4 6.9 18.4 0.65 0.973 0.980

1 4 6.9 18.4 0.8 0.936 1.000

1 4 6.9 18.4 0.95 0.895 1.000

1 4 18.4 6.9 0.5 1.000 0.601

1 4 18.4 6.9 0.65 1.000 0.716

1 4 18.4 6.9 0.8 1.000 0.807

1 4 18.4 6.9 0.95 1.000 0.865

4 1 6.9 18.4 0.5 0.402 1.000

4 1 6.9 18.4 0.65 0.647 1.000

4 1 6.9 18.4 0.8 0.783 1.000

4 1 6.9 18.4 0.95 0.853 1.000

4 1 18.4 6.9 0.5 0.842 0.968

4 1 18.4 6.9 0.65 0.976 0.968

4 1 18.4 6.9 0.8 0.998 0.947

4 1 18.4 6.9 0.95 1.000 0.900

Table 5.4: Sensitivity of O1 and O2 with respect to b1, b2, δ1, δ2 and H1. (Example 2).

δ1 = 6.9, δ2 = 18.4, µ1 = 3 and µ2 = 0.2.

Tables 5.4-5.6 show again that R is nearly fully covered by S(0) and/or S(1). We

have experimented with other parameter values, and observed that this claim was

still valid in virtually all situations considered.

5.5.3 Discussion

In Section 5.4.3 we showed that, in case of Brownian inputs, R is accurately approx-

imated by S(1) if b ≤ d, and by S(0) otherwise. Therefore, if the ratio of the buffer

thresholds is less than or equal to the ratio of the (exponential) decay rates of the over-

flow probabilities, then one should select (φ1, φ2) = (1, 0), otherwise (φ1, φ2) = (0, 1).

That is, if b ≤ d (b > d) then one should prioritize class 1 (2). Interestingly, this

criterion does not involve the characteristics of the sources. The numerical analysis

presented in this section (as well as the additional numerical experiments that we per-

formed) suggest that for other Gaussian sources there is a similar criterion. However,

it is in general not given by b ≤ d (b > d) as is the case for Brownian inputs; it seems

that the traffic characteristics of the two classes should be taken into account as well,

as illustrated in Tables 5.1-5.6.

In the scenario that one class has bursty traffic and loose QoS requirements,

whereas for the other class it is the reverse (smooth traffic and stringent QoS re-

quirements), we can give an argument that may informally explain why nearly the

entire realizable region is achievable by strict priority scheduling strategies. In that

case the buffer asymptotics of the bursty traffic class will not be affected by the

weights (may be even completely insensitive), as long as the traffic intensity of the

smooth traffic class (defined as the ratio of the aggregate input rate of the smooth

traffic class to the service rate c) does not exceed its weight. The latter will necessar-

126 Selection of optimal weights in Generalized Processor Sharing

µ1 µ2 O1 O2

3 0.5 0.940 1.000

3 1 0.940 1.000

3 2 0.944 1.000

3 3 0.941 1.000

0.5 0.2 0.854 0.998

2 0.2 0.926 1.000

5 0.2 0.954 0.999

8 0.2 0.952 0.987

Table 5.5: Sensitivity of O1 and O2 with respect to µ1 and µ2. (Example 2).

H1 H2 O1 O2

0.5 0.5 0.990 0.855

0.5 0.65 0.990 0.869

0.5 0.8 0.992 0.876

0.5 0.95 0.990 0.877

0.65 0.5 0.971 0.963

0.65 0.65 0.974 0.976

0.65 0.8 0.973 0.980

0.65 0.95 0.971 0.983

0.8 0.5 0.944 0.997

0.8 0.65 0.941 1.000

0.8 0.8 0.936 1.000

0.8 0.95 0.931 1.000

0.95 0.5 0.900 0.999

0.95 0.65 0.898 1.000

0.95 0.8 0.895 1.000

0.95 0.95 0.890 1.000

Table 5.6: Sensitivity of O1 and O2 with respect to H1 and H2. (Example 2).

ily hold, as otherwise the smooth traffic class would be negatively influenced by the

bursty traffic class. This insensitivity implies that there is little lost by simply giving

strict priority to the smooth traffic class. In other scenarios there does not seem to

be a clear intuitive explanation.

Part II

Flow-level models for

bandwidth-sharing networks

Chapter 6

Importance Sampling

in rate-sharing networks

In Part I we focused on bandwidth sharing as a result of explicit scheduling in network

nodes. In Part II we turn to the case that bandwidth sharing is a consequence of the

end-to-end rate control by end-users. The difference between these two cases is that

Part I deals with bandwidth sharing among applications on small time scales, whereas

Part II considers sharing among routes on somewhat larger time scales. As mentioned

in Chapter 1, the latter scenario is well represented by flow-level models, as we have

to take the random nature of flows into account, as opposed to Part I, where the

number of flows was assumed to be fixed.

Over the past several years the Processor-Sharing (PS) discipline has been widely

used for evaluating the flow-level performance of elastic data transfers competing for

bandwidth on a single bottleneck link. In a multi-link setting, bandwidth-sharing

networks as considered in [135] provide a natural extension for modeling the dynamic

interaction among competing elastic flows.

It is well-known that the queue length distribution in a single-server PS system

with Poisson arrivals has a simple geometric distribution that only depends on the

service requirement distribution through its mean. In contrast, the distribution of

the number of active users in bandwidth-sharing networks with several nodes has re-

mained generally intractable, even for exponentially distributed service requirements.

The crucial result that the wide family of so-called Alpha-Fair Sharing (AFS) policies,

as introduced in [140], achieve stability under the simple condition that no individual

link is overloaded, was established in [23]. The family of AFS policies covers sev-

eral common notions of fairness as special cases, such as max-min fairness (α→∞),

proportional fairness (α → 1), and maximum throughput (α ↓ 0). In [146] it has

also been shown that the case α = 2, with additional class weights set inversely pro-

portional to the respective RTTs, provides a reasonable modeling abstraction for the

bandwidth sharing realized by TCP in the Internet. We refer to Chapter 1 for more

130 Importance Sampling in rate-sharing networks

details.

In this chapter we consider a network operating under an AFS policy. Since

the service rate allocated to a flow is restricted in practice [28], we impose class-

dependent access-link rate limitations, similar as in [14]. Assuming Poisson arrivals

and exponentially distributed service requirements for each class, the dynamics of the

user population may be described by a Markov process.

An essential requirement of modern bandwidth-sharing networks is their capa-

bility of providing a variety of Quality-of-Service (QoS) guarantees, where QoS is

usually expressed in term of constraints on a set of performance measures, such as

mean transfer delays, but also the probability that there are many flows (per class)

active in the network. Typically, such a probability is required to be below some small

threshold, as this prevents flows from experiencing large delays. Motivated by this, we

analyze in this chapter the probability that, given that the network is in some specific

state n0 at time 0, the network is in some set of states A after some predefined time

T . In particular, we assume that the underlying event is rare, i.e., this probability is

small. As in general no explicit expressions are known for the probability of interest,

an attractive approach may be to resort to Monte-Carlo (MC) simulation. In gen-

eral, the number of runs needed to obtain an estimate with predefined accuracy and

confidence, is inversely proportional to the probability to be estimated [80], implying

that MC simulation is impractical due to the rarity of the event under consideration.

A natural method to accelerate the simulation is to use Importance Sampling (IS).

The idea underlying IS is to simulate the system with a new set of input probability

distributions, i.e., new interarrival and service time distributions, such that the rare

event becomes more likely, and then to correct the simulation output with appropriate

likelihood ratios, in order to obtain an unbiased estimate.

To obtain appropriate new input distributions we first identify the most probable

path (MPP) for the event to occur. Informally speaking, given that this rare event

occurs, with overwhelming probability it will happen by a path close to this MPP. For

the M/M/1-PS queue the MPP is already known [161], whereas this is not the case

for a general AFS network topology. We develop an approach for finding the MPP,

which exploits the large deviations results of [161]. The underlying idea is that locally

the flow-level dynamics of a particular class in the network can be approximated as

a M/M/1-PS queue. It is noted that, in contrast to the M/M/1-PS queue where

the most likely path has a linear shape, the MPP has a non-linear shape in case

of a general AFS network topology. The path is then subsequently translated into

new input distributions, that are such that the event under consideration occurs by

realizations close to this MPP.

Extensive numerical experiments indicate that the above approach is quite effec-

tive: we are able to estimate probabilities as small as 10−13 quickly, whereas 10−8

up to 10−4 is typically the range of interest. It is emphasized that we do not prove

that our IS technique is asymptotically optimal or asymptotically efficient [41]. The

6.1 Preliminaries 131

numerical experiments, however, suggest that the IS scheme is close to asymptotically

optimal.

The remainder of the chapter is organized as follows. In Section 6.1 we first provide

a detailed model description, discuss the use of IS, and present a key large deviations

theorem. Section 6.2 deals with the M/M/1-PS queue, which is in fact a special case

of our network. In Section 6.3 we derive (that is, approximate, but the approximation

can be made arbitrarily close) the MPP for a rare event to occur in a general AFS

network topology, by exploiting the results for the M/M/1-PS queue. Section 6.4

shows how one can translate this MPP into new input distributions that can be

incorporated in an IS algorithm. The pseudocode of the IS algorithm is presented

in the Appendix. Section 6.5 examines the performance of the IS algorithm for two

special networks, and shows that the IS scheme performs well. Finally, Section 6.6

concludes with some final observations.

6.1 Preliminaries

In this section we first describe our queueing model. Next we discuss IS, a simulation

technique designed for estimating rare event probabilities. Finally, we briefly discuss

some large deviations results, which are needed in the analysis.

6.1.1 Queueing model

We consider a network consisting of L nodes, where node j has capacity cj , j =

1, . . . , L. There are M classes of users in the network, where each class corresponds

to a specific route in the network. We assume that class-i users arrive according

to a Poisson process of rate λi, and have independent and exponentially distributed

service requirements with mean µ−1
i , i = 1, . . . ,M . The traffic load of class i is then

ρi := λi/µi, i = 1, . . . ,M . The arrival processes and service requirements are all

assumed to be independent. If a user requires service at multiple nodes, then it must

be served at all nodes simultaneously. Let S(j) denote the set of classes that require

service at node j, j = 1, . . . , L. Finally, let N(t) = (N1(t), . . . , NM (t)) ∈ NM
0 be a

vector denoting the state of the network at time t ≥ 0, with Ni(t) representing the

number of class-i users at time t ≥ 0.

The network operates under the AFS policy, as introduced in [140]. When the

network is in state n = (n1, . . . , nM) ∈ NM
0 \{~0}, the service rate x∗i allocated to

each of the class-i users is obtained by solving the optimization problem presented in

Section 1.4.3.

Let si(n) := nix
∗
i denote the total service rate allocated to class i. Since the rate

allocated to single flows is often restricted in practice, we assume that the effective

total rate allocated to class-i users is [14]

di(n) := min {si(n), niri} ,

132 Importance Sampling in rate-sharing networks

where ri can be thought of as the access-link rate limitation for a class-i flow, i =

1, . . . ,M .

Remark: Above we first determined the AFS allocation, and then truncated the

resulting rates at the access-link rates ri, i = 1, . . . ,M . Note that if niri < si(n) for

some class i, then the excess rate si(n)− niri does not become available to the other

classes. A way to circumvent this problem is to incorporate the restrictions xi ≤ ri,

i = 1, . . . ,M , directly in the optimization problem (1.2). In this chapter, however,

we do not choose to use this latter approach; it is not in the scope of this chapter to

verify which of these alternatives is closest to reality. It turns out that in general our

approach allows fairly explicit analysis, whereas this is considerably harder under the

alternative method, see also [14].

It is easily verified that N(t) is a Markov process with transition rates:

q(n, n+ ei) = λi; q(n, n− ei) = νi(n), i = 1, . . . ,M,

where νi(n) := µidi(n). We note that N(t) is in fact an M -dimensional birth-death

process. Given that ri ≥ ci, i = 1, . . . ,M , i.e., given that there are no access-link rate

limitations, in [23] the appealing result was shown that N(t) is an ergodic Markov

process if

∑

i∈S(j)

ρi < cj , j = 1, . . . , L. (6.1)

Since the ‘down’ rates of our system differ only for a finite number of states from those

in a similar system without rate limitations, it follows from Proposition 1 in [111]

that N(t) is ergodic for all values of ri > 0, i = 1, . . . ,M , given that (6.1) holds.

We emphasize that in general no explicit expressions are known for the steady-state

distribution of N(t).

In this chapter our goal is to estimate

P := P(N(T) ∈ A|N(0) = n0),

i.e., the probability that, given that network is in state n0 at time 0, the state of the

network at time T > 0 is contained in set A. For example, here n0 might be a state

around which the network operates most of the time, and A might be an ‘overflow

set’:

{

(x1, . . . , xM) ∈ NM
0

∣

∣

∣

∣

∣

M
∑

i=1

xi > b

}

,

where b ≥ 0 is a scalar.

6.1 Preliminaries 133

6.1.2 Variance-reduction technique

As in general no analytical expression for P is known, a natural approach to obtain

an estimate of P is to perform simulation experiments. Let Ω = {fi, i = 1, 2, . . . } be

the set of all paths f in the evolution of the system, given that the system is in state

n0 at time t = 0, i.e., f(0) = n0. Let 1E be an indicator of the event E, and p(f) the

probability measure of the sample path f . Then we obtain that

P =

∫

Ω

1f(T)∈A p(f)df = E p

(

1f(T)∈A

)

, (6.2)

where the subscript p indicates sampling from the measure p. An unbiased estimate

of (6.2) can be obtained by performing MC simulation, i.e., we run R independent

simulations, with the system starting in state n0, and we determine

PMC :=
1

R

R
∑

i=1

1fi(T)∈A,

where fi is the path obtained in the ith run. In case n0 and A are such that f(T) ∈ A
occurs relatively often, we can accurately estimate P in a relatively small amount

of time by PMC. The number of runs needed to obtain an estimate with predefined

accuracy and confidence, is in general inversely proportional to the probability to be

estimated, see e.g. [80].

If n0 and A are such that f(T) ∈ A is a rare event, then the above properties entail

that we need a large number of simulations to provide an accurate statistical estimate

of P . In this case the simulation can be accelerated by using IS. The idea underlying

IS is to simulate the system with a new set of input probability distributions, such

that the rare event becomes more likely. To this end, let us consider a new probability

measure p′. Then, (6.2) is equivalent to

P =

∫

Ω

1f(T)∈A
p(f)

p′(f)
p′(f)df

=

∫

Ω

1f(T)∈AL(f)p′(f)df

= E p′
(

1f(T)∈AL(f)
)

, (6.3)

where L(f) := p(f)/p′(f) is called the likelihood ratio. Note that (6.3) is valid for any

measure p′(·), given that p′(f) > 0 for all f that are such that f(T) ∈ A. Hence, an

unbiased IS estimator is given by

PIS :=
1

R

R
∑

i=1

1fi(T)∈AL(fi),

where fi is now simulated under the measure p′, with fi(0) = n0, i = 1, . . . , R.

134 Importance Sampling in rate-sharing networks

Assuming that L(f) can be found, the simulation can be accelerated considerably

if p′ is properly chosen, in the sense that the number of runs needed to obtain an

accurate statistical estimate of P using PIS, is less than the number of runs required

in case of MC simulation. Hence, IS can be seen as a variance-reduction technique.

We note, however, that not every choice of p′ will reduce the variance. In fact, if p′

is badly chosen, then this may increase the variance, or even make it infinite.

In this chapter we assume that n0 and A are such that f(T) ∈ A is a rare event.

As mentioned above, in this case MC simulation is inefficient, and one may resort

to IS to obtain an estimate of P . We derive an IS scheme that considerably speeds

up the simulation. This scheme is based on sample-path large deviations results, see

e.g. [161].

6.1.3 Large deviations

In this subsection we present large deviations results of [161], which will be needed in

the next sections.

Let X(t) be a Markovian jump process with state space R d and with transition

rates:

q(x, x+ vi) = ψi(x),

where vi is a vector in R d and ψi(x) is the rate of the jump in that direction when the

state is x, i = 1, . . . , l. Also, let X
k
(t) := X(kt)/k, t ≥ 0, k ≥ 1, be the fluid scaled

process, which is obtained by making the jumps smaller, but faster. Define the ‘local’

rate function

ℓ(x, y) := sup
θ

(

〈θ, y〉 −
l
∑

i=1

ψi(x)
(

e〈θ,vi〉 − 1
)

)

,

where x, y and θ are in R d , and 〈·, ·〉 denotes the usual inner product: 〈a, b〉 :=
∑d

i=1 aibi. Finally, define the rate function

IT (f) :=

{

∫ T

0
ℓ(f(s), f ′(s))ds if f is absolutely continuous;

∞ otherwise,

where f is in R d , and f ′ is the derivative of f . The following sample-path large

deviations principle (LDP) now holds (see Theorem 5.1 in [161]).

Theorem 6.1.1 For any well-defined x0 and set F ,

− lim
k→∞

1

k
log P (Xk

(·) ∈ F |Xk
(0) = x0

)

= inf
f :f∈F,f(0)=x0

IT (f).

6.2 Free M/M/1-PS process 135

Remark: Intentionally, Theorem 6.1.1 has been formulated in a slightly imprecise

manner. In fact, the LDP consists of an upper and lower bound, which apply to

closed and open sets, respectively, see Theorem 5.1 in [161]. However, for the purpose

of this chapter, it is sufficient to state the theorem as above. For more details we refer

to Chapter 5 of [161].

Let us write g(x) ∼ h(x) when g(x)/h(x)→ 1 if x→∞. Then it follows from the

above thatP (Xk
(·) ∈ F |Xk

(0) = x0

)

∼ g(k, F, x0)e
−kIT (f∗), k →∞,

where f∗ is the optimizing path in Theorem 6.1.1, and g(k, F, x0) is a subexponential

function, i.e.,

lim
k→∞

log g(k, F, x0)

k
= 0.

From the above it follows that Theorem 6.1.1 only gives the logarithmic asymptotics.

Therefore, in general Theorem 6.1.1 does not provide any information on the func-

tion g(k, F, x0), which implies that we can only use it to obtain a rough estimate ofP (Xk
(·) ∈ F |Xk

(0) = x0

)

.

In the next section we apply Theorem 6.1.1 to the so-called free M/M/1-PS pro-

cess.

6.2 Free M/M/1-PS process

We first assume that X(t) corresponds to the free M/M/1-PS process, i.e., the

M/M/1-PS queue that is not reflected at 0, meaning that the state space of X(t)

is Z (whereas the state space of a M/M/1-PS queue is N 0). We note that the queue

length dynamics of the M/M/1-PS queue coincide with those of the M/M/1-First-

In First-Out (FIFO) queue, implying that both have the same steady-state queue

length distribution. Hence, the results derived in this section in fact hold for the free

M/M/1-FIFO process as well.

In this section we treat the free M/M/1-PS process, because this plays a key role

in the analysis of a general AFS network topology, as we will see in Section 6.3. This

may sound surprising, as the down rates corresponding to free M/M/1-PS process are

constant, whereas the down rates corresponding to a general AFS network topology

are state-dependent. The idea underlying this analysis is that we can locally approxi-

mate the flow-level dynamics of a particular class in a general AFS network topology

by a free M/M/1-PS process with class-specific arrival and service rates, which will

be exploited in the next sections to obtain an estimate of P .

Since X(t) corresponds to the free M/M/1-PS process, we have that X(t) =

Xup(t) − Xdown(t), where Xup(t) is a Poisson process of rate λ and Xdown(t) is an

136 Importance Sampling in rate-sharing networks

independent Poisson process of rate µ. Assume that λ < µ, so thatX(t) has a negative

drift. The transition structure of X(t) is then, in the terminology of Section 6.1.3,

v1 = +1; ψ1(x) = λ;

v2 = −1; ψ2(x) = µ,

with x ∈ Z. Then,

ℓ(x, y) = ℓ(y) = sup
θ

{

θy − λ
(

eθ − 1
)

− µ
(

e−θ − 1
)}

,

i.e., the local rate function is independent of the current state x. Straightforward

calculus shows that the optimizer satisfies

eθ∗
=
y +

√

y2 + 4λµ

2µ
,

which yields

ℓ(y) = y log

(

y +
√

y2 + 4λµ

2λ

)

+ λ+ µ−
√

y2 + 4λµ

=: ℓ(y|λ, µ).

We now focus on the overflow probabilityP(X
k
(T) > z|Xk

(0) = z0),

with z > z0. Using Theorem 6.1.1, we have thatP(X
k
(T) > z|Xk

(0) = z0) ≈ e−kI∗
,

where

I∗ := inf
f :f∈G,f(0)=z0

IT (f), with G := {f |f(T) > z}.

In Lemma 5.16 of [161] it is shown that the MPP, i.e., the path f∗ in the set G that

minimizes IT , is a straight line from z0 to z in the interval [0, T], with cost

I∗ = IT (f∗) = T × ℓ
(

z − z0
T

∣

∣

∣

∣

∣

λ, µ

)

= T

(

z − z0
T

log

(

z − z0
2Tλ

+
1

2λ

√

(z − z0)2
T 2

+ 4λµ

)

+λ+ µ−
√

(z − z0)2
T 2

+ 4λµ

)

=: C (z − z0, T |λ, µ). (6.4)

6.3 Most probable path 137

Below we try to provide some additional interpretation for (6.4). First note that

the cost of a Poisson process of rate λ behaving like a Poisson process of rate λ∗ is,

during one unit of time,

Ĩ(λ∗|λ) := λ∗ log

(

λ∗

λ

)

+ λ− λ∗,

see page 20 of [161]. Here Ĩ(λ∗|λ) is the Legendre transform of the logarithmic Moment

Generating Function (MGF) of a random variable that has a Poisson distribution with

mean λ. Clearly, Ĩ(µ∗|µ) follows in the same way. Observe that indeed Ĩ(p|p) = 0,

p = λ, µ, as required.

In order to make sure that it becomes likely that X(T) > z, given that X(0) = z0,

we should have that Xup (Xdown) behaves as a different Poisson process of rate λ∗

(µ∗), where (λ∗ − µ∗)T > z − z0. We thus get the minimization problem:

T min
λ∗,µ∗

{

Ĩ(λ∗|λ) + Ĩ(µ∗|µ)
}

,

over all λ∗, µ∗ such that (λ∗ − µ∗)T > z− z0. Straightforward calculations yield that

the optimizers are

λ∗ =
z − z0

2T
+

1

2

√

(z − z0)2
T 2

+ 4λµ;

µ∗ = −z − z0
2T

+
1

2

√

(z − z0)2
T 2

+ 4λµ, (6.5)

and the corresponding objective function value indeed equals (6.4).

6.3 Most probable path

In the previous section we obtained an approximation for the overflow probability in

the M/M/1-PS queue (where we assumed that there was no reflection at 0). In this

section we use the same ideas to derive an approximation for P in a general AFS

network topology.

We first consider the cost K (f, T) of a path f , with f(0) = n0, in the interval

[0, T]. We find thatK (f, T) =

M
∑

i=1

∫ T

0

ℓ (f ′i(t)|λi, νi(f(t))) dt.

From the logarithmic asymptotics stated in Theorem 6.1.1 it then follows that the

following approximation applies:

P = P(N(T) ∈ A|N(0) = n0)

≈ exp

(

− inf
f :f(T)∈A,f(0)=n0

K (f, T)

)

. (6.6)

138 Importance Sampling in rate-sharing networks

Let f∗ denote the path that minimizes the cost, i.e., the MPP. Since the down rates in

our model are state-dependent, in contrast to what is the case for the free M/M/1-PS

process, the MPP in general has a non-linear shape. In fact, in general no closed-form

expression is available for the path that minimizes K (f, T). Equation (6.6) suggests

that we should try to find an accurate approximation of f∗ to obtain an estimate of

P , which is done below.

Divide T into m (which is typically a large number) subintervals of length ∆m :=

T/m. Consider the contribution to a path of the k-th subinterval, i.e., the inter-

val [k∆m, (k + 1)∆m), for k = 0, . . . ,m − 1, and assume that the down rates are

νi(f(k△m)), i = 1, . . . ,M , in this subinterval. Then the cost of this time interval,

related to class i are given byC (fi((k + 1)∆m)− fi(k∆m),∆m|λi, νi(f(k∆m)).

Hence, we find that the total cost K m(f, T) are

M
∑

i=1

m−1
∑

k=0

C (fi((k + 1)∆m)− fi(k∆m),∆m|λi, νi(f(k∆m))).

Note that the higher the value of m, the more accurate the approximation will be,

i.e.,

lim
m→∞

K m(f, T) = K (f, T).

Using the above, we can approximate K (f, T), for given m ∈ N , by K m(f, T). Also,

the path that minimizes K m(f, T) can be regarded as an approximation of f∗. In

order to obtain this approximating path, optimization should be performed over all

fi(j∆m), i = 1, . . . ,M , j = 0, . . . ,m, i.e., (m+1)M entries, given that f(0) = n0 and

f(m∆m) = f(T) ∈ A.

Approximation (6.6) turns out not to be very accurate in general. Clearly, this is

no surprise, as in Section 6.1.3 we already argued that Theorem 6.1.1 just gives the

logarithmic asymptotics, and that we therefore have only a rough estimate of P .

6.4 New input distributions

In the previous section we derived an approximation for P which required the calcu-

lation of an optimizing path. This path can be regarded as an approximation for the

most likely way for the event to happen. That is, given that the event occurs, with

overwhelming probability N(T) ∈ A is reached by a path close to this optimizing

path. In this section we show how we can exploit the results of Section 6.3 to develop

a methodology for obtaining an accurate estimate of P .

Assume that we have (an accurate approximation of) the MPP

f∗ := arg inf
f :f(T)∈A,f(0)=n0

K (f, T),

6.5 Simulation results 139

as discussed in the previous section. Suggested by (6.5), the following change-of-

measure at time t corresponds to f∗:

λ∗i (t) :=
1

2
(f∗i)′(t) +

1

2

√

((f∗i)′(t))2 + 4λiνi(f∗(t));

ν∗i (t) := −1

2
(f∗i)′(t) +

1

2

√

((f∗i)′(t))2 + 4λiνi(f∗(t)),

i = 1, . . . ,M . When, at time t ≥ 0, the process is simulated with arrival rates λ∗(t)

and departure rates ν∗(t), given that the process starts at n0 at t = 0, it is not hard

to see that the ith coordinate of the expected position of the process at time t is

n0,i +

∫ t

0

λ∗i (s)ds−
∫ t

0

ν∗i (s)ds = f∗i (0) +

∫ t

0

(f∗i)′(s)ds

= f∗i (t),

i = 1, . . . ,M , i.e., the process has the ‘correct’ expected position, under this change-

of-measure.

In the Appendix we present an IS scheme that can be used to obtain an estimate

of P . The basic idea underlying this scheme is to simulate the model with rates λ∗i (t)

and ν∗i (t), i = 1, . . . ,M . Typically, we only know these rates atm+1 time points, as in

general the MPP is not explicitly known, but approximated, see Section 6.3. However,

if one assumes the rates to be constant between two consecutive time points, i.e., in

a subinterval, then each class essentially behaves as a free M/M/1-PS process with

class-specific arrival and service rate in this subinterval, which is easy to simulate.

For more details we refer to the Appendix.

In the next section we show that, compared to MC simulation, this scheme can

considerably speed up the simulation, given that the underlying event is rare. That is,

the number of runs that are needed to achieve some given level of confidence with the

IS scheme, is substantially less than the number of runs needed with MC simulation.

6.5 Simulation results

In this section the performance of the IS algorithm is examined in case of a single-node

network (shared by multiple traffic classes) and a linear network, respectively. These

are the two simplest networks, and therefore of particular interest to gain insight.

We have performed extensive simulation experiments for each of these two networks,

and the results are presented below. We mention that, besides the results reported in

this section, we have considered many other examples, in which usually a substantial

speed-up is achieved

140 Importance Sampling in rate-sharing networks

6.5.1 Single-node network

We first consider a single-node network with capacity c, where capacity is shared

between M classes. In order to obtain the AFS allocation we have to solve the

following optimization problem for state n ∈ NM
0 \{~0}:

max
∑M

i=1 niUi(xi)

subject to
∑M

i=1 nixi ≤ c
over xi ≥ 0, i = 1, . . . ,M,

where Ui(xi) is as defined in (1.3). It is a straightforward exercise to show that the

optimizers are such that

si(n) = nix
∗
i =

κ
1/α
i nic

∑M
j=1 κ

1/α
j nj

, i = 1, . . . ,M. (6.7)

From (6.7) it follows that AFS in a single-node network corresponds to sharing in a

DPS fashion, with relative weights κ
1/α
i , i = 1, . . . ,M , see [63]. We find [14] that

di(n) = min

{

κ
1/α
i nic

∑M
j=1 κ

1/α
j nj

, niri

}

, i = 1, . . . ,M.

The steady-state distribution of N(t) is only known in explicit form for some special

cases, given that the stability condition
∑M

i=1 ρi < c holds. In case κi = κ and ri ≥ c,
i = 1, . . . ,M , the steady-state distribution is given by Equation (1.7). The steady-

state distribution is available as well in case κi = κ and ri = r ≤ c, i = 1, . . . ,M .

The first part of the IS algorithm consists of finding a MPP. We have performed

numerical experiments to gain insight in the typical shape of such a minimizing path.

We consider the setting with M = 2, λ1 = 0.75, λ2 = 1.5, µ1 = 2, µ2 = 4, κ
1/α
1 = 1/3,

κ
1/α
2 = 2/3, r1 = 0.9, r2 = 0.8, and c = 1, and we let T , n0 and the set A vary.

The results are depicted in Figure 6.1, and are obtained by using an optimization

procedure in Mathematica 5.2. We solved the problem for m = 2p, p = 1, . . . , 5, and

we used the minimizing path found for m = 2q−1 as starting path in the optimization

procedure for m = 2q, q = 2, . . . , 5 (for m = 2 we do not have a nice starting path).

Hence, the depicted paths are associated with m = 25 = 32. We note that the above

approach is much faster than solving the optimization problem directly for m = 32

(without an appropriate starting path). We observed that the optimization problem

can be solved in a relatively small amount of time if m ≤ 32. For higher values of

m the obtained path is almost identical to the one obtained for m = 32, but the

computation requires more time. In the first, second and third column of Figure 6.1

we depict (f1(i∆32), i∆32), (f2(i∆32), i∆32) and (f1(i∆32), f2(i∆32)), i = 0, . . . , 32,

respectively. Since we only know the minimizing paths at m + 1 = 33 time points,

we linearly interpolate between consecutive points. We note that we have considered

6.5 Simulation results 141

many other scenarios besides the ones depicted in Figure 6.1. In these cases, the

minimizing paths do not seem to be linear either.

Although the shapes of the MPPs corresponding to scenarios (a)-(c) are not always

trivial, the shape of the path corresponding to scenario (d) perhaps requires some

more explanation. In particular, the shape of the path corresponding to class 1 is

surprising in this scenario: it first slightly decreases, and then it starts to increase. A

possible explanation for this phenomenon may be the following. In [14] it was shown

that there exists a unique point n∗ = (n∗
1, n

∗
2) such that λi = di(n

∗), i = 1, 2. This

is the equilibrium point of the so-called fluid limit: the system operates (most likely)

most of the time around this point. The fluid limit is obtained by both speeding up

the arrivals and service speed by a given factor, and then letting this factor go to

infinity. It can be shown that the resulting normalized Markov process converges to

a deterministic limit. From Proposition 2.1 in [14] it follows that n∗
1 = 0.5625 and

n∗
2 = 0.46875 in scenarios (a)-(d). Recalling that the path starts in n0 = (3, 0) in

scenario (d), we see that the MPP initially evolves in the direction of the fluid limit,

but then changes its direction to make sure that f2(T) > 6. It remains, however, hard

to fully explain the shapes of the MPPs in general. One can imagine that the MPP

from any n0 to any set A is more or less linear if T is relatively small. In contrast,

if T is relatively large, then one can expect that the MPP first drifts to n∗, and then

changes its direction towards the set A, see e.g. [123]. We remark that the equilibrium

point n∗ depends critically on the access-link rates [14].

To quantify the performance of the proposed IS scheme we take the same pa-

rameter values as above, where we let T , n0 and the set A vary. We consider three

structures for A: (i) {f |f1(T) > a}, (ii) {f |f2(T) > a} and (iii) {f |f1(T)+f2(T) > a},
with a > 0. The results are presented in Tables 6.1-6.4. These results (and also the

ones in the next subsection) are obtained with Mathematica 5.2 and are tested on a

personal computer with an AMD Athlon 64 3500+ processor (2.2 GHz). In the tables

#IS (#MC) denotes the number of runs needed with IS (MC) simulation to obtain a

confidence of 95% and a relative efficiency (i.e., the ratio of the confidence interval

half-length to the estimated value) of 10%, and τIS (τMC) denotes the time needed

with IS (MC simulation). Note that τIS consists of two parts: (a) finding the optimal

path and (b) performing the simulation with the new input distributions.

Table 6.1 compares IS with MC simulation. The MC estimator is obtained by

simulating independent runs of the original model (starting in n0) until time T , and

subsequently determining the fraction of the runs that are such that f(T) ∈ A. The

table shows that for a relatively large value of P (larger than 0.01), MC simulation

yields an accurate estimate much faster than the IS scheme does. In contrast, for

a relatively small value of P (smaller than 0.01), IS significantly outperforms MC

simulation. Clearly, this is no surprise: the IS scheme presented in the Appendix is

based on large deviations results, and therefore one expects this scheme to perform

well in case the underlying event is rare, i.e., if P is relatively small.

142 Importance Sampling in rate-sharing networks

(a)

0.5 1 1.5 2 2.5 3

2

4

6

8

f∗
1 (t)

t
0.5 1 1.5 2 2.5 3

1

2

3

4

f∗
2 (t)

t
2 4 6 8

1

2

3

4

n1

n2

(b)

1 2 3 4 5 6

2

4

6

8

f∗
1 (t)

t
1 2 3 4 5 6

1

2

3

4

f∗
2 (t)

t
2 4 6 8

1

2

3

4

n1

n2

(c)

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

f∗
1 (t)

t
0.5 1 1.5 2 2.5 3

2

4

6

8

10

12

f∗
2 (t)

t

0.5 1 1.5 2 2.5 3

2

4

6

8

10

12

n1

n2

(d)

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

f∗
1 (t)

t

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

f∗
2 (t)

t
0.5 1 1.5 2 2.5 3

1

2

3

4

5

6

n1

n2

Figure 6.1: The minimizing paths of K 32(f, T) in four scenarios. Scenario (a): T = 3,

A = {f |f1(T) > 8} and n0 = (1, 4). Scenario (b): T = 6, A = {f |f1(T) > 8} and

n0 = (1, 4). Scenario (c): T = 3, A = {f |f2(T) > 12} and n0 = (1, 4). Scenario (d):

T = 1, A = {f |f2(T) > 6} and n0 = (3, 0). The left panel shows f∗1 (·) as function of

time t. The middle panel shows f∗2 (·) as function of time t. The right panel shows

the parametric plot of (f∗1 (·), f∗2 (·)).

6.5 Simulation results 143

T a n0,1 n0,2 PIS #IS τIS PMC #MC τMC

1 6 1 4 6.1 · 10−4 1559 12.4 6.2 · 10−4 622085 341.1

1 6 1 0 3.0 · 10−4 3312 16.4 2.7 · 10−4 1468866 523.4

3 6 1 4 1.5 · 10−2 2441 17.2 1.4 · 10−2 27518 35.9

3 6 1 0 5.1 · 10−3 22745 91.4 4.9 · 10−3 78851 77.7

6 6 1 4 4.0 · 10−2 12821 80.4 3.7 · 10−2 9397 23.4

6 6 1 0 2.0 · 10−2 74237 390.1 1.8 · 10−2 22397 44.9

Table 6.1: Simulation results for structure (i): comparison with MC simulation (times

in seconds).

T a n0,1 n0,2 PIS #IS τIS

1 10 1 0 3.3 · 10−8 3509 18.9

1 14 1 0 5.1 · 10−13 4744 24.4

2 10 1 0 2.9 · 10−6 6762 33.9

2 14 1 0 7.3 · 10−10 8123 40.7

3 10 1 0 2.6 · 10−5 12439 59.2

3 14 1 0 2.5 · 10−8 12526 63.7

1 10 1 4 4.2 · 10−8 2861 17.5

1 14 1 4 7.8 · 10−13 3349 20.6

2 10 1 4 6.0 · 10−6 2680 19.5

2 14 1 4 1.2 · 10−9 4686 28.5

3 10 1 4 6.2 · 10−5 4173 25.8

3 14 1 4 5.6 · 10−8 5847 37.4

Table 6.2: Simulation results for structure (i): rare events (times in seconds).

Tables 6.2-6.4 show the performance of our scheme in case of rare events. As

mentioned in Section 6.1.2, in this case MC simulation is inefficient. Therefore, we

have decided not to compare the performance of the IS scheme with that of the MC

simulation. These tables show that our scheme works remarkably well for rare events:

we are able to estimate probabilities as small as 10−13 in a fast way.

The results also show that the performance of the IS scheme decreases as T in-

creases (for fixed other model parameters), i.e., more runs are needed to achieve the

required efficiency. This can be explained as follows. As T increases and m (the

number of subintervals) remains constant, the approximation of the minimizing path

becomes less accurate, and therefore the performance of the IS algorithm is also neg-

atively affected.

We also empirically observed that, for fixed arbitrarily chosen n0 and T , the ratio

log E p′
(

1f(T)∈A·kL
2(f)

)

log E p′
(

1f(T)∈A·kL(f)
) , (6.8)

is close to (but smaller than) 2 for large values of k, where p′ is the IS distribution

and A · k := {y : y/k ∈ A}. It is noted that one can estimate both denominator and

numerator in (6.8) by using the simulation output. The above suggests that our IS

scheme is nearly asymptotically optimal [41], which however seems difficult to prove.

144 Importance Sampling in rate-sharing networks

T a n0,1 n0,2 PIS #IS τIS

1 10 1 0 5.4 · 10−7 2702 15.3

1 14 1 0 1.0 · 10−10 3624 21.5

2 10 1 0 3.1 · 10−5 8958 40.4

2 14 1 0 8.4 · 10−8 4756 28.6

3 10 1 0 1.6 · 10−4 10423 51.0

3 14 1 0 1.7 · 10−6 18663 94.6

1 16 1 4 5.5 · 10−9 2776 16.2

1 20 1 4 7.2 · 10−13 3580 21.1

2 16 1 4 1.1 · 10−6 2613 17.6

2 20 1 4 1.7 · 10−9 3792 24.4

3 16 1 4 8.0 · 10−6 3517 24.6

3 20 1 4 6.2 · 10−8 4152 25.9

Table 6.3: Simulation results for structure (ii): rare events (times in seconds).

T a n0,1 n0,2 PIS #IS τIS

1 20 1 0 2.3 · 10−13 4396 67.6

2 25 1 0 5.1 · 10−13 6605 80.8

3 30 1 0 1.2 · 10−13 12017 107.1

1 20 1 4 9.6 · 10−10 3281 52.1

2 25 1 4 3.5 · 10−10 5156 60.4

3 30 1 4 4.0 · 10−11 8483 86.2

Table 6.4: Simulation results for structure (iii): rare events (times in seconds).

6.5.2 Linear network

We next consider a linear network that consists of L nodes, where node i has capacity

ci. There are M = L + 1 classes of users: each class corresponds to a specific route

in the network. Class-i users require service at node i only, i = 1, . . . , L, whereas

class-(L+ 1) users require service at all L nodes simultaneously, see Figure 1.7 for an

illustration. For ease of notation relabel class-(L+ 1) users as class-0 users. In order

to obtain the AFS allocation we have to solve the following optimization problem for

state n ∈ NL+1
0 \{~0}:

max
∑L

i=0 niUi(xi) (6.9)

subject to n0x0 + nixi ≤ ci, i = 1, . . . , L

over xi ≥ 0, i = 0, . . . , L,

where Ui(xi) is as defined in (1.3). Only in case ci = c, i = 1, . . . , L, i.e., if all nodes

have the same capacity, there exist explicit expressions for the optimizing x∗i s. In that

case the optimizers are such that [23]

s0(n) = n0x
∗
0 =

(κ0n
α
0)1/αc

(κ0nα
0)1/α + (

∑L
j=1 κjnα

j)1/α
;

si(n) = nix
∗
i = (c− s0(n))1ni>0, i = 1, . . . , L.

6.5 Simulation results 145

T a1 a2 PIS #IS τIS PMC #MC τMC

1 6 6 6.1 · 10−2 2308 126.9 6.5 · 10−2 5527 8.8

1 8 8 7.8 · 10−3 2102 140.3 7.7 · 10−3 49912 78.5

2 8 8 4.6 · 10−2 5045 145.2 4.6 · 10−2 7908 23.4

2 10 10 8.5 · 10−3 4573 172.5 8.9 · 10−3 40859 121.3

3 10 10 2.8 · 10−2 9722 274.2 3.0 · 10−2 12010 52.6

3 12 12 6.7 · 10−3 19131 306.3 6.8 · 10−3 53159 232.3

Table 6.5: Simulation results for the linear network: comparison with MC simulation

(times in seconds).

T a1 a2 PIS #IS τIS

1 15 15 1.6 · 10−7 6481 191.3

1 20 20 7.0 · 10−12 10782 199.7

2 20 20 3.7 · 10−8 10994 175.1

2 25 25 1.1 · 10−11 19255 272.7

3 25 25 3.0 · 10−9 19326 312.0

3 30 30 2.0 · 10−12 48310 631.5

Table 6.6: Simulation results for the linear network: rare events (times in seconds).

Therefore, we find that d0(n) equals

min

{

(κ0n
α
0)1/αc

(κ0nα
0)1/α + (

∑L
j=1 κjnα

j)1/α
, n0r0

}

,

and di(n), for i = 1, . . . , L, equals

min

{

(
∑L

j=1 κjn
α
j)1/αc

(κ0nα
0)1/α + (

∑L
j=1 κjnα

j)1/α
, niri

}

.

The steady-state distribution of N(t) is only known in explicit form if α = 1, κi = κ,

cj = c, and ri ≥ c, i = 0, . . . , L, j = 1, . . . , L, given that the stability condition

max1≤i≤L ρ0 + ρi < c holds, see Theorem 7.2.1.

We test the performance of our IS scheme in case L = 2, λ0 = 2, λ1 = 1, λ2 = 1.75,

µ0 = 5, µ1 = 2, µ2 = 4, r0 = 0.8, r1 = 0.6, r2 = 0.3, κ0 = 0.5, κ1 = 2, κ2 = 1, α = 1,

and starting state (1, 1, 2). Furthermore, we assume ci = c = 1, i = 1, 2, so that we

have a closed-form expression for di(n), i = 0, 1, 2, and we let T and A vary. We

assume that the structure of A is of the form {f |f0(T) + f1(T) > a1, f0(T)+ f2(T) >

a2}, with a1, a2 > 0. The results are given in Tables 6.5 and 6.6.

The results again show that the rare event probabilities can be estimated rather

efficiently. Compared to the single-node network, it now takes much more time to

find the MPP (which in general has a non-linear shape), as one needs to optimize

over more entries.

146 Importance Sampling in rate-sharing networks

6.6 Discussion

In this chapter we studied the transient behavior of the process N(t). A topic for

further research is the derivation of an approximation of π(A), where π(·) denotes the

steady-state distribution of N(t). Using regenerative arguments, one can obtain π(A)

by dividing the expected time that the process spends in set A during a cycle from n0

to n0, by the associated expected cycle time, see e.g. Corollary 1.4 in [12]. One may

use specific measures to estimate both numerator and denominator, so-called measure

specific dynamic IS, see e.g. [67]. Dynamic refers to the fact that per run the IS is

turned on until the event of interest occurs and turned off thereafter.

Appendix

Below we present the pseudocode of an IS scheme that can be used to estimate rare

event probabilities.

IS Algorithm

Compute (or approximate) the minimizing path f∗.

Divide T into m subintervals of length ∆m := T/m.

FOR j = 1 TO R

Ñi(0)← n0,i, i = 1, . . . , M.

Set the likelihood ratio equal to 1: Lj ← 1.

FOR k = 1 TO m

Ñi(k∆m)← Ñi((k − 1)∆m), i = 1, . . . , M.

Simulate Arrivals of type i as Poisson process of rate λ∗
i (k∆m).

Simulate Departures of type i as Poisson process of rate ν∗
i (k∆m).

Thus K events are generated, with inter-event times t1, . . . , tK.

FOR ℓ = 1 TO K

IF Event(ℓ) = Arrival of type i

THEN

Update likelihood:

Lj ← Lj × exp((λ∗
i (k∆m)− λi)tℓ)× (λi/λ∗

i (k∆m)).

Ñi(k∆m)← Ñi(k∆m) + 1.

IF Event(ℓ) = Departure of type i AND Ñi(k∆m) > 0

THEN

Update likelihood:

Lj ← Lj × exp((ν∗
i (k∆m)− νi(Ñ(k∆m)))tℓ)

×(νi(Ñ(k∆m))/ν∗
i (k∆m)).

Ñi(k∆m)← Ñi(k∆m)− 1.

IF Event(ℓ) = Departure of type i AND Ñi(k∆m) = 0

THEN

Set the likelihood ratio equal to 0: Lj ← 0.

Abort current simulation run and proceed with the next run.

6.6 Discussion 147

END

Set tK equal to 0 when K = 0.

FOR i = 1 TO M

Update likelihood:

Lj ← Lj × exp((λ∗
i (k∆m)− λi)(∆m − tK))

× exp((ν∗
i (k∆m)− νi(Ñ(k∆m)))(∆m − tK)).

END

END

Put 1j ← 1 if N(m∆m) ∈ A, and 0 else.

END

Estimator PIS ← R−1 ·PR
j=1 1jLj .

Justification of the IS algorithm: We simulate the process Ñ(t) = (Ñ1(t), . . . , ÑM (t))

during a time period of T units, given that Ñ(0) = n0, where

Ñi(t) := Ñi,up(t)− Ñi,down(t), i = 1, . . . ,M,

with Ñi,up(t) being a Poisson process of rate λ∗i (k∆m) and Ñi,down(t) being a Poisson

process of rate ν∗i (k∆m) if t ∈ [(k − 1)∆m, k∆m), k = 1, . . . ,m. Clearly, this corre-

sponds to the process described in Section 6.1.1, but with different input distributions

and with a different state space, as the state space of Ñ(t) is ZM , whereas that of

N(t) is NM
0 ⊂ ZM . It follows from Section 6.1.2 that we can obtain an unbiased IS

estimator of P by simulating Ñ(t) and by keeping track of the likelihood ratio in each

run.

In the algorithm we use that the interarrival times are exponentially distributed

with mean 1/λ∗i (k∆m) (1/λi) under the new (old) measure if t ∈ [(k − 1)∆m, k∆m).

Also, we exploit that the service requirements are exponentially distributed with

mean 1/ν∗i (k∆m) (1/νi(Ñ(t)), with Ñi(t) > 0) under the new (old) measure, if t ∈
[(k − 1)∆m, k∆m). Clearly, if Ñi(t) = 0 and a departure of class i occurs, then we

reach a state that is infeasible in our model (that is, under the original probability

measure), so that we set L equal to zero when this occurs. Since the likelihood ratio

will stay zero once it has reached zero, one can abort the current simulation run. By

simulating R independent runs, adding all the likelihood ratios at time m∆m = T

of the runs that are such that Ñ(T) ∈ A, and dividing this sum by R, we obtain an

unbiased estimator of P .

Remark: The obvious advantage of the above algorithm is that the change-of-measure

has to be computed just once, and can be applied in all runs. The drawback is

that there is no control within the run: if the process happens to deviate from the

minimizing path, it is not directed back towards this path. These considerations

may lead to the following approach. Denote by f∗(·|n0, A, T) the minimizing path

corresponding to the probability P . Define

g(s|t) := f∗(s|Ñ(t), A, T − t),

148 Importance Sampling in rate-sharing networks

i.e., suppose that we find ourself in state Ñ(t) at time t, and we wish to reach the set

A at time T , then g(s|t) defines the most likely position at time s+ t. Note that this

implies that g(s|0) = f∗(s). This suggests that one should use the rates

λ̃i(t) :=
1

2
g′i(0|t) +

1

2

√

(g′i(0|t))2 + 4λiνi(Ñ(t));

ν̃i(t) := −1

2
g′i(0|t) +

1

2

√

(g′i(0|t))2 + 4λiνi(Ñ(t)),

i = 1, . . . ,M . It can be checked that also for these rates the expected position at time

t is f∗(t), but the difference with the first algorithm is that the process evolution

is better controlled, cf. [21, 55, 57]. In practice the interval [0, T] is again split into

m subintervals, and the rates λ̃i(k∆m) and ν̃i(k∆m) are used in the k-th interval.

Unfortunately, this approach is very time-consuming, as it requires the calculation of

a minimizing path in each of the m subintervals.

Chapter 7

Flow-level performance

of linear networks

Recall that a wide family of AFS policies achieve stability under the simple condi-

tion that no individual link is overloaded, given Poisson arrivals and exponentially

distributed service requirements [23]. These stability results imply that flow-level

performance measures such as expected transfer delays are finite provided that no

individual link is overloaded. However, the derivation of the exact transfer delays

and actual user throughputs has proven largely elusive, except in the special case of

an unweighted proportional fair bandwidth-sharing policy in certain topologies, such

as linear networks. In particular, it is not well understood how the flow-level per-

formance measures depend on the specific choice of the fairness coefficient α and the

possible additional weight factors associated with the various classes.

In order to gain further insight in the latter issues, in this chapter we develop ap-

proximations for the mean number of users in linear networks operating under AFS

policies. The approximations are based on the assumption that one or two of the

nodes experience heavy-traffic conditions. In case of just a single ‘bottleneck’ node,

we exploit the fact that this node approximately behaves as a two-class DPS queue.

The mean number of users can thus be calculated from the results of [63]. In the case

that there are two nodes critically loaded, we rely on the following two observations.

First, the heavy-traffic results of [85, 91] show that with equal class weights, the joint

workload process is asymptotically independent of the fairness coefficient α. Second,

the joint workload process for a proportional fair policy can be exactly computed from

the known distribution of the number of users [135]. Combining these two observa-

tions, we obtain simple explicit estimates for the workloads at the two bottleneck

nodes, which we also numerically validate. We then develop various approximation

methods by using the latter estimates in conjunction with characterizations of invari-

ant states from [85, 91] that relate the number of users of the various classes to the

workloads at the various nodes.

150 Flow-level performance of linear networks

The remainder of this chapter is organized as follows. In Section 7.1 we provide a

detailed model description and discuss some preliminaries. In Section 7.2 we present

some results for the known distribution of the user population for a proportional

fair policy, and use these to obtain the Laplace-Stieltjes Transform (LST) of the

joint workload process at the various nodes. Section 7.3 reviews the heavy-traffic

results of [85, 91], which provide the basis for the approximations that we develop

subsequently. In Section 7.4 we focus on the case of a single bottleneck node, and

exploit the fact that this node approximately behaves as a two-class DPS model

to obtain approximations for the mean number of users. Next, in Section 7.5 we

turn the attention to a scenario with two bottleneck nodes, and invoke the principle

that the joint workload process can be approximated by the known behavior for

a proportional fair policy, provided all classes have equal weights. In conjunction

with a few equivalent characterizations of invariant states from [85, 91], the latter

principle is then leveraged in Section 7.6 to devise various approximation methods.

In Sections 7.7 and 7.8 we discuss various model extensions.

7.1 Queueing model

We consider a linear network as depicted in Figure 1.7. The network consists of

L nodes, each with unit service rate. There are L + 1 classes of users: each class

corresponds to a specific route in the network. Class-i users require service at node i

only, i = 1, . . . , L, whereas class-0 users require service at all L nodes simultaneously.

We assume that class-i users arrive according to a Poisson process of rate λi,

and have exponentially distributed service requirements with mean µ−1
i , i = 0, . . . , L.

The arrival processes are all independent. The traffic load of class i is then ρi =

λiµ
−1
i . Note that the traffic load at node i is given by ρ0 + ρi, i = 1, . . . , L. Let

n = (n0, n1, . . . , nL) be the state of the network, with ni representing the number of

class-i users.

The network operates under an AFS policy. When the network is in state n ∈NL+1
0 \{~0}, the service rate x∗i allocated to each of the class-i users is obtained by

solving the optimization problem (6.9). Let si(n) := nix
∗
i denote the total service

rate allocated to class i. In [23] it was shown that, for i = 1, . . . , L,

s0(n) =
(κ0n

α
0)1/α

(κ0nα
0)1/α + (

∑L
j=1 κjnα

j)1/α
; si(n) = (1− s0(n))1ni>0, (7.1)

if n ∈ NL+1
0 \{~0}, where 1ni>0 = 1 if ni > 0, and 0 otherwise.

Let N(t) denote the state of the network at time t. Then N(t) is a Markov process

with transition rates:

q(n, n+ ei) = λi; q(n, n− ei) = µisi(n), i = 0, . . . , L,

7.2 Unweighted proportional fairness 151

where ei denotes the (i+1)th unit vector in RL+1 . Evidently, ρ0+ρi < 1, i = 1, . . . , L,

is a necessary condition for the process N(t) to be ergodic. In [23] it was shown that

this condition is in fact also sufficient for every α ∈ (0,∞).

In general there are no closed-form expressions available for the steady-state dis-

tribution of N(t). However, for the case α = 1 and κi = κ an explicit expression has

been derived in [135], as will be presented in the next section.

7.2 Unweighted proportional fairness

In this section we consider the case α = 1 and κi = κ, i = 0, . . . , L. The following

theorem appeared in slightly different form in [135].

Theorem 7.2.1 Under the stability condition max1≤i≤L ρ0+ρi < 1, the process N(t)

is reversible, with steady-state distribution given by

π(n) = C−1

(

∑L
i=0 ni

n0

)

L
∏

i=0

ρni
i , (7.2)

where the normalization constant C equals

C =
(1− ρ0)

L−1

∏L
i=1(1− ρ0 − ρi)

. (7.3)

The mean number of class-0 users in steady state is given by

E (N0) =
ρ0

1− ρ0

(

1 +
L
∑

i=1

ρi

1− ρ0 − ρi

)

and for i = 1, . . . , L,E (Ni) =
ρi

1− ρ0 − ρi
.

Let Wi(t) denote the workload, i.e., the unfinished amount of work at node i at

time t, i = 1, . . . , L. Thus Wi(t) consists of the remaining service requirements of all

class-0 and class-i users at time t. Theorem 7.2.1 enables us to derive the LST of the

joint distribution of W (t) = (W1(t), . . . ,WL(t)) in steady state.

Theorem 7.2.2 Under the stability condition max1≤i≤L ρ0+ρi < 1, the LST of W (t)

in steady state is given by

W̃ (z) ≡ W̃ (z1, . . . , zL) =





1− λ0

µ0+
PL

j=1 zj

1− ρ0





L−1
L
∏

i=1

1− ρ0 − ρi

1− λ0

µ0+
PL

j=1 zj
− λi

µi+zi

. (7.4)

152 Flow-level performance of linear networks

Proof: Due to the memoryless property of the exponential distribution, the residual

service requirement of a class-i user is also exponentially distributed with mean µ−1
i ,

i = 0, . . . , L. Therefore Wi(t) is distributed as
∑N0(t)

j=1 B0,j +
∑Ni(t)

j=1 Bi,j , where Bi,j

are i.i.d. copies of an exponentially distributed variable with mean µ−1
i , i = 1, . . . , L.

Now

W̃ (z) = E (e−PL
i=1 ziWi

)

= E (e−PL
i=1 zi

PN0
j=1 B0,j−

PL
i=1

�
zi

PNi
j=1 Bi,j

�)
.

Conditioning on the values of Ni, i = 0, . . . , L, we obtain that W̃ (z) equals

∞
∑

n0=0

· · ·
∞
∑

nL=0

π(n)E (e−PL
i=1 zi

Pn0
j=1 B0,j−

PL
i=1(zi

Pni
j=1 Bi,j)

)

=

∞
∑

n0=0

· · ·
∞
∑

nL=0

π(n)

(

µ0

µ0 +
∑L

i=1 zi

)n0 L
∏

i=1

(

µi

µi + zi

)ni

.

Substituting (7.2) and invoking that ρi = λiµ
−1
i , we obtain that W̃ (z) is equivalent

to

C−1
L
∏

i=1

∞
∑

ni=0

(

ρiµi

µi + zi

)ni ∞
∑

n0=0

(

∑L
j=0 nj

n0

)(

ρ0µ0

µ0 +
∑L

j=1 zj

)n0

= C−1
L
∏

i=1

∞
∑

ni=0

(

λi

µi + zi

)ni
(

1− λ0

µ0 +
∑L

j=1 zj

)−1−
PL

j=1 nj

= C−1 1

1− λ0

µ0+
PL

j=1 zj

L
∏

i=1

∞
∑

ni=0





λi

µi+zi

1− λ0

µ0+
PL

j=1 zj





ni

= C−1 1

1− λ0

µ0+
PL

j=1 zj

L
∏

i=1

1

1−
λi

µi+zi

1− λ0
µ0+

PL
j=1

zj

=
1

(

1− λ0

µ0+
PL

j=1 zj

)

(1− ρ0)L−1

L
∏

i=1

1− ρ0 − ρi
(

1−
λi

µi+zi

1− λ0
µ0+

PL
j=1

zj

) . (7.5)

The second equality above follows by applying the negative binomial formula:

(1− x)−d =

∞
∑

n=0

(

d− 1 + n

n

)

xn.

The final equality follows by substituting (7.3). Rearranging (7.5) finally gives (7.4),

and completes the proof. ✷

7.2 Unweighted proportional fairness 153

Remark: We now provide some interpretation for the expression for W̃ (z) given in

Theorem 7.2.2. Consider an M/H2/1 queue with arrival rate λ̃0 + λi and service re-

quirements that are exponentially distributed with mean 1/µ̃0 (1/µi) with probability
λ̃0

λ̃0+λi

(

λi

λ̃0+λi

)

, where λ̃0 := λ0/L and µ̃0 := µ0/L. The LST of the workload Vi(t)

in steady state of this M/H2/1 queue is given by the well-known Pollaczek-Khinchin

formula

Ṽi(zi) =
(1− ρ0 − ρi)zi

(λ̃0 + λi)B̃(zi) + zi − (λ̃0 + λi)
,

where

B̃(zi) :=
λ̃0

λ̃0 + λi

µ̃0

µ̃0 + zi
+

λi

λ̃0 + λi

µi

µi + zi
.

Substituting B̃(zi) we find

Ṽi(zi) =
1− ρ0 − ρi

1− λ̃0

µ̃0+zi
− λi

µi+zi

.

Let us assume we have L of these M/H2/1 queues, all independent, indexed by i,

i = 1, . . . , L. Then the joint LST of the workload V (t) is given by

Ṽ (z) ≡ Ṽ (z1, . . . , zL) =
L
∏

i=1

Ṽi(zi) =
L
∏

i=1

1− ρ0 − ρi

1− λ̃0

µ̃0+zi
− λi

µi+zi

. (7.6)

Comparing (7.6) with (7.4) indeed shows some similar terms. Obviously, the two

expressions cannot be expected to be identical, because the linear network is different

from L independent M/H2/1 queues. Taking zi = z, i = 1, . . . , L, (7.4) can however

be rewritten as

W̃ (z, . . . , z) =





1− λ̃0

µ̃0+z

1− ρ0





L−1
L
∏

i=1

1− ρ0 − ρi

1− λ̃0

µ̃0+z − λi

µi+z

.

The above provides some interpretation for the LST (7.4). It says that Ṽ (z, . . . , z) =

W̃ (z, . . . , z)Ũ(z), where

Ũ(z) :=





1− ρ0

1− λ̃0

µ̃0+z





L−1

is a term that accounts for the dependence and interaction among the L M/H2/1

queues. Note that the LST of the workload S(t) in steady state in an M/M/1 queue

with arrival rate λ̃0 and service rate µ̃0 is given by S̃(z) = (1 − ρ0)/
(

1− λ̃0

µ̃0+z

)

.

154 Flow-level performance of linear networks

Hence, Ũ(z) is the LST of the sum of the workloads in L− 1 of these M/M/1 queues

(all independent). The above shows that

L
∑

i=1

Wi +

L−1
∑

i=1

Ui
d
=

L
∑

i=1

Vi,

where Ui, i = 1, . . . , L− 1 are i.i.d. copies of U , and
d
= indicates that both sides are

equal in distribution.

If α 6= 1 or κi 6= κ, then there are no explicit expressions available for the steady-

state distribution of N(t).

7.3 Fluid and diffusion models

In this section we discuss the heavy-traffic results of [85, 91], which provide the basis

for the approximations developed in Sections 7.5 and 7.6. Define the following fluid

scaled processes:

N
k
(t) := N(kt)/k and W

k
(t) := W (kt)/k,

where Wi(t) = N0(t)/µ0 + Ni(t)/µi, i = 1, . . . , L. The fluid model can then be

obtained from the original model by letting k →∞. For ease of notation, let N
∞

(t)

be denoted by N(t), and W
∞

(t) by W (N(t)). Define

s0(t) :=

(

κ0N0(t)
α
)1/α

(

κ0N0(t)α
)1/α

+ (
∑L

l=1 κlN l(t)α)1/α
; si(t) := (1− s0(t))1i(t),

for i = 1, . . . , L, where 1i(t) = 1 if N i(t) > 0, and 0 otherwise, i.e., si(t) denotes the

total service rate allocated to class i at time t, i = 0, . . . , L. Then the evolution of

the workload process can be described as follows:

d

dt
N i(t) = λi − µisi(t), for i = 0, . . . , L;

N i(t) ≥ 0, for i = 0, . . . , L.

A fluid model solution is an absolutely continuous function N : [0,∞)→ RL+1
+ , such

that at each regular point t for N(·) (i.e., a value of t at which each component of

N(·) is differentiable), we have that for i = 0, . . . , L,

d

dt
N i(t) =

{

λi − µisi(t) if N i(t) > 0;

0 if N i(t) = 0,

and for i = 1, . . . , L,

s0(t)10(t) + ρ0(1− 10(t)) + si(t)1i(t) + ρi(1− 1i(t)) ≤ 1.

7.3 Fluid and diffusion models 155

A state N is called invariant if there is a fluid model solution such that N(t) = N

for all t ≥ 0. Let J := {j ∈ {1, . . . , L} : ρ0 + ρj = 1} 6= ∅ be the set of nodes that are

critically loaded.

The following theorem appeared in slightly different form in [91].

Theorem 7.3.1 The following statements are equivalent:

(i) N is an invariant state;

(ii) si(t) = ρi for all i such that N i > 0;

(iii) There is a q ∈ RL
+ such that

N0 = ρ0

(

∑

j∈J qj

κ0

)1/α

,

for i ∈ J ,

N i = ρi

(

qi
κi

)1/α

,

and for i /∈ J , N i = 0;

(iv) N = △(W (N)), where △(x) is the unique value of N ∈ RL+1
+ that solves the

optimization problem:

min F (N) = 1
α+1

∑L
i=0 λiκiµ

α−1
i

(

Ni

λi

)α+1

subject to N0/µ0 +N i/µi ≥ xi, i ∈ J
over N i ≥ 0, i = 0, . . . , L.

In the remainder of this section we assume that there are L = 2 nodes, and that

κ0 = κ1 = κ2 = κ. Furthermore, we assume heavy-traffic conditions at both nodes,

i.e., J = {1, 2}. Define the diffusion scaled processes:

N̂k(t) := N(k2t)/k and Ŵ k(t) := W (k2t)/k,

where Wi(t) = N0(t)/µ0 + Ni(t)/µi, i = 1, 2, as before. In [85] the authors show

(under the assumptions mentioned above) that Ŵ k(t) converges in distribution to a

continuous process W̆ (t) as k →∞. The process W̆ (t) is a so-called Semimartingale

Reflecting Brownian Motion (SRBM) that lives in the cone

{

w : wi =
ρ0

µ0

(

q1 + q2
κ

)1/α

+
ρi

µi

(qi
κ

)1/α

, q1, q2 ≥ 0, i = 1, 2

}

.

In [85] it was shown that for all α ∈ (0,∞) this is the same as the cone

{

(w1, w2) : w1 ≥ 0, w1
ρ0/µ0

(1− ρ0)/µ1 + ρ0/µ0
≤ w2 ≤ w1

(1− ρ0)/µ2 + ρ0/µ0

ρ0/µ0

}

,

156 Flow-level performance of linear networks

w2

w1

w2 = w1
(1−ρ0)/µ2+ρ0/µ0

ρ0/µ0

w2 = w1
ρ0/µ0

(1−ρ0)/µ1+ρ0/µ0

Figure 7.1: The workload cone.

as depicted in Figure 7.1. The state space is an infinite two-dimensional wedge, and

the process behaves in the interior of the wedge like a two-dimensional Brownian

motion with zero drift and covariance matrix




2
(

ρ0

µ0
+ ρ1

µ1

)

2 ρ0

µ0

2 ρ0

µ0
2
(

ρ0

µ0
+ ρ2

µ2

)



 .

The process reflects instantaneously at the boundary of the wedge, the angle of reflec-

tion being constant along each side. Vertical (horizontal) reflection on the bounding

face w2 = w1
ρ0/µ0

(1−ρ0)/µ1+ρ0/µ0

(

w2 = w1
(1−ρ0)/µ2+ρ0/µ0

ρ0/µ0

)

can be interpreted as a man-

ifestation of so-called entrainment: congestion at node 1 (node 2) prevents node 2

(node 1) from utilizing the full service rate. In [168] it was shown that the process is

transient in the cone, i.e., no steady-state distribution exists.

7.4 Single bottleneck node

In this section we propose a method for approximating ENi , i = 0, . . . , L, in case of a

single bottleneck node, i.e., |J | = 1. In case just a single node, say z, z ∈ {1, . . . , L},
is critically loaded, statement (iii) of Theorem 7.3.1 suggests that the number of

class-i users, i = 1, . . . , L, i 6= z, will be negligible compared to the number of

7.4 Single bottleneck node 157

class-0 and class-z users. Hence, the service rates allocated to the various classes

will be predominantly determined by the number of class-0 and class-z users, and

approximately equal

s0(n) =
(κ0n

α
0)

1/α

(κ0nα
0)

1/α
+
(

∑L
j=1 κjnα

j

)1/α
≈ (κ0n

α
0)

1/α

(κ0nα
0)1/α + (κznα

z)1/α
=

κ∗0n0

κ∗0n0 + κ∗znz
;

si(n) =

(

∑L
j=1 κjn

α
j

)1/α

(κ0nα
0)

1/α
+
(

∑L
j=1 κjnα

j

)1/α
≈ κ∗znz

κ∗0n0 + κ∗znz
, i = 1, . . . , L,

where κ∗0 = κ
1/α
0 and κ∗z = κ

1/α
z . Thus, node z roughly behaves as a DPS model with

relative weights κ∗0 and κ∗z for classes 0 and z, respectively. The results of [63] then

imply that EN0 and ENz satisfy the set of linear equationsEN0 − ρ0EN0 − κ∗z
λzEN0 + λ0ENz

κ∗0µ0 + κ∗zµz
≈ ρ0;

ENz − ρzENz − κ∗0
λzEN0 + λ0ENz

κ∗0µ0 + κ∗zµz
≈ ρz,

from which we deduce thatEN0 ≈
ρ0

1− ρ0 − ρz

(

1 +
µ0ρz(κ

∗
z − κ∗0)

κ∗0µ0(1− ρ0) + κ∗zµz(1− ρz)

)

;

ENz ≈
ρz

1− ρ0 − ρz

(

1 +
µzρ0(κ

∗
0 − κ∗z)

κ∗0µ0(1− ρ0) + κ∗zµz(1− ρz)

)

.

Let E Ñi denote the approximation for ENi , i = 0, z. Then

s :=
κ∗zE Ñz

κ∗0E Ñ0 + κ∗zE Ñz

can be regarded as an approximation for the service rate allocated to classes i =

1, . . . , L, i 6= z. The number of class-i users, i = 1, . . . , L, i 6= z, will approximately

behave as in an M/M/1 queue with arrival rate λi and service rate µis. This gives

the approximationENi ≈
ρi

s− ρi
, i = 1, . . . , L, i 6= z.

Note that the values of κi, i = 1, . . . , L, i 6= z, do not appear in this approximation.

This suggests that the weights of classes that do not traverse the bottleneck node,

will tend to have limited impact on the flow-level performance.

We now discuss the numerical experiments that we conducted to examine the

accuracy of the above-described method. We first test this approach for a linear

158 Flow-level performance of linear networks

ρ2 ENexact
0 ENmethod

0 ENexact
1 ENmethod

1 ENexact
2 ENmethod

2

0.1 60.50 60.00 39.00 39.00 0.33 0.34

0.2 61.50 60.00 39.00 39.00 1.00 1.03

0.3 64.50 60.00 39.00 39.00 3.00 3.19

Table 7.1: Results for α = 1 and κ0 = κ1 = κ2 = κ.

ρ2 α ENsim
0 ENmethod

0 ENsim
1 ENmethod

1 ENsim
2 ENmethod

2

0.1 1 27.88 28.24 69.12 70.76 0.35 0.35

0.2 1 27.54 28.24 67.25 70.76 1.06 1.08

0.3 1 34.51 28.24 80.19 70.76 3.34 3.52

0.1 2 49.76 43.40 63.75 55.60 0.36 0.34

0.2 2 45.08 43.40 57.55 55.60 1.08 1.05

0.3 2 41.59 43.40 52.34 55.60 3.46 3.32

0.1 5 61.35 53.43 52.03 45.57 0.35 0.34

0.2 5 54.37 53.43 46.40 45.57 1.08 1.04

0.3 5 50.23 53.43 42.52 45.57 3.47 3.24

0.1 ∞ 60.09 60.00 39.20 39.00 0.36 0.34

0.2 ∞ 60.68 60.00 39.52 39.00 1.08 1.03

0.3 ∞ 63.72 60.00 40.99 39.00 3.52 3.19

Table 7.2: Results for Scenario 1.

ρ2 α ENsim
0 ENmethod

0 ENsim
1 ENmethod

1 ENsim
2 ENmethod

2

0.1 1 35.72 30.91 89.57 77.78 0.34 0.35

0.2 1 26.21 30.91 63.59 77.78 1.06 1.07

0.3 1 34.84 30.91 81.73 77.78 3.37 3.48

0.1 2 45.85 45.60 58.73 58.34 0.35 0.34

0.2 2 50.17 45.60 63.96 58.34 1.09 1.04

0.3 2 58.57 45.50 74.97 58.34 3.51 3.31

0.1 5 54.47 54.43 46.59 46.43 0.36 0.34

0.2 5 63.51 54.43 53.81 46.43 1.09 1.04

0.3 5 55.19 54.43 46.88 46.43 3.59 3.24

0.1 ∞ 44.16 60.00 28.72 39.00 0.36 0.34

0.2 ∞ 78.66 60.00 50.98 39.00 1.12 1.03

0.3 ∞ 53.80 60.00 34.60 39.00 3.72 3.19

Table 7.3: Results for Scenario 2.

network with L = 2 nodes, α = 1, and κi = κ, i = 0, 1, 2, for which we have exact

expressions for ENi , i = 0, 1, 2, see Theorem 7.2.1. We fix ρ0 = 0.6 and ρ1 = 0.39, so

that node 1 is highly loaded (z = 1), and vary the value of ρ2. Note that in case of

equal weights, the approximations only depend on the traffic characteristics through

the class loads, and not on the specific values of the λis and µis. The results are

presented in Table 7.1, and indicate that the approximations are remarkably accurate.

As could be expected, the smaller the value of ρ2, the better the approximations.

In case α 6= 1 or κi 6= κ, there are no exact expressions available for ENi , i = 0, 1, 2,

and we need to resort to simulation experiments to investigate the accuracy of the

approximations. Throughout this chapter, the simulation numbers are obtained as

7.5 Two bottleneck nodes and equal weights: workload invariance 159

averages over 10000 busy periods. We choose the same setting as above, but with

κ0 = 2, κ1 = 0.5 and κ2 = 1. In this case the approximations do depend on the specific

values of the µis. We consider two scenarios: in Scenario 1 we take µ0 = µ1 = µ2 = 1,

while in Scenario 2 we set µ0 = 0.75, µ1 = 1 and µ2 = 1.5. The results are presented

in Tables 7.2 and 7.3.

Note that the approximations for EN0 and EN1 do not depend on the presence

of class-2 users, and are in particular independent of the value of ρ2. Further observe

that if α → ∞, then κ∗0, κ
∗
1 → 1, and as a consequence ENi ≈ ρi/(1 − ρ0 − ρi),

i = 0, 1. The results are surprisingly accurate, even if node 2 is also relatively highly

loaded (ρ0 + ρ2 = 0.9). Note that ENsim
2 is increasing in ρ2, as could be expected.

The influence of ρ2 on ENsim
0 and ENsim

1 is more subtle, as closer inspection of

Tables 7.2 and 7.3 demonstrates. It might be natural to expect that increasing ρ2

would also have an adverse impact on ENsim
0 and ENsim

1 . As the value of ρ2 and

the number of class-2 users increases, however, the service rate s0(n) will decrease,

whereas the service rate s2(n) will increase. The resulting increase in the number

of class-0 users will have the counteracting effect of decreasing s2(n), and conversely

the expected decrease in the number of class-2 users will have the opposite effect of

increasing s0(n). Because of these interacting effects, the net impact basically remains

unpredictable, and as Tables 7.2 and 7.3 reveal, ENsim
0 and ENsim

1 do not necessarily

change in a monotone manner as the value of ρ2 increases.

7.5 Two bottleneck nodes and equal weights: workload

invariance

In this section we consider the scenario that there are two nodes critically loaded, i.e.,

|J | = 2. Since the nodes can be indexed arbitrarily, we may assume without loss of

generality that J = {1, 2}. Also, suppose that κi = κ, i = 0, . . . , L.

Let W (t) be the workload process associated with the two bottleneck nodes. The

results from [85, 91] as reviewed in Section 7.3 indicate that the behavior of W (t) is

asymptotically independent of the value of α. In particular, this suggests that the

behavior of the workload process can be approximated by the known distribution for

α = 1. In order to examine this hypothesis, we calculated the mean workload (using

Theorem 7.2.2)

EW exact
i (α = 1) ≡ EW exact

i (1) =
λi/µ

2
i

1− ρ0 − ρi
+
λ0/µ

2
0

1− ρ0
[



1 +
L
∑

j=1

ρj

1− ρ0 − ρj



 , (7.7)

with i = 1, 2, and compared it with simulation for the case of L = 2 nodes, ρ0 + ρ1 =

ρ0 + ρ2 = 0.99, and µi = κi = 1, i = 0, 1, 2. We also considered the asymmetric case

ρ0 + ρ1 = ρ0 + ρ2 = 0.99, κi = 1, i = 0, 1, 2, µ0 = 0.75, µ1 = 1 and µ2 = 1.5.

160 Flow-level performance of linear networks

ρ0 ρ1 = ρ2 α X1 X2

0.3 0.69 1 0.001 0.019

0.5 0.49 1 0.006 0.020

0.7 0.29 1 -0.015 -0.024

0.3 0.69 2 -0.042 -0.047

0.5 0.49 2 -0.041 -0.056

0.7 0.29 2 -0.039 -0.040

0.3 0.69 5 -0.027 -0.065

0.5 0.49 5 -0.005 0.003

0.7 0.29 5 -0.058 -0.069

0.3 0.69 ∞ -0.007 0.011

0.5 0.49 ∞ -0.043 -0.063

0.7 0.29 ∞ -0.061 -0.055

ρ0 ρ1 = ρ2 α X1 X2

0.3 0.69 1 0.006 -0.009

0.5 0.49 1 -0.046 -0.033

0.7 0.29 1 0.048 0.042

0.3 0.69 2 -0.065 -0.077

0.5 0.49 2 -0.025 -0.038

0.7 0.29 2 -0.039 -0.049

0.3 0.69 5 -0.040 -0.036

0.5 0.49 5 -0.055 -0.057

0.7 0.29 5 -0.037 -0.035

0.3 0.69 ∞ -0.028 -0.022

0.5 0.49 ∞ -0.048 -0.076

0.7 0.29 ∞ -0.003 -0.009

Table 7.4: Testing whether W (t) is independent of α. Left (Right): the symmetric

(asymmetric) case.

Define

Xi := EW sim
i (α)/EW exact

i (1)− 1, i = 1, 2.

The results, summarized in Table 7.4, indicate that the mean workload for α = 1

indeed provides a reasonably accurate approximation for a wide range of α values.

Note that Xi should be equal to 0 for all cases with α = 1. In most cases with

α > 1, EW exact
i (1) is larger than EW sim

i (α), and thus seems to yield a conservative

approximation. Below we provide an explanation for this observation. In preparation

for that, we first present the following proposition.

Proposition 7.5.1 For fixed n = (n0, . . . , nL) and κi = κ, i = 0, . . . , L, the service

rate s0(n) allocated to class-0 users is increasing in α.

Proof: For fixed n = (n0, . . . , nL) and κi = κ, i = 0, . . . , L, we obtain from (7.1) that

s0(n) =
n0

n0 + (
∑L

j=1 n
α
j)1/α

. (7.8)

Equivalently, we have to prove that (
∑L

j=1 n
α
j)1/α is decreasing in α. First note that

nαr
1 + · · ·+ nαr

L < (nα
1 + · · ·+ nα

L)r

for all r > 1. Therefore,

(

L
∑

i=1

nβ
i

)1/β

=

(

L
∑

i=1

nαr
i

)1/αr

= (nαr
1 + · · ·+ nαr

L)1/αr

< (nα
1 + · · ·+ nα

L)r/αr =

(

L
∑

i=1

nα
i

)1/α

,

7.5 Two bottleneck nodes and equal weights: workload invariance 161

for all β > α, which proves the stated. ✷

Now observe that the workload at each of the nodes is minimized (sample-path-

wise in fact) when class 0 receives priority over classes 1 and 2. Since the capacity

allocated to class-0 users is increasing in α, it is thus plausible that more generally

the mean workload EW exact
i (α) decreases as function of α, which implies that Xi is

smaller than 0 for α > 1, i = 1, 2. This provides an explanation for the negative

values in Table 7.4. Below we show that the latter property can in fact be rigorously

proved using Proposition 7.5.1 and stochastic coupling arguments.

Denote by ri(t) the instantaneous service rate allocated to class i at time t, i.e.,

ri(t) = si(N(t)) if Ni(t) > 0, and otherwise ri(t) = 0, i = 0, . . . , L. Denote by

Ri(t) :=
t
∫

u=0

ri(u)du the cumulative amount of service received by class i during the

time interval [0, t], i = 0, . . . , L. Denote by Bi,n the service requirement of the n-th

arriving class-i user, i = 0, . . . , L. Denote by Ci(s) := sup{n :
n
∑

m=1
Bi,n < s} the

number of class-i service completions as function of the amount of service received

by class i, i = 0, . . . , L, assuming a FIFO service discipline. Thus Di(t) = Ci(Ri(t))

represents the number of class-i service completions during the time interval [0, t],

i = 0, . . . , L. Denote by Ai(t) the number of class-i users arriving during the time

interval [0, t], i = 0, . . . , L. Denote by Qi(t) :=
Ai(t)
∑

m=1
Bi,m the amount of class-i work

arriving during the time interval [0, t], i = 0, . . . , L. Denote by Vi(t) the amount of

class-i work at time t, i = 0, . . . , L.

Since the service requirements are exponentially distributed, the stochastic behav-

ior of the network does not depend on the service discipline within classes, as long as

that discipline is not based on any knowledge of the actual realizations of the service

requirements. We may therefore assume that the service discipline within classes is

FIFO.

Consider the behavior of the network under two AFS policies with parameters β

and γ for the same realizations of the arrival processes and service requirements.

We attach β and γ as superscripts to the various quantities associated with the two

policies.

Proposition 7.5.2 Suppose that the system is empty at time t = 0. If β ≤ γ, then

W β
i (t) ≥W γ

i (t) for all t ≥ 0, i = 1, . . . , L.

Proof: Below we will prove that if β ≤ γ, then (i) Nβ
0 (t) ≥ Nγ

0 (t), (ii) Rβ
0 (t) ≤ Rγ

0 (t),

and (iii) Rβ
0 (t) +Rβ

i (t) ≤ Rγ
0 (t) +Rγ

i (t) for all t ≥ 0, i = 1, . . . , L. Note that V j
i (t) =

Qj
i (t)− Rj

i (t), i = 0, . . . , L, j = β, γ, so that Rβ
0 (t) + Rβ

i (t) ≤ Rγ
0 (t) + Rγ

i (t) implies

that W β
0 (t) = V β

0 (t) + V β
i (t) ≥ V γ

0 (t) + V γ
i (t) = W γ

0 (t) for all t ≥ 0, i = 1, . . . , L.

First note that N j
i (t) = Aj

i (t) − Dj
i (t), with Dj

i (t) = Cj
i (Rj

i (t)), i = 0, . . . , L,

j = β, γ, i.e., inequality (i) follows from (ii), and it suffices to prove that inequalities

162 Flow-level performance of linear networks

(ii) and (iii) hold. Below we assume that inequality (ii) or (iii) does not hold, and we

show that this results in a contradiction. Let u > 0 be the first time epoch at which

one of the two inequalities is violated. First assume that inequality (ii) is the first one

to be violated, i.e., Rβ
0 (u) = Rγ

0 (u) and rβ
0 (u) > rγ

0 (u) (with strict inequality), but

Rβ
0 (u) + Rβ

i (u) ≤ Rγ
0 (u) + Rγ

i (u), i = 1, . . . , L. Clearly, then Nβ
0 (u) = Nγ

0 (u), and,

using Proposition 7.5.1, it follows that Nβ
j (u) < Nγ

j (u) for some j = 1, . . . , L, because

otherwise we would have rβ
0 (u) ≤ rγ

0 (u). This implies that Rβ
j (u) > Rγ

j (u), and thus

Rβ
0 (u) + Rβ

j (u) > Rγ
0 (u) + Rγ

j (u), which contradicts the initial assumption. Next,

assume that inequality (iii) is the first one to be violated, i.e., Rβ
0 (u)+Rβ

j (u) = Rγ
0 (u)+

Rγ
j (u) and rβ

0 (u) + rβ
j (u) > rγ

0 (u) + rγ
j (u) for some j = 1, . . . , L, but Rβ

0 (u) ≤ Rγ
0 (u).

It follows that Nγ
j (u) = 0, because otherwise we would have rγ

0 (u) + rγ
j (u) = 1 ≥

rβ
0 (u) + rβ

j (u). This implies that Rβ
j (u) ≤ Rγ

j (u), and thus Rβ
0 (u) = Rγ

0 (u), Rβ
j (u) =

Rγ
j (u) (as Rβ

0 (u) +Rβ
j (u) = Rγ

0 (u) +Rγ
j (u) and Rβ

0 (u) ≤ Rγ
0 (u) by assumption), and

Rβ
i (u) ≤ Rγ

i (u) for all i = 1, . . . , L, i 6= j, as well. Consequently, Nβ
0 (u) = Nγ

0 (u),

Nβ
j (u) = Nγ

j (u) = 0 and Nβ
i (u) ≥ Nγ

i (u) for all i = 1, . . . , L, i 6= j. This means

that rβ
0 (u) ≤ rγ

0 (u), and thus, since rβ
j (u) = rγ

j (u) = 0, rβ
0 (u) + rβ

j (u) ≤ rβ
0 (u) =

rγ
0 (u) + rγ

j (u), which contradicts the initial assumption. Hence, we have proven that

if β ≤ γ, then inequalities (i), (ii) and (iii) hold, and therefore this proves the stated. ✷

7.6 Two bottleneck nodes and equal weights: approximations

In this section we develop three methods for approximating ENi , i = 0, 1, 2. Recall

that we suppose that J = {1, 2} and κi = κ, i = 0, . . . , L. The various methods

differ in some technical details, but they all rely on the insights from the heavy-traffic

results as reviewed in Section 7.3. In Section 7.6.4 we present approximations forENi , i = 3, . . . , L.

7.6.1 Method 1

The numerical results presented in the previous section indicate that EW exact
i (α) is

nearly constant in α ∈ (0,∞), provided that the load at nodes 1 and 2 is sufficiently

high. In particular, it is approximately equal to the known value for α = 1 as given

by (7.7). Further observe that EW exact
i (α) = EN0/µ0 + ENi/µi, i = 1, . . . , L. Thus,

we obtainEN0/µ0 +ENi/µi ≈
λi/µ

2
i

1− ρ0 − ρi
+
λ0/µ

2
0

1− ρ0



1 +
L
∑

j=1

ρj

1− ρ0 − ρj



 , i = 1, 2, (7.9)

i.e., a set of two approximately linear equations with three unknowns. If we can find

one additional constraint, then we should be able to determine ENi , i = 0, 1, 2 (as

7.6 Two bottleneck nodes and equal weights: approximations 163

long as the resulting system of equations is non-singular).

Now observe that Theorem 7.3.1 shows that an invariant state N in the fluid

model can be expressed as

N0 = ρ0

(

q1 + q2
κ0

)1/α

; N i = ρi

(

qi
κi

)1/α

, i = 1, 2, q ∈ R 2
+ .

This suggests the following approximation for (EN0 , EN1 , EN2):

∫ ∞

q1=0

∫ ∞

q2=0

(

ρ0

(

q1 + q2
κ

)1/α

, ρ1

(

q1
κ

)1/α

, ρ2

(

q2
κ

)1/α)

dP (Q1 < q1, Q2 < q2) ,

which is equivalent to

1

κ1/α

(

ρ0E ((Q1 +Q2)
1/α
)

, ρ1E (Q1/α
1

)

, ρ2E (Q1/α
2

))

.

Using the additional approximation

(EN0 , EN1 , EN2) ≈ γ

κ1/α

(

ρ0 (EQ1 + EQ2)
1/α

, ρ1 (EQ1)
1/α

, ρ2 (EQ2)
1/α
)

, (7.10)

with γ some multiplicative constant, and substituting (7.10) in (7.9) then yields a

system of two equations with two unknowns. Numerically solving this system yields

γαEQi , i = 1, 2, from which we can obtain ENi , i = 0, 1, 2, using (7.10). Note thatE ((Q1 +Q2)
1/α
)

≤ E (Q1/α
1

)

+ E (Q1/α
2

)

if α ∈ (1,∞), which would provide an upper bound for EN0 relative to ENi , i = 1, 2.

Likewise, if α ∈ (0, 1), then this would give a lower bound for EN0 relative to ENi ,

i = 1, 2.

We tested this approach by comparing the results with simulation figures. We took

the same simulation parameters as in the previous section. The results are presented in

Tables 7.5 and 7.6. Throughout this chapter, ENMj
i denotes the approximation of ENi

that is obtained by using Method j. Note that in Table 7.5 we have ENM1
1 = ENM1

2

by symmetry. The tables indicate that Method 1 gives reasonably accurate estimates

for ENi , particularly EN0 . Note that Method 1 is fast as well: it suffices to solve a

system of two equations with two unknowns.

7.6.2 Method 2

We now discuss a second method for approximating ENi , i = 0, 1, 2. Again, we start

from Equation (7.9) as in Method 1. The difference with Method 1 is that we now

use statement (iv) (instead of (iii)) of Theorem 7.3.1. Statement (iv) implies that a

164 Flow-level performance of linear networks

ρ0 ρ1 = ρ2 α ENsim
0 ENM1

0 ENsim
1 ENsim

2 ENM1
1 =ENM1

2

0.3 0.69 1 60.20 59.80 68.58 70.81 68.77

0.5 0.49 1 100.27 99.33 48.61 50.66 48.67

0.7 0.29 1 135.01 138.07 29.19 27.67 28.60

0.3 0.69 2 50.21 48.95 72.98 72.36 79.62

0.5 0.49 2 86.98 87.42 54.90 52.79 60.58

0.7 0.29 2 126.62 128.91 33.59 33.38 37.76

0.3 0.69 5 47.86 42.83 77.25 72.40 85.75

0.5 0.49 5 88.24 79.86 58.97 60.25 68.14

0.7 0.29 5 120.76 122.49 36.22 34.38 44.18

0.3 0.69 ∞ 49.75 39.02 77.94 80.25 89.55

0.5 0.49 ∞ 82.62 74.83 59.02 56.06 73.17

0.7 0.29 ∞ 120.81 117.92 35.64 36.67 48.75

Table 7.5: Results for Method 1: the symmetric case.

ρ0 ρ1 = ρ2 α ENsim
0 ENM1

0 ENsim
1 ENM1

1 ENsim
2 ENM1

2

0.3 0.69 1 59.40 59.75 70.06 68.77 67.58 68.65

0.5 0.49 1 95.19 99.22 45.80 48.70 48.46 48.55

0.7 0.29 1 143.78 137.93 31.01 28.66 29.58 28.48

0.3 0.69 2 50.17 51.12 71.83 80.27 73.27 85.91

0.5 0.49 2 90.58 90.72 55.61 60.04 56.49 65.56

0.7 0.29 2 127.79 131.91 33.86 36.68 33.78 40.51

0.3 0.69 5 49.89 45.99 75.98 87.11 81.50 96.17

0.5 0.49 5 85.94 85.16 56.51 67.46 61.03 76.68

0.7 0.29 5 127.15 127.71 35.20 42.27 39.39 48.90

0.3 0.69 ∞ 50.20 43.75 77.31 90.08 83.68 100.64

0.5 0.49 ∞ 84.83 82.88 59.16 70.49 58.67 81.23

0.7 0.29 ∞ 130.52 126.06 37.72 44.48 40.41 52.22

Table 7.6: Results for Method 1: the asymmetric case.

workload vector w = (w1, w2) uniquely determines a state vector n that solves the

optimization problem:

min F (n0, n1, . . . , nL) = 1
α+1

∑L
i=0 λiκiµ

α−1
i

(

ni

λi

)α+1

(7.11)

subject to n0/µ0 + ni/µi ≥ wi, i = 1, 2

over ni ≥ 0, i = 0, . . . , L.

The method now works as follows. We determine the vector (EN0 , EN1 , . . . , ENL)

that minimizes the function F (EN0 , EN1 , . . . , ENL) subject to the constraints in (7.9).

Note that ENi = 0, i = 3, . . . , L.

As it turns out, Methods 1 and 2 result in similar approximations for ENi , i =

0, 1, 2. This is not too surprising: the only difference between the methods is that we

use statement (iii) in one case, and (iv) in the other. However, statements (iii) and

(iv) are in fact equivalent in case of heavy traffic, so both methods should roughly

agree when the load is sufficiently high.

Remark: Method 2 uses the mean workloads to approximate the mean number of

7.6 Two bottleneck nodes and equal weights: approximations 165

users. However, we can potentially improve the accuracy of the approximation if we

use the distribution of the workloads, which is also asymptotically independent of α

in heavy traffic. The resulting approximation is then given byENi =
∑

n≥0

△i(w(n))π(n), i = 0, 1, 2,

where wi(n) = n0/µ0 + ni/µi, i = 1, 2, △(x) is as in Theorem 7.3.1, and π(n) is

given by (7.2). This will typically result in a different approximation for ENi than

Method 2, since the optimization problem (7.11) is non-linear. The disadvantage is

that it is very time-consuming.

7.6.3 Method 3

This method is similar to both previous methods, i.e., we again start from Equa-

tion (7.9) to obtain a set of two equations with three unknowns ENi , i = 0, 1, 2.

Statement (ii) of Theorem 7.3.1 provides an additional equation, which allows us to

numerically solve the above system of equations. First note from (7.8) that

∑

n≥0

n0

n0 + (
∑L

l=1 n
α
l)1/α

π̃(n) =
∑

n≥0

s0(n)π̃(n) = ρ0,

where π̃(n) is the steady-state distribution of N(t) in case α ∈ (0,∞)/{1}. The addi-

tional equation is then obtained by replacing the latter equation by the approximationEN0EN0 + (
∑L

l=1 ENα
l)1/α

≈ EN0EN0 + (ENα
1 + ENα

2)1/α
= ρ0.

We numerically solved the above system of equations for both the symmetric and

asymmetric scenarios considered in the previous section. The results are presented in

Tables 7.7 and 7.8. Note that the approximations obtained from Method 3 slightly

differ from those of Methods 1 and 2. This may be explained from the fact that

statement (ii) of Theorem 7.3.1 (for i = 0) is only partly satisfied.

7.6.4 Approximation for non-bottleneck nodes

In the previous subsections we presented three methods for approximating the mean

number of users at the bottleneck nodes. We now provide an approximation for the

number of users at the remaining nodes, i.e., ENi , i = 3, . . . , L. The method is similar

in nature as the one presented in Section 7.4 for the case of a single bottleneck node.

Let E Ñi denote the approximations obtained for ENi , i = 0, 1, 2. In view of (7.8),

define

s0 :=
E Ñ0E Ñ0 +

(E Ñα
1 + E Ñα

2

)1/α

166 Flow-level performance of linear networks

ρ0 ρ1 = ρ2 α ENsim
0 ENM3

0 ENsim
1 ENsim

2 ENM3
1 =ENM3

2

0.3 0.69 1 60.20 59.34 68.58 70.81 69.23

0.5 0.49 1 100.27 98.67 48.61 50.66 49.33

0.7 0.29 1 135.01 137.26 29.19 27.67 29.41

0.3 0.69 2 50.21 48.52 72.98 72.36 80.05

0.5 0.49 2 86.98 86.70 54.90 52.79 61.30

0.7 0.29 2 126.62 127.91 33.59 33.38 38.76

0.3 0.69 5 47.86 42.41 77.25 72.40 86.16

0.5 0.49 5 88.24 79.12 58.97 60.25 68.88

0.7 0.29 5 120.76 121.38 36.22 34.38 45.29

0.3 0.69 ∞ 49.75 38.63 77.94 80.25 89.94

0.5 0.49 ∞ 82.62 74.08 59.02 56.06 73.92

0.7 0.29 ∞ 120.81 116.74 35.64 36.67 49.93

Table 7.7: Results for Method 3: the symmetric case.

ρ0 ρ1 = ρ2 α ENsim
0 ENM3

0 ENsim
1 ENM3

1 ENsim
2 ENM3

2

0.3 0.69 1 59.40 59.40 70.06 69.24 67.58 69.35

0.5 0.49 1 95.19 98.77 45.80 49.31 48.46 49.46

0.7 0.29 1 143.78 137.40 31.01 29.35 29.58 29.53

0.3 0.69 2 50.17 50.76 71.83 80.75 73.27 86.63

0.5 0.49 2 90.58 90.18 55.61 60.76 56.49 66.64

0.7 0.29 2 127.79 131.24 33.86 37.57 33.78 41.86

0.3 0.69 5 49.89 45.63 75.98 87.58 81.50 96.88

0.5 0.49 5 85.94 84.59 56.51 68.21 61.03 77.82

0.7 0.29 5 127.15 126.97 35.20 43.27 39.39 50.40

0.3 0.69 ∞ 50.20 43.42 77.31 90.54 83.68 101.31

0.5 0.49 ∞ 84.83 82.33 59.16 71.22 58.67 82.33

0.7 0.29 ∞ 130.52 125.31 37.72 45.37 40.41 53.71

Table 7.8: Results for Method 3: the asymmetric case.

as an approximation for the service rate allocated to class 0. As before, the number

of class-i users, i = 3, . . . , L, will roughly behave as in an M/M/1 queue with arrival

rate λi and service rate µi(1− s0). This gives the approximation

ENi ≈
ρi

1− s0 − ρi
, i = 3, . . . , L.

Remark: For the linear network (see Figure 1.7) it was shown in [27] that BFS is

equivalent to unweighted proportional fairness, i.e., α = 1 and κi = κ, i = 0, . . . , L.

Note that the steady-state distribution in Theorem 7.2.1 indeed only depends on

the loads, and not on any higher-order traffic characteristics. In [24] it was shown

that BFS provides a good approximation for unweighted proportional fairness and

unweighted max-min fairness. The results of this section, though, illustrate that

the accuracy of the BFS approximation for unweighted max-min fairness degrades in

heavy-traffic conditions.

7.7 Unequal service rates 167

7.7 Unequal service rates

In the previous sections we assumed that each of the nodes had unit service rate. In

this section we assume that node i has service rate ci, i = 1, . . . , L, and indicate how

the results of the previous sections can be generalized.

In case the service rates are not all equal, it can be verified that there exists

no closed-form expression for the AFS allocation si(n), i = 0, . . . , L. The following

proposition presents bounds on si(n). First define

cmin := min
i=1,...,L

ci; cmax := max
i=1,...,L

ci;

s0(n) :=
(κ0n

α
0)1/α

(κ0nα
0)1/α +

(

∑L
j=1 κj

(

njcmin

cj

)α)1/α
cmin,

and

s0(n) :=
(κ0n

α
0)1/α

(κ0nα
0)1/α +

(

∑L
j=1 κj

(

njcmax

cj

)α)1/α
cmax.

Proposition 7.7.1 If n 6= 0 then, for i = 1, . . . , L,

s0(n) ≤ s0(n) ≤ s0(n); (ci − s0(n)) 1ni>0 ≤ si(n) ≤
(

ci − s0(n)
)

1ni>0.

Proof: In order to obtain si(n), we first need to solve the optimization problem (6.9).

If n0 > 0, then it is straightforward to show that the optimizer x∗0 satisfies f(x∗0) =

g(x∗0), where

f(x0) := κ0x
−α
0 ; g(x0) :=

L
∑

j=1

κjn
α
j (cj − n0x0)

−α.

As mentioned above, in general there does not exist a closed-form expression for x∗0
that satisfies f(x∗0) = g(x∗0). However, note that

g(x0) ≥
LX

j=1

κjn
α
j

�
cj −

cj

cmax
n0x0

�−α

=

LX
j=1

κjn
α
j

�
cj

cmax
(cmax − n0x0)

�−α

=: g(x0).

Also, we have that

g(x0) ≤
LX

j=1

κjn
α
j

�
cj −

cj

cmin
n0x0

�−α

=

LX
j=1

κjn
α
j

�
cj

cmin
(cmin − n0x0)

�−α

=: g(x0).

The value of x0 for which n0f(x0) equals n0g(x0) is s0(x), and the value of x0 for

which n0f(x0) equals n0g(x0) is s0(x), i.e., we find that s0(n) ≤ s0(n) = n0x
∗
0 ≤ s0(n)

168 Flow-level performance of linear networks

if n0 > 0. Next use that si(n) = ci − s0(n) if ni > 0, and the bounds on s0(n), to

find bounds on si(n), i = 1, . . . , L. Clearly, if ni = 0, then by definition si(n) = 0,

i = 0, . . . , L, which is also supported by the bounds. ✷

Proposition 7.7.1 shows that the bounds are tight if ci = c, i = 1, . . . , L, i.e., if each

node has service rate c. By setting ρi = λi/(µicmin) or ρi = λi/(µicmax), i = 0, . . . , L,

we may use the same techniques of the previous sections to derive approximations

for the mean number of users of each class, given that one or two of the nodes are

critically loaded. Clearly, the smaller the difference between cmax and cmin, the better

the approximations will be.

7.8 Discussion

In Section 7.6 we devised approximations for the mean number of users, based on

the assumption that two of the nodes operate under heavy-traffic conditions and that

all classes have equal weights. It is substantially more difficult to handle the cases

in which there are 1) two nodes critically loaded and not all class weights are equal,

or 2) more than two bottleneck nodes. Although the mean number of users can still

be related to the mean workloads in these scenarios, the joint workload process at

these nodes is no longer independent of the fairness coefficient α. In addition, even

for a weighted proportional fair policy the workload distribution is no longer known.

Hence, we cannot apply the three methods presented in Section 7.6 for approximating

the mean number of users.

One option to obtain conservative estimates in case 2) would be to use the property

that the workload for an unweighted AFS policy, with α larger than one, is smaller

than for an unweighted proportional fair policy as mentioned in Section 7.5. Alterna-

tively, as in Section 7.3, we can approximate the workload process by an SRBM living

in a cone that now does depend on the fairness coefficient α. Subsequently, we can

derive the steady-state distribution of the process, thus having an approximation for

the mean workloads. If we succeeded in this, then we could obtain approximations for

the mean number of users by applying one of the three methods. However, it turns

out to be extremely hard to derive the steady-state distribution of an SRBM living

in a multi-dimensional cone, see [76]. The latter suggests that it is also hard to de-

termine the steady-state distribution of the approximation for the workload process,

if possible at all.

Chapter 8

Flow-level performance

of traffic-splitting networks

In the previous two chapters we assumed that each class of users corresponded to a

unique route in the network. In this chapter we consider the case that some class of

users has multiple alternative paths through the network.

The performance of communication networks can be improved when the service

demands are efficiently divided among the available resources, so-called load balanc-

ing. One can apply either static or dynamic load balancing. In the former case the

balancing is not affected by the state of the network, whereas in the latter case it

does depend on the system state. It is clear that better performance can be achieved

when using dynamic load balancing, but it is often hard to find the optimal load

balancing policy. Even for simple systems such a dynamic load balancing problem

has non-trivial solutions [173].

In this chapter we analyze load balancing in data networks carrying elastic traffic,

as considered by [135]. Transfers in such networks can be represented by flows. We

may distinguish between load balancing at the flow-level or the packet-level, depending

on whether an arriving flow is entirely directed to a specific route (that it uses until

the flow is finished) or a flow can be split between several routes, respectively. This

chapter deals with packet-level load balancing, i.e., we assume that packets of a flow

can be divided among several routes.

We analyze a network in which, besides classes of users that use specific routes,

one class of users can split its traffic over several routes. This particular network

is useful for analyzing the performance and potential gains of load balancing at the

packet-level. In addition, this system allows for rather explicit results.

We assume that packet-level load balancing is based on an AFS policy. Under

this policy, the above network can be shown to have multiple possible behaviors. In

particular, we show that packet-level load balancing based on AFS implies that some

classes of users, depending on the state of the network, share capacity according to

170 Flow-level performance of traffic-splitting networks

some DPS model, whereas each of the remaining classes of users behaves as in a

single-class single-node model.

The flow-level performance of the above network is compared to that of a similar

network, where packet-level load balancing is based on BFS, so-called insensitive

load balancing at the packet-level. The term ‘insensitive’ refers to the fact that the

corresponding steady-state distribution depends on the traffic characteristics through

the traffic intensity only.

Assuming Poisson arrivals and exponentially distributed service requirements, the

dynamics of the flow population may be described by a Markov process under both

packet-level load balancing policies. We derive closed-form expressions for the mean

number of users of each class under insensitive load balancing. Extensive simulation

experiments show that these are also quite accurate approximations for the ones

in a similar network where load balancing is based on AFS, for which no explicit

expressions are available.

The remainder of this chapter is organized as follows. In Section 8.1 we first pro-

vide a detailed model description, and introduce BFS and AFS. In the next section

we consider the model for a fixed flow population, and characterize how bandwidth

is allocated under both policies. In Section 8.3 we consider the model at large time-

scales, so that the state of the network varies. We derive explicit expressions for the

mean number of users under BFS, and show by conducting extensive simulation ex-

periments that these provide accurate approximations for the ones under AFS. In the

next section we examine the performance gain that one can achieve for both policies

by using packet-level load balancing instead of static or flow-level load balancing.

8.1 Queueing model

We consider the network as depicted in Figure 8.1. The network consists of L nodes,

where node i has service rate ci, i = 1, . . . , L. There are L+ 1 classes of users. Class

i requires service at node i, i = 1, . . . , L, whereas class 0 can be served at all nodes

at the same time, i.e., class-0 users can split their traffic.

We assume that class-i users arrive according to a Poisson process of rate λi, and

have exponentially distributed service requirements with mean µ−1
i , i = 0, . . . , L. The

arrival processes are all independent. The traffic load of class i is then ρi = λiµ
−1
i .

Let n = (n0, . . . , nL) denote the state of the network, with ni representing the number

of class-i users.

8.1.1 BFS

We first assume that the bandwidth is shared according to BFS, see Chapter 1. Let

φi(n) denote the service rate allocated to class i, i = 0, . . . , L, under BFS, when the

network is in state n (here φ0(n) =
∑L

i=1 φ0i(n)). These service rates have to satisfy

8.1 Queueing model 171

1 2 L

Figure 8.1: The bandwidth-sharing network.

the balance conditions

φi(n− ej)

φi(n)
=
φj(n− ei)

φj(n)
∀i, j = 0, . . . , L, ni, nj > 0, (8.1)

where ei denotes the (i+ 1)th unit vector in RL+1 . All BFS rates can be expressed

in terms of a unique balance function Φ(·), so that Φ(0) = 1 and

φi(n) =
Φ(n− ei)

Φ(n)
∀n : ni > 0, i = 0, . . . , L. (8.2)

Hence, characterization of Φ(n) implies that φi(n) is characterized as well. Define

Φ(n) = 0 if n /∈ NL+1
0 . In order to obtain Φ(n), we need to solve the following

maximization problem for each n ∈ NL+1
0 \{~0}:

max Φ(n)−1

subject to
∑L

j=1 φ0j(n) = Φ(n−e0)
Φ(n)

φi(n) = Φ(n−ei)
Φ(n) , i = 1, . . . , L (8.3)

φ0i(n) + φi(n) ≤ ci, i = 1, . . . , L

over φ0i(n), φi(n) ≥ 0, i = 1, . . . , L.

It is clear that Φ(n) can be obtained recursively: Φ(n− ei) is required to determine

Φ(n), i = 0, . . . , L. Also note that (8.3) is a simple linear programming (LP) problem,

which can be solved using standard LP algorithms. In Section 8.2.1, however, we

solve (8.3) by rewriting the LP problem in terms of a related network.

8.1.2 AFS

We next assume that the network operates under an AFS policy, as introduced in [140].

When the network is in state n ∈ NL+1
0 \{~0}, the service rate x∗i allocated to each of

172 Flow-level performance of traffic-splitting networks

the class-i users is obtained by solving the following optimization problem:

max F (x)

subject to n0x0i + nixi ≤ ci, i = 1, . . . , L (8.4)

over x0i, xi ≥ 0, i = 1, . . . , L,

where the objective function F (x) is defined by

F (x) :=

{

n0κ0
(
PL

i=1 x0i)
1−α

1−α +
∑L

i=1 niκi
x1−α

i

1−α if α ∈ (0,∞)\{1};
n0κ0 log(

∑L
i=1 x0i) +

∑L
i=1 niκi log(xi) if α = 1.

The κis are non-negative class weights, and α ∈ (0,∞) may as before be interpreted

as a fairness coefficient. The value of x∗0i denotes how much capacity is allocated to

path i (that requires service at node i) of class 0. Here x∗0 =
∑L

i=1 x
∗
0i denotes how

much capacity is assigned to a single class-0 user in the network. Let si(n) := nix
∗
i

denote the total service rate allocated to class i, i = 0, . . . , L.

8.2 Static setting

In this section we consider the model for a fixed flow population, i.e., the state n ∈NL+1
0 \{0} is fixed, and we derive how bandwidth is shared between the various classes

in case of BFS and AFS, respectively. We first show that the network depicted in

Figure 8.1 is equivalent to another network. In order to do so, let us first introduce

the notion of the capacity set.

The allocations φ(n) = (φ0(n), . . . , φL(n)) and s(n) = (s0(n), . . . , sL(n)) are

clearly constrained by the capacity set C ⊆ RL+1
+ :

C :=







x ≥ 0 : ∃a1, . . . , aL ≥ 0,

L
∑

j=1

aj = 1, aix0 + xi ≤ ci, i = 1, . . . , L







,

i.e., φ(n) ∈ C and s(n) ∈ C for all n ∈ NL+1
0 . It is straightforward to show that the

capacity set C can also be expressed as

C̃ :=







x ≥ 0 :

L
∑

j=0

xj ≤
L
∑

j=1

cj , xi ≤ ci, i = 1, . . . , L







,

i.e., C = C̃. Since C̃ is the capacity set corresponding to the tree network depicted

in Figure 8.2, it follows that the networks depicted in Figures 8.1 and 8.2 are in

fact equivalent. The tree has a common link with capacity c1 + · · · + cL, and L + 1

branches with capacities ∞, c1, . . . , cL, respectively. In this network class-i users

require service at the node with service rate ci and at the common link, i = 1, . . . , L,

8.2 Static setting 173

0

1

class

class

class

class

∑L
i=1 ci

c1

cL−1

cL

L− 1

L

Figure 8.2: Tree network

whereas class-0 users only require service at the common link. Note that each class

of users corresponds to a specific route in the tree network.

As a side remark we mention that in general it is not true that a network (where

some classes of users can split their traffic over several routes at the same time) can be

converted into a tree network. In fact, if we extend the model depicted in Figure 8.1

by adding a class of users that requires service at all L nodes simultaneously, then it

is no longer possible to represent the network as a tree network. However, we note

that in general one may still be able to convert a traffic-splitting network into some

other network (with dummy nodes) without traffic splitting.

8.2.1 BFS

In this subsection we derive the BFS allocation by solving the problem (8.3). Since

the models depicted in Figures 8.1 and 8.2 are equivalent, it follows that the balance

function Φ̃(·) corresponding to the tree network coincides with Φ(·), i.e., Φ̃(·) = Φ(·),
see [24]. In the following lemma we present the solution of the problem (8.3).

Lemma 8.2.1 The BFS function Φ(n) satisfies, with Φ(0) = 1,

Φ(n) = max

{

Φ(n− e1)
c1

, . . . ,
Φ(n− eL)

cL
,

∑L
i=0 Φ(n− ei)
∑L

i=1 ci

}

, n ∈ NL+1
0 \{~0}. (8.5)

Proof: From the above it follows that we can obtain Φ(·) by determining Φ̃(·), as

Φ(·) = Φ̃(·). Subsequently, Φ̃(·) is obtained by using Equation (2) in [27]. ✷

174 Flow-level performance of traffic-splitting networks

We note that Lemma 8.2.1 is in agreement with Equation (19) in [108]. From

Lemma 8.2.1 it follows that Φ(n) can be obtained recursively. The total service rate

allocated to class i, i = 0, . . . , L, in each state n ∈ NL+1
0 can be obtained using

Lemma 8.2.1 and (8.2).

8.2.2 AFS

In this subsection we focus on the AFS allocation, which is obtained by solving the

problem (8.4). Similar to the previous subsection, we can obtain the AFS allocation

s(n) by determining the AFS allocation s̃(n) in the tree network, as both networks

are the same, implying that s(n) = s̃(n). In order to obtain s̃(n) we need to solve the

following maximization problem:

max H(x)

subject to
∑L

i=0 nixi ≤
∑L

i=1 ci

nixi ≤ ci, i = 1, . . . , L (8.6)

over xi ≥ 0, i = 0, . . . , L,

where the objective function H(x) is defined by

H(x) :=

{

∑L
i=0 niκi

x1−α
i

1−α if α ∈ (0,∞)\{1};
∑L

i=0 niκi log(xi) if α = 1.

Below we show that (8.6) is solvable, but the optimal solution strongly depends on the

state n ∈ NL+1
0 \{~0}. We present a simple algorithm for obtaining the AFS allocation.

Lemma 8.2.2 The AFS allocation s(n) can be obtained with the following algorithm:

Set Stop:=False

Set S := {0, . . . , L}
WHILE Stop=False DO

Determine the |S|-class DPS rates: si(n) :=
niκ

1/α
i

P
j∈S\{0} cjP

j∈S njκ
1/α
j

, i ∈ S
IF si(n) ≤ ci for all i ∈ S\{0} THEN set Stop:=True

ELSE

Take any i∗ ∈ S\{0} such that si∗(n) > ci

Set S := S\{i∗}
Set si∗(n) := ci

END

END

8.3 Flow-level dynamics 175

Proof: First consider the Karush-Kuhn-Tucker (KKT) [104] necessary conditions for

the problem (8.6). If x is an optimal solution to the problem (8.6), then there exist

constants pi ≥ 0, i = 0, . . . , L, such that,

n0κ0

xα
0

− n0p0; (8.7)

niκi

xα
i

− ni(p0 + pi), i = 1, . . . , L; (8.8)

p0

(

L
∑

i=1

ci −
L
∑

i=0

nixi

)

= 0; (8.9)

pi (ci − nixi) = 0, i = 1, . . . , L. (8.10)

Note that (8.7) and (8.8) hold for any α ∈ (0,∞). Solving (8.7)-(8.10) for (x0, . . . , xL)

and (p0, . . . , pL) yields
∑L

q=1
L!

q!(L−q)! = 2L−1 possible solutions, however, depending

on the state of the network n, only one of the 2L−1 solutions, x∗, is such that pi ≥ 0,

i = 0, . . . , L, i.e., this is the optimal solution for (8.6). For each of the other solutions

there exists at least one Lagrange multiplier that is negative, implying that these

solutions cannot be optimal. Note that the existence of a unique optimal solution

x∗ for (8.6) also follows as H(x) is strictly concave and the constraints are linear.

Straightforward calculus shows that the corresponding AFS allocation s̃i(n) = si(n) =

nix
∗
i , i = 0, . . . , L, can be obtained by the above algorithm. The algorithm reflects

that 2L − 1 solutions exist for (8.7)-(8.10), but it also shows that only one of these

solutions, x∗, is found after termination of the algorithm. The Lagrange multipliers

corresponding to x∗ are such that pi = 0 if i ∈ S\{0}, and pi > 0 if i /∈ S\{0},
where S is the set obtained after termination of the algorithm. Furthermore, p0 = 0

if n0 = 0 and if there exists an i such that ni = 0, i = 1, . . . , L, otherwise p0 > 0. ✷

8.3 Flow-level dynamics

In the previous section we considered the model for a fixed flow population, and we

derived expressions for the BFS and AFS allocations in each state of the network.

In this section we analyze the model at sufficiently large time scales. In this case we

also have to take the random nature of the traffic into account, i.e., the state of the

network n varies at large time scales.

8.3.1 BFS

Let N(t) = (N0(t), . . . , NL(t)) denote the state of the network at time t. Since we

assumed Poisson arrivals and exponentially distributed service requirements, N(t) is

a Markov process with transition rates:

q(n, n+ ei) = λi; q(n, n− ei) = µiφi(n), i = 0, . . . , L,

176 Flow-level performance of traffic-splitting networks

in case of BFS. In [24] it was shown that the process N(t) is stable if there exists

(ρ̃01, . . . , ρ̃0L) such that

L
∑

i=1

ρ̃0i = ρ0 and ρ̃0i + ρi < ci, i = 1, . . . , L,

or equivalently, if

L
∑

i=0

ρi <
L
∑

j=1

cj and ρi < ci, i = 1, . . . , L. (8.11)

It may be verified from (8.1) that the steady-state queue length distribution is given

by

π(n) =
1

G(ρ)
Φ(n)

L
∏

i=0

ρni
i , n ∈ NL+1

0 , (8.12)

where the normalization constant G(ρ) equals

G(ρ) = G(ρ0, . . . , ρL) =
∞
∑

n0=0

. . .
∞
∑

nL=0

Φ(n)
L
∏

i=0

ρni

i .

As a side remark we mention that (8.12) in fact holds for much more general traffic

characteristics, see [25] for a more detailed treatment.

When applying Little’s formula we find thatENBF
i = ρi

∂G(ρ)
∂ρi

G(ρ)
= ρi

∂ logG(ρ)

∂ρi
, i = 0, . . . , L, (8.13)

i.e., characterization of G(ρ) implies that ENBF
i , i = 0, . . . , L, is known as well.

By exploiting the results of [29] on tree networks we can determine G(ρ), and it

can be verified that this results in

G(ρ) =
1

1−
PL

i=0 ρiPL
i=1 ci

1−
PL

i=1 ρiPL
i=1 ci

∏L
i=1

(

1− ρi

ci

) . (8.14)

Then by using (8.13) we can obtain a closed-form expression for ENBF
i , i = 0, . . . , L.

The expression for ENBF
i , i = 1, . . . , L, is in general quite complicated, in contrast

to the expression for the mean number of class-0 users, which is given byENBF
0 =

ρ0
∑L

i=1 ci −
∑L

i=0 ρi

.

From (8.14) it follows that ENBF
i , i = 0, . . . , L, is finite if the stability condition (8.11)

holds.

8.3 Flow-level dynamics 177

8.3.2 AFS

As before, let N(t) = (N0(t), . . . , NL(t)) denote the state of the network at time t. In

case of AFS N(t) is a Markov process with transition rates:

q(n, n+ ei) = λi; q(n, n− ei) = µisi(n), i = 0, . . . , L.

Since our network is equivalent to the tree network depicted in Figure 8.2, it follows

from Theorem 1 in [23] that the process N(t) is stable if (8.11) holds.

Lemma 8.2.2 shows that, depending on the state of the network n ∈ NL+1
0 , the

network has 2L − 1 possible behaviors. This illustrates the complication of finding

closed-form expressions for the mean number of users of each class. In fact, so far

no expressions for the mean number of users are available in case of AFS. To gain

some insight, we derive in this section approximations for the mean number of users

of each class, i.e., ENAF
i , i = 0, . . . , L. The approximations are validated by means

of simulation experiments. We consider the case where the network consists of L = 2

nodes, but we note that the approximations can be extended to the case L > 2 in a

similar fashion.

Using Lemma 8.2.2 in Section 8.2.2, it follows that the network, depending on the

state n, has three possible behaviors: (i) if

n1 >
c1
c2

(

(

κ2

κ1

)1/α

n2 +

(

κ0

κ1

)1/α

n0

)

,

then classes 0 and 2 behave as in a two-class DPS model with capacity c2 and relative

weights κ
1/α
i , i = 0, 2, whereas class 1 behaves as an M/M/1 queue with arrival rate

λ1 and service rate µ1c1; (ii) if

n1 <
c1
c2

(

κ2

κ1

)1/α

n2 −
(

κ0

κ1

)1/α

n0,

then classes 0 and 1 behave as in a two-class DPS model with capacity c1 and relative

weights κ
1/α
i , i = 0, 1, whereas class 2 behaves as an M/M/1 queue with arrival rate

λ2 and service rate µ2c2; (iii) otherwise the network will behave as in a three-class

DPS model with capacity c1 + c2 and relative weights κ
1/α
i , i = 0, 1, 2.

If the network were to behave as (i) all the time and if ρ1 < c1 and ρ0 + ρ2 < c2
(stability conditions), then by exploiting the results of [63] we would obtain

EN (i)
0 =

ρ0

c2 − ρ0 − ρ2



1 +
µ0ρ2

(

κ
1/α
2 − κ1/α

0

)

κ
1/α
0 µ0(c2 − ρ0) + κ

1/α
2 µ2(c2 − ρ2)



 ;

EN (i)
1 =

ρ1

c1 − ρ1
;

178 Flow-level performance of traffic-splitting networks

EN (i)
2 =

ρ2

c2 − ρ0 − ρ2



1 +
µ2ρ0

(

κ
1/α
0 − κ1/α

2

)

κ
1/α
0 µ0(c2 − ρ0) + κ

1/α
2 µ2(c2 − ρ2)



 .

Likewise, when the network behaves as (ii) and if ρ2 < c2 and ρ0 + ρ1 < c1 (stability

conditions), we find

EN (ii)
0 =

ρ0

c1 − ρ0 − ρ1



1 +
µ0ρ1

(

κ
1/α
1 − κ1/α

0

)

κ
1/α
0 µ0(c1 − ρ0) + κ

1/α
1 µ1(c1 − ρ1)



 ;

EN (ii)
1 =

ρ1

c1 − ρ0 − ρ1



1 +
µ1ρ0

(

κ
1/α
0 − κ1/α

1

)

κ
1/α
0 µ0(c1 − ρ0) + κ

1/α
1 µ1(c1 − ρ1)



 ;

EN (ii)
2 =

ρ2

c2 − ρ2
.

If the network behaves as a three-class DPS model, i.e., as (iii), and if ρ0 + ρ1 + ρ2 <

c1 + c2 (stability condition), then one can obtain the mean number of users of each

class by solving the following set of linear equations for EN (iii)
i , i = 0, 1, 2:

(c1 + c2)EN (iii)
i − λ

2
∑

j=0

κ
1/α
j

λj

λ EN (iii)
i + λi

λ EN (iii)
j

κ
1/α
j µj + κ

1/α
i µi

= ρi, i = 0, 1, 2,

where λ := λ0+λ1+λ2, see [63]. In this case there also exists a closed-form expression

for EN (iii)
i , i = 0, 1, 2, but it is complicated.

We propose the following approximation: ENAF
i ≈ ENAP

i , i = 0, 1, 2, whereENAP
0 := EN

(iii)
0 ; ENAP

1 := max{EN
(i)
1 , EN

(iii)
1 }; ENAP

2 := max{EN
(ii)
2 , EN

(iii)
2 }.

It can be verified that ENAP
0 is bounded if ρ0 +ρ1 +ρ2 < c1 +c2, ENAP

1 is bounded if

ρ1 < c1 and ρ0 +ρ1 +ρ2 < c1 +c2, and ENAP
2 is bounded if ρ2 < c2 and ρ0 +ρ1 +ρ2 <

c1 + c2. Hence, ENAP
i , i = 0, 1, 2, is bounded if (8.11) holds, i.e., if the process N(t)

is stable.

In [24] it was argued that the performance of a network under proportional fairness

(α = 1) and max-min fairness (α→ ∞) is closely approximated by that under BFS.

Therefore, we also propose the following approximation: ENAF
i ≈ ENBF

i , i = 0, 1, 2.

The value of ENBF
i , i = 0, 1, 2, can be obtained using (8.13), and is independent of

the value of α.

To examine the accuracy of the above approximations we have performed simu-

lation experiments. We consider the setting with c1 = c2 = 1, and we take λi = γ,

µi = 1, i = 0, 1, 2, such that ρ0 = ρ1 = ρ2 = γ. We first consider scenario I, where

κi = 1, i = 0, 1, 2. Subsequently, we consider scenario II, where κ0 = 5, κ1 = 1

and κ2 = 2. In scenario II we let the traffic load γ and the AFS coefficient α vary,

8.3 Flow-level dynamics 179

γ ENAF
0 ENAF

1 ENAF
2 ENAP

0 ENAP
1 ENAP

2 ENBF
0 ENBF

1 ENBF
2

0.1 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 0.15 0.26 0.26 0.14 0.25 0.25 0.14 0.27 0.27

0.3 0.30 0.46 0.46 0.27 0.43 0.43 0.27 0.49 0.49

0.4 0.55 0.77 0.77 0.50 0.67 0.67 0.50 0.83 0.83

0.5 1.10 1.39 1.39 1.00 1.00 1.00 1.00 1.50 1.50

0.6 3.17 3.48 3.48 3.00 3.00 3.00 3.00 3.75 3.75

Table 8.1: Simulation results for scenario I.

γ α ENAF
0 ENAF

1 ENAF
2 ENAP

0 ENAP
1 ENAP

2 ENBF
0 ENBF

1 ENBF
2

0.1 1 0.06 0.12 0.12 0.06 0.11 0.11 0.06 0.11 0.11

0.2 1 0.13 0.28 0.27 0.12 0.25 0.25 0.14 0.27 0.27

0.3 1 0.23 0.54 0.49 0.22 0.43 0.43 0.27 0.49 0.49

0.4 1 0.39 0.97 0.83 0.35 0.67 0.67 0.50 0.83 0.83

0.5 1 0.68 1.95 1.46 0.59 1.43 1.00 1.00 1.50 1.50

0.6 1 1.55 5.93 3.47 1.38 4.82 2.80 3.00 3.75 3.75

0.1 2 0.06 0.12 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 2 0.14 0.27 0.26 0.13 0.25 0.25 0.14 0.27 0.27

0.3 2 0.26 0.50 0.48 0.24 0.43 0.43 0.27 0.49 0.49

0.4 2 0.47 0.88 0.81 0.42 0.67 0.67 0.50 0.83 0.83

0.5 2 0.87 1.71 1.44 0.77 1.23 1.00 1.00 1.50 1.50

0.6 2 2.35 4.81 3.66 2.06 3.95 2.98 3.00 3.75 3.75

0.1 5 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 5 0.15 0.26 0.26 0.14 0.25 0.25 0.14 0.27 0.27

0.3 5 0.28 0.48 0.46 0.26 0.43 0.43 0.27 0.49 0.49

0.4 5 0.52 0.82 0.78 0.46 0.67 0.67 0.50 0.83 0.83

0.5 5 1.00 1.51 1.40 0.90 1.09 1.00 1.00 1.50 1.50

0.6 5 2.84 3.95 3.61 2.60 3.38 3.01 3.00 3.75 3.75

0.1 ∞ 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 ∞ 0.15 0.26 0.26 0.14 0.25 0.25 0.14 0.27 0.27

0.3 ∞ 0.30 0.46 0.46 0.27 0.43 0.43 0.27 0.49 0.49

0.4 ∞ 0.55 0.77 0.77 0.50 0.67 0.67 0.50 0.83 0.83

0.5 ∞ 1.10 1.39 1.39 1.00 1.00 1.00 1.00 1.50 1.50

0.6 ∞ 3.17 3.48 3.48 3.00 3.00 3.00 3.00 3.75 3.75

Table 8.2: Simulation results for scenario II.

whereas in scenario I we only let γ vary, as it can be verified that ENAF
i and ENAP

i ,

i = 0, 1, 2, are independent of the value of α in scenario I. To ensure stability we

assume that γ < 2/3. The results are reported in Tables 8.1 and 8.2. Each reported

simulation value in these (and other) tables is measured over 4·106 events, i.e., arrivals

or departures.

Remark: We have also determined a 95% confidence interval (CI) for each listed

simulation value in this chapter, but these are not presented. We note, however,

that the relative efficiency, i.e., the ratio of the half-length of the CI to the reported

simulation value, is less than 3% for all listed cases in Tables 8.1, 8.2, 8.5 and 8.6,

and less than 10% for all listed cases in Tables 8.3 and 8.4.

Table 8.1 compares the value of ENAF
i obtained by simulation with the ap-

proximations ENAP
i and ENBF

i , i = 0, 1, 2, for scenario I. The results show thatENAF
i ≥ ENAP

i , i = 0, 1, 2. Also, the table shows that ENAF
0 ≥ ENBF

0 andENAF
i ≤ ENBF

i , i = 1, 2. Overall we see that both approximations are accurate

in case of equal class weights, especially for low traffic load.

Table 8.2 reports the results corresponding to scenario II, i.e., in case of unequal

class weights. In this case ENAF
i and ENAP

i do depend on the value of α, as is shown

180 Flow-level performance of traffic-splitting networks

in the table. Again, we see that ENAF
i ≥ ENAP

i , i = 0, 1, 2. For low traffic loads

both approximations perform quite well, but for high traffic loads we see that the

BFS approximation is less accurate than the other one.

Tables 8.1 and 8.2 show that ENAF
i ≥ ENAP

i , i = 0, 1, 2, which may be explained

as follows. First note that the rate allocated to class 1 is smaller than or equal to c1
at all moments in time under AFS, whereas rate c1 is continuously available to class

1 in (i). Clearly, this implies that ENAF
1 ≥ EN (i)

1 . With similar reasoning, we find

that ENAF
2 ≥ EN (ii)

2 . Since class-i users cannot be allocated more than ci, i = 1, 2,

under AFS, whereas in the three-class DPS model the upper bound is c1 +c2 for both

classes, one may expect that ENAF
i ≥ EN (iii)

i , i = 1, 2. For any state n ∈ N 3
0\{0}

it can be verified that the AFS allocation to class 0 is larger or equal than the one

obtained in the three-class DPS model, so one would expect ENAF
0 ≤ EN (iii)

0 at first

sight. However, recall that we argued that the number of users of classes 1 and 2 in the

model operating under AFS will (on average) be larger than in the three-class DPS

model, which causes that the total service allocated to class 0 in the model operating

under AFS is less than or equal to that in the three-class DPS model, i.e., we may also

expect ENAF
0 ≥ EN (iii)

0 . The above reasoning indeed suggests that ENAF
i ≥ ENAP

i ,

i = 0, 1, 2.

Fluid and quasi-stationary regimes

To test the performance of the two approximations in case of extreme parameter

values, we now assume that the flow dynamics of the various classes occur on widely

separate time scales, i.e., in fluid and quasi-stationary regimes.

Formally, let λ
(r)
i := λifi(r) and µ

(r)
i := µifi(r), where fi(r) represents the time

scale associated with class i as function of r, i = 0, . . . , L. Note that the traffic

intensity of class i equals ρ
(r)
i := λ

(r)
i /µ

(r)
i = ρi, i = 0, . . . , L, so it is independent of

r. Let N
(r)
i be the number of class-i flows in the r-th system. Before analyzing the

quality of the approximations, we first present the following useful proposition.

Proposition 8.3.1 Assume that L+ 1 classes of users share c units of capacity ac-

cording to DPS, where class i has relative weight κi, i = 0, . . . , L. If fi−1(r)/fi(r)→ 0

as r →∞, i = 1, . . . , L, i.e., higher indexed classes operate on faster time scales, then

EN (∞)
i =

ρi

c−∑L
j=i ρj

+

i−1
∑

j=0

κj

κi

ρiρj
(

c−∑L
r=j ρr

)(

c−∑L
r=j+1 ρr

) , i = 0, . . . , L.

Proof: In [94] the above result was already proved for L = 1. For L > 1 the

authors showed that EN (∞)
j , j = 1, . . . , L, could be obtained by determining EN (∞)

i ,

i = 0, . . . , j − 1, i.e., as a recursion. Straightforward calculus, however, shows that

this recursion reduces to the above result. ✷

8.3 Flow-level dynamics 181

γ ENAF
0 ENAF

1 ENAF
2 EN

AP (∞)
0 EN

AP (∞)
1 EN

AP (∞)
2 ENBF

0 ENBF
1 ENBF

2
0.1 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 0.14 0.25 0.25 0.14 0.25 0.25 0.14 0.27 0.27

0.3 0.27 0.45 0.45 0.27 0.43 0.43 0.27 0.49 0.49

0.4 0.51 0.76 0.76 0.50 0.67 0.67 0.50 0.83 0.83

0.5 1.02 1.34 1.34 1.00 1.00 1.00 1.00 1.50 1.50

0.6 3.06 3.30 3.30 3.00 3.00 3.00 3.00 3.75 3.75

Table 8.3: Results for the fluid and quasi-stationary regimes (scenario I).

Let us return to the setting with L = 2 nodes and L + 1 = 3 classes of users.

Proposition 8.3.1 allows us to obtain simple closed-form expressions for EAP
i , i =

0, 1, 2, when r → ∞. Assuming that higher indexed classes operate on faster time

scales and that the stability condition (8.11) holds, we find thatENAP (∞)
0 :=

ρ0

c1 + c2 − ρ0
;

ENAP (∞)
1 := max

{

ρ1

c1
,

ρ1

c1 + c2
+

κ
1/α
0 ρ0ρ1

κ
1/α
1 (c1 + c2 − ρ0)(c1 + c2)

}

,

and ENAP (∞)
2 equals

max

{

ρ2

c2
,

ρ2

c1 + c2
+

κ
1/α
0 ρ0ρ2

κ
1/α
2 (c1 + c2 − ρ0)(c1 + c2)

+
κ

1/α
1 ρ1ρ2

κ
1/α
2 (c1 + c2)(c1 + c2)

}

,

where ci := ci− ρi, i = 1, 2. In case of equal class weights, κi = κ, i = 0, 1, 2, it is not

hard to see thatENAP (∞)
0 =

ρ0

c1 + c2 − ρ0
;

ENAP (∞)
1 = max

{

ρ1

c1
,

ρ1

c1 + c2 − ρ0

}

; ENAP (∞)
2 = max

{

ρ2

c2
,

ρ2

c1 + c2 − ρ0

}

.

Clearly, ENAP (∞)
i , i = 0, 1, 2, strongly depends on the ordering of the classes with

respect to the time scales. In case of other orderings than the one mentioned above,

one can obtain expressions in a similar fashion.

The accuracy of the approximations in the fluid and quasi-stationary regimes is

examined by performing simulation experiments. We take c1 = c2 = 1, λ0 = γ,

λ1 = 10γ, λ2 = 100γ, µ0 = 1, µ1 = 10, µ2 = 100, so that ρi = γ, i = 0, 1, 2, and thus

assume that higher indexed classes operate on faster time scales.

Tables 8.3 and 8.4 report the results for scenarios I and II, respectively. Recall

that ENAF
i and ENAP (∞)

i , i = 0, 1, 2, are independent of the value of α in scenario

I, whereas they are sensitive to the value of α in scenario II. The tables show that in

the fluid and quasi-stationary regimes the approximations are appropriate as well.

182 Flow-level performance of traffic-splitting networks

γ α ENAF
0 ENAF

1 ENAF
2 EN

AP (∞)
0 EN

AP (∞)
1 EN

AP (∞)
2 ENBF

0 ENBF
1 ENBF

2
0.1 1 0.06 0.12 0.12 0.06 0.11 0.11 0.06 0.11 0.11

0.2 1 0.14 0.31 0.28 0.14 0.25 0.25 0.14 0.27 0.27

0.3 1 0.26 0.63 0.52 0.27 0.51 0.43 0.27 0.49 0.49

0.4 1 0.45 1.23 0.92 0.50 1.17 0.71 0.50 0.83 0.83

0.5 1 0.89 2.85 1.82 1.00 3.00 1.67 1.00 1.50 1.50

0.6 1 2.49 10.28 5.44 3.00 12.00 6.21 3.00 3.75 3.75

0.1 2 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 2 0.14 0.27 0.26 0.14 0.25 0.25 0.14 0.27 0.27

0.3 2 0.27 0.51 0.48 0.27 0.43 0.43 0.27 0.49 0.49

0.4 2 0.49 0.93 0.83 0.50 0.71 0.67 0.50 0.83 0.83

0.5 2 1.03 1.94 1.58 1.00 1.62 1.24 1.00 1.50 1.50

0.6 2 2.69 5.53 4.17 3.00 5.78 4.21 3.00 3.75 3.75

0.1 5 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 5 0.14 0.26 0.26 0.14 0.25 0.25 0.14 0.27 0.27

0.3 5 0.27 0.47 0.46 0.27 0.43 0.43 0.27 0.49 0.49

0.4 5 0.52 0.82 0.79 0.50 0.67 0.67 0.50 0.83 0.83

0.5 5 1.00 1.51 1.42 1.00 1.19 1.08 1.00 1.50 1.50

0.6 5 2.86 4.06 3.65 3.00 3.85 3.41 3.00 3.75 3.75

0.1 ∞ 0.06 0.11 0.11 0.06 0.11 0.11 0.06 0.11 0.11

0.2 ∞ 0.14 0.25 0.25 0.14 0.25 0.25 0.14 0.27 0.27

0.3 ∞ 0.27 0.45 0.45 0.27 0.43 0.43 0.27 0.49 0.49

0.4 ∞ 0.51 0.76 0.76 0.50 0.67 0.67 0.50 0.83 0.83

0.5 ∞ 1.02 1.34 1.34 1.00 1.00 1.00 1.00 1.50 1.50

0.6 ∞ 3.06 3.30 3.30 3.00 3.00 3.00 3.00 3.75 3.75

Table 8.4: Results for the fluid and quasi-stationary regimes (scenario II).

8.4 Comparison with static and flow-level load balancing

In the previous sections we considered load balancing at the packet-level. In this

section we quantify the gain that can be achieved by using packet-level load balancing

instead of static or flow-level load balancing. We consider the same parameter values

as in the previous section (without considering fluid and quasi-stationary regimes),

and calculate the mean number of users of each class under static and flow-level load

balancing, so that we can make a comparison with packet-level load balancing.

8.4.1 BFS

When static or flow-level load balancing is used, which is based on BFS, we need

to keep track of the number of class-0 users at node i, i = 1, 2. Let n0i denote the

number of class-0 users at node i, i = 1, 2. Then the balance function is given by [22]

Φ(n) =

(

n01 + n1

n1

)(

n02 + n2

n2

)

cn1+n01
1 cn2+n02

2

,

and we obtain

φ0i(n) =
n0i

n0i + ni
ci; φi(n) =

ni

n0i + ni
ci, i = 1, 2.

Hence, at both nodes capacity is shared according to egalitarian PS.

Considering the symmetric parameter setting of the previous section, the optimal

static load balancing policy is to route class-0 arrivals to node i, i = 1, 2, with prob-

ability 1/2. Using the parameter values of the previous section, we thus find that

8.4 Comparison with static and flow-level load balancing 183

γ ENBF st
0 ENBF st

1 ENBF st
2 EN

BF fl
0 EN

BF fl
1 EN

BF fl
2 ENBF

0 ENBF
1 ENBF

2
0.1 0.12 0.12 0.12 0.11 0.12 0.12 0.06 0.11 0.11

0.2 0.29 0.29 0.29 0.25 0.27 0.27 0.14 0.27 0.27

0.3 0.55 0.55 0.55 0.46 0.50 0.50 0.27 0.49 0.49

0.4 1.00 1.00 1.00 0.82 0.87 0.87 0.50 0.83 0.83

0.5 2.00 2.00 2.00 1.59 1.64 1.64 1.00 1.50 1.50

0.6 6.00 6.00 6.00 5.15 5.27 5.27 3.00 3.75 3.75

Table 8.5: Results for static, flow-level and packet-level load balancing in case of BFS.

class-i (class-0) users arrive according to a Poisson process of rate γ (γ/2) at node i,

and both class-0 and class-i users have exponentially distributed service requirements

with mean 1, i = 1, 2. Recalling that ci = 1, i = 1, 2, and using that capacity is

shared according to PS at both nodes, it is a straightforward exercise to show thatENBFst
i :=

γ

1− 3
2γ
, i = 0, 1, 2.

In Table 8.5 we report ENBFst
i , i = 0, 1, 2, for different values of the load γ.

In case of flow-level load balancing it is optimal (under the current setting) to

route class-0 users to node 1 if n01 + n1 < n02 + n2, and to node 2 if n01 + n1 >

n02 + n2. If n01 + n1 = n02 + n2 then an arriving class-0 user is sent to node i

with probability 1/2, i = 1, 2. In other words, an arriving class-0 user should join

the shortest queue, see [164]. Since no explicit expressions are known for the mean

number of users ENBFfl
i of class i, i = 0, 1, 2, under flow-level load balancing, we

have performed simulation experiments to obtain these values. The results are also

reported in Table 8.5.

Table 8.5 shows that packet-level load balancing outperforms both static and flow-

level load balancing, and flow-level load balancing is better than static load balancing,

as was expected, i.e., ENBF
i ≤ ENBFfl

i ≤ ENBFst
i , i = 0, 1, 2. For low values of γ

(low loads), the results are quite similar, but for higher loads the differences become

more significant. We note that these results are in line with the findings of [109].

8.4.2 AFS

In case static or flow-level load balancing is executed through AFS, we also need to

be aware of the number of class-0 users at nodes 1 and 2. In case ni class-i users and

n0i class-0 users are present at node i, the allocated service rates are

s∗i (n) =
κ

1/α
i nici

κ
1/α
0 n0i + κ

1/α
i ni

, s∗0i(n) =
κ

1/α
0 n0ici

κ
1/α
0 n0i + κ

1/α
i ni

, i = 1, 2.

Hence, capacity is shared according to DPS with relative weights κ
1/α
0 and κ

1/α
i at

node i, i = 1, 2.
Again, due to the symmetric parameter values, in case of static load balancing it

is optimal to route class-0 arrivals to node i, i = 1, 2, with probability 1/2. Using

184 Flow-level performance of traffic-splitting networks

γ α ENAF st
0 ENAF st

1 ENAF st
2 EN

AF fl
0 EN

AF fl
1 EN

AF fl
2 ENAF

0 ENAF
1 ENAF

2
0.1 1 0.11 0.12 0.12 0.10 0.12 0.12 0.06 0.12 0.12

0.2 1 0.25 0.31 0.30 0.23 0.28 0.28 0.13 0.28 0.27

0.3 1 0.44 0.61 0.59 0.40 0.54 0.53 0.23 0.54 0.49

0.4 1 0.71 1.17 1.12 0.64 0.98 0.94 0.39 0.97 0.83

0.5 1 1.21 2.47 2.32 1.09 1.97 1.85 0.68 1.95 1.46

0.6 1 2.90 7.85 7.26 2.81 6.68 6.21 1.55 5.93 3.47

0.1 2 0.11 0.12 0.12 0.11 0.12 0.12 0.06 0.12 0.11

0.2 2 0.27 0.30 0.29 0.24 0.27 0.27 0.14 0.27 0.26

0.3 2 0.48 0.58 0.57 0.43 0.53 0.51 0.26 0.50 0.48

0.4 2 0.83 1.10 1.06 0.71 0.94 0.91 0.47 0.88 0.81

0.5 2 1.54 2.28 2.17 1.30 1.83 1.78 0.87 1.71 1.44

0.6 2 4.17 7.13 6.69 4.03 6.43 6.09 2.35 4.81 3.66

0.1 5 0.12 0.12 0.12 0.11 0.12 0.11 0.06 0.11 0.11

0.2 5 0.28 0.29 0.29 0.25 0.27 0.27 0.15 0.26 0.26

0.3 5 0.52 0.56 0.56 0.44 0.51 0.50 0.28 0.48 0.46

0.4 5 0.93 1.04 1.03 0.78 0.92 0.90 0.52 0.82 0.78

0.5 5 1.80 2.12 2.07 1.51 1.77 1.73 1.00 1.51 1.40

0.6 5 5.21 6.50 6.29 4.46 5.20 5.07 2.84 3.95 3.61

0.1 ∞ 0.12 0.12 0.12 0.11 0.12 0.12 0.06 0.11 0.11

0.2 ∞ 0.29 0.29 0.29 0.25 0.27 0.27 0.15 0.26 0.26

0.3 ∞ 0.55 0.55 0.55 0.46 0.50 0.50 0.30 0.46 0.46

0.4 ∞ 1.00 1.00 1.00 0.82 0.87 0.87 0.55 0.77 0.77

0.5 ∞ 2.00 2.00 2.00 1.59 1.64 1.64 1.10 1.39 1.39

0.6 ∞ 6.00 6.00 6.00 5.15 5.27 5.27 3.17 3.48 3.48

Table 8.6: Results for static, flow-level and packet-level load balancing in case of AFS

(scenario II).

the parameter values of the previous section, we thus find that class-i (class-0) users
arrive according to a Poisson process of rate γ (γ/2) at node i, and both class-0 and
class-i users have exponentially distributed service requirements with mean 1, i = 1, 2.
Using that ci = 1, i = 1, 2, and that capacity is shared according to DPS at both
nodes, the results of [63] imply that

ENAFst
0 :=

1
2
γ

1− 3
2
γ

0�2 +
γ
�
κ

1/α
1 − κ

1/α
0

�
κ

1/α
0 (1− 1

2
γ) + κ

1/α
1 (1− γ)

+
γ
�
κ

1/α
2 − κ

1/α
0

�
κ

1/α
0 (1− 1

2
γ) + κ

1/α
2 (1− γ)

1A ;

ENAF st
i :=

γ

1− 3
2
γ

0�1 +

1
2
γ
�
κ

1/α
0 − κ

1/α
i

�
κ

1/α
0 (1− 1

2
γ) + κ

1/α
i (1− γ)

1A , i = 1, 2.

Note that ENAFst
i = ENBFst

i , i = 0, 1, 2, in case of equal class weights. Therefore,

we only focus on scenario II, and these results are shown in Table 8.6.

The optimal flow-level load balancing policy is as before to join the shortest queue,

see [164]. As no explicit expressions for the mean number of users ENAFfl
i of class

i, i = 0, 1, 2, are available under flow-level load balancing, we resort to simulation

experiments to obtain these values. Note that ENAFfl
i = ENBFfl

i , i = 0, 1, 2, in case

of equal class weights, so we only report the results corresponding to scenario II, see

Table 8.6.

Table 8.6 shows that packet-level load balancing performs better than both static

and flow-level load balancing: ENAF
i ≤ ENAFfl

i ≤ ENAFst
i , i = 0, 1, 2. Again, the

results seem to vary more for high values of γ.

Bibliography

[1] S. Aalto, U. Ayesta, S. Borst, V. Misra, R. Núñez Queija (2007). Beyond Pro-

cessor Sharing. ACM SIGMETRICS Performance Evaluation Review, 34 (4):

36-43.

[2] J. Abate, W. Whitt (1987). Transient behavior of regulated Brownian motion, I:

starting at the origin. Advances in Applied Probability, 19: 560-598.

[3] J. Abate, W. Whitt (1987). Transient behavior of regulated Brownian motion,

II: non-zero initial conditions. Advances in Applied Probability, 19: 599-631.

[4] J. Abate, W. Whitt (1988). The correlation functions of RBM and M/M/1.

Stochastic Models, 4: 315-359.

[5] M. Abramowitz, I.A. Stegun (1970). Handbook of mathematical functions: with

formulas, graphs, and mathematical tables. Dover, New York, USA.

[6] A. de Acosta (1994). Large deviations for vector-valued Lévy processes. Stochastic

Processes and their Applications, 51: 75-115.

[7] R. Addie, P. Mannersalo, I. Norros (2002). Most probable paths and perfor-

mance formulae for buffers with Gaussian input traffic. European Transactions

on Telecommunications, 13: 183-196.

[8] R. Adler (1990). An introduction to continuity, extrema, and related topics for

general Gaussian processes. IMS Lecture Notes-Monograph Series, 12.

[9] E. Altman, K. Avrachenkov, U. Ayesta (2006). A survey on Discriminatory Pro-

cessor Sharing. Queueing Systems, 53: 53-63.

[10] E. Altman, T. Jimenez, D. Kofman (2004). DPS queues with stationary ergodic

service times and the performance of TCP in overload. In: Proceedings of the

IEEE INFOCOM Conference, Hong-Kong, China, 975-983.

[11] D. Anick, D. Mitra, M. Sondhi (1982). Stochastic theory of a data handling

system with multiple resources. Bell System Technical Journal, 61: 1871-1894.

186 Bibliography

[12] S. Asmussen (2003). Applied probability and queues. Springer-Verlag, New York,

USA.

[13] K. Avrachenkov, U. Ayesta, P. Brown, R. Núñez Queija (2005). Discriminatory

Processor Sharing revisited. In: Proceedings of the IEEE INFOCOM Conference,

Miami, USA, 784-795.

[14] U. Ayesta, M. Mandjes (2008). Bandwidth-sharing networks under a diffusion

scaling. To appear in: Annals of Operations Research.

[15] R. Bahadur, S. Zabell (1979). Large deviations of the sample mean in general

vector spaces. Annals of Probability, 7: 587-621.

[16] F. Baskett, K.M. Chandy, R.R. Muntz, F. Palacios-Gomez (1975). Open, closed

and mixed networks of queues with different classes of customers. Journal of the

ACM, 22: 248-260.

[17] R. Bekker, M. Mandjes (2007). A fluid model for a relay node in an ad-hoc

network: the case of heavy-tailed input. CWI Report, PNA-E0703.

[18] S. Ben Fredj, T. Bonald, A. Proutière, G. Régnié, J.W. Roberts (2001). Statistical

bandwidth sharing: a study of congestion at the flow-level. In: Proceedings of

the ACM SIGCOMM Conference, San Diego, USA, 111-122.

[19] J. Bertoin (1996). Lévy processes. Cambridge University Press, Cambridge, UK.

[20] D. Bertsimas, I. Paschalidis, J. Tsitsiklis (1999). Large deviations analysis of the

Generalized Processor Sharing policy. Queueing Systems, 32: 319-349.

[21] J. Blanchet, P.W. Glynn, J.C. Liu (2006). State-dependent importance sampling

and large deviations. In: Proceedings of the VALUETOOLS Conference, Pisa,

Italy.

[22] T. Bonald, M. Jonckheere, A. Proutière (2004). Insensitive load balancing. ACM

SIGMETRICS Performance Evaluation Review, 32 (1): 367-377.

[23] T. Bonald, L. Massoulié (2001). Impact of fairness on Internet performance. ACM

SIGMETRICS Performance Evaluation Review, 29 (1): 82-91.

[24] T. Bonald, L. Massoulié, A. Proutière, J. Virtamo (2006). A queueing analysis of

max-min fairness, proportional fairness and balanced fairness. Queueing Systems,

53: 65-84.

[25] T. Bonald, A. Proutière (2003). Insensitive bandwidth sharing in data networks.

Queueing Systems, 44: 69-100.

Bibliography 187

[26] T. Bonald, A. Proutière (2004). On performance bounds for balanced fairness.

Performance Evaluation, 55: 25-50.

[27] T. Bonald, A. Proutière, J.W. Roberts, J. Virtamo (2003). Computational as-

pects of balanced fairness. In: Proceedings of the 18th International Teletraffic

Congress, Berlin, Germany, 801-810.

[28] T. Bonald, J.W. Roberts (2003). Congestion at flow level and the impact of user

behaviour. Computer Networks, 42: 521-536.

[29] T. Bonald, J. Virtamo (2004). Calculating the flow level performance of balanced

fairness in tree networks. Performance Evaluation, 58: 1-14.

[30] T. Bonald, J. Virtamo (2005). A recursive formula for multirate systems with

elastic traffic. IEEE Communications Letters, 9: 753-755.

[31] T. Bonald, J. Virtamo (2006). On light and heavy traffic approximations of

balanced fairness. ACM SIGMETRICS Performance Evaluation Review, 34 (1):

109-120.

[32] S. Borst, O. Boxma, P. Jelenković (2000). Asymptotic behavior of Generalized

Processor Sharing with long-tailed traffic sources. In: Proceedings of the IEEE

INFOCOM Conference, Tel-Aviv, Israel, 912-921.

[33] S. Borst, O. Boxma, P. Jelenković. (2003). Reduced-load equivalence and induced

burstiness in GPS queues with long-tailed traffic flows. Queueing Systems, 43:

273-306.

[34] S. Borst, M. Mandjes, M. van Uitert. (2002). GPS queues with heterogeneous

traffic classes. In: Proceedings of the IEEE INFOCOM Conference, New York,

USA, 74-83.

[35] S. Borst, M. Mandjes, M. van Uitert (2003). Generalized Processor Sharing

queues with light-tailed and heavy-tailed input. IEEE/ACM Transactions on

Networking, 11: 821-834.

[36] S. Borst, R. Núñez Queija, A.P. Zwart (2006). Sojourn time asymptotics in

Processor-Sharing queues. Queueing Systems, 53: 31-51.

[37] S. Borst, D.T.M.B. van Ooteghem, A.P. Zwart (2005). Tail asymptotics for Dis-

criminatory Processor-Sharing queues with heavy-tailed service requirements.

Performance Evaluation, 61: 281-298.

[38] O. Boxma, V. Dumas (1998). Fluid queues with heavy-tailed activity period

distributions. Computer Communications, 21: 1509-1529.

188 Bibliography

[39] M. Bramson (2005). Stability of networks for max-min fair routing. Presentation

at the 13th INFORMS Applied Probability Conference, Ottawa, Canada.

[40] T. Bu, D. Towsley (2001). Fixed point approximation for TCP behaviour in

an AQM network. ACM SIGMETRICS Performance Evaluation Review, 29 (1):

216-225.

[41] J. Bucklew (1990). Large deviation techniques in decision, simulation and esti-

mation. Wiley, New York, USA.

[42] S.K. Cheung, J.L. van den Berg, R.J. Boucherie, R. Litjens, F. Roijers (2005). An

analytical packet/flow-level modelling approach for wireless LANs with Quality-

of-Service support. In: Proceedings of the 19th International Teletraffic Congress,

Beijing, China, 1651-1662.

[43] J.W. Cohen (1974). Superimposed renewal processes and storage with gradual

input. Stochastic Processes and their Applications, 2: 31-58.

[44] J.W. Cohen (1982). The single server queue. North-Holland, Amsterdam, The

Netherlands.

[45] J.W. Cohen, O. Boxma (1983). Boundary value problems. North-Holland, Ams-

terdam, The Netherlands.

[46] M. Crovella, A. Bestavros (1997). Self-similarity in World Wide Web Traffic:

evidence and possible causes. IEEE/ACM Transactions on Networking, 5: 362-

373.

[47] M. Crovella, M.S. Taqqu, A. Bestavros (1998). Heavy tails in the World Wide

Web. A practical guide to heavy tails. Birkhäuser, Boston, USA.

[48] K. Dȩbicki, A. Dieker, T. Rolski (2007). Quasi-product form for Lévy-driven fluid

networks. Mathematics of Operations Research, 32: 629-647.

[49] K. Dȩbicki, M. Mandjes (2007). A note on large-buffer asymptotics for General-

ized Processor Sharing with Gaussian inputs. Queueing Systems, 55: 251-254.

[50] K. Dȩbicki, M. Mandjes, M. van Uitert (2007). A tandem queue with Lévy in-

put: a new representation of the downstream queue length. Probability in the

Engineering and Informational Sciences, 21: 83-107.

[51] K. Dȩbicki, M. van Uitert (2006). Large buffer asymptotics for Generalized Pro-

cessor Sharing queues with Gaussian inputs. Queueing Systems, 54: 111-120.

[52] A. Dembo, O. Zeitouni (1998). Large deviations techniques and applications.

Springer Verlag, New York.

Bibliography 189

[53] J.-D. Deuschel, D. Stroock (1989). Large deviations. Academic Press, London.

[54] A.B. Dieker (2006). Extremes and fluid queues. PhD thesis, University of Ams-

terdam, Amsterdam, The Netherlands.

[55] A.B. Dieker, M. Mandjes (2006). Fast simulation of overflow probabilities in

a queue with Gaussian input. ACM Transactions on Modeling and Computer

Simulation, 16: 119-151.

[56] N. Dukkipati, J. Kuri, H. Jamadagni (2001). Optimal call admission control for

Generalized Processor Sharing (GPS) schedulers. In: Proceedings of the IEEE

INFOCOM Conference, Anchorage, USA, 468-477.

[57] P. Dupuis, H. Wang (2005). Dynamic importance sampling for uniformly recur-

rent Markov chains. Annals of Applied Probability, 15: 1-38.

[58] R. Egorova, S. Borst, A.P. Zwart (2007). Bandwidth-sharing networks in over-

load. Performance Evaluation, 64: 978-993.

[59] A. Elwalid, D. Mitra (1995). Analysis, approximations and admission control of

a multi-service multiplexing system with priorities. In: Proceedings of the IEEE

INFOCOM Conference, Boston, USA, 463-472.

[60] A. Elwalid, D. Mitra (1999). Design of Generalized Processor Sharing schedulers

which statistically multiplex heterogeneous QoS classes. In: Proceedings of the

IEEE INFOCOM Conference, New York, USA, 1220-1230.

[61] A. Es-Saghouani, M. Mandjes (2007). On the correlation structure of a Lévy-

driven queue. CWI Report, PNA-R0711.

[62] G. Fayolle, A. de La Fortelle, J.M. Lasgouttes, L. Massoulié, J.W. Roberts (2001).

Best-effort networks: modeling and performance analysis via large networks

asymptotics. In: Proceedings of the IEEE INFOCOM Conference, Anchorage,

USA, 709-716.

[63] G. Fayolle, I. Mitrani, R. Iasnogorodski (1980). Sharing a processor among many

job classes. Journal of the ACM, 27: 519-532.

[64] C. Fraleigh, F. Tobagi, C. Diot (2003). Provisioning IP backbone networks to

support latency sensitive traffic. In: Proceedings of the IEEE INFOCOM Con-

ference, San Francisco, USA, 375-385.

[65] A. Ganesh, N. O’Connell, D. Wischik (2004). Big queues. Springer Lecture Notes

in Mathematics, 1838.

190 Bibliography

[66] S. Giordano, M. Pagano, S. Tartarelli (2002). An importance sampling algorithm

for the simulation of a GPS scheduler. European Transactions on Telecommuni-

cation Systems, special issue on rare event simulation, 13: 351-361.

[67] A. Goyal, P. Shahabuddin, P. Heidelberger, V. Nicola, P.W. Glynn (1992). A uni-

fied framework for simulating Markovian models of highly dependable systems.

IEEE Transactions on Computers, 41: 36-51.

[68] S.A. Grishechkin (1992). On a relationship between Processor-Sharing queues

and Crump-Mode-Jagers branching processes. Advances in Applied Probability,

24: 653-698.

[69] H.C. Gromoll, R.J. Williams (2008). Fluid limit of a network with fair bandwidth

sharing and general document size distribution. To appear in: Annals of Applied

Probability.

[70] H.C. Gromoll, R.J. Williams (2008). Fluid model for a data network with alpha-

fair bandwidth sharing and general document size distributions: two examples

of stability. To appear in: IMS Festschrift volume in honor of Tom Kurtz.

[71] F. Guillemin, A. Dupuis (1999). Simulation-based analysis of Weighted Fair

Queueing algorithms for ATM networks. Telecommunication Systems, 12: 149-

166.

[72] F. Guillemin, R. Mazumdar, A. Dupuis, J. Boyer (2003). Analysis of the fluid

Weighted Fair Queueing system. Journal of Applied Probability, 40: 180-199.

[73] L. Guo, I. Matta (2001). The war between mice and elephants. In: Proceedings

of the 9th IEEE International Conference on Network Protocols, Riverside, USA,

180-188.

[74] H. Han, S. Shakkottai, C.V. Hollot, R. Srikant, D. Towsley (2006). Multi-path

TCP: a joint congestion control and routing scheme to exploit path diversity in

the Internet. IEEE/ACM Transactions on Networking, 14: 1260-1271.

[75] J.M. Harrison (1985). Brownian motion and stochastic flow systems. Wiley, New

York.

[76] J.M. Harrison, R.J. Williams (1987). Multidimensional reflected Brownian mo-

tions having exponential stationary distributions. Annals of Probability, 15: 115-

137.

[77] J.M. Harrison, R.J. Williams (1992). Brownian models of feedforward queue-

ing networks: quasireversibility and product form solutions. Annals of Applied

Probability, 2: 263-293.

Bibliography 191

[78] M. Haviv, J. van der Wal (2008). Mean sojourn times for phase-type Discrimina-

tory Processor Sharing systems. European Journal of Operational Research, 189:

375-386.

[79] D. Heath, S.I. Resnick, G. Samorodnitsky (1998). Heavy tails and long range

dependence in on/off processes and associated fluid models. Mathematics of Op-

erations Research, 23: 145-165.

[80] P. Heidelberger (1995). Fast simulation of rare events in queueing and reliability

models. ACM Transactions on Modeling and Computer Simulation, 5: 43-85.

[81] D.P. Heyman, T.V. Lakshman, A.L. Neidhardt (1997). A new method for

analysing feedback-based protocols with applications to engineering Web traf-

fic over the Internet. ACM SIGMETRICS Performance Evaluation Review, 25

(1): 24-38.

[82] J. Hui (1988). Resource allocation for broadband networks. IEEE Journal on

Selected Areas in Communications, 6: 1598-1608.

[83] V. Jacobson (1988). Congestion avoidance and control. In: Proceedings of the

ACM SIGCOMM Conference, Stanford, USA, 314-329.

[84] M. Jonckheere, J. Virtamo (2005). Optimal insensitive routing and bandwidth

sharing in simple data networks. ACM SIGMETRICS Performance Evaluation

Review, 33 (1): 193-204.

[85] W. Kang, F.P. Kelly, N. Lee, R.J. Williams (2004). Fluid and Brownian approx-

imations for an Internet congestion control model. In: Proceedings of the 43rd

IEEE Conference on Decision and Control, The Bahamas, 3938-3943.

[86] O. Kella (1993). Parallel and tandem fluid networks with dependent Lévy inputs.

Annals of Applied Probability, 3: 682-695.

[87] O. Kella, W. Whitt (1992). A tandem fluid network with Lévy input. Queueing

and Related Models. U.N. Bhat and I.V. Basawa, editors. Oxford University Press,

112-128.

[88] F.P. Kelly (1997). Charging and rate control for elastic traffic (corrected version).

European Transactions on Telecommunications, 8: 33-37.

[89] F.P. Kelly, A. Maulloo, D. Tan (1998). Rate control for communication networks:

shadow prices, proportional fairness and stability. Journal of the Operational

Research Society, 49: 237-252.

[90] F.P. Kelly, T. Voice (2005). Stability of end-to-end algorithms for joint routing

and rate control. In: Proceedings of the ACM SIGCOMM Conference, Philadel-

phia, USA, 5-12.

192 Bibliography

[91] F.P. Kelly, R.J. Williams (2004). Fluid model for a network operating under a

fair bandwidth-sharing policy. Annals of Applied Probability, 14: 1055-1083.

[92] D.G. Kendall (1953). Stochastic processes occurring in the theory of queues and

their analysis by the method of the imbedded Markov Chain. Annals of Mathe-

matical Statistics, 24: 338-354.

[93] G. van Kessel, R. Núñez Queija, S. Borst (2004). Asymptotic regimes and ap-

proximations for Discriminatory Processor Sharing. ACM SIGMETRICS Per-

formance Evaluation Review, 32 (2): 44-46.

[94] G. van Kessel, R. Núñez Queija, S. Borst (2005). Differentiated bandwidth shar-

ing with disparate flow sizes. In: Proceedings of the IEEE INFOCOM Conference,

Miami, USA, 2425-2435.

[95] P. Key, L. Massoulié, D. Towsley (2006). Combining multipath routing and con-

gestion control for robustness. In: Proceedings of the Conference on Information

Sciences and Systems, Princeton, USA, 345-350.

[96] P. Key, L. Massoulié, D. Towsley (2007). Path selection and multipath congestion

control. In: Proceedings of the IEEE INFOCOM Conference, Anchorage, USA,

143-151.

[97] J. Kilpi, I. Norros (2002). Testing the Gaussian approximation of aggregate traf-

fic. In: Proceedings of the Internet Measurement Workshop, Marseille, France,

49-61.

[98] J. Kim, B. Kim (2004). Sojourn time distribution in the M/M/1 queue with

Discriminatory Processor-Sharing. Performance Evaluation, 58: 341-365.

[99] L. Kleinrock (1967). Time-shared systems: a theoretical treatment. Journal of

the ACM, 14: 242-261.

[100] L. Kleinrock (1975). Queueing systems, Volume I. Wiley, New York, USA.

[101] L. Kleinrock (1976). Queueing systems, Volume II. Wiley, New York, USA.

[102] L. Kosten (1974). Stochastic theory of a multi-entry buffer, part 1. Delft Progress

Report, Series F 1: 10-18.

[103] C. Kotopoulos, N. Likhanov, R. Mazumdar (2001). Asymptotic analysis of the

GPS system fed by heterogeneous long-tailed sources. In: Proceedings of the

IEEE INFOCOM Conference, Anchorage, USA, 299-308.

[104] H.W. Kuhn, A.W. Tucker (1951). Nonlinear programming. In: Proceedings of

the Berkeley Symposium, Berkeley, USA, 481-492.

Bibliography 193

[105] K. Kumaran, G. Margrave, D. Mitra, K. Stanley (2000). Novel techniques for the

design and control of Generalized Processor Sharing schedulers for multiple QoS

classes. In: Proceedings of the IEEE INFOCOM Conference, Tel-Aviv, Israel,

932-941.

[106] J.F. Kurose, K.W. Ross (2003). Computer networking: a top-down approach

featuring the Internet. Addison-Wesley, USA.

[107] R.J. La, V. Anantharam (2002). Utility-based rate control in the Internet for

elastic traffic. IEEE/ACM Transactions on Networking, 10: 272-286.

[108] J. Leino, J. Virtamo (2005). Insensitive traffic splitting in data networks. In:

Proceedings of the 19th International Teletraffic Congress, Beijing, China, 1355-

1364.

[109] J. Leino, J. Virtamo (2006). Insensitive load balancing in data networks. Com-

puter Networks, 50: 1059-1068.

[110] W.E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson (1994). On the self-

similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions

on Networking, 2: 1-15.

[111] L. Leskelä (2006). Stabilization of an overloaded queueing network using

measurement-based admission control. Journal of Applied Probability, 43: 231-

244.

[112] P. Lieshout (2007). Traffic-splitting networks operating under alpha-fair sharing

policies and balanced fairness. In: Proceedings of the Workshop on IP QoS and

Traffic Control, Lisbon, Portugal, 17-24.

[113] P. Lieshout, S. Borst, M. Mandjes (2006). Heavy-traffic approximations for

linear networks operating under alpha-fair bandwidth-sharing policies. In: Pro-

ceedings of the VALUETOOLS Conference, Pisa, Italy.

[114] P. Lieshout, M. Mandjes (2007). Tandem Brownian queues. Mathematical Meth-

ods in Operations Research, 66: 275-298.

[115] P. Lieshout, M. Mandjes (2007). Transient analysis of Brownian queues. CWI

Report, PNA-R0705.

[116] P. Lieshout, M. Mandjes (2008). A note on the delay in Generalized Processor

Sharing. Operations Research Letters, 36: 117-122.

[117] P. Lieshout, M. Mandjes (2008). Asymptotic analysis of Lévy-driven tandem

queues. CWI Report, PNA-R0809.

194 Bibliography

[118] P. Lieshout, M. Mandjes (2008). Generalized Processor Sharing: characteriza-

tion of the admissible region and selection of optimal weights. Computers and

Operations Research, special issue on queues in practice, 35: 2497-2519.

[119] P. Lieshout, M. Mandjes (2008). Importance sampling in rate-sharing networks.

In: Proceedings of the SIMUTOOLS Conference, Marseille, France.

[120] P. Lieshout, M. Mandjes, S. Borst (2006). GPS scheduling: selection of opti-

mal weights and comparison with strict priorities. ACM Performance Evaluation

Review, 34 (1): 75-86. (Best student paper award)

[121] X. Lin, N.B. Shroff (2006). Utility maximization for communication networks

with multipath routing. IEEE Transactions on Automatic Control, 51: 766-781.

[122] K. Majewski (1998). Heavy traffic approximations of large deviations of feed-

forward queueing networks. Queueing Systems, 28: 125-155.

[123] M. Mandjes (1999). Rare event analysis of the state frequencies of a large num-

ber of Markov chains. Stochastic Models, 15: 577-592.

[124] M. Mandjes (2004). A note on the benefits of buffering. Stochastic Models, 20:

43-54.

[125] M. Mandjes (2004). Packet models revisited: tandem and priority systems.

Queueing Systems, 47: 363-377.

[126] M. Mandjes (2005). Large deviations for complex buffer architectures: the short-

range dependent case. Stochastic Models, 22: 99-128.

[127] M. Mandjes (2007). Large deviations for Gaussian queues: modelling commu-

nication networks. Wiley, Chichester, UK.

[128] M. Mandjes, P. Mannersalo, and I. Norros (2005). Priority queues with Gaussian

input: a path-space approach to loss and delay asymptotics. In: Proceedings of

the 19th International Teletraffic Congress, Beijing, China, 1135-1144.

[129] M. Mandjes, M. van Uitert (2005). Sample-path large deviations for Generalized

Processor Sharing queues with Gaussian inputs. Performance Evaluation, 61:

225-256.

[130] M. Mandjes, M. van Uitert (2005). Sample-path large deviations for tandem

and priority queues with Gaussian inputs. Annals of Applied Probability, 15:

1193-1226.

[131] P. Mannersalo, I. Norros (2001). Approximate formulae for Gaussian priority

queues. In: Proceedings of the 17th International Teletraffic Congress, Salvador

da Bahia, Brazil, 991-1002.

Bibliography 195

[132] P. Mannersalo, I. Norros (2002). GPS schedulers and Gaussian traffic. In: Pro-

ceedings of the IEEE INFOCOM Conference, New York, USA, 1660-1667.

[133] L. Massoulié (1999). Large deviations estimates for polling and Weighted Fair

Queueing service systems. Advances in Performance Analysis, 2: 103-128.

[134] L. Massoulié (2007). Structural properties of proportional fairness: stability and

insensitivity. Annals of Applied Probability, 17: 809-839.

[135] L. Massoulié, J.W. Roberts (2000). Bandwidth sharing and admission control

for elastic traffic. Telecommunication Systems, 15: 185-201.

[136] L. Massoulié, J.W. Roberts (2002). Bandwidth sharing: objectives and algo-

rithms. IEEE/ACM Transactions on Networking, 10: 320-328.

[137] H.P. McKean (1969). Stochastic integrals. Academic Press, New York, USA.

[138] R. van de Meent, M. Mandjes, A. Pras (2006). Gaussian traffic everywhere? In:

Proceedings of the IEEE International Conference on Communications, Istanbul,

Turkey, 573-578.

[139] V. Misra, W. Gong, D. Towsley (1999). Stochastic differential equation mod-

eling and analysis of TCP-windowsize behavior. In: Proceedings of the IFIP

Performance Conference, Istanbul, Turkey.

[140] J. Mo, J. Walrand (2000). Fair end-to-end window-based congestion control.

IEEE/ACM Transactions on Networking, 8: 556-567.

[141] M. Nabe, M. Murata, M. Miyahara (1998). Analysis and modeling of World

Wide Web traffic for capacity dimensioning of Internet access lines. Performance

Evaluation, 34: 249-271.

[142] I. Norros (1999). Busy periods of fractional Brownian storage: a large deviations

approach. Advances in Performance Analysis, 2: 1-20.

[143] R. Núñez Queija (2000). Processor-Sharing models for integrated-service net-

works. PhD thesis, Eindhoven University of Technology, Eindhoven, The Nether-

lands.

[144] T.M. O’Donovan (1974). Direct solutions of M/G/1 Processor Sharing models.

Operations Research, 22: 1232-1235.

[145] T. Osogami, M. Harchol-Balter, A. Scheller-Wolf (2005). Analysis of cycle steal-

ing with switching times and thresholds. Performance Evaluation, 61: 347-369.

196 Bibliography

[146] J. Padhye, V. Firoiu, D. Towsley, J. Kurose (2000). Modeling TCP Reno per-

formance: a simple model and its empirical validation. IEEE/ACM Transactions

on Networking, 8: 133-145.

[147] A. Panagakis, N. Dukkipati, I. Stavrakakis, J. Kuri (2004). Optimal call admis-

sion control on a single link with a GPS scheduler. IEEE/ACM Transactions on

Networking, 12: 865-878.

[148] A. Parekh, R. Gallager (1993). A Generalized Processor Sharing approach to

flow control in integrated services networks: the single node case. IEEE/ACM

Transactions on Networking, 1: 344-357.

[149] A. Parekh, R. Gallager (1994). A Generalized Processor Sharing approach to

flow control in integrated services networks: the multiple node case. IEEE/ACM

Transactions on Networking, 2: 137-150.

[150] K. Park, W. Willinger (Editors) (2000). Self-similar network traffic and perfor-

mance evaluation. Wiley, New York, USA.

[151] I. Paschalidis (1999). Class-specific Quality-of-Service guarantees in multime-

dia communication networks. Automatica, special issue on control methods for

communication networks, 35: 1951-1969.

[152] V. Paxson, S. Floyd (1995). Wide area traffic: the failure of Poisson modeling.

IEEE/ACM Transactions on Networking, 3: 226-244.

[153] F.M. Pereira, N.L.S. Fonseca, D.S. Arantes (2002). On the performance of Gen-

eralized Processor Sharing servers under long-range dependent traffic. Computer

Networks, 40: 413-431.

[154] K.M. Rege, B. Sengupta (1996). Queue length distribution for the Discrimina-

tory Processor-Sharing queue. Operations Research, 44: 653-657.

[155] E. Reich (1958). On the integrodifferential equation of Takács I. Annals of

Mathematical Statistics, 29: 563–570.

[156] S.I. Resnick (1992). Adventures in stochastic processes. Birkhäuser, Boston,

USA.

[157] J.W. Roberts (2001). Traffic theory and the Internet. IEEE Communications

Magazine, 39 (1): 94-99.

[158] J.W. Roberts (2004). A survey on statistical bandwidth sharing. Computer Net-

works, 45: 319-332.

[159] J.W. Roberts, U. Mocci, J. Virtamo (1996). Broadband network traffic - Final

report of COST action 242. Springer, Berlin, Germany.

Bibliography 197

[160] W.R.W. Scheinhardt (1998). Markov-modulated and feedback fluid queue. PhD

thesis, University of Twente, Enschede, The Netherlands.

[161] A. Shwartz, A. Weiss (1995). Large deviations for performance analysis: queues,

communication and computing. Chapman & Hall, London, UK.

[162] K. Sriram, W. Whitt (1986). Characterizing superposition arrival processes in

packet multiplexers for voice and data. IEEE Journal on Selected Areas in Com-

munications, 4: 833-846.

[163] H.C. Tijms (1994). Stochastic models: an algorithmic approach. Wiley, Chich-

ester, UK.

[164] D. Towsley, P.D. Sparaggis, C.G. Cassandras (1992). Optimal routing and buffer

allocation for a class of finite capacity queueing systems. IEEE Transactions on

Automatic Control, 37: 1446-1451.

[165] M. van Uitert (2003). Generalized Processor Sharing queues. PhD thesis, Eind-

hoven University of Technology, Eindhoven, The Netherlands.

[166] M. van Uitert, S. Borst (2001). Generalised Processor Sharing networks fed by

heavy-tailed traffic flows. In: Proceedings of the IEEE INFOCOM Conference,

Anchorage, USA, 269-278.

[167] M. van Uitert, S. Borst (2002). A reduced-load equivalence for Generalised

Processor Sharing networks with long-tailed traffic flows. Queueing Systems, 41:

123-163.

[168] S. Varadhan, R.J. Williams (1985). Brownian motion in a wedge with oblique

reflection. Communications on Pure and Applied Mathematics, 38: 405-443.

[169] G. de Veciana, T.J. Lee, T. Konstantopoulos (2001). Stability and performance

analysis of networks supporting elastic services. IEEE/ACM Transactions on

Networking, 9: 2-14.

[170] T. Voice (2006). Stability of multi-path dual congestion control algorithms. In:

Proceedings of the VALUETOOLS Conference, Pisa, Italy.

[171] J. Walrand, P. Varaiya (2001). High-performance communication networks.

Morgan Kaufmann, San Francisco, USA.

[172] W.H. Wang, M. Palaniswami, S.H. Low (2003). Optimal flow control and rout-

ing in multi-path networks. Performance Evaluation, 52: 119-132.

[173] W. Whitt (1986). Deciding which queue to join: some counterexamples. Oper-

ations Research, 34: 226-244.

198 Bibliography

[174] W. Willinger, M.S. Taqqu, R. Sherman, D.V. Wilson (1997). Self-similarity

through high-variability: statistical analysis of Ethernet LAN traffic at the source

level. IEEE/ACM Transactions on Networking, 5: 71-86.

[175] O. Yaron, M. Sidi (1994). Generalized Processor Sharing networks with expo-

nentially bounded burstiness arrivals. Journal of High Speed Networks, 3: 375-

387.

[176] H.Q. Ye (2003). Stability of data networks under an optimization-based band-

width allocation. IEEE Transaction on Automatic Control, 48: 1238-1242.

[177] Z.-L. Zhang (1997). Large deviations and the Generalized Processor Sharing

scheduling for a two-queue system. Queueing Systems, 26: 229-245.

[178] Z.-L. Zhang (1998). Large deviations and the Generalized Processor Sharing

scheduling for a multiple-queue system. Queueing Systems, 28: 349-376.

[179] Z.-L. Zhang, D. Towsley, J. Kurose (1995). Statistical analysis of the General-

ized Processor Sharing scheduling discipline. IEEE Journal of Selected Areas in

Communications, 13: 1071-1080.

[180] A.P. Zwart (2001). Queueing systems with heavy tails. PhD thesis, Eindhoven

University of Technology, Eindhoven, The Netherlands.

[181] A.P. Zwart, S. Borst, M. Mandjes (2004). Exact asymptotics for fluid queues

fed by multiple heavy-tailed on-off sources. Annals of Applied Probability, 14:

903-957.

Summary

Modern communication networks aim to support a wide range of heterogeneous ser-

vices, including data, video, and voice-applications, but also more demanding multi-

media applications, such as gaming, video-conferencing, etc. In order to accomplish

this, it is important that the traffic that is generated by these applications is properly

served, in particular by sharing the available service capacity in a suitable manner

among the various traffic classes.

In this monograph we analyze mathematical models for bandwidth sharing in such

multi-service networks. It is important to distinguish between i) explicit scheduling

in network nodes, and ii) bandwidth sharing as a consequence of the end-to-end rate

control by end-users. For both cases, various bandwidth-sharing disciplines can be

identified for either implementing or modeling bandwidth sharing.

Note that a communication network can be regarded as a system where customers

arrive, possibly wait for their service, and leave after they have been served. Both

the times at which customers arrive and the corresponding service requirements are

stochastic in nature. Hence, it is natural to view a communication network as a

queueing system. In this thesis we therefore apply queueing theory as a tool to

analyze the performance of several bandwidth-sharing mechanisms.

This thesis consists of two parts, preceded by an introductory chapter. Part I is

devoted to case i) mentioned above, whereas Part II considers case ii).

In Part I, consisting of Chapters 2-5, our goal is to study the performance of

a mechanism that can implement differentiated sharing in a network node. In this

part we assume that traffic can be modeled as a continuous fluid flow. We consider

systems with Gaussian inputs, which provide a general and versatile class of fluid

input processes, covering a broad range of correlation structures.

In Chapter 2 we first present the machinery that will be used in Part I. The use

of this machinery is illustrated for a single queue with Brownian input (a special case

of Gaussian input). We determine the joint distribution function of the workloads at

two different times, which also allows us to calculate their correlation coefficient.

In the next chapter we analyze simple networks of Brownian queues, namely: a

two-node parallel queue and a two-node tandem queue. For both systems, we derive

the joint distribution function of the workloads of the first and second queue. We

200 Summary

also analyze a two-class priority queue, in which the low-priority class is only served

if there is no backlog of high-priority traffic.

Chapter 4 considers a single node that serves two traffic classes, each having a

different Gaussian input stream. We assume that capacity is allocated to the two

classes according to the Generalized Processor Sharing (GPS) discipline. The GPS

mechanism works as follows. Each class is assigned a weight, and this weight deter-

mines a guaranteed service rate for that class. In case a class does not fully use its

minimum rate, the excess rate becomes available to the other class. Assigning all

weight to a single class, implies that the other class can only be served if there is no

traffic of this single class queued. Thus, priority queueing can be regarded as special

case of GPS. We focus on the probability that the virtual delay of a particular class

exceeds some threshold. In particular, we derive the delay asymptotics, and show

that, depending on the GPS weights, three kinds of asymptotics appear.

In the last chapter of Part I we again study the system of Chapter 4. In this

chapter, we focus on the problem of selecting GPS weights that maximize the traffic-

carrying capacity. The results suggest that the weight-setting is not so crucial, and

that simple priority strategies may suffice for practical purposes.

Part II, consisting of Chapters 6-8, considers bandwidth sharing as a consequence

of the rate control by end-users. In that case the bandwidth shares are strongly

affected by the protocol that governs the transfer of packets through the network.

At large time scales, we consider the sequence of all packets from the beginning

of a transfer until the end as a single flow. In particular, in Part II we deal with

elastic flows, which are produced by the transfer of Web pages, e-mails, etc., and are

characterized by a transmission rate that is continuously adapted over time, based

on the level of congestion in the network. The above scenario can be modeled by

assuming that bandwidth is shared according to an Alpha-Fair Sharing (AFS) policy,

which covers a broad range of sharing policies. We assume that flows arrive according

to a Poisson process, and have exponentially distributed service requirements.

In Chapter 6 we consider a general AFS network topology and focus on the prob-

ability that, conditional on the network population being in a given state a time zero,

the network is in some other set of states after some predefined time. In particular,

we assume that the underlying event is rare, so that the corresponding probability is

small. We devise an Importance Sampling algorithm, i.e., an algorithm that can be

used to simulate the system with new interarrival and service time distributions, in

order to efficiently obtain an unbiased estimate for the probability of interest.

In the next chapter we analyze a linear network that operates under an AFS pol-

icy. In this system there is one class that requires service at all nodes simultaneously,

whereas the other classes only require service at a single node. We derive approxima-

tions for the mean number of active users of each class, by assuming that one or two

of the nodes are heavily loaded.

In the last chapter we consider a network in which, besides classes that use specific

Summary 201

routes, one class of users can split its traffic over several routes. We consider two

different load balancing policies, and compare the performance of the network under

these two policies.

Samenvatting

Moderne communicatienetwerken beogen gelijktijdig verschillende soorten applica-

ties te ondersteunen. Hierbij kan men denken aan standaard data-, video- en voice-

applicaties, maar daarnaast ook aan multimedia applicaties zoals bijvoorbeeld ga-

ming, video-conferencing, etc. Om dit te realiseren, is het belangrijk dat het verkeer

dat door deze applicaties wordt geproduceerd op een juiste manier wordt afgehan-

deld, in het bijzonder door de beschikbare servercapaciteit op een geschikte wijze te

verdelen over de verschillende verkeersklassen.

In dit proefschrift bestuderen we wiskundige modellen voor het verdelen van de

servercapaciteit in zulke multi-service netwerken. Hierbij is het belangrijk om onder-

scheid te maken tussen i) het expliciet toewijzen van capaciteit in netwerk knooppun-

ten, en ii) het delen van capaciteit als gevolg van de regulering van de transmissie-

snelheid door eindgebruikers. Voor beide scenario’s zijn al verschillende mechanismen

voorgesteld om het delen van capaciteit te implementeren dan wel te modelleren.

Merk op dat een communicatienetwerk gezien kan worden als een systeem waar

klanten aankomen, eventueel wachten op hun bediening, en vertrekken nadat ze zijn

geholpen. Zowel de aankomstmomenten als de hoeveelheden werk die de klanten

meebrengen hebben een stochastisch karakter. Dit impliceert dat een communica-

tienetwerk gezien kan worden als een wachtrijsysteem. In dit proefschrift passen we

daarom wachtrijtheorie toe als hulpmiddel om de prestatie van verschillende mecha-

nismen te analyseren.

Dit proefschrift omvat twee delen, voorafgegaan door een inleidend hoofdstuk van

algemene aard. In deel I richten we ons op bovengenoemd scenario i), terwijl in deel

II scenario ii) aan de orde komt.

In deel I, dat hoofdstuk 2 tot en met 5 omvat, is het doel om te onderzoeken

hoe goed een bepaald mechanisme werkt dat service differentiatie kan bewerkstelligen

in een netwerk knooppunt. In dit deel veronderstellen we dat het gegenereerde ver-

keer als een continue vloeistofstroom kan worden opgevat. We beschouwen systemen

met Gaussische inputstromen; deze klasse van modellen omvat een breed scala aan

correlatiestructuren.

In hoofdstuk 2 beschrijven we eerst de belangrijkste technieken die worden gebruikt

in deel I van het proefschrift. Daarna passen we deze technieken ter illustratie toe op

204 Samenvatting

een systeem dat bestaat uit een enkele server met een Brownse inputstroom. Brownse

inputstromen zijn een speciaal geval van Gaussische inputstromen. We bepalen eerst

de simultane verdeling van de bufferinhoud op twee verschillende tijdstippen. Aan

de hand hiervan leiden we ook een exacte uitdrukking af voor de correlatie van de

bufferinhoud op deze twee tijdstippen.

Het volgende hoofdstuk richt zich op eenvoudige netwerken met een Brownse in-

putstroom, zoals een parallel systeem en een tandem systeem, beide met twee servers.

Voor beide systemen bepalen we de simultane verdeling van de inhoud van de eerste

en tweede buffer op een bepaald tijdstip. We analyseren daarnaast ook een systeem

dat bestaat uit een enkele server, maar dat nu twee verschillende soorten types verkeer

bedient, die elk een verschillende Brownse inputstroom hebben. We veronderstellen

hier dat de ene klasse prioriteit heeft boven de andere. Dat wil zeggen dat de klasse

met de laagste prioriteit alleen kan worden bediend als er geen verkeer van de klasse

met hogere prioriteit is.

Hoofdstuk 4 beschouwt een enkele server, die twee verschillende soorten verkeer

bedient, elk met een verschillende Gaussische inputstroom. De capaciteit van de server

wordt verdeeld over de twee klassen door middel van de Generalized Processor Sharing

(GPS) discipline. Bij GPS wordt aan elke klasse een gewicht toegewezen. Dit gewicht

bepaalt de fractie van de capaciteit van de server die gegarandeerd beschikbaar is voor

de betreffende klasse. Wanneer een klasse zijn gegarandeerde capaciteit niet volledig

gebruikt, dan komt het teveel aan capaciteit beschikbaar voor de andere klasse. Merk

op dat het prioriteitsysteem een speciaal geval is van het GPS systeem (wanneer men

al het gewicht aan één klasse toekent). We bepalen de asymptotiek van de kans dat

de wachttijd van een bepaalde klasse een drempelwaarde overschrijdt, en laten zien

dat drie verschillende regimes van asymptotiek bestaan.

In het laatste hoofdstuk van deel I wordt wederom het systeem van hoofdstuk 4

beschouwd. In dit hoofdstuk wordt onderzocht hoe men de GPS gewichten optimaal

kan toewijzen aan de twee klassen, zodanig dat het systeem in staat is om zoveel moge-

lijk verkeer te ondersteunen. De verrassende conclusie is dat het niet zoveel uitmaakt

hoe men de gewichten toekent, en dat men kan volstaan met het toekennen van het

volledige gewicht aan één bepaalde klasse, wat overeenkomt met het bovengenoemde

prioriteitsysteem.

Deel II, dat hoofdstuk 6 tot en met 8 omvat, beschouwt, in tegenstelling tot deel

I, het delen van capaciteit als gevolg van de regulering van de transmissiesnelheid

door eindgebruikers. In dat geval worden de toewijzingen sterk bëınvloed door een

protocol dat het versturen van datapakketjes door het netwerk reguleert. Op gro-

te tijdschaal kan men een stroom van kleine datapakketjes zien als een individuele

klant, ook wel een flow genoemd. In het bijzonder richten we ons op elastische flows.

Deze worden geproduceerd door het transport van webpagina’s, e-mails, etc., en zijn

gekarakteriseerd door een transmissiesnelheid die fluctueert over de tijd. Het boven-

staande scenario kan goed gemodelleerd worden door aan te nemen dat de capaciteit

Samenvatting 205

wordt verdeeld volgens een Alpha-Fair Sharing (AFS) strategie, hetgeen een groot

aantal verschillende vormen om capaciteit te delen omvat. In de verschillende model-

len die worden behandeld in dit deel, nemen we aan dat flows aankomen volgens een

Poissonproces, en dat ze exponentieel verdeelde bedieningstijden hebben.

In hoofdstuk 6 beschouwen we een netwerk van algemene topologie die verschillen-

de soorten klanten bedient, waarin de capaciteit van de servers wordt verdeeld volgens

een AFS strategie. We richten ons op de kans dat de netwerkpopulatie zich op een

zeker tijdstip in een bepaalde toestand bevindt, gegeven dat de netwerkpopulatie zich

op een eerder tijdstip in een bepaalde andere toestand bevindt. We veronderstellen

dat dit tijdstip en deze toestanden zo zijn dat deze kans erg klein is. We leiden ver-

volgens een Importance Sampling algoritme af, d.w.z. een algoritme waarmee het

systeem wordt gesimuleerd met andere verdelingen voor de tussenaankomsttijden en

bedieningstijden van de verschillende klassen, waarmee snel een zuivere schatter met

lage variantie voor de betreffende kans wordt verkregen.

Hoofdstuk 7 richt zich op een lineair netwerk, waarin de capaciteit van de servers

wederom wordt verdeeld volgens een AFS strategie. In dit systeem is er één klasse die

gelijktijdig door alle servers moet worden bediend, terwijl alle andere klassen maar

bediend hoeven te worden door een enkele server. We leiden benaderingen af voor

het gemiddelde aantal aanwezige klanten van elke klasse, door te veronderstellen dat

één of twee van de servers in het netwerk zwaar belast zijn.

In het laatste hoofdstuk beschouwen we een netwerk, waarin één klasse zijn verkeer

kan splitsen over verschillende routes, terwijl alle andere klassen specifieke routes

gebruiken. We beschouwen twee methodes om dit te bewerkstelligen, en onderzoeken

hoe goed het netwerk werkt voor deze twee methodes.

About the author

Pascal Lieshout was born in Amsterdam, The Netherlands, on March 5, 1981. He

completed grammar school at the Goois Lyceum, Bussum, in June 1999. In September

2003 he received his master’s degree in Econometrics (cum laude) from the Univer-

sity of Amsterdam (UvA). One year later, in October 2004, he also obtained his

master’s degree in Operations Research and Management (cum laude) from the same

university. Subsequently, he became a Ph.D. student under the supervision of Michel

Mandjes and Sem Borst at the Centrum Wiskunde & Informatica (CWI). Since Oc-

tober 2006 he has also been affiliated with the UvA.

	cover
	thesis

