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Abstract-Modeling and performance  prediction are becoming  in- 
creasingly important  issues  in  the design and operation of computer 
communications  systems.  Complexities in their configuration and 
sophistications in resource sharing found in today’s  computer  com- 
munications  demand our intensive  effort to enhance  the  modeling 
capability.  The  present paper  is intended to review the  state of affairs 
of analytic methods, queueing  analysis  techniques in particular, which 
are essential to modeling  of  computer  communication  systems. First 
we  review  basic  properties of exponential  queueing  systems,  and  then 
give an overview of recent progress made in the areas of queueing net- 
work models and discrete-time  queueing  systems. A unified  treatment 
of buffer  storage  overflow  problems will be  discussed as  an application 
example,  in which-we call attention  to  the analogy between buffer 
behavior  and  waiting  time in the GI/G/l queue.  Another  application 
deals  with  the  analysis of various multiplexing  techniques  and net- 
work  configuration. An extensive  reference  list of the  subject  fields 
is also  provided. 

I. INTRODUCTION . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T HE field of computer  communications has  witnessed  rapid 

growth  and technological innovations in recent years. By 
the  term computer  communications we loosely  imply  a  variety 
of user-to-computer,  or  computer-to-computer interfaces 
realized by  communication links. They range from various 
forms of teleprocessing seen in today’s  data-processing 
industry, time-sharing systems between  collections  of  ter- 
minals and  central  computers, to  the burgeoning computer-to- 
computer  communication  networks typified  by  the Advanced 
Research Projects Agency Network.(ARPANET).  A number  of 
books  and articles have been written  ,on various  aspects of this 

.. increasingly important  subject  area.  The:reader is referred,  for 
example, to  books  by Abramson and  Kuo  [2], Chu [20], 
Davies and;. Barber [33], Green and  Lucky [52], Grimsdale 
and  Kuo  [55] , Martin [lo51 , and articles by Green and Tang 
[33], Schwartz,  Boorstyn,  and  Pickholtz  .[137]  among  many 
others. 
. ’  I With the increasing complexity and sophistication of com- 
puter  communication  systems, modeling and performance 
evaluation are  becoming ‘critical issues in. the design and  opera- 
tion of such systems. It is apparent  that  for a  cost-effective 
design we must be equipped  with  systematic  methods of pre-. 
dicting quantitative relations between  system resource  param- 
eters, system workloads,  and measures of system  performance. 
Any computer  communication  system is, in essence,  composed 
of an ,organized collection of resources-hardware, software; 
and  combinations thereof-which  are  usually  shared by 
multiple users, messages, or processes. The sharable  resources 
are for  instance,  communication  links,  computational re- 
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sources of remotely located  computers, file systems, and  data 
bases in  a distributed  system. 

The  communication links are a  major  cost component in  a 
data-transmission system.  In  addition  to  the  conventional 
multiplexing methods,  such as frequency-division multiplexing 
(FDM) and  synchronous time-division multiplexing (STDM), a 
number of new forms of channel  sharing have been proposed 
to achieve more efficient  and  flexible usage of communication 
media by a large number of terminal-based users. The  most 
successful development  in this  direction is a  random-access 
multiplexing method which has  been devised and  implemented 
by  the ALOHA system project at  the University of Hawaii (see 
Abramson [ 1 ] , Kuo  and Binder zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[99] ). This multiplexing tech- 
nique,  knowh as the ALOHA technique or ALOHA channel, is 
particularly suited to a packet  communication  system  which 
uses a radio  or satellite channel.  Another  form of statistical 
and  dynamic sharing of a channel is the  asynchronous  time- 
division multiplexing (ATDM) technique  studies  by Chu [21] , 
[22] , Rudin  [134], and others. 

Multiplexing of a central  computer is the  key idea of time- 
sharing systems, which have grown tremendously in their 
number  and  sophistication  within  the last decade. Many of 
today’s computing systems which  support  the teleprocessing 
applications are quite  complicated;  they are often  multi- 
programmed  virtual-storage sytems. More frequently  than  not, 
a  teleprocessing  system is one of the  many  application sub- 
systems built on.% ‘common  machine  and  operating  system. 
Scheduling and  allocation of resources of a central processing 
system  (not  just  the sharing of CPU time,  but sharing of all of 
the system  resources  including memory, auxiliary storage, 
devices, and  supporting hardware) is certainly a  major com- 
ponent in any  computer  communication  system. Modeling of a 
computer  ,system/subsystem  has  been pursued  by  a  great num- 
ber of people,  and  recent results on  analytic  models are found, 
for  example,  in  Kleinrock. [%I ,  Kobayashi [86], and  in a 
number of references cited  therein. 

The  most  recent  development in computer  communications 
is the increasing interest  and  development  efforts  found in 
intercomputer-communication nets such as the ARPANET and 
its  descendents.  In a computer  network  the primary  resources 
to be shared are geographically separated  computers  (often 
called host computers),  the program library,  and  the  data bases 
attached  to  them.  In  order  to  support  efficient  and flexible 
sharing of these  resources, such novel techniques as message- 
switching and packet-switching multiplexing have been  intro- 
duced,  at  the expense of  additional  complexity of system 
structure:  that is, a  set of message-switched processors  [called 
interface message processors (IMP’s)] now  constitutes  the 
highest level of the  network below  which groups  of  hosts 
exist and are attached to  the  corresponding IMP’s. As a con- 
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sequence, buffer spaces of  the individual IMP’S, as well as 
message-switching processors  themselves and  communication 
links connected to  them,  contribute  to  the list of critical re- 
sources to be considered  in the design and  operation of the 
network. 

Whenever there is a sharing of a scarce resource, contention 
for  the resource will arise. Flows of messages or  data generated 
by user terminals, multiplexers,  concentrators,  or by host  com- 
puters, are not  steady streams. On the  contrary, occurrences 
of messages are often  sporadic  and  bursty.  The  amount  of 
resource usage demanded by the messages or processes is often 
unpredictable  and  consequently is viewed as stochastic in 
nature;  for  example,  the  length of messages or  data to be  trans- 
ferred or  stored,  the time  required in processing transactions, 
the  amount of main memory or buffer  pool  to be allocated to 
processes. In intercomputer-communication  nets  another 
dimension is added to  the  stochastic  nature of the  work  loads; 
namely,  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdestination zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIMP’S or hosts of messages are also 
assumed to be .random variables, and we face new issues such 
as routing and  flow control of messages. 

Because of the  unpredictable  nature  of  the  work  demands 
placed on the resources,  congestion  occurs  (occasionally or 
frequently, depending upon  the  work  load level), queues will 
be formed, and  delays introduced  at critical  resources. In the 
performance analysis of a computer  communication  system/ 
subsystem, we must  therefore  take these queues  into  con- 
sideration. One of the major issues which concerns designers of 
complex information-processing  systems is the lack of  cap- 
ability to predict performance measures such as response time, 
throughput, and resource utilization. A problem of similar 
nature will be faced  by those  who configurate (see Green and 
Tang [53])  a  system, given a  set of candidate  components  or 
subsystems, such as communication links of various capacities, 
central processors of different speeds, memory  and  buffer 
storage of different capacities, various types of topologies con- 
necting  terminals to local processors. Of course, performance 
prediction is not  the  only major  technical issue in design of 
computer-communication systems.  However, such well 
discussed issues as routing  and flow control,  link  capacity 
assignment, concentrator  placement, allocation  and distribu- 
tion of data base, are certainly  not separable from  the  per- 
formance analysis. The  problem  of link capacity assignment, 
for  example,  has been successfully formulated  by  Meinrock 
[74]  and  others as an  optimization  or  mathematical program- 
ming problem based on  the average delay formula derived 
from queueing analysis. How to schedule  and  allocate  re- 
sources  effectively among  competing requests is certainly in 
the realm of congestion or queueing theory in a  broader sense. 
Therefore,  it is clear that queueing models provide a basic 
framework  and  the  mathematical  tools  for dealing with  a large 
class of system design issues. Several other disciplines of 
applied mathematics,  such as graph theory,  mathematical  pro- 
gramming, optimization  techniques,  and reliability theory 
must augment the queueing analysis in  order to cope with  the 
overall design and analysis issues. A survey article  by Green zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

’ and Tang [ 5 3 ]  addresses a number of the specific technical 
problems that  concern professionals engaged in design, con- 
figuration,  and  maintenance  of teleprocessing  systems. 

The  intent of the present  paper is to review that  portion of 
queueing theory which is relevant to modeling and  perform- 
ance  evaluation of computer  communication systems and  sub- 
systems. Of course there are a  number  of circumstances  in 
which the  currently available techniques  cannot provide a 
satisfactory solution. In such  circumstances, a simulation 
model is often  the only viable alternative. Even when a deci- 
sion is made  for simulation. an analytic  solution, however 
crude  it  may  be, should be sought for. An analytic  model can 
serve as a guideline in  narrowing down  a range of system con- 
figurations  and  parameters under which a simulation  runs.  It 
also could save a considerable amount of modeling efforts, by 
detecting possible errors  introduced in the design and imple- 
mentation phases of a  simulator. There are a large number of 
books  and articles on queueing theory: Bhat [7],  Cox  and 
Smith  [31], Feller [39],  Gnedenko  and Kovalenko [48], 
Kleinrock [79] , Newel1 [ 1 131 , Rordan  [I291 , and Syski 
[ 1431 . Due to space limitations,  our  treatment is not as broad 
as some  readers  might wish to see. An extensive  bibliography 
at  the  end (and the  books cited  above) will hopefully direct 
the reader to fundamental  and collateral  reading. For  the same 
reason, our  presentation does not discuss many specific 
applications,  instead  focusing on fundamental and general 
methodologies. 

In Section 11,  we briefly review the  important  properties  of 
the Poisson process and  its generalizations-the nonstationary 
Poisson process, the  compound Poisson process, and  the re- 
newal process. The Poisson process  plays an important role in 
congestion theory, in much  the same way as does the Gaussian 
process in conventional  communication  and  information 
theory.  The Gaussian process and  the Poisson process are 
related  in the sense that  both  occur as the limiting distribution 
obtained when  one  superimposes independent processes; the 
former in amplitude, the  latter in epochs on the  time  axis. It is 
an empirically and analytically  established fact  that  a Poisson 
process model provides a  quite acceptable mathematical 
abstraction of message traffic in many  computer  communica- 
tion systems. 

Section I’II discusses a class of queueing  systems  which we 
have designated as exponential systems. This class includes the 
so-called birth-and-death process  model for  a single-server sys- 
tem,  and queueing networks of exponential servers. 

Section IV is devoted to a discussion of generalized Mar- 
kovian queueing network models. A “network  of queues” 
model is capable of representing asynchronous parallel  opera- 
tions and mutual interactions of separate  resources,  such as ob- 
served in  central processing units and  channels [or  input/ 
output (I/O) processors]  in a  multiprogrammed  computer sys- 
tem  and in a  set  of message switching  processors  within a  com- 
puter  network. Kleinrock [80] successfully applied an expo- 
nential queueing network  model to  the analysis of  the 
ARPANET. There has been noteworthy progress in recent 
years  in enlarging the class of queueing network  models  for 
which we may find closed form (analytic) solutions  for  the 
queue  length  distribution in equilibrium. The  key  results will 
be highlighted  in Section IV. 

The  literature of queueing theory deals largely with  con- 
tinuous-time models-the arrival of requests and  their  demands 
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are allowed to assume real values. In  communications systems 
it appears  more natural to formulate  the problems  within  a 
discrete-time framework.  In  Section V we discuss how various 
results of the  continuous-time  model can be transferred into 
the discrete-time setting. We consider, as an example,  a  model 
of buffer storage  which should  find  direct applications  in  such 
problems as the design of buffered terminals and  the  study of 
storage allocation strategies in  multiplexing  and  concentration. 
We will derive asymptotically  tight  upper  and lower bounds 
for  the  buffer overflow probability and other related quan- 
tities, based on  the  recent results obtained  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGI/G/l queues. 
The  relations  between these bounds and  a  result  recently re- 
ported  by Wyner [ 1511 will also be discussed. 

Section VI proceeds to the analysis of various  topological 
structures  and  their associated  schemes for multiplexing and 
concentration. Our formulation is general enough to en- 
compass such  typical  connections as the  star,  loop,  and  multi- 
drop  networks. A unified treatment is developed for  the 
analysis of various  disciplines of time-division multiplexing: 
STDM, ATDM, polling, and chaining. 

Section VI1 is a concluding  section in which we give brief 
discussions of a number of important  topics  and results. We 
shall identify some of the research subjects which require  con- 
tinues  and extensive  investigations  in the  future. 

As discussed above,  queues  for service of  one  kind  or 
another arise in  many  different  parts of computer  communica- 
tion  systems; a queue  of  terminal users waiting for processing 
by  another  host; a queue of messages waiting for  buffer 
storage allocation  at a message switching node (e.g., IMP) in  a 
store-and-forward  network,  etc.  The  unit of operational flow 
through a  queueing system is usually called a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcustomer in the 
traditional language of  queueing  theory.  In a computer  com- 
munication system  a customer is typically  a message, packet, 
job,  transaction,  etc.  In some cases we may  model  terminal 
users, or even host systems, as customers  depending  on  the 
congestion problem  with which we are  dealing. A server or 
service  station may  be a  transmission line,  channel,  host 
system, IMP, multiplexer,  etc. 

A customer is drawn  from a population or input source. 

One characterization of the  population is its size. It  may be 
assumed to be either  infinite  or  finite. Since  a mathematical 
model  tends  to be  far more  tractable  for  the  infinite  popula- 
tion,  this  assumption is often  made.even when the  actual size 
is some relatively large finite  number.  Another  characteristic 
of  the  demands  upon a system is the arrival pattern  (or process) 
by  which  customers  or messages are generated over time. Many 
authors assume that  the arrival of customers is described by a 
Poisson  process which we will discuss in  Section IT. 

A finite  population  model is generally more  complicated 
analytically, because the  number of customers already  in the 
queueing  system at  any  point  in  time  affects  the  number  of 
potential  customers remaining in  the  input  source. In some 
cases, however, we are forced to assume a finite  population if 
the  rate  at which the  input source  generates arrivals is signifi- 
cantly  affected  by  the  number of customers in the queueing 
system. Care must be  exercised in  the selection of a population 
model. Use  of infinite  population  models  sometimes leads to a 
false conclusion;  for  example,  that  the  modeled system is un- 

stable (unable to process customers  at a rate  commensurate 
with  their  entry  into  the system) although  the  actual system to 
be modeled is not. Although it will be discussed later,  it seems 
worthwhile to  note here that a  queueing  system with a finite 
population source  can be conveniently  modeled as a closed 

queueing network. 

11. THE POISSON PROCESS 

The Poisson process  plays  a central role in the  statistical 
modeling of many physical phenomena. We shall give a  brief 
account of its principal properties. Details can  be found in the 
excellent monograph of Khintchine [70]. 

By a counting  process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN = ( N ,  : 0 < t < m} we mean a 
family of nonnegative-integer-valued random variables Nt  

which  are  nondecreasing  in  (time) t. N t  counts the  accumu- 
lated  number of events in the  time interval (O,t] . It is usual to 
set No = 0, assuming that initially there are no  counted events. 
If 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtl < t 2 ,  the increment of Nt over the interval ( t l , t z ]  , 
denoted by N ( t l ,  t z  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ , is this change in N,,   Nt2 - Nt l  , over the 
interval.  Within our  context,  an event  might  be the arrival of a 
message in  a computer-communications  system.  The average 
number of events  in (O,t] (the expected value of N,)  is called 
the principal function of the process N and is denoted  by 

A-counting process may satisfy one  or  more  of  the following 

Stationary  Increments: If the intervals {(ai ,bi]  : 1 f i < n} 

A(t) E{Nt}.l . 

three  properties. 

are nonoverlapping, 

then  for every h > 0, the  two n-dimensional  vector-valued 
random variables (of increments) 

and 

have the same distribution. 
Independent  Increments: If the intervals {(ai ,bi]  : 1 < i < n}  

are nonoverlapping, then  random variables (N(a i ,b i l  : 1 < i < 
n}  are independent. 

Orderliness: Pr {Nt+h - N ,  > 1) = o(h) as h -+ 0.2 If N has 
stationary  increments,  it can be shown  that  the  limit, 

lim ( l /h) Pr {Nt+, - N ,  = 1) = X 
h+O 

exists with 0 < X < w; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is the rate of the  counting process. 
Remarks: 

1) Stationarity of the  increments  means  that  the process 
N loses track of absolute  time.  For h > 0, 'the shifted  process 

'The  expected value of a  random variable X will be  denoted  by 
E ( X }  and the variance by var{X}. 

A function f ( h )  is of order o(h)  as h -f 0 if f ( h ) / h  - 0 as h - 0. 
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Nh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Nt+h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Nh : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 < t < m}, which counts events after time 
h ,  is a replica of  the original process. 

2) If N is orderly,  then  the  probability  of  more  than one 
event in (t,t + h]  , Pr {Nt+h   -Nt  > I}, is “small” compared to 
h for “small’’ h. In general this  probability is not equal to 0.  

An orderly counting process with  stationary and independ- 
ent  increments is called a Poisson  process. Its principal func- 
tion is A(t) = ht where h is the  rate of the process. One can 
prove for this process that  the  state probabilities (Pk(t)} are 
given by 

pk( t )  = Pr {Nt  = k }  = (Xt)ke-*t/k! o < k <m. ( I )  

The generating function of this Poisson process  (or more 
precisely the generating function  of  the  state probabilities 
{ P k ( t ) }  of (I)) is the  function of the  complex variable z 
defined  by 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Ti : 1 < i < -1 be the  epochs  at which  events occur in 
the Poisson process  and  set T~ = Ti - Ti-l(l < i < 0 0 ;  To = 0) 
The sets 

provide three equivalent  descriptions of  the  statement-at least 
n events have occurred  in the interval ( O J ]  . For  the Poisson 
process one may  show that  the  random variables { T ~ }  are in- 
dependent  and identically distributed (iid) with  the  common 
exponential  distribution 

Pr {Ti < t }  = { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘ 9  

- - < t < O  

1 - exp (-At), 0 < t < 03. 

The { T ~ }  are the interarrival times of events and E { T ~ }  = I/h. 
There  are two operations-joining and splitting-which we 

may  perform on Poisson processes. If {Nci)} are independent 
Poisson processes with  rates {A(’)}, then  the join of these 
processes is the process N = X i  N(’) which counts  the events 
which occur in any of the processes. The  join N has rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX = 
X i  A(’). Conversely, starting  with a Poisson process N of  rate h 
and  a 0 in [0,1] we may split N into Nc0) andN( l ) .  As each 
event of N occurs we toss  a coin; if a  head  results  (with pro- 
bability 0) we mark this  event as an event of N ( l )  while if a 
tail occurs the event is marked as an event of N(O). The  two 
counting processes N(’) (i = 0,l) thus  obtained are independent 
and Poisson of rates (1 - O)h and 6X, respectively. 

The Poisson process has been generalized in many ways. 
Three  are worth taking note  of because of  their possible 
applicability  in  describing the flow of messages in  a communi- 
cations system. 

Nonstationary Poisson  Processes 

, I f  N is orderly, has independent increments, and if the limit 

exists, then N is a nonstationary Poisson process and 

Pk(t l , t2)=Pr{N(t l , tpJ = k }  

= W 2 )  - A(tl))k exp (-(Nt2> - Nt,)) /k! ,  

O<k<m (4) 

where A(t) = Jk h(u) du. A  simple computation shows that 
A(t) is the principal function  of  the process N. The  function 
A(t) is nonnegative,  nondecreasing, and  right-continuous  with 
A(0) = 0. Its derivative A(t) may  be interpreted as an instanta- 
neous rate of the  nonstationary process. 

Conversely, starting  with a  nondecreasing, right-continuous, 
nonnegative function A(t) we may construct a nonstationary 
Poisson process whose state probabilities are given by (4). The 
function A(t) need not be  differential nor even continuous. 
The  points of discontinuity of A(t), those  points to at which 
A(to) - A(to-) > 0,  correspond  to  time  at which  events are 
certain to take place. For  example, if in  some physical process 
an “event” is certain to  take place at 5:  12 P.M., then we might 
choose to incorporate this phenomena in our  construction of 
the principal function. A nonstationary processes might be 
used to  model  phenomena which have a pronounced variability 
with time whose effects we wish to understand. 

Compound Poisson  Processes 

The  property of orderliness  insures that events  are “simple,” 
Le., the  probability of a multiple event in a small interval is 
negligible with respect to  the  length of the interval. If we 
model the arrival of messages in a computer  communications 
systems, the  counting process  may  represent the  number of 
data  units arriving where  a data unit may  be byte,  character, 
or  block  of  characters of fixed length (a packet). In such cases 
we may wish to allow for  the arrival of  multiple  data  units 
(packets) at a time. Let A = {ak : 1 < k <-} be  a probability 
distribution  for  the  length  of a message if N is a Poisson 
process with  rate X we may  construct a compound Poisson 
process N[A] by  the  superposition of the processes. N will 
determine  the times of  the events  and A the  number  of events 
which take place. The generating function  of  the  state  prob- 
abilities of  the  compound process N [A] is 

E { z ~ [ ~  J t }  = exp {ht(@(z) - I)} (5) 

where 

~ ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx akzh .  
l<k<m 

At  this point  it  may be appropriate to consider the ques- 
tion, “Why Poisson  processes? ” A  major reason for assuming 
that a phenomenom can  be  described by a Poisson process is 
the analytical  simplicity that  often follows from this hypoth- 
esis. A justification of the Poisson hypothesis  may  be possible 
since the Poisson law is the limit law of certain families of ran- 
dom variables. The  most  elementary limit theorem of this type 
is the Poisson approximation to Bernoulli  trials.  Suppose 
{ X , , i :  1 < i < n}  represents the  nth trial of an experiment;  on 
the  nth trial we toss a  coin n times  with  outcomes = 1 if 
the  ith toss was a  head and 0 if a  tail. Let the  probability of 
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head  be p ,  so that  the  expected  number of successes (heads) 
on  the  nth trial is np,. If p ,  varies with n(as n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ -) so that 
np, -+ X, then 

The convergence  in (6) is convergence in law; that is, the 
distribution  function  of  the  random variables Ci X n , i ,  
Pr { E i  X,,i < k} converges to  the Poisson distribution  func- 
tion C j ~ k  Aj  exp (--A)/j!. More generally  suppose that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ X , , i }  

are random variables (assuming nonnegative  integer values) 
satisfying 

Pr { X n , i  k}  = an,i,k 

Then CIGiCn -+ Poisson law. Further details  can be 
found in Feller [39], Gnedenko and  Kovalenko [48], and 
Loeve [ 1021 . 

An interpretation of the above mathematical  argument in 
the  context of our  applications is possible: in  many cases the 
message or  transaction generation of individual  terminal users 
or host systems  can  be  described by  stationary renewal 
processes or  more general point processes. These component 
processes can generally be  regarded as statistically independent. 
Then  by virtue of  the above  limit theorem we can show  that  the 
total  traffic is “close” to a Poisson process if the  number of 
independent processes is “large” while the  intensity of each of 
the  components is “small.” Empirical studies  by  Fuchs  and 
Jackson  [43]  and Lewis and Yue [loo] of  certain  computer 
communication  traffic suggest that  the Poisson model provides 
reasonable  agreement with  actual  measurement  data. 

Our final generalization of the Poisson process starts  from 
the previous  observation that  the interarrival times (7;) of 
events  are exponentially  distributed. A renewal process is a 
sequence of nonnegative iid random variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ T ~ :  1 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i < m}. In  the language of renewal theory, 7; is a  “lifetime,” 
the  lifetime of a lightbulb,  the  time  to failure of a machine, 
the interarrival time  between messages in a communication 
system.. Starting  with a renewal process we may  construct a 
counting process N = {Nf};Nf will be the  number of lifetimes 
observed up  to  time t, that is, the  number  of  lightbulbs 
replaced,  the  number  of machine  failures, the  number of mes- 
sages which have arrived. Nf is defined  by Nt = max {n  : 71 + 
7 2  + ... f T, < t}. The Poisson process is the  counting process 
constructed  from  the renewal process of exponentially  distrib- 
uted  lifetimes.  For  the Poisson process we have E{N,} = 
t/E{7i} = At. This equality  does  not  hold  for  the general  re- 
newal  process. The main theorem of renewal theory replaces 
this equality  by  the  limit  theorem, lim, N,/t = ~ / E { T ~ } .  For 
further details see the-book by Cox [29]  and  the  fundamental 
paper of Smith [ 1381 . 

Another  component of a  queueing  system is the charac- 
terization of the  amount of service required by  an individual 
customer  or message, which we call the service demand, or 
simply, service or work. The  unit of service or  work varies 
depending  upon  the  nature of the server and customer. If the 
server is a  transmission  line or channel,  an  appropriate  unit will 
be [bit],  [byte],  [character],  [packet]. If the server is a host 
computer system and  customers or jobs require service by a 
processor then  the  appropriate  unit may  be [instruction] . In 
the modeling of a  system we assume that  the  demands are 
random variables. In most cases we shall consider,  the  popula- 
tion will be homogeneous  and  the service demands of cus- 
tomers { Wi} will be iid random variables. 

The arrival process and service demands are descriptions of 
the  customers. We must now  specify the service rate or proc- 
essing  rate of the server. In the  present paper we denote  the 
service rate  by C since  this quantity  corresponds to  the line 
capacity if the server is a  transmission  line, as in most of our 
applications.  Thus  the  units of C are [bitsls] , [kbits/s] . This 
quantity is sometimes called the bandwidth of the  channel  or 
line, since C is proportional to the effective bandwidth. 

If the service demand variable W [work  units]  and  the  proc- 
essing rate C [work  units/second] are given, their  ratio 

S = - W [seconds] 

C 

is a random variable called the service time. The sequence {Si} 
of the service times of customers is called the service  process. 
The inverse of the  expectation of the service time 

is called the (job) completion rate in the queueing literature. If 
C is a constant,  there is no essential  need for distinguishing 
between service demand W and service time S. Thus we often 
set C = 1 by  default  and represent the service demand in terms 
of the service time. 

In some  cases, however,  the processing rate is not a con- 
stant,  but varies depending  upon  the  “state”  of  the service 
station. Such an  example is a  multiserver queue in which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 
servers constitute a service station sharing  a common waiting 
line. If the processing rates of the individual servers are all C, 
and  the  number of customers  currently in the  station is i ,  then 
the  total  service-late  of  the  station is  given by 

C(i) = min (i,s)C 

which in turn gives the  queue-dependent  job  completion  rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pi = min (i,s)p. 

Another  example of queue  dependent processing rate C(i) 
is found  when  the effective  processing rate degrades as the sys- 
tem  congestion increases. 
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111. EXPONENTIAL SYSTEMS 

We use the  term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexponential system in referring to queueing 
systems  in  which the arrival and service processes have expo- 
nential  distributions.  Important results  are due  to Burke 
Reich,  and  Jackson. The  simplest exponential system is the 
single server queue (Fig. 1 )  which is referred to as the M/M/l 
system.  For  the M/M/ l  system the arrival process is Poisson 
and  the service  process is exponential. By this we mean that 
the interarrival times between events  (or  customers) {r i  : 1 < 
i < -} and  the service times {Si : 1 <i<m} satisfy the following 
conditions. 1) The { r i }  are iid random variables with F(t) = 
Pr { T ~  < t }  = 1 - e-&, (0 Q t <-I. 2) The service times {Si} 
are iid with G(t) = Pr {Si < t}  = 1 - e-pt (0 Q t < -). 3) The 
service and arrival processes are independent. To complete  the 
specification of the M/M/1 queueing  system we must describe 
the  manner in  which the  customers are served by the service 
facility; .this is called the queue discipline. The simplest such 
discipline is order of.arrivaZ (“first-come-first-served,’’ FIFO). 
All of the results  in the present  section  are valid for a larger 
class of service disciplines called work-conserving (Kleinrock 
[75] , Wolff [148]) .  A queue discipline is said to be work- 
conserving, if 1) the service demand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW of each job is not 
affected by the  queue discipline, 2) the  queue discipline does 
not  take advantage of knowledge about service demands  (or 
times) and/or arrival times of the individual jobs,  and 3) the 
server is not idle when there are jobs waiting for service. 
Certainly  this class includes such disciplines as FIFO,  LIFO, 
random,  round-robin  (RR),  foreground-background  or  feed- 
back  (FB),  and  processor  sharing (PS). The state of the system 
at time t is the  random process X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ X ,  : 0 Q t < &} where 
X t  is the  number of customers  either in service or waiting for 
service. Because of the memoryless property  of  the  expo- 
nential  distribution, this  description of the  state of the system 
defines  a Markov process.  Let ni,j(t) denote  the  transition 
probabilities 

ni,j(t) = Pr { X ,  = j/Xo = i}, 0 < i,j < 00 

and n(t) the  matrix (ni,j(t)). The transition probabilities 
satisfy two systems of differential equations, called the 
forward and backward equations. 

(d/dt)n(t) = n(t)Q (forward equation) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) 

(d/dt)n(t) = Qn(t)  (backward equation) (8) 

where Q = (4i, j )  is’the  matrix 

i f j = i +  1 

i f j = i - 1  

Io ,  i f j # i -  l , i , i+ 1 

3 x ~  denotes the characteristic or indicator function of the event or 
’ condition E. XE equals 1 if the condition holds and 0 otherwise. This 

provides a simple notation avoiding the writing of special formulas for 
certain index conditions. 

Fig. 1. MIMI1 queue. 

Q is called the infinitesimalgenerator or transition rate matrix 
of the process X. The  matrix  equations (7) and (8)  may be 
written in perhaps  the  more familiar form 

The  derivation of the forward (10) and backward (1 1 )  equa- 
tions employs a standard and important  technique.  For  the 
forward  equation  the change in state i + j which  takes place 
over the interval (0, t + hi is classified according to  the 
possible transitions in the interval (t, t + h ]  for “small” h. 
There  are three possibilities, as follows. 

1) The  state at  time t i s  j and no change takes place in (t, 

2) The  state at  time t is j - 1 and an arrival takes place in 

3) The  state at  time t is j + 1 and  a service completion takes 

t + h ] .  

(t, t + h ] .  

place in (t, t + h ]  . 

The  exponential  nature of the arrival and service processes 
imply  that  the  probability  of  more  than  one “change” (m  
arrivals and n service completions with m + n > 1) in (t, t + h ]  
is o(h) as h + 0. Thus 

ni,j(t + h)  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(X + Px(j>o)M + 4h>I  ni,j(t) 

+ (hX(j>o,(t)h + O(h))ni,j-l(t) 

+ (& + O @ ) h i , j + 1 ( t ) .  . (1 2 )  

Rearranging (12), dividing by h and  letting h + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO+ we obtain 
(IO). The derivation of  the backward equation (1 1) employs 
the same technique,  only  now  the  state  transitions in the 
interval (O,h] are examined. 

The  transition laws n(t) = (ni,j(t)) together  with an initial 
distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{t i  = Pr { X o  = i}} of  the  state  at time 0 deter- 
mine the process X. The  state  probability p j ( t )  = Pr { X ,  = 

j }  is given by 

If the process X is irreducible, i.e., for all i and j, ni,j(t) > 0 for 
some t ,  then lim, pj( t )  = pj exists. These limits  define the 
stationary distribution  of  the process. It may be that p j  = 0 
for all j (the transient case). In our applications, the  interesting 
case will be  when the {p i }  defines  a bona-fide probability 
distribution. These probabilities then satisfy the  equations 
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the  nature of the  output process of an M/M/l queue.  The 
Reich-Burke theorem is stated as follows. 1 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem: The  output process of, an M/M/l  queueing sys- 
tem,  in which  1) the initial distribution is the  stationary 
distribution,  and 2) the service is according to  the discipline 
order of arrival, is Poisson.  Moreover, the  state  of  the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X, and  the  number of departures in ( O J ]  are independent. 

Note  that  the conclusion  remains valid for work-conserving 
disciplines. The  theorem implies that  with an arbitrary initial 
distribution,  the  output process converges in  law as t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 00 to 
the Poisson distribution. 

The  output  theorem, as Burke refers to  the above result, 
holds in somewhat  more generality. A Markov process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX = 
{X, : 0 < t < -} in  which the state space (the  set of values 
taken  by  the X,) is the nonnegative  integers (0, 1,  2, .-,} is 
called a birth and death process provided that  the  only infini- 
tesimal changes allowed are 

i -+ i + 1  (birth) 

and 

i + i -  1 (death). 

By infinitesimal  changes we mean precisely that  the  con- 
ditional probabilities  satisfy 

where p = (po ,  p l ,  ...). Foster's theorem [40] states  that i f a  
vector p = (Po, p l ,  ...) exists  satisfying 

then a stationary  distribution exists  and the vector p will have 
strictly positive components.  In this case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is an ergodic Mar- 
kov chain and  the  state probabilities {p j ( t ) }  

are independent of t ;  that is, p j ( t )  = p j .  To verify the  in- 
dependence  with  time  note  that (8) implies 

The right-hand  side of (18) is zero  by (14)  and  hence 
(d/dt)&(t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,  as was to be  proved.  This of course  justifies 
the  term  stationary! 

The  stationary  distribution { p i }  for  the M/M/l  system is 
easily found.  The  state probabilities pj ( t )  = Pr {X, = j }  satisfy 
the  differential  equations 

(d/dt)pj(t) + P X ( ~ > O ) I  Pj(t) 

+ Xx(j> o )pj-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t )  + W j + l ( t > .  (1 9) 

Equation (19)  follows directly  from (IO) when we multiply  it 
by ti  and  sum over i. If the  limit, p j  = lim,+- pj(t) is to exist, 
it follows that  the derivative of p j ( t )  converges to 0. Thus (19) 
reduces to  the  steady-state  equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[X + D X ( ~ > O ) I P ~  = hX(j>o)Pj-l + W j + l .  (20) 

We now verify that 

P j  = @(I -P )  (21) 

is a solution to (20) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = Alp provided p < 1. The  ratio p 
is called the utilization of the system. It is easy to prove that 

T-* - 
so that p may be interpreted as the limiting fraction  of time 
the  state is nonzero,  that is, the  fraction of time  the server is 
busy  (or being  utilized). 

In  the modeling of computer-communications systems we 
encounter service systems composed  of  many service facilities 
which may be linked  together in special geometries. The out- 

put of  an M/M/l queue  may  form  the  input to  other  stations 
in the service network. What is the  nature  of  the  output 
process?  Reich [125]  and Burke [ 8 ]  were the first to  study 

Pr = j / X t  = i] 

1 - [pi + hi] h + o(h), i f j  = i 

i f j = i -  1 

i f j  = i + 1 

1 o(h), i f j Z i -  l , i , i+ 1. 

The  parameters {&,hi} are called the  death  and  birth  rates. 
Some examples follow. 

M/M/l Queue 

hi = x 

M/M/s Queue-s Servers 

hi = x 
pi = min (i,s)p. 

M/M with Processor Sharing 

hi = x 
i f i > 0  

i f i  = O .  

MIMI- 
hi = h 

p i = i p ,  i<-. 

For a birth  and  death process set 
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The  birth  and  death process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{X,} possesses a stationary distri- 
bution,  that is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= lim Pr { X ,  = k }  > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t-+ - 

exists and is strictly positive provided 

and  when this  condition is met 

Equation (30) and  the  stability  condition (29)  provide the 
formulas for  the  four queueing  models mentioned as well as 
for other  models of M/M-type  systems  where the service rate is 
state-dependent. 

The  output  theorem is generalized as follows: if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is a birth 
and  death process satisfying: 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhi = h; 2) Z j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArj < 00; and 3) 
the initial distribution Pr { X ,  = j }  is  given by (30), then  the 
sequence of death  times forms a Poisson process of  rate h 
and  the  number of deaths in ( O J ]  and  the  state  at time t are 
independent. 

As the  proof is so elementary we include it  for  the reader's 
convenience. Let ak,j(t)  be  the  probability  of k deaths in (O,t] 

and  the  state  at  time t + 0 be j .  Then  by considering possible 
infinitesimal changes in ( t ,  t + h J we have 

which  yields the  differential  equation 

(d/dt)ak,j(t> = -[X + pjlj]ak,j(t> 

It is now easy to show  (by direct  substitution)  that ak, j ( t )  = 
pjbk(t)  is a solution of (32) where pi is the  stationary  prob- 
ability distribution  of  the process [see (30)] and b k ( t )  = 
(ht)ke--hf/k! .  

The output  theorem has a very interesting  consequence in 
the  study of networks  of M/M-type queues-the so-called 
Markovian networks. Consider the simplest such Markovian 
network consisting of  two service stations  connected in series 
or in tandem (Fig. 2). 

Customers  enter  this  network  at  the first node (or  stage), 
queue'for service and  upon  completion  of service immediately 
join  the  queue  at  the second node.  The  state  of  the  system is 
the two-dimensional  vector-valued random process X = { X ,  = 

FIRST 
STAGE STAGE 
SECOND 

Fig. 2. Two-stage tandem queueing network. 

Fig. 3. Service  network. 

( X t , l , X , , 2 )  : 0 < t < -} where X , , i  is the  number of cus- 
tomers  queued  or in service at the, ith stage. If 1) the arrival 
process is Poisson (with rate h), 2)  the service processes are 
exponential  with rates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp i  (i = 1,2), 3) the  queue discipline in 
each stage is work-conserving, and 4) the service and arrival 
processes are independent,  then  the  output process of the first 
node will be asymptotically Poisson (as t -+ -) and we may 
apply the analysis for  the M/M/1 queue to  obtain  the  joint 
distribution of the  number of customers waiting (or in service) 
at each stage obtaining 

pi , j  = lirn Pr {X, = (ti)} = p1ip2j(1 - p1)(1 - pz> (33) 
t+ - 

where 

pi = Alpi, i = 1,2 .  (34) 

See Muntz [lo91  for  further discussion on this subject. 
The solution  for  the  state probabilities (33) of the  tandem 

network was generalized by  Jackson [ 6 5 ] .  Start  with a  graph 
G of nodes  and edges; nodes represent service stations and 
edges paths linking the  stations (Fig. 3). 

Customers  enter  the system at  the  nodes;  the external 

arrival process at  node ni is a Poisson process of  rate hi. The 
ith  node is a service station  with si  servers each  offering service 
according to  the  exponential  distribution  with  parameter pi. 
After service is completed  at  node ni, the  customer  either 
immediately joins  the  queue  at  the  jth  node  with  probability 
O i , j  or leaves the system  with probability O i  = I - Zj O i , i .  The 
flow into ni is composed  of: 1) the  external flow with rate hi; 
and 2) the flow from  node j(1 < j  < n). If we denote  by ri the 
net flow into ni, then  this second  flow  must have rate rjOj,i 
since the  proportion O j , i  of the  output  of nj is diverted to  the 
input of ni. The flows { ri} must  then satisfy 

rj = x j  + riei,j. (35) 
i 

The  state  of  the  network is described  by the n-dimensional 
vector-valued random process 

x = {x, = ( X , ,  1, x,, 2 ,  ..-, x,, n) : 0 < t < -} 

where n is the  number  of  nodes and is the  number of 
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customers queued  or in service at  node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAni at  time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt. Let 
&(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Pr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{x, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk }  be  the  state  probability. Jackson [65] 
proved that if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAri < sipi(l < i < n), then 

where p i , k j  is the  stationary  solution  for  the  probability of the 
queue size being ki in the M/M/si system  with arrival process 
Poisson of  rate ri. Equation (36) suggests that these  individual 
components  of  the  network  of Fig. 3 act independently and 
as if their  input processes were Poisson with  rates {Vi}. 

First,  let us  consider equation  (35). When does it have a 
solution? Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 be the  matrix (ei,j). Assume that  for some n, 
0“ has  row sums bounded away from  1. This implies that  after 
some  number  of  state  transitions i -+ j there is a positive prob- 
ability  that  a  customer will depart  from  the  system. This con- 
dition suffices to  guarantee  the existence  of a positive solution 
to  (35). The  matter  of  independence is a  much deeper 
question. If as before ak,j(t)  is the  probability  that: 1) there 
have been k departures in ( O J ]  (ki  from n i ) ;  2)  the  state  at 
time t is j ,  then ak,j(t) is not the  product of the  state  prob- 
ability (36)  and a Poisson distribution.  The  output  theorem 
does not  hold in this case even though  the  state  probability 
(36) has  the  form which would result if it were true. 

Jackson’s  result assumes that  the rate of service at  node ni 
depends  only  upon  the  state  of  the  queue  at  that  node. In 
many  systems  the service rate at  a  node is influenced by  the 
state  of  other  nodes.  For  example, in the  tandem  network of 
Fig. 2 we may  admit  the possibility  of blocking. The server in 
the first stage will be blocked  whenever M or  more requests 
are queued  or in service at  the second  stage. Obtaining  the 
stationary  state  probabilities  for Markovian networks 
operat ing  under various blocking  disciplines poses formidable 
analytical  problems.  For  the two-stage tandem  network (Fig. 
2) these  probabilities are not separable as in the  Jackson  model. 
Konheim  and Reiser [96] give a closed-form solution  for  the 
exponential case (exponentially  distributed service times  and 
Poisson arrivals); earlier  results may  be  found in a paper  of 
Neuts [ 1 101 . 

Gordon and Newell [S  1  ] considered a variant  of the  Jack- 
son  model in which the  total  number of customers (messages) 
is fixed.  The  state of this closed network  may  be described as 
in  Jackson’s model  by  the n-dimensional  vector-valued  ran- 
dom process X = {X, = ( X t , l ,  .-, X,,,)}. In the  Gordon- 
Newell model  the  state space (the  set of values assumed by  the 
variables X , )  is’ the  set { k  = ( k l ,  .-, k,) : ki 2 0,  C i  ki = M} 
where M is the  number of customers (messages) allowed in the 
system.  The closed model is particularly  appealing  when 
modeling an  I/O-processor configuration in  which case M is 
the degree  of multiprogramming. Since the  random process X 
has a  finite  state  space,  the general theory of Markov chains 
assumes that  it  has  a  stationary  distribution provided that  the 
process is irreducible. Gordon and Newell proved that, like 
Jackson’s result,  the  stationary  distribution is of  “product” 
form 

where pi,hi = p i k i ( l  - pihi) and the normalizing constant Cis 
chosen so that  the probabilities  in (37), when  summed over 
the  state space, equal  unity. In general the  determination of 
the normalizing constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC is not  straightforward.  The param- 
eters {pi} may be  quite general functions of i and  the  number 
of states large. The numerical  aspects  of the  determination of 
the normalization constant has been examined by Reiser and 
Kobayashi [ 1271,  [128] and Buzen [ lo].  

One final remark; in computer  communications applica- 
tions in which messages are transmitted  between  nodes  in  a 
network,  the service time depends  upon 1) the  length of the 
message and 2) the line speed. Evidently the service time of 
the same message at  different  nodes is dependent. We have 
pretended  that these service times are  chosen independently 
for  the same message! Indeed not  only are the service times 
dependent  but  the interarrival time  between  this message 
(when it  enters  externally  into  a  node)  and  the  next message 
are dependent. Kleinrock [74] recognized this  defect in the 
modeling  and called the  assumption we make  in the analysis 
the message independence  condition. It is claimed that  there is 
evidence to  support  the viability of  this  assumption [ 8 0 ] .  

IV.  GENERALIZATION OF MARKOVIAN NETWORKS 

The class of Markovian networks defined  in Section I11 have 
been  substantially enlarged  in recent years. We will highlight 
these  results  in this  section.  For  detailed derivations see 
Chandy [12], Baskett et al. [6 ] ,  Kobayashi and Reiser [88], 
Muntz [ 1091, Kobayashi [86] , and  Kleinrock [79] . 

M/G/w: A Oueueing System  with  Ample Sewers 

Start  with  time  epochs {T,} distributed as a Poisson process 
at rate A, and  a set  of iid random variables {S,} which are in- 
dependent of the (7,) and have a  common general distribution 
(with  distribution  function G). Doob [34] was the first to  
note  that  the  set of points { T ,  + S , }  also constitute  a Poisson 
process  of rate X. In  the  queueing  theoretic  context,  this  prop- 
erty means that  the  output process of the queueing system 
M/G/m is a Poisson process with  the same rate as that  of  the 
input.4 Mirasol [lo81 showed that  for  a Poisson arrival 
process, the  number  of  jobs in an M/G/w system  has  a Poisson 
distribution  with  mean  at  time t 

rt 
A i  (1 - G(x)) dx 

where G is the service time distribution. Hence in  the  equilib- 
rium  state,  the mean is 

p = XE{S} = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX (1 - G(x)) dx. l- (39) 

The above result  can be  further  extended  to  those cases in 
which both arrival and service rate are queue-dependent, as 
discussed in the  section on exponential servers. Let be the 

It  has also  been  shown that for a  nonhomogeneous  Poisson  input 
with  rate X ( t ) ,  the  output process is a  nonhomogeneous Poisson  process 
with  intensity JgmX(t - u)dG(u). 



queue-dependent arrival rate  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAck the  total processing 
capacity when there  are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk customers  in the M/G/= system at 
any given time. Then we can prove that  for  arbitrary  distribu- 
tion  of  work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG w ,  the  steady-state  distribution of the  number 
k of customers waiting or in service is given by  the following 
formula similar to (27)-(30) of  the  birth-and-death process: 

where r i  is defined  by (27) in  which p i  is the  queue-dependent 
rate 

Here E{ W }  is the mean work  demanded  by a  customer 

E{W}= lmxdG,(x )=  (42) 

The result  in (40) allows another  representation which we find 
useful, 

where 

(44) 

and 

When the  input rate is a queue-dependent Poisson  process 
with  rate h k ,  the  output process possesses the following prop- 
erty zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 1091 

lim ( l / h )  Pr  {a departure in (t  - h,t)/X, = k }  = Ah (52) 
h - 0  

where X t  is, as defined  earlier, the  number  of  customers in the 
system at time t. This property  together  with  the orderliness 
of the  departure process-the rate of multiple  departures is 
zero-shows that  the  departure process with time reversed is a 
Poisson process with  rate h k .  If in particular,  the arrival 
process is a state-independent Poisson process, so is the  depar- 
ture process as  we have noted earlier. We should note  that  the 
property (43) holds  for  the  output process of the general 
birth-and-death process discussed earlier. 

M/G/ l  under Processor-Sharing 

The notion of processor-sharing (PS)  was initially intro- 
duced by Kleinrock [76] as the limiting case of round-robin 
(RR) scheduling for a  time-shared  system  in  which the time 
quantum  (time slice) is allowed to  approach  zero. Under  this 
discipline,  when there are k customers  at  the service facility 
each  customer receives service at  the  rate Ck/k  [work  units/s] , 
where Ch is the processing capacity of the server. When a 
customer  enters  the  system,  he immediately starts receiving a 
share of the server. Thus there is no waiting time. This situa- 
tion is exactly  what we observed for  the M/G/=. Thus the 
solutions  for  M/G/l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-PS resemble those  for M/G/=: namely the 
formulas (40)-(45) hold here also. The  departure process 
possesses the corresponding property as that  of  the M/C/- 
and M/M/l (birth-and-death process model). 

If the processing capacity of the service facility is independ- 
ent'of  congestion, 

B is the generating function of the sequence { P k } .  If the arrival 
rate is independent of the  state of the  system,  and  the service 
capacity of the individual server is constant, i.e., 

c k  = c, for 1 < k < 00 (53) 

and  the arrival rate is independent  of k, then of (44) is 
now simplified to 

so that 
c k  =kc, 1 Q k < =  

(47) B(z) = 1 / [ 1 - h / C ]  
then we have 

Pk = O(/C)'/k! (48) which yields the following steady-state  distribution 

and P k  = (1 - P I P h .  (56) 

B(4 = exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&IC) (49)  The  parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is the utilization as  given by (51). Equation 

which easily leads to  the  aforementioned result that  the we can show under general conditions that the ps (56) is exactly  the same as (21) of the M/M/l  system. In fact 

steady-state  distribution (43) is a Poisson distribution 
discipline effectively  transforms  a general service distribution 

P k  = pke-P/k! 

where the mean value p is 

p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw{ W)/C = Alp, 

Gw with mean E{w} into  the  exponential  distribution  with 
(50 )  the same mean, insofar as the process .Xt (and hence also with 

respect to  the  queue  distribution { p h }  and  departure process) 
is concerned!  For  other  interesting  properties  of  the PS 

(5 1) discipline see Kleinrock [78]  and O'Donovan [ 1161 . 
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Different Classes of Customers 

Thus far we have assumed a homogeneous  customer popula- 
tion. We now introduce  different classes of  customers. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcluss- 
r customer (r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, 2, -.., R )  has  a general service distribution 
Ci , r  at  node (or service station) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi within  the  network of 
queues. We are assuming that  the service station is either 1) an 
ample parallel server (and  hence can be modelled as M/G/m for 
Poisson arrivals); or 2) a station  under PS. 

When the service discipline at  node i is FIFO or  any  other 
work-conserving queue di~cipl ine,~  i t  is necessary to assume a 
single-class exponential  distribution in order  that  the  network 
enjoy  the Markovian property. 

The  notion of multiclass is also applicable to customer 
routing behavior in the  network. The transition probabilities 
{ 6 i , j }  defined  in  Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI11 may  now be generalized to  the  set 
{6 i , r , j , s }  where 6i ,r , j , s  is the  probability  that a class-r customer 
leaving node i will immediately  join  node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj as a class-s 
customer. 

The  state of the  network is now to be  described by  matrix- 
valued random process 

of node i when there are k customers  at  the  node. Note that in 
this generalized queueing network  model,  the Poisson arrival 
can depend on  the  total  population, whereas the service rate 
is a function of its local queue size. This fact is reflected in the 
expressions (61) and (62),  which can be  viewed as generaliza- 
tions of the  numerator and denominator of (44), respectively. 
The parameters {ei ,r}  are similar in interpretation to  the 
parameters { r i }  of (35) and satisfy the  system. 

where 60, j ,s is the  probability  that  an  externally arriving cus- 
tomer  enters  at node j  and is a class-s customer. Hence X,60,j,s 
represents the (Poisson) external  rate of class-s customers  at 
station j when  the  total  population  of  the  network is n. p o  of 
(59) is the  probability  that  the  entire system is empty  and is 
uniquely determined by the  normalization  condition CKPK = 1. 

If we combine  the  different classes of customers, we obtain 
the  joint  distribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{X, = (Xi , r ) t  : 1 < i G N ,  1 G r G R ,  0 < t < =} (57) k = (k l ,   k2 ,  ‘.., k N )  (64) 

where the  matrix (Xi,r>t gives a ‘‘SnaPShOt’’ of  the  state of the as the marginal distribution of (59). By virtue of the repro- 
system  at  time t ;  that is, the  number of class-r customers  at ducing property of multiple Poisson distributions, we have 
node i at  time t .  It is important  to recognize that X is not a 
Markov process if any of the service time distributions is non- P k  = p o ~ ( ~  I k I 1 ) n Y i , k i ~ i k i  

exponential. By applying  the  method of stages (Cox [30 ] ,  Cox l<i<N 

and  Smith  [31] , Kleinrock  [79] ) the “general” service time 
distribution  can be handled  although this  requires an aug- 
mented  state space. 

Poisson processes with rates hKwhere K is the  matrix 

(6 5) 

where 

We assume that  customers  enter  externally according to Wi = x ei,rE{ Wi,r> (66) 

is the  expected  total  work  that a customer requires of node i 

rate is a constant X, then we have 

l S r S R  

K = (ki.r>. (58) during  the customer’s entire  life.  If,  in  particular,  the arrival 

The  joint  distribution of X t  = (Xi ,r) t  is 

p K =  Pr {x, = K }  

where pi ,k i  is the marginal distribution  for  node i 

where The parameters {Pi,ki} of (67) are similar to  the { O h }  of (44) 

A(k) = n Ai 
O<i<k 

Generalized Routing Behavior 

(61) 
We have assumed up  to  now  that customer’s routing  within 

a network is governed by a  first-order Markov chain {6 i , j }  or 
{Oi ,r , j , s} .  That is, when a customer (of class-r) completes his 

a class-s customer) or leaves the  system.  Recently Kobayashi 
A, is the  total  external arrival rate to the  network  when  the  net-  and Reiser [881 have shown  that  such a restriction  on  the 
work  population is n = 1 1  K 1 1  and c ~ , ~  is the processing capacity  routing behavior  can  be  eliminated entirely  and  yet  the  queue 

distributions {pk}  and {pK} essentially remain the  same. In 
’Chandy [12] has shown  that  the  last-in-first-out  with  preemptive other  words,  the  solutions  obtained earlier  are completely 

‘and 

?’i,ki = l / (Ci , l  x ci,2 x ”’ x Ci,ki). (62) service at  node i ,  he immediately  joins  the  queue  at  node j (as 

resume (LIFO-PR) discipline  possesses  the  properties similar to PS. robust  with respect to routing behavior. 
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The derjvation of this  result can be outlined as follows: 

consider a class of routing  transition characteristics  represent- 
able by a  hth-order Markov  chain (where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh can be  arbitrarily 
large). Thus  the  probability  that  a  customer  at  node i will 
move upon  completion of service to node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj depends  not only 
upon (his present location) i ,  but also upon his past history, 
say the previous (h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1) transitions. We then define the state 
of a customer by an h-tuple 

s = ( i l ,   i2, .-, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAih). (70) 

The values that s can take are the hrh h-tuples 

(O,O, ...) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO),(O,O, ...) O , l ) ,  ...) ( N -  1,N- 1 ,  - , N -  1) 

which we will represent for  notational convenience  by the 
integers 0, 1,  ..., Nh - 1.  An appropriate representation of  the 
network is then given by the  random process of countably 
infinite  dimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y - { Y t = ( Y s , T ) t : ( O < S < N ~ , 7 = 0 , 1 , ~ ~ ~ ) ,  O < t <  m}. 

The process Y, like the process X of (57), is not itself a Markov 
process, but is reducible from  a Markov process defined over 
an appropriately  augmented  state space. Note  that in our 
integer representation of the  state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, the server of a customer 
in state s is uniquely determined  by  the relationship 

i = s(modu1o N ) .  (72) 

Then  the  steady-state  probability  that  the process Y takes on 
the value 

is  given by following expression 

pK = lim Pr { Y, = K }  
t-+ - 

where 

The interpretation of the  parameters in (74) should  be  self- 
evident. 

Again by use  of the self-reproducing property of the Pois- 
son distribution,  the  distribution of 

is  given by the  formula (65). The  parameter W i  in that expres- 
sion is now  defined by 

(77) 

This quantity is again the  total  amount of work  that  a cus- 
tomer will require of server (station) i during his entire life 
within the  network. 

One final remark:  the  notion of customer state s as defined 
by (70) can be further  extended  to allow for multiclass  cus- 
tomers.  For this  extension we define s by 

V, DISCRETE-TIME QUEUEING SYSTEMS 
AND THEIR APPLICATIONS 

We have thus far dealt with  continuous-time queueing sys- 
tems: both interarrival  time and service time  are  considered to 
be nonnegative real-valued random variables. We should recog- 
nize, however,  that  many  actual systems we encounter  operate 
on  a discrete-time basis. That is, we discern a  natural elemen- 
tary unit of time in a given system. Examples are the machine 
cycle time of a processor, the  bit or byte  duration of signals on 
a channel or transmission line. For practical  purposes it is 
usually justifiable to approximate  such system operations in 
terms of continuous-time  models, because of the elegance and 
richness of  mathematical  techniques  for  continuous-time 
models. In certain  problems,  however, continuous-time ap- 
proximations are not applicable and hence we must formulate 
them as pure discrete-time  problems.  Typical  examples of our 
interest are queueing  problems  associated with  synchronous 
communication  systems, including the conventional STDM 
and packet-switching  systems with  time-slotting, e.g., a slotted 
ALOHA multiplexing scheme [ l ]  . In such systems, all events 
are allowed to occur only  at  definite regularly spaced  time 
points. 

Aside from such  discrete structures  of intrinsic nature as 
cited  above, we often find it  computationally convenient and 
efficient to deal  with  discrete  time  systems  when we solve a 
given problem by digital computations. Neuts  and his associates 
[6 1 ] , [ 1 1 1 1  , [ 1 121 have investigated the numerical  aspects of 
solving various types of single-server queueing  models. 

One might  quickly think  that every result and  formula 
derived for  a  continuous-time  model can be translated into  its 
discrete-time analog in an obvious  fashion. Unfortunately, this 
does not always turn  out  to be the case, as discussed below. 
The major factor  that  hampers  our generalizing the results of 
Markovian queueing networks,  for  example, seems to be the 
fact that  a Poisson process possesses two  different discrete- 
time analogs: one is a Bernoulli sequence, the  other  a Poisson 
sequence as will be  defined and discussed in the sequel. We will 
also find  it necessary to define the  notion  of processor sharing 
(PS) different  from  the  round-robin (RR) scheduling, although 
PS was initially introduced as the limiting case of RR. 

Discrete Analog of the  System MIMI1 

Let us assume that  the time axis is segmented into  a  con- 
tinguous  sequence of time intervals (slots) of duration A. In 
an ordinary  data transmission/processing system, A may cor- 
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respond to  the pulse duration,  byte  length,  packet size, or  to 
any data  unit of fixed size. If we assume that no more  than 
one  customer or unit  may arrive in  a given slot, and the arrivals 
in different time  slots are statistically independent,  then  the 
arrival sequence  may be  identified  with a  sequence of 0’s and 

slot  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 otherwise. The  random variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{x,} are in- 
dependent  and identically distributed, X k  = 0 or  1, and 
Pr { X ,  = 1 )  = h with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 < h < 1. We say that X is a Bernoulli 
sequence and  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX k  is the outcome on the  kth  trial. The 
total  count  of arrivals N m A  in the first m slots  has the 
binomial distribution  (with  parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX) 

l’s, x = ( X I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxz. .-); x k - - 1 if a customer arrives in the  kth 

(79) 

We assume that arrivals are  characterized by a Bernoulli 
sequence  and that  the  queue discipline is any nonpreemptive 
work-conserving  discipline. Ncnpreemptive  means  that  once a 
customer  enters service, he must be processed until  completion 
before  the server selects the  next customer for service.Then the 
method of imbedded Markov  chains developed by Kendall 
[69]  for  the  continuous-time model is applicable  here also. 

Let Yi  be  the  number  of  customers  in  the system just after 
the service completion of the  ith  customer  and’let Zj be  the 
number of customers  entering  the  system during the service of 
that  job.  Then  the sequences { Yi }  and {Z i }  are related by  the 
recurrence  relation 

where C(m,n) is the binomial  coefficient 
The  probability generating function of the  stationary  distribu- 

m! tion { n k }  of Yi  
C(m,n) = 

n!(m - n)! 
n(z) = x n k z k  = lim ~ { z ~ i }  (83 1 

Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANd = {N ia  : 0 < i < -} is a  discrete counting process- O<k<- i+ m 

the  counterpart of the  continuous-time  counting process must satisfy the equation 
defined in Section 11-and N i ~  is the  number of arrivals in the 
first i slots. For a  Poisson  process, the interarrival  times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ ~ i }  n(z )  = lim E{zy i+ l }  = lim E{zzi+l}E{zyi-x(Yi>O)}. 
were iid and  exponentially  distributed;  for  the process N d  they i+ m i’ m 

are iid with  the geometric distribution (84) 

f k  = Pr { T i  = kA} = h(1 - x)”’, 1 < k <  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO0. (80) In (84) we have used the  independence  of Yi  and Zi. If we 

We also assume that  the service times {Si}are iid with 
define B(z) to  be  the  probability generating function.  of  the 
number  of arrivals during a service period  of a customer, we 

gk = Pr { S i  = kA}  = p(1 - ~ ) ~ - l ,  1 < k < m. (81) have 

The geometric distribution, like the  exponential  distribution, B ( ~ )  = x zn gjCG,n)hn(l - A1j-n 

enjoys  the memoryless property; the  conditional  probability O < n < -  n < j < -  

that T~ is larger than (k  + j ) A  given (the  condition)  that  it is 
already larger than jA  is independent of the value of j ,  

= G ( l - h + t )  ( 8 5 )  

Pr{T i>(k+ j )A IT i> jA}=Pr {7 i>kA} .  
where 

. .  

G(z) = gjzj 
Thus if the  state  of  the  system is described by  the  random O < j <  - 
process X = { X j  : 0 < j < m} where X j  is the  number of  cus- 
tomers waiting or in service at time jA, then X is a Markov 
process  (chain). If p = h/p < 1 ,  the process X is recurrent  and 
a stationary  distribution  for  the  queue  length  exists  and is 
given by the same formula as in  the  continuous case. The 
departure process is similarly a  Bernoulli  sequence when  the 
initial distribution is appropriately  chosen.  Furthermore,  the 
notion of queue-dependent arrival and processing rates as 
discussed in  Section I11 is equally  applicable here. 

Discrete Analog of the  System M/G/I 

The M/G/1 system provides another case in which the 
discrete-time  interpretation  of results  in its  continuous-time 
model is fairly straightforward.  The  system M/G/1 (Poisson 
arrival/general service time/single server) is discussed in most 
of the  standard references on  queueing  theory (Cohen [26], 
Feller [39],  Kleinrock  [79])  and  hence will not  be reviewed 
further  here. Meisling [ lo71 discusses the  discrete-time  M/G/l 
system. 

is the generating function of the service time  distribution {gj}. 

Equations (84) and (85)  readily show  that 

n(z )  = B(z) [n (o)  + ( l / z ) (n (z )  - n (0111 (86) 

or equivalently 

n(z) = ~ ( o ) B ( z ) ( z  - I ) / ( z  - B(z)). (87) 

The  solution given in (87) contains  the  undetermined  param- 
eter n(O)-the value of  the  function n(z)  when z = 0. This 
number is fixed by  the  normalization  condition n(z )  = 1 when 
z = 1. Allowing z +. 1 in  (87) and  noting  that B(1) = 1 we 
have ( 1  - (d/dz)B(z) I Z z 1 )  = n(0). If we set p = 1 - n(O), 
then 

while the  parameter p is the server utilization as before.  It is 
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well known for  a continuous-time  M/G/l system that  the 
distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{nk} is the same as the  distribution { P k }  of the 
number  of customers observed at a randomly chosen instant of 
time  and  hence  equals the time-average distribution as well. 
This important  property  holds  for a  discrete-time  M/G/l 
system. One proof  of  this fact makes use of  the  notion  of 
supplementary variables [31].  Thus  the  probability generating 
function of the sequence { p k }  is  given by 

P(Z> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP)B(Z)(Z - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB(z)). (89) 

Schmookler [ 1351 discusses an  extension  of  the result (89) 
to  the case of compound or bulk arrivals. In such a system we 
allow more  than  one  customer  to  enter  the system at a time. 
We denote this  system by  the  notation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM(A)/G/l where the 
A of  the superscript is the variable representing the  number of 
customers in an arriving group. Let X represent the  group 
arrival rate  and  suppose that  the size of  the  nth group is a  ran- 
dom variable A , ,  Pr { A ,  = k }  = ah ,  with 

@(z) = akzk. (90) 
O<k<- 

Note  that  the arrival process is a compound process. It is a 
discrete  generalization of the  compound Poisson process 
discussed earlier  in  Section 11. Define a  set of parameters {X,} 
by 

1-X, i f n = 0  

a,L if 1 <n<m. 
X,=  { (91) 

Then X, may be  interpreted as the arrival rate of a  group of 
size n. We then  define  the generating function A(z) by 

A(z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx X,Z" = 1 - X + X@(Z). (92) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O $ n < -  

The (left) composition  of  the  function G with respect to  the 
function A, which we denote  by B ( A ) ,  is 

B ( A  ' (2)  = (C A)(z) = G(A(z)) = G(l - h+ X@(Z)) (93) 

is the  probability generating function of the  total  number  of 
customers arriving during  a service period.  Formula  (87) may 
then be generalized to  the  M(A  )/G/l system  yielding 

r I c A  '(z) = rI(A '(0)B(A ' (z)(z - l)/(Z - B(A '(z)). (94) 

The constant rI(A '(0) is now given by 

ncA'(0) = (1 - P)/(d/dz)@(z) lz=l = (1 - P )  (95) 

where p = XE{S}E{A} and E{A}  is the  expected size of a 
group. Similarly (89) is also generalized to 

P ( A  '(z) = (1 - P ) B ( ~  ' (z)(z - l)/(z - B ( A  '(z)). (9 6) 

Computation  of  the  queue  distribution { P k }  can, in  prin- 
ciple, be  obtained  by inverting the generating functions in 

equations  (89) or (96). In practice,  a  simple  recurrence rela- 
tion  for  the { P k }  may be derived from (89) or (96) provided 
B(z), BcA '(z), and @(z) are rational  functions  of z. See Kendall 
[96]  and Meisling [ 1071 for  representations  of this type.  The 
average queue size and response time are easily found  from 
(89) or (96),  together  with Little's formula. 

If we assume further  that  the  queue discipline is FIFO,  the 
waiting and response time distributions can be  obtained also in 
terms of the generating functions (as contrasted  with Laplace- 
Stieltjes transform  solutions  obtained  for  the  continuous-time 
M/G/1). For  other scheduling disciplines (LIFO, random) it 
seems not  too difficult to  extend  known results for  the  con- 
tinuous-time  case. The case of finite  capacity  (waiting room) 
is an important  one  for  the analysis of buffer  storage  and the 
model can be treated using techniques similar to those 
developed by Riordan [ 1291 and Keilson [68] . Schmookler 
[ 1351 discusses this  problem in detail. See also Neuts [ l  1 13 
for  related  subjects. 

Processor-Sharing (PS) in a Discrete-Time-System 
and Applications 

In Section IV we saw that  under  the PS discipline [76],  the 
system  M/G/1 behaves as  if it were an M/M/l  system;  hence 
the  departure process exhibits a Markovian property,  namely, 
a Poisson process with  the same rate as the  input. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA proper 
translation of this  interesting property  for a  discrete-time sys- 
tem requires the following definition. 

Definition: PS in  a  discrete-time  queueing  system is the 
scheduling rule which  selects,  in every time slot, one of the n 
customers in the system randomly  and equally  likely and  then 
processes this customer  for  one  slot  time. 

Thus if the service requirement of a customer is kA,  then  it 
must be scheduled  and processed k times  before its service is 
completed.  Note also that  the so-called round-robin  (RR) 
scheduling is different  from  the PS discipline defined  above, 
although in the limit as A + 0 both  RR  and PS converge to  the 
same continuous-time PS discipline originally defined by 
Kleinrock [76]. 

Kobayashi [85]  has proved  formally that  for  the discrete- 
time PS discipline defined  here all of the results obtained  for 
the  continuous-time model  can be carried over directly 
including those relating to queue-dependent arrival and 
processing rates  and  different classes of customers with  arbi- 
trary service distributions. 

It is worthwhile to cite  a number of possible applications of 
the  notion of PS. The  first  example  relates to  the congestion 
analysis of store-and-forward packet-switching computer sys- 
tems. A message consists of one or more  packets; individual 
packets are usually processed and transferred as independent 
units. Thus if we view a  transmission  link as a service facility, 
it is essentially an M/G/l system with  the server operating 
under  the PS queue discipline when the message flows between 
a given pair of nodes can be characterized  by  a Poisson process. 

The second  example arises from modeling the ALOHA 
multiplexing  scheme [87]. In this  scheme  a user transmits his 
data messages into a  random-access  channel  in the  form of 
packets. If a packet occupies the channel for  the  entire  packet 
duration,  it will be successfully transmitted  to  its  destination. 
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If,  on  the  other  hand,  more  than one user transmits packets 
simultaneously and these  transmission  times  overlap, even 
partially,  then all of the packets involved are considered lost, 
and  they  must be retransmitted  after some  randomly chosen 
delays. If we choose the retransmission  delay of any out- 
standing  packet as a  discrete-time random variable with  the 
geometric distribution 

Pr Iretransmission delay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= dA} = (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr)r”’-l, 

l < d < m  (97) 

for some r ,  0 < r < 1,  then  at a given time slot, all of the  out- 
standing  packets will attempt retransmissions independently, 
and  with  equal  probability r. The rate of successful transmis- 
sion depends,  of.course,  on  the level of contention:  the larger 
the  number  of  outstanding  packets in the  system,  the lower 
the  channel  throughput.  Thus  the ALOHA channel (which we 
define as the  combination of the random-access channel  and 
retransmission devices of  the individual user terminals) can be 
appropriately modeled as a  processor-sharing  system (or  more 
aptly we should call it a capacity-sharing  channel with  queue- 
size dependent processing rate  (or capacity).  For  further dis- 
cussion of this application  the reader is referred to Kobayashi, 
Onozato,  and  Huynh  [87]. A slightly different model for 
satellite communication is discussed in Gavish and Konheim 
[47] . The reader is also directed to Carleial and Hellman [ 111 
and Kleinrock and Lam [81]  for  the  performance analysis of 
the  slotted ALOHA system. 

Discrete Analog of the  System M/G/m 

In this case an analogy between a continuous-time  model 
and a  discrete-time one is essentially of a different  nature  from 
those discussed previously.  Consider a Bernoulli arrival process 
at a station  with infinitely many parallel servers. Because the 
service times  of-individual customers are independent,  it is 
possible that  more  than  one server can complete  the service of 
a customer in  a given time  slot,  except  for  the special case 
when all customers require exactly  the same amount of serv- 
ice,  that is,  in the system M/D/w (where D stands  for  deter- 
ministic). Thus  it is clear that  the  beautiful property-Bernoulli 
input -+ Bernoulli output-cannot  hold  for  the discrete  system 
M/G/m. This failure, in fact,  creates a  major difficulty,  when 
we attempt  to  model a network of queues of  discrete-time 
structure. As  we discussed earlier the M/G/m system possesses 
several interpretations and  useful  applications: it is a mathe- 
matical  representation of random  delay.  It  represents, in a 
closed Markovian network  with  finite  population,  the  popu- 
lation  source itself  (such as a set of terminals). 

Consider  a compound arrival process in  which the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{X,} of 
(91) arise from a Poisson distribution 

h, = h, = hne-h/n!, 0 < n < m. (9 8) 

This arrival process is a more  natural  one  than  the Bernoulli 
sequence as a  discrete-time counterpart of a Poisson process. 
Start  with a Poisson process of rate p .  The  number of events 
(arrivals) in  a finite interval of length A  has  a (Poisson) distribu- 
tion  with  expectation h = pA. We call the discretized Poisson 

process, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANd = {NiA : 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi < m}-obtained by  only observing 
the  continuous-time Poisson process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Nt  : 0 < t < m} at 
the discrete  set of time points iA-a Poissonsequence; N ~ A  has 
the  distribution 

Pr ( N i A  = k }  = ( ipA)ke-if iA/k! ,  0 f k < (99) 

and the generating function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I\(z) = eh(z-1). ( 100) 

With this assumption  made  concerning  the arrival process, 
most  of  the results obtained  for  the  time-continuous M/G/m 
system  are translated  into  the discrete-time case. Let {gk}  
denote, as before,  the probabilities that  the service time (or 
delay)  in the  system M/G/m are  kA(0 < k < 00). Assuming 
that  the system is initially empty, we have the following ex- 
pression for  the  probability  that  there are  k customers in the 
system during  the  rth time unit (1 < r < m); 

where {GiC} is the  complement  of  the cumulative distribu- 
tion of the { g k } ,  

In  the limit  as r + 00, we therefore have the following 
stationary  state  distribution: 

in which p represents  the average number  of servers busy (or 
the average number of customers in the system) at a given 
time. 

We can  show  that  the  number  of  departures in different  time 
slots are independent  and  the  number of departures  at  the 
end of the  rth  time  slot  has a Poisson distribution  with 
parameter 

c gi. 
O < i < r  

Hence,  in the limit  as r + 00, the  output process is a homoge- 
neous Poisson sequence with  rate h. 

An attempt  to generalize the results of  queue-dependent 
arrival and/or processing-rates has  thus -far turned  out  to  be 
unsuccessful. Thus  the formulas (43)-(45) do  not  hold in  a 
discrete-time model, whereas formulas (46)-(52) directly 
carry over to  the discrete-time case. For detailed  discussions 
on  the  subject  of  the present section,  the reader is referred to 
Kobayashi [85]. 
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In  the discrete-time M/G/l system discussed earlier, the 

interarrival times { ~ i }  were iid with  a geometric distribution. 
If  we remove the  hypothesis as to  the  distributional  form,  and 
allow an arbitrary  distribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ f k } ,  

Pr { T ~  = kA}  = f k ,  (105) 

the resulting system is a discrete-time  system GI/G/l (general 
independent arrivals/general service time/single server). 
Lindley,  in a  fundamental paper [ l o l l ,  showed how  the 
stationary waiting time distribution,  limn+m Pr { W ,  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx} 
( W ,  = waiting  time of the  nth  customer), was the  solution of 
an integral equation. In general the  solution involves tech- 
niques from  complex  function  theory. Under the assumption 
that  the  distributions { f k }  and {gk}  are of compact  support 
( f k  = gk = 0 for k > K ) ,  Konheim [95] gives a simple method 
for  calculating the waiting  time distribution of the  nth cus- 
tomer as n --f 

hk = lim Pr { W ,  = kA}  (106) 
n+m 

where W ,  is the waiting  time of the  nth  customer.  The waiting 
times { W,} satisfy the recurrence equation 

Wn+, = (W,  + S ,  - T,+,)+, 1 < n  <w;  W 1  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

(1 07) 

where a+ = max (a, 0). Let 

F(z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx f k Z k  (108) 
O Q h < m  

G(z)  = x gkZk (1  09) 
OQk<- 

H(z) = x hkZk. (1 10) 
OQk<m 

From  the  hypothesis  that { f k }  and {gk}  have compact  sup- 
port,  it follows that F and G are  polynomials. Form  the 
rational  function 

S(z) = [ 1 - F( 1 /z )G(z)]  /( 1 - z )  (1 11) 

S+(z) = c, n ( z -  U i + ) r i ,  1 < I vi+ I (1  12) 

and factor S(z)?  S(z) = S+(z)S-(z) with 

S-(Z)= C2zpC3 U(Z - 0 < I vi- I < 1 (1  13) 

choosing the  constants zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2 so that  S+(l) = 1. Equa- 
tions (1 12), (1 13) provide a Wiener-Hopf-like factorization of 
S(z); l/S+(z) is analytic  in the  open  unit disk { z  : I z I < 1 )  
while l / S - ( z )  contains  the singularities of S(z) in  this  disk. It 
can be  shown that H(z) = l/S+(z) so that  the  determination of 
the  stationary waiting  time distribution requires just (!) the 
ability to factor polynomials. The  assumption  that F and G 

are polynomials is of course  unnecessary. The general case may 
be obtained  by  approximating an actual  distribution  by  one  of 
finite support. This method should be  compared  with various 
techniques  for  the  solution  of  the GZ/G/l system (Pollaczek 
[ 1241, Spitzer [ 1411 , and  Cohen [26] ) all of which use com- 
plex  analytic methods. 

Buffer Storage Analysis 

One of the applications of the discrete-time  model is in the 
study  of  buffer storage. The main analytic  problem is the 
determination of the  buffer overflow probability. A common 
feature  found in many  computer-communication or terminal- 
oriented systems is that message generation is usually of a 
busty  nature. Thus the multiplexing of a transmission link or 
channel is commonly  adopted to enhance the utilization of  the 
line.  Then some type of buffer  storage is necessary to trans- 
form  the arriving stream with large variation in time into an 
outgoing  flow of a  more regular nature.  The  buffer space 
should be sufficient to  accommodate  a large queue of messages 
which  may occasionally develop. Fig. 4 illustrates that  the 
buffer  storage  problem is essentially a queueing  system  which 
is provided with  only  a  finite capacity to  hold waiting 
customers. 

The idea of multplexing is applied not  only  to transmission 
media but also to processing. For example,  a processor is 
shared  by a  number of teletype terminals, or  by  a’set of other 
processors connected via a  network.  Quite  often  the flow of 
data  from  the individual lines is low compared  to  the process- 
ing capability of  the  host  computer,  either  due  to  the slow mes- 
sage generation  rate or to  the limited bandwidth of the  trans- 
mission facility. In such circumstances a high utilization of the 
processor can be achieved only  by means of multiplexing of 
some kind. Buffer  storage is then required to  perform  such  a 
multiplexing operation.  The buffer’s capacity and  storage 
allocation  strategy is of great importance  for  the cost-effective 
design of  a  computer-communication system. Analyses of 
various schemes  are discussed by Gaver and Lewis [45], Chang 
[ 151 , and  Schultz [ 1361 . 

In  the remainder of this  section we focus on  a queueing 
model pertinent  to such  studies. We should call to  the user’s 
attention  the  work in [19],  [24],  [25],  [44], [SO],  1631, 
[64],  [98] , [I181  on related  subjects. Here we follow  pri- 
marily the  formulation and  results reported by Wyner [151] . 

Let us consider a discrete-time  system in which data 
units arrive in the  kth slot for transmission  (or processing). 
During the same interval Pk data  units will be sent (or 
processed). We assume that  the two-dimensional process { ( a h ,  

such that  the differences { T k }  defined  by 
& )  : 1 < k < w} Of births (the { a h } )  and deaths (the {&}) is 

Y k   = a k - P k ,  1 < k < m  (1 14) 

satisfy the following properties: 1) the { Y k }  are iid random 
variables; 2) E{?’k} < 0 ;  and 3 )  Pr { Y k  > O} > 0 .  Because 
births will occasionally exceed deaths,  at least some of the 
time [property  3)],  the system will not be able to handle all 
of the available data.  Therefore,  buffer storage  (or a waiting 
room)  must be interposed between the arriving source and  the 
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Fig. 4. Buffer storage. 

server.  Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL [data units] be the size of the  buffer  capacity. 
Occasionally the buffer will be completely full,  and  at these 
times the excess zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY k  of arrival'over service will be lost. We call 
this event  a buffer overflow. 

Our  main  objective  here is to  find  out  how  the behavior of 
the  buffer is characterized in terms of the  random process 
{ ( ( Y k , f l k ) }  and  the  buffer capacity L .  Because of property  I), 
we can  define the  state of the system of buffer storage at  time 
k as the  queue  length X k  [data  units] , where 

x ,  = 0 (1 15) 

and  for  1 ,s k < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00, 

0, if Xhel + Y k  < 0 

X k - 1  + Y k ,  if 0 < X k - l  + Y k  < L (1 16) 

L. if X k - 1  f Y k  > L 

or  more concisely 

X k  = min {max [ X k - l  + Y k , o ] , L }  

= L - { L  - ( X k - 1  + Yk)'}'. (1 17) 

The recurrence equation  [(116) or (1 17)J is similar to (82)  for 
the M/G/1 system.  Equation (1 16) bears an even stronger 
resemblance to  the recurrence equation  (107)  for  the waiting 
times of customers in the  GI/G/I queueing system. In fact, in 
the limit as L + m (1 16) reduces exactly to (107). This corre- 
spondence  holds if we interpret (Yk as the service time of the 
kth  customer, f lk  as the interarrival  time between  the  kth and 
(k  + 1')st customers,  and X k  as the waiting time of the ( k  + 1)st 
customer.  Note  that in both  interpretations  (the  buffer storage 
system and  the  GI/G/l system) x ,  represents an unfinished 
amount of work to be found in the system by  the next arriving 
customer. Note also, that in our  formulation  the service or 
scheduling discipline can be any work-conserving one:  it is not 
necessary to assume that  the processor or channel processes 
data  in  the  buffer storage in the  order o f  their arrival. When 
the service discipline is FIFO, then X k  equals the waiting  time 
of the ( k  + ])st  customer in the analogous  queueing system. 

Let pCL)(n) denote  the  probability  that  the  buffer  state 
(the  number of data  units in the system) is n [data  units]  after 
the  system of capacity L [data  units] reaches its equilibrium. 

Because of the analogy observed above, we see'that in the  limit 
as L + m, we can use the various  results  established for  the sys- 
tem GI/G/l. Of particular interest  and  importance to us is the 
asymptotic behavior of p L ) ( n )  for large L and n.  As we will 
demonstrate  below,  the results and  techniques discussed by 
Kingman [72],  [73], Kobayashi [84], Ross [131],  and Wyner 

[15  1 ] for  bounds of the waiting time distribution are applic- 
able in the present problem. 

For  a  continuous-time  GI/G/l system (in which the {ah} 
and { o h }  and  hence the { Y k }  as Well are real-valued random 
variables) the following inequality was derived by  Kingman 
[731 

ae-'of < lim Pr { x ,  > t )  < e-'of (1 19) 
k + m  

where 

t > O  

Here the  function H(r) is the  distribution  function of the 
variable Y k  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, is the  unique positive real root of the 
equation 

The right-hand side of the  inequality (1 19) was proved by 
using Kolmogorov's inequality  for martingales.  Kobayashi 
[84] derived a similar expression for  the transient distribu- 
tion applying the same Kolmogorov's inequality  to  submartin- 
gales. The derivation is quite analogous to  that of the well- 
known  Chernoff  bound which  has been applied to  bound  the 
error  probability in  statistical  decision theory. Ross [131] 
recently found  a tighter upper  bound, also based upon  the 
martingale approach. 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.I- -I 

A direct  translation of the above result  applied to the discrete- 
time system we are  considering is as follows: 

where 

= inf x h i /  zoiPnhi 
n>O n<i<m nSi<- 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1/[ inf E{z0Y-" I y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 n( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n > O  

- - sup zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz hi/  zoi-"hi. 
n>O n<i<- n < i < -  

Here zo (>I) in (125),  (126) is the  unique positive real root of 
the  equation 

where H(z) is the  probability generating function (pgQ6 of the 
integer-valued random variable Y k  and is  given by the  product 
O f  the  pgfS O f  {ah} and { P k } .  

H(z)  =E{zyk} = E{zOLk}E{z-flk} = F(z)G(z-l). (128) 

Less tight but  more  computationally available bounds are based 
upon  the  probability  distribution { f ,}  of the  random variables 

{ah),  

and 

For  the discrete-time  system under discussion, we can re- 
write (1 24), using the  notation  of (1 18), as 

It is easy to establish the following bounding relation 
between  the  distribution {p(" ) (n) }  and P ( ~ ) ( L ) ,  the  prob- 
ability that  the  buffer  of  capacity L is full: 

Hence, together  with  the  upper  bound  of (1 3 1) we have 

6 H  is the formal  power series associated with the se uence {hk = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Pr {y = k } } .  H i s  analytic in some region i f  the SeqUence\hk} vanishes 
for k > K or k < K .  

Wyner [ 15 11 obtained  the following results,  based upon  quite 
elaborate arguments,  which we will not  reproduce  here. 

1) When E{Yk} = 0,  there exist  finite constants co and c1 
such  that 

lim sup Lp(L)(L) = co 
L-t - 

and 

lim inf L P ( ~ ) ( L )  = cl .  
L + -  

Hence we have for an arbitrary L ,  

p 'L ) (L )  = C(L)/L 

with 

2 )  When E{yk}  < 0,  there exist  finite constants do, d l  such 
that 

and 

Iim sup Z ~ ~ ~ ( ~ ) ( L )  = d l .  
L-t-  

Hence for arbitrary L, 

p ( L ) ( L )  = D(L)zo-L , (140) 

with 

Wyner obtained  the results  (134)-(141) under  the  hypoth- 
esis that  the  distribution {h,} of the variables {Yk} has com- 
pact support;  that is, h, = 0 for I n I >No for some No.  

We will illustrate the use of the various formulas  presented 
here in the following two examples. 

Example I :  Suppose that  the arrival process has a Poisson 
distribution  with mean X [data units] 

f n  = Xne-k/n! 0 < n < m 

F(z) = ek(z-1). 

Assume as before  that  the channel sends out  data  units at  a 
constant  rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.1 [data  units] 

i f n = p  

gn {Ai otherwise. 

G(z) = Z P  . 
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(z/c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= exp  [(WP)Z/CI  (143) 

with C = exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Alp. It is known [ 1 SO] that  (143) has the solu- 
tion 

provided that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ h / p  e-h/fi] < e-]. This condition holds when- 
ever zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp. 

Example 2: Suppose that  the arrival per unit time is charac- 
terized by  the  geometric  distribution 

fn=(1- r r ) rn  O <  r 1 ,   O < n < m  

with pgf 

F(z) = (1 - r)/(l - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYZ) 

and expected interarrival time 

E{cik) = (d/dz)~(z) Iz=l = r/(l - r)[data  units]. 

Assume that  the channel  sends out  data  at a constant  rate p 
[data  units/unit  time],  where we assume for simplicity that p 
is an integer: 

g n  = [  1,   i fn  = p  

0, otherwise 

with pgf G(z) = zI*. 
The characteristic equation  (127) is  given by 

H(z) = (I - r)-p/(l - YZ) = 1 

or equivalently 

rzp+1 -zP + (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Y) = 0. (145) 

For general r ,  (145)  cannot  be solved in closed form;  numeri- 
cally it presents no  problem and zo may be  determined  by  any 
of a number  of root-finding methods. It is not  difficult  to 
show  that  there exists  a unique zo such  that 1 < zo < l/r. The 
distribution  of  the variable Tk is  given by inverting H(z), 

h i =  { (1 - r )r i+p ,  i f i > - p  

0, if i < - p. 

In this case 

independent  of n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0. Hence the  infimum  and  supremum 
[(128), (129)]  coincide, 

a = b = (1 - rzo)/(l - r )  < 1 

and  therefore we have the following exact expression 

lim Pr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{x, >n)  = (1 -rzo)z0-"/(1 - r ) .  
k - t x '  

Furthermore,  an  upper  bound  for P ( ~ ) ( L )  is obtained,  from 
(1% 

P ( ~ ) ( L )  < (1 - rzo)zol-L /( 1 - r ) .  

Sometimes  the  quantity  of principal interest  may  be  the 
expected overflow Q(L) [data  units]  from  the  buffer  at each 
time  unit,  or  the average fraction R(L)  of the  input which is 
lost  due to buffer overflow.  These quantities will be given in 
terms of ~ ( ~ ) ( n )  as follows: 

We can then derive [ 1511 exponentially  tight upper and lower 
bounds of the  form  (140) for the  quantities Q(L) and  hence 
R(L)  as well: 

VI. MULTIPLEXING NETWORKS 

We continue  with  our  examination of discrete  queueing 
models,  in  this  section  focusing on specific applications.  The 
term  multiplexing  networks is used in connection  with  com- 
puter  communication  networks which employ some  variant of 
time-division multiplexing to share communication channels. 
We have three  network  structures in  mind-the star  network 
(Fig. S), the loop network (Fig. 6) ,  and  the  multidrop  network 
(Fig. 7). 

By time-division multiplexing we mean  that  the time axis 
0 < t < 00 is divided into  contiguous intervals (called slots  or 
frames) sj = [(j - l)A, j A )  of some  fixed length  A.  The  slot 
length is sufficient to transmit  one  unit of information (a data 
unit or  packet) which  may  be  a byte,  character, or block  of 
characters  of  fixed  length.  The size of the slot. depends  upon 
the  unit  of  information  and  the line speed.  In  each of the  three 
networks  data are transmitted to (or from)  the  master  node, 
the  host  computer,  from (or to)  the slave nodes, the terminals. 
The channels may  be either full- or  half-duplex.  The simplest 
data  network is the  star  network (of Fig. 5). Each  terminal is 
linked to the  host  computer by a dedicated  channel.  It is the 
usual configuration  by which  terminals  are linked (via modems) 
to a  processor. 

For each of  the  three  networks  shown in Figs. 5-7  we will 
assume that  the arrival of messages at a terminal is described 
by a renewal process Ai = (Ai , j  : j = 1 , 2 ,  .-} where Ai,j  is the 
number of data  units  entering  the  buffer  at  ith  terminal  in  the 
interval ( i  - 1)A d t < jA.  For  notational convenience we will 
henceforth  take  units so that A = 1. We assume that  the n 
arrival processes { A i }  are independent.  The  state of each of 
these systems will be  described by  an n-dimensional  vector- 
valued variable X j  = .-, X , , j )  where Xi , j  is the  number 
of data  units  buffered  at  the  ith  terminal  at  time j - 0. In a 
series of papers Konheim and Meister [89] - [92],  Konheim 
[93],  [94], and Chu and  Konheim  [23], various properties  of 
these networks were explored.  The analyses have a common 
theme  to which we now  turn.  To simplify the  presentation, we 
will consider  only the case of data flowing from a terminal to 
the  host  computer. 

We begin with  the star network.  The  evolution of the ran- 
dom process X of the  state  of  the system is  given by 

x. 1 , J  . = (Xi,j-] - 1)' +A, , j  (149) 

where a+ = max (a,O). Note  that  (149) reflects the  fact  that a 
data  unit is removed from  the  buffer  at  the  ith  terminal  and 
transmitted  to  the  host  computer  at  time ( j  - I) ,  provided 
that  the  buffer  contained a data  unit, (Xi, j- l  > 0) leaving 
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Fig. 5 .  Star network. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  Loop network. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACChlUJTER 

921 cj TERMINAL  TERMINAL . . . TERMINAL 

Fig. 7. Multidrop network. 

(X j , j - l  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI)’ data  units remaining in the  buffer which  are 
joined  by Ai, j  new arrivals during  the interval [ ( j  - l), j ) .  The 
important observation to make  from (149) is that  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 
random processes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX i  = { X i , j }  ( 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd i d n )  are independent. 
Since each terminal  has  a dedicated channel to  the  host 
computer  there is no  contention  for  this resource. We define 
the pgf of  the variable Xi , j  

Hi,j (z)  = E { z i , j X }  = pr {X i , j  = k}  Z k .  ( 1  50) 
OQk<m 

Then  for a given terminal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, the generating function  of  the time 
sequence {Hi,j(z))  is defined by 

with I z 1, I w I < 1 ,  this condition guaranteeing that  the series 
in (1 50), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 5 1) converge. The  evolution  equation (149) trans- 
lates  into  the algebraic recursions 

Hi,j(z) = Hii.j-l (O)Pi(z) + [Hi,j--l ( z )  

- Hi,j-l  ( O ) ]  Pi(z)/z,  1 < j < -. (152) 

From (152) and (151) we then have 

Hi(Z,W) = [zH,(z,O) + Pi(Z)(Z - I )WHi(O,W)]  / ( z  - WPi(Z)) 

(1 5 3 )  

where Pi(z) is the pgf of  the arrival process Ai at  the  ith 
terminal, 

Note that Pi(z) is independent  of  the  time  index j since we 
have assumed that  the arrival process Ai  is a  sequence of iid 

solution; given an “initial” condition Hi,o(z )  we may obtain 
by successive applications of (1 52) the  distribution of the  state 
at succeeding times.  The solution given in ( 1 5 3 )  contains an 
“undetermined”  term Hi(O,w). This term is found  by making 
use of the  fact  that Hi(z,w) is analytic in the region I z 1, I w I < 
I .  According to RouchB’s theorem [ 3 ] ,  the  denominator of 
(1 53) has a unique  zero Si(w) with I Si(w) I < 1 : 

Si(W) - WPi(Sj(W>) = 0 (155) 

for each w,  I w [ < 1 .  The  function Si(w) has an important 
probabilistic interpretation. Assume that  the system starts 
with  no  customers waiting or in service, X i , o  = 0 and let 
{Ti,, : 0 < s < m} denote  the times at which X i , j  = 0 .  Thus 
X i , T ,  = 0 and X i , j  # 0 for < j < Ti,s. The times {Ti, ,> 
are the slot numbers  at which the  ith terminal is empty and 
does not require service. The intervals  between these epochs 
T~, ,  = T ~ , ,  - T ~ , ~ - ~  (1 < s < m) constitute a renewal process; 
Si(w) is the generating function of the  probability  distribution 
Pr { ~ i , ,  = k }  

If Hi(z,w) is to be analytic,  it follows that  the  nuherator of 
(153) must vanish when z + Si(w) and we obtain  the relation 

We claim that we must assume Pi(0) = Pr {Ai , j  = 0 )  > 0 ;  for 
otherwise, A i , j  2 1 (that is, at least one arrival during  each 
slot interval) and this implies that  the queueing process is tran- 
sient.  In physical terms,  customers arrive too fast for  the 
service capacity of the  system.  In  mathematical  terms, X i , j  -+ 

m as j -+m and  the process X i  = { X i , j }  is transient. If Pi(0) # 0 ,  
then Si(w) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf: 0 for w # 0 and (1 56) yields 

By inversion of the generating function [using (1 5 3 )  and 
(157)] we obtain  the behavior (as a function of time) of the 
fluctuations of the  contents of the  buffer  at  the  ith terminal. 
Usually one is interested in more  modest  information;  the 
stationary (or  limiting)  behavior. 

lim Hi,j(z) = Hi*(z)(say). 
j - ,  m 

This  limit may be obtained  from (1 53) using a  Tauberian  argu- 
ment. One can prove that 

lim H~(z ,w)(I  - w )  = lim ( ~ / k )  2 H ~ , ~ ( Z )  = H ~ * ( z ) .  

(1 58) 

w + l  k - + m  OQj<k 

The middle  limit in (158) is called the Ceasaro-1 limit of the 
sequence {Hi, j (z)} .  It is a time average and  the coefficients of 
the generating function Hi*(z) 

random variables. Note also that (152) provides  a recursive OQk<m 
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may be interpreted as the limiting fraction  of time that  the 
state of the system is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk .  Applying the Tauberian theorem we 
obtain  the pgf 

Hi*(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (1 - Pi) [(z - 1 )Pi(z)l /(z -pi(z)). (1 59) 

As contrasted  with a star  network,  the single channel of the 
loop  network is shared by  many users thus offering possible 
economies of operation. A loop  network is an example of a 
queueing  system  in  which  a resource, in this case the  channel, 
is shared by  many  customers.  To specify  a loop system we 
must describe how this  sharing is accomplished,  in  the  lan- 
guage of queueing theory,  the service or queue discipline. A 
queue discipline is essentially an allocation of the  set of slots. 
If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA52 = { 1,  2, -} denotes  the set of slots, a queue discipline 
partitions  into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn subsets S2 = U 1 ~ i ~ ,  ai. The  partitioning 
may be static-time- or  state-independent-or “adaptive” de- 
pending upon  the  state of the  system. Here are some  examples 
of possible allocations. 

Synchronous Time-Division Multiplexing  (STDM): Each 
user (terminal) is  given a  fixed  (static)  assignment of slots. For 
example, 

Every nth  slot is assigned to the  ith user. More generally, if the 
users have widely differing rates of sending information to the 
host  computer we might want  to give different  “proportions” 
of the  total set of slots to different users, in  effect,  to  match 
the service to  the  demands of the users. 

Asynchronous Time-Division Multiplexing (ATDM): The n 

users are located  on a channel  and have a natural  priority 
determined  by  their  position  on  the  loop. Service will be  in 
accordance with  this  positional  priority  structure.  The “first” 
terminal (in the sense of position) which  requires  a  slot “grabs 
it.” Hence the  channel is multiplexed  asynchronously  with 
respect to the users. We may introduce a special priority  struc- 
ture  on  the  loop  with ATDM replacing the  natural  priority 
determined  by  position. A slot grabbed by  the  ith  terminal 
may be retaken  by  the j th terminal ( j  > i )  if the  priority  struc- 
ture so dictates. 

Polling: Polling refers to a service discipline which may be 
applied  in the  star,  loop,  and  multidrop  networks. By a poll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
a terminal we mean an inquiry,  made to determine if the 
terminal wishes to transmit  data to  the  host  computer. A 
polling service discipline consists of sequentially  polling the 
terminals. Each terminal is allowed to send the entire contents 
of its  buffer to  the  host  computer.  After  completion of this 
operation,  control is returned to  either  the  host  computer (as 
in  the star)  or (as in the  loop)  to  the  next  terminal.  The usual 
polling cycle is { 1,  2, --, n}-the terminals being polled  in the 
order  1,  2, .-, n-and is then  repeated. More generally, we may 
extend  the  notion of a polling  cycle by allowing repeated 
polls of a  terminal  in the cycle in  order to  “match”  the service 
offered  to  the service required. 

Chaining: IBM’s Synchronous  Data  Link  Control (SDLC) 
loop allows for  the chaining of messages. The strategy is 
similar to polling except  that we do  not allow the  terminal to 

empty  its  buffer. Terminals are polled sequentially. A cycle is 
a poll of each of the N terminals. During each cycle a terminal 
is allowed to send up to a  fixed number of data units (bytes, 
packets, characters). Messages are thus  sent as a chain of 
segments to the  host  computer. 

These service policies and  others  for  the  loop  network have 
been reported  on in several papers. In Chu and Konheim [23] 
a survey of various service disciplines is given; an analysis of 
STDM with  equal slot  allocations is presented.  In an unpub- 
lished master’s thesis at New York University, McKee investi- 
gated the case of STDM with variable slot  allocation. ATDM 
was analyzed in Konheim  and Meister [89] , Hayes and  Sher- 
man [57],  [58], Avi-Itzhak [SI, and  in  a survey paper of Kon- 
heim [93] . Polling (which in  the queueing literature is often 
referred to as alternating priority  queues) has been  considered 
by Eisenberg [35], Hashida [56],  [57],  Cooper and  Murray 
[27], and  Konheim and Meister [92]. Pawlikowslu [119] , 
[120]  has  studied various service policies for  the  loop  net- 
work. Wu and Chen [ 1501 and  Konheim  [94] have given 
analyses of the chaining  discipline. 

Space does not  permit a complete review of  the analysis of 
each of these  queueing disciplines. We will indicate  only  the 
central ideas. We begin by showing how the analysis of the  star 
network  may be translated to give information  about  the 
queueing discipline ATDM. The  state of the system and  the 
arrival processes are as defined before.  The  equations of evolu- 
tion of the  loop system under  the discipline ATDM-the 
analog of (1 49)-are 

Xi,j = (X1,j-l - 1)’ + A1,jy 

1 < j < m  (1 60) 

x. 1.1 . = ( X .  t , j - l  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX(xl,j-l=...=~i-l,j-l=~) )+ + Ai,j, 

1 <i<n,  1 < j < m .  (161) 

We make  the following  observations. 1) The  equation of evolu- 
tion  for  the first terminal  on  the  loop is the same as in the  star 
network.  The first terminal does not “feel” the presence of the 
remaining n - 1 terminals. 2) the  ith  terminal can seize a slot 
only if this slot has not been previously taken  by  one  of  the 
first i - 1 terminals;  that is, the ( j  - 1)st slot is available to  the 
ith  terminal if and  only if Xl,j-l = X2,j-l = ... = 

0. 

from  at least two  points  of view. First,  set 

Xi-1 ,j-1= 

The system of equations  (160), (161) can be  looked  at 

Y,,j = x1,j + ... + x,,j 
B .  . = A  + ... + Ai,j 

1 , J  1.j 

and  note  that  (160),  (161) can  be rewritten as 

Y .  1.1 . = (Yi.j-1 - 1)+ + Bi,j,  1 <i<n,  1 < j < m  

(1 62) 

Note  that  (162) is identical to (149)  provided we make  the 
identification of variables 

Xi, j  ++ Yi,jAi,j ++ Bi,j. 
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Thus  the  distribution of the total number of data  units  buf- 
fered at  the first i terminals  can be calculated by.reinterpreting 
the results for  the  star  network. In particular, by replacing 

spectively, we obtain  the generating function 
p;(Z) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ J i  ill (1 59) by n l < k < i  p k ( Z )  and n l = g k < i  / J k ,  re- 

lim E { z ~ , ~ Y } .  
j- ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 

A second  and more revealing method  of analysis starts  with 
an examination of the  epochs {Tl,s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs < -} at  which the 
first terminal  does  not require a  slot. These are the  epochs at 
which the slot is available for seizure by the second  terminal. 
As  we have noted, these interseizure times { r l ,s  =  TI,^ - 
Tl,s-.l} form  a renewal process and the  equation of evolution 
for  the second  terminal can be written as 

X 2 , T s  = (X2,Ts-1 - 1)’ + c2.s .  1 < s <m (163) 

where c 2 , s  =A2,Ts-1+l “’ -+ A2,Ts .  c2,s is the  total  num- 
ber of data  units which enter  the  buffer at the second  terminal 
in the time  interval (Ts-l,Ts]. The arrival process {C2+} is a 
compound process with generating function Sl(P2(x)). Thus 
the generating function of the  stationary  distribution  of  the 
variables ‘is  obtained  from (149) if we replace Pi(z) 

respectively. Succeeding terminals can be  analyzed  in the same 
manner; for the  third terminal we need to know  the  epochs at 
which the first twq  terminals do  not require a  slot. This re- 
quires the  determination  of a *-function  which we obtain  by 
solving equation  (162)  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 2. Details can be found in [92]. 

Clearly the ATDM discipline offers better service to  ter- 
minals at the  “start” of the  loop. If the service requests (as 
measured, say, by  the data  rates E{Ai , j } )  are  nonipcreasing in 
i ,  then  the terminals are “matched”  with  the service discipline. 
The first terminal, which’ sends data at the highest rate, 
receives preferred service. In [66]  a  priority discipline was 
introduced  to  “correct”  a possible mismatching of position 
and service requirements when  these data rates fail to be non- 
increasing. This priority discipline for  the  loop essentially 
“moves” the position of the terminal  and  partially  mitigates 
the  effect of position on service. 

Our discussion has been  limited so far to transmission from 
a  terminal to the  host  computer. It is possible to model two- 
way traffic. The  host  computer may  be viewed as just  another 
terminal competing  with  other users of the channel for service. 
Various  models for two-way communication are discussed ip 

We conclude with  a brief discussion of  the queueing dis- 
cipline polling. Polling may  be  applied to any  of  the  three  net- 
work  structures;  the differences  are in the way control is 
passed from terminal to terminal. In the star network,  the  host 
computer must poll each of the terminals; in the  loop and 
multidrop  network terminals  may sense that  they are now able 
to sieze the channel and thus in a sense the  control  of  the 
server is distributed. We continue with the  state description 
X = {X j  = (xl,j, .*., and introduce  the generating func. 
tion (with n variables) 

and pi by Sl(J‘,(z)) and / ~ 2 / ( 1  - ~ 1 )  = (d /dz)91(p2(~) )  I z = l ,  

[go], 

F ~ ( Z ~ , Z ~ ,  ..., z,) = E{zlxl, jzZx2,j  ... z n X n 9 j } .  (1 64) 

Under polling, each of  the terminals is interrogated and 
allowed to transmit all buffered  data  units to  the  host  com- 
puter.  A terminal holds  the channel until  it  empties  its  buffer. 
A poll of each of the n terminals is a cycle. After  the terminal 
empties its  buffer,  it indicates  this by  transmitting an end of 
message (EOM) character.  Then  the channel  may  be taken  by 
the  host  computer in order to transmit data  to  the terminals. 
There may also be a switching  time to transfer coutrol  to  the 
next terminal. 

The process X is not Markovian and the  state space descrip- 
tion  must be augmented to make it Markovian. However, there 
exists a sequence of “times” (slot numbers) 

0 = v1,1 < ... < vn,j-l < ... < vn,j < v1,j+l < ... (165) 

which are  regeneration points of the process X. vi,j is the time 
in the  jth cycle at which control is  given to  the  ith terminal. 
The embedded process obtained  by observing X only at these 
times is a Markov chain. Let Ci, j(zl ,  ..., z,) be the generating 
function of the vector variable X q i , j .  The evolution of the sys- 
tem can be  described in terms  of cyclic shift operators { S t i }  

which change (operate on) the  functions Gi,j 

ai : Gi,j(zl ,  -, z,) + Gi+l,j(z,, -, z,), 1 ,< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj < n 

(1 66) 

an Cn,j(zl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘ ’ ’ 9  Z n )  + Gl,j+l(z,,  ...) Zn). (167) 

The  operator St = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASt, - ... - Sll corresponds to a single cycle 
in the sense that 

: Gl,j(Z1, ’ ‘ ‘ 7  Z n )  -+ Gl , j+ l (z l ,  ..., z,). 

This functional  notation is perhaps less familar than  the usual 
matrix  formulation in  which we describe the evolution (of the 
state probabilities)  by multiplication  by  the  transition  matrix. 
Equations  (166) and (1 67) show that we are dealing with  a 
nonstationary Markov chain. If  we choose to observe the process 
X only  at  the start of a cycle then this embedded process is 
stationary;  its  transition  matrix  has been expressed in terms of 
the  operator St. A  stationary  solution is then  a  function G* 
( z l ,  ..., z,) which satisfies 

StG* = G*. (168) 

[Compare  this  with the usual condition  that  the  stationary 
distribution should  satisfy the  matrix  equation nM = n). In 
[91] it is shown  how  the  solution of (168) may  be obtained. 
There is one  additional  point  worth  mentioning. We have ob- 
tained a  solution  for  the  embedded process. How does it relate 
to  the original process? For  example, what shall we me?n 
when we ask for  the “average number  of  data  units buffered 
at  the first terminal?”  From  the  probability generating func- 
tion of the  stationary  distribution G* of the  embedded chain 
we may  calculate 

= (a/aZ1)G*(zl, ..:, Z n )  l r = l  (1 69) 
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the  expected  number of data  units  buffered  at  the first ter- 
minal at  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstart of a cycle. On the  other  hand,  the usual 
meaning of the average number of data  units buffered at  the 
first  terminal is the time-average 

Whereas v1 is an average over all time points u1 is an average 
over a  subsequence of times 

The  two time averages (1 71) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(170) are proportional;  the 
proportionality  factor requires the  computation of 

The major technical  difficulty in obtaining a solution  for  the 
polling discipline is related to the calculation of the derivative 
in (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA72). Details again are found in [92] . 

VII. CONCLUDING REMARKS 

The results of Sections I11 and IV obtained  for a class of 
general Markovian queueing  systems are characterized by  two 
major properties: 1 )  decomposability  and 2) robustness. The 
class of models discussed there is,  in fact,  the largest set of 
queueing system  for which we know simple  closed-form solu- 
tions.  The “separation of variables” technique is applicable to 
the  system  equations defined over multidimensional  queueing 
processes. The solution results are robust in the sense that: 1) 
they are insensitive to distributional  forms of service time 
when  the discipline is PS or  LIFO  with preemptive  resume, or 
the service station  has ample parallel servers, 2) they are also 
invariant under  queue disciplines-any work-conserving 
discipline-in the case of exponential service distributions, and 
3) they  do  not  depend  on  the detailed  behavior of job  or 
message routing. 

Despite such generality and  simplicity,  there are several 
limitations we must be aware of in attempting  to use a queue- 
ing network  model.  They are 1) the message independence 
assumption; 2) insufficient  information  about response time; 
3) limited results on  the  finite  capacity case; and 4) assump- 
tion  that  the service distribution  for  FIFO  stations is 
exponential. 

The message independence  assumption was briefly men- 
tioned zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat the  end of Section 111. If IMP’s of a computer  net- 
work are  represented as servers in  a  queueing network  mode, 
this  independence  assumption  amounts to choosing the 
length of ’a  given message independently  at  different servers 
(IMP’s) through which the message passes. Inreality, however, 
tlie message length remains unchanged, since it carries  a  fixed 
constant  amount of information.  Thus a message is transmitted 
without resampling whereas the  model assumes that  it is trans- 

mitted  with resampling. Rubin [132] , [133] has removed this 
independence assumption  in his model  of a  packet-switching 
communications  network.  The  model, however, requires some 
restrictions on  both  network  topology  and message flow 
conditions. 

As for 2) above,  analytic solutions for  the waiting and 
response time distributions are still an  open problem. Note, 
however, that  the average waiting and  response times can be 
obtained easily from Little’s formula L = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhW. The main  diffi- 
culty in  obtaining the full distribution is due  to  the  fact  that 
the waiting time in successive visits of a customer to  the same 
station are not  independent, since the queue-size functions are 
time-correlated processes. It seems plausible to formulate  the 
problem as a  first-passage-time  in  a Markov system,  but  to  the 
best of our knowledge it  has  not been solved. 

The  situation  with a finite waiting room presents problems 
of various degrees of difficulty. If the total population of the 
network ( 1  K 1 1  is limited  to, say L ,  and  the excessive arrivals 
from  the outside  are prohibited (or lost), we can model  this 
situation  by  letting  the  queue-dependent arrival rate X(ll K 11) 
vanish for 1 1  K ( I  > L .  If,  on  the  other  hand, a population  con- 
straint is imposed on a subnetwork  or  on  an individual  server, 
an additional arrival may be blocked from  entering. Closed- 
form  solutions are  difficult to  obtain.  In [95] a  two-stage 
tandem  network  with  feedback,  exponential service, and Pois- 
son arrival was studied.  The  second stage server has a finite 
waiting room  which,  when  full, blocks the first  server. The 
stationary  state probabilities  were obtained  from a  detailed 
examination of the two-dimensional  generating functions of 
the process. Both Chang [16] and  Neuts [110] have studied 
the same blocking phenomena in cascaded queues. If one is 
willing to resort to numerical methods,  one can represent the 
entire system as a  multidimensional Markovian system and 
solve the  matrix  equation  to  obtain  the  stationary  solution. 
See Wallace [144] and references cited in this  paper  for 
efficient computational algorithms. 

Finally the  question raised in 4) can  be  reduced also to a 
blocking problem. As stated earlier,  a service station  with  non- 
exponential service time distribution can be approximated 
arbitrarily closely in terms of a serial and parallel combination 
of exponential servers (or alternately,  by means of Cox’s repre- 
sentation [30] which uses complex probabilities).  This 
fictitious representation of a general server can  be viewed as a 
queueing network;  the  number of customers in this  fictitious 
queueing network is limited  to  at  most  one. This condition is 
tantamount  to blocking the  exponential server of the first 
stage, while a customer is somewhere  in  this fictitious  network. 

In  order to alleviate the  difficulty involved with general 
service time  distributions, an approximate  representation of a 
jump process (like the queue-size process) by a diffusion 
process-a continuous time (continuous  path) Markov process- 
has recently  been  investigated. The diffusion approximation 
for  the GZ/G/1 system is discussed in the  monograph of Newel1 
[ 1 131 . Gaver and Shedler [46] applied this  technique to  the 
analysis of a multiprogrammed system modeled as a  two-stage 
cyclic  queueing network. Kobayashi [82],  [83] considered 
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the multidimensional  diffusion approximation as a technique 
for  treating  the general queueing  network. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn application of 
the diffusion approximation to the  performance analysis of  an 
ALOHA-like ,system may be found in the  paper  by Kobayashi, 
Onozato,  and  Huynh  [87]. 

The diffusion approximation is often  adopted in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAheavy 
traffic theory (Kingman [71], Whitt [147]) since the accuracy 
of this approximation  model is generally good under heavy 
traffic  conditions.  The main  idea  behind this  technique is as 
follows; the  number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN of events (say arrivals) which  are ob- 
served in  a given point process (arrival process)  during an  inter- 
val of length A is  well approximated  by a Gaussian random 
variable provided A is sufficiently large. This asymptotic  prop- 
erty is in a  dual  relationship to  the  central limit theorem which 
can be stated, in our  context, as follows; the random length A 
of the interval we must wait to observe some  fixed number of 
events N has  approximately  the Gaussian distribution provided 
N is sufficiently large. The diffusion approximation can be 
viewed  as a second-order approximation in the sense that  the 
diffusion approximation reflects the  trend of the mean (first- 
order  statistic)  and variance (second-order statistic) of the 
jump process. If we ignore the variance, then we .have the so- 
called fluid approximation that essentially amounts  to  treating 
a  flow of  customers as a  flow of fluid. See Newel1 [113], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 1141 for a discussion of this subject  and  related graphical 
representation. Kleinrock  and Lam [81] discuss the stability 
problem of a slotted ALOHA system based upon  the fluid 
approximation  approach. See also a survey article by  Kobay- 
ashi [86]  for a discussion of  the  stability  and  control  problems 
for a  virtual-storage  muitiprograrnmed  system  which is also 
formulated as a fluid approximation  problem. 

Chandy, Herzog, and Woo [ 131,  [14] proposed an iterative 
method  for  the  approximate analysis of a  queueing network 
with general service time distributions.  For a general network 
of  queues,  they consider  a “near-equivalent’’ network  of  expo- 
nential servers with  the same topological structure as the 
original network.  The criteria of  the near  equivalence are:  1) 
the sum of the average queue size in the  exponential  network 
model is close to  the  true value in the original system;  and 2) 
the  throughput  of  the individual servers should  satisfy the 
“conservation of flows”  rule. The  exponential model is allowed 
to have queue-dependent service rates  in meeting these 
requirements. 

One of  the remaining  tasks in both  the iterative approxi- 
mation  technique and the diffusion approximation  method is 
to establish  some general formula which allows us to assess the 
accuracies of these two  approximate solutions. For a discus- 
sion of  the decomposition of the general network of queues, 
the reader is directed  to  the paper by Cherry  and Disney [ 171 . 

In connection  with  approximate  methods, bounds for 
waiting time  distributions  or  other  quantities offer  problems 
for research of  both  mathematical  depth  and practical import- 
ance. We noted in Section V that  the  exponentially tight 
bounds  for  the GI/G/l  system were applicable to the  study  of 
a broad class of  buffer overflow  problems.  It will also be 
instructive to point  out  that  the characteristic roots zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(60 and 

zo) which  appear in those bounds could  be derived from  the 
diffusion approximation  solution  [71],  [84].  The  bounds 
become tighter as the traffic increases. 

One important issue, almost exclusively exclud6d from  our 
presentation, is the  question  of  priority and  scheduling.  Priority 
queues treated in most books are for  the M/G/1 system  with 
multiclass customers, in  which the  job class is based upon 
some external priority. That is, the  priority level or value of a 
job is determined  externally and  before the  job  enters  the 
system.  There  are two classes of scheduling rules in priority 
system; preemptive and nonpreemptive. General solutions have 
been obtained for the waiting  time distributions in the n/ilG/l 
system  with  multiclass  customers. The  solutions, however, are 
expressed as Laplace transforms  and it is often  tedious  to cal- 
culate even the second moment  of  the waiting time.  Other 
types  of  priority are defined  in  terms of what we sometimes 
called the “running time” or “dynamic”  priority: a job incre- 
ments  or  decrements  its  priority level as a function of elasped 
time since entry  into  the system. The CPU scheduling of a 
time-shared  system (and often in  a batch-type  multipro- 
grammed system as well) adopts some kind of running  time 
priority and  corresponding  scheduling rule;  for  instance, RR, 
PS, FB, and variants on these.  Kleinrock [78] reviews this 
subject quite  thoroughly and gives many references. See also 
O’Donovan [ 1161 . Analytic solutions have been obtained  for 
the  M/G/l system in terms  of  the expected response (or 
waiting) time conditional on the service time of a given job. 
We should note  that  the& scheduling disciplines are work- 
conserving, if job-switching overhead is ignored. Hence the 
Poisson input + Poisson output  property  holds if the service 
times are homogeneous  and  exponentially  distributed. This 
property  holds even for  arbitrary service time distributions in 
the case of PS scheduling as was noted earlier. The  notion of 
priority PS scheduling was introduced by  Kleinrock [76],  who 
derived an expression  for the  conditional  expected response 
time  for  the M/M/l  system  with  multiclass  customers. 
O’Donovan [ 1161  recently  showed that Kleinrock’s results 
hold  for  the M/G/1 system with multiclass customers as well. 

Chow [ 181 studied  the  M/G/l system with multiclass  cus- 
tomers having a state-dependent arrival process. He introduced 
a new class of nonpreemptive scheduling  rules; the server 
schedules  a class-r job  with  probability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&,(X) where X is the 
state of the system  and &,(X) is a decision function satisfying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S,(X)>O, (1 < r < R )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x &,(X) = 1. 

l < r < R  

Conventional  schemes  such as head-of-the-line (HOL) and 
alternating  priority  amount to choosing the decision function 
such that 6,(X) = 1 for some r = ro and 6,(X) = 0 for r # 10, 

where ro is a function of the system state X .  Chow’s solution 
can be combined  with  the  approximation model of Chandy 
et al. [ 131 , [ 141 discussed above,  when one service stations in 
a  queueing networks  adopts a nonpreemptive schedule  rule. 
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There  are  a number of other  studies on priority  queues 
related to computer  communications;, see Herzog [62] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, Gall 
and Muller [44], Gopinath and Mitra [50] , and Marks [103]. 
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Abstract-A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcost-effective  structure  for  a large network is a  multi- 
level  hierarchy  consisting of a  backbone  network  and  a family of local 
access  networks.  The  backbone  network is generally  a  distributed net- 
work,  while the  local access networks  are  typically  centralized systems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In special cases, the  network  may  consist primarily  of either  centralized 
or  distributed  portions.  This  paper discusses  topological  design  pro- 
blems for such  systems,  including  the  concentrator  location  problem, 
the  terminal assignment problem,  the  terminal  layout  problem  (the 
constrained  minimum  spanning  tree  problem),  the  distributed  network 
topological  layout  problem,  and  the  backbone  node  location problem. 
Recent  algorithm  research,  including  exact  and  heuristic  problem  solu- 
tions,  are  described  and  computational  experience is  given. Finally, 
open  problems  in  large-scale  topological  design  are  reported. 

I. INTRODUCTION 

A cost-effective structure  for a large network is a multilevel 
hierarchical structure consisting of a backbone  network 

(high level) and local access networks (low level). The  back- 
bone  network is characterized by  distributed  traffic require- 
ments  and is generally implemented using packet  switching 
techniques. The backbone  network itself  may  be  multilevel, 
incorporating,  for  example, terrestrial and satellite  channels. 
Local access networks, on the  other  hand, have,  in  general, 
centralized traffic  patterns (most traffic is to and  from  the 
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gateway backbone  node) and are,  therefore,  implemented  with 
centralized techniques such as multiplexing, concentrating, 
and polling. The low level local networks may also be hier- 
archically structured. In special cases, the  network may con- 
sist primarily of either centralized or distributed  portions 
exclusively. 

The topological design problem for a large hierarchical 
.network can be formulated as follows. Given 

1) terminal and  Host locations, 
2) matrix of traffic requirements (terminal-to-Host and 

3) delay  requirements (possibly different  requirements for 

4) reliability requirements (possibly different  requirements 

5) candidate  sites for  backbone  nodes,  and 
6) cost elements (line tariff structures,  nodal processor 

Host-to-Host), 

different subsystems), 

for  different subsystems), 

costs,  hardware  costs,  etc.). 
Minimize 

Total  communications cost zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD where 

D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (backbone line costs) + (backbone  node costs) 

+ (local access line  costs) 

+ (local access hardware costs) 

such  that  traffic,  delay,  and reliability  requirements are met. 
The global design problem consists of  two  subproblems:  the 

design of  the  backbone and the design of  the local distribution 
networks. 


