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ABSTRACT

This chapter concerns the mathematical modeling and analysis of secondary (or auxiliary)

storage devices, which often comprise the principal bottleneck in the overall performance of

computer systems. The presentation begins with descriptions of the more important devices,

such as disks and drums, and a general discussion of related queueing models. Server motion

and dependent successive services are salient features of these models. Widely used, generic

results and methods are presented and then applied to specific devices. The chapter concludes

with a discussion of open problems and desirable extensions of the basic models.

t This is an update of the identically named chapler in H. Takagi (Ed.): Stochastic Analysis Of Computer and ConrmJJlIicaticm

Systems, Elsevier Science Pub!. B.V. 1990.
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1. Introduction

2

Secondary storage devices constitute an important, often critical, part of a computing system.

Programs in the machine access these devices to record (write) or retrieve (read) data, and use

them as stable repositories for long-term files, or as buffers and working storage for shorHerm

files. The correct and efficient use of these devices raises numerous engineering problems

dealing with different aspects of their operation.

1.1. The role of queueing theory

Secondary storage devices are regarded here as service systems. The programs using the

computer generate input and output commands, which are the services requested of the storage

subsystem. The interleaved operation of several programs gives rise to an essentially

nondeterministic sequence of inter-request time intervals. The interleaving is largely

uncontrollable by (and usually invisible to) the programs involved. Thus the modeling of this

sequence by a stochastic process seems appropriate, even if each participating program is

entirely deterministic.

As will appear from the descriptions below the devices do not enjoy the random access

property of computer main storage. In a non-random device the time required to satisfy a

request, i.e. to access data, depends not only on the amount and location of the data, but on the

"state" of the device, which in turn is usually determined entirely by the previously accessed

data. Since successive accesses performed by the device are often requested by distinct

programs, the service times again appear amenable to representation by a stochastic process.

Hence the application of queueing theory to analyze the behavior of secondary storage

subsystems is natural. It has been in evidence for over twenty years, and began shortly after the

initial research into the performance evaluation of computer systems.

1.2. Common devices

The types of secondary storage devices one finds in computer systems run the gamut from

magnetic tapes through disks, drums, shift-registers (of different technologies) to various

combinations of the above, such as tape libraries with "staging" disks or the rather uncommon

data-cell and block-addressable solid-state devices.

Magnetic tapes are inherently non-sharable, accessed sequentially, and leave little scope for

manipulation by the users or the creativity of the system engineer and the performance analyst.

Specifically, their being used by a single process over a long time implies that a queueing

model is inappropriate to describe their interaction with the rest of the system. Hence they will

not be further considered here.

The most common device, by far, is the moving arm disk Its salient geometrical properties are

as follows (sec Fig. 1):

(l) The data are read/written from/to a magnetic layer coating the rotating surfaces. The
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Figure 1: Moving-arm disk geometry

number of surfaces is typically between 2 and 40. A common value for the rotation

period is 162/3 milliseconds (with 60 revolutions per second).

(u.) Each surface has an associated read/write head When the head is stationary it can access

one track: an annular element of the surface. The number of tracks per surface is

typically between 200 and 1000.

(tit) The heads are rigidly attached to an arm. The totality of tracks that are accessible when

the arm is stationary is called a cylinder.

(iv) The arm can move, according to commands issued by the computer to the disk controller,

so that different cylinders can be accessed. This motion is called a seek.

Some variations of the standard disk have more than one arm, or more than one read/write

head per surface. In discussions of specific models below we shall need to consider a few

more details concerning disk operation.

A cognate device, much more common in older systems, is the dnun. Geometrically speaking,

we may think of a drum as a single cylinder of a disk, with the heads permanently positioned

to access any track (see Fig. 2). The number of tracks is usually much larger than the number
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in a disk cylinder, and may reach a few hundreds, but as there is only one set of tracks, the

storage capacity is nonnally much lower. Since the heads are stationary, they can be positioned

closer to the surface, pennitting a higher recording density; this, coupled with the (usually)

faster rotation produces higher transmission rates.

An intennediate device is the fixed-head disk. Here each track, rather than an entire surface,

has an associated read/write head. For our purposes this may be viewed as either a set of

parallel, co-axial drums, or one longer drum. Whichever point of view is adopted, the fixed

head disk can be lumped together with the ordinary drum for modeling purposes. Such disks

are used for applications where continuously high data transmission rates are critical.

In Section 3 we shall present some variations on these devices as well as some more exotic

breeds. A comprehensive reference on secondary storage devices is (Matick, 1977).

1.3. Elemenls of the qneueing model

We describe the basic components of the model.

(aJ The input process. As mentioned above, the concurrent execution of several processes in a

computer system produces inter-request intervals that are highly irregular. Usually there are no

patent, identifiable mechanisms which suggest to the model-builder a representative stochastic

process. Responding to a univemal dictum, with computational tractability the chief criterion,

nearly all queueing models assume that requests are generated according to a time

homogeneous Poisson process. Sometimes several such processes are assumed to address

independently distinct portions of the device address-space. While this assumption is rarely

SECTOR 5
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Figure 2: Magnetic drum geometry
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well-approximated in reality, the analyst hopes that qualitative statements, especially

comparisons between different operating regimes and system configurations, are robust under

this idealization. The main departure from reality is apparently not in the assumption of

exponentially distributed intervals (which has been observed occasionally to produce a

reasonable fit), but in the assumption of time-homogeneity: usually a program that issues a

request is blocked until request completion (especially if the request is for input). Since the

population of active programs is finite, long queues would imply a lower request arrival rate,

thus producing a stabilizing effect which is not reflected in the models. This implies that the

quantitative results produced by the models described below may be only accurate at low or

medium loads. Results for high loads can still be used to estimate the service capacity of the

systems.

(b) The service process. It is here naturally that the geometry of a device comes to the fore.

In drum systems, for example, the time to perform a service (e.g. read operation) depends on

the rotational speed and angular position of the read head in relation to the beginning of the

desired data. The head position just after reading or writing a record clearly influences the time

required to access the next record. Hence successive drum services are not independent; they

involve a rotational latency, which is the time that passes between the instants the heads

complete the scan of one record and reach the beginning of the next.

Disks, which have an additional mechanical degree of freedom, have an additional source of

latency. Unlike rotational latency, this arises from a controllable source: the positioning of the

head-carrying arm. The difference will be very clearly reflected in the models below.

Economic considerations sometimes produce even more complicated structures for the service

times. A moving-arm disk system is the standard example: The disk is not connected directly

to the main memory, which is the source/destination of all data transfers, but through a distinct

programmable device called a channel. One channel is commonly connectable to several

disks, and connection is established both to issue control commands (such as initiating a seek)

and to effect the data transfer. It may happen that when a seek or a rotational latency

terminates, the channel is not available for further instructions or the data transfer, since it is

then connected to another device. Thus additional delays are introduced, called reconnect

delays, which increase the lime required to service a request. Configurations with multiple

disks often have additional switchable stages in the lCdata path". with vaguely descriptive titles

such as storage directors, or access facilities, with the most common being control unit. Such

a unit is normally connected to the device for the duration of the request processing, and hence

produces no additional delay. From a logical point of view it may be considered a part of the

device.

(c) Service regimes. Virtually no secondary storage system allows preemption of a service

operation. Thus, the differences between regimes reduce to the order of selection for service.

AU of the models we encounter assume that the requests all have the same inherent priority.

Service not in order of arrival is adopted only when taking advantage of the non-random

structure of the device. Manipulations by the I/O scheduler (a part of the operating system that
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actually dispatches the requests to the queues) in some instances use the different executing

priorities of the originating processes to determine the position in queue of a newly generated

request; once in the queue, the position of the request is thereafter preserved. To mask the

non-random nature of the device the scheduler will often maintain distinct queues for distinct

regions of the device address-space. These regions are sectors or tracks for drums, cylinders for

disks etc. In these cases the regimes will differ according to the policy used to switch between

the queues. The various policies will be discussed when we review the corresponding models.

We nole that as a rule, in order to keep the computational overhead of the secondary storage

subsystem as low as possible, only simple scheduling algorithms are implemented. Thus,

adaptive algorithms are probably never used (at least we do not know of a single exception,

although some have been proposed and discussed qualitatively).

(d) Perfonnance measures. The criteria by which the various service policies are judged are

the following:

(l) The sojourn times of requests; the main criterion is the first moment but the variance is

usually important as well. If the variance is too large it results in some of the requests

getting a much poorer service than others. Such inequitable service is usually considered

inacceptable. Moreover, we may expect it to lead to inefficient use of the devices. To

improve their utilization one could consider keeping in the system a larger population of

active processes. However, a larger population is likelier to create higher congestion,

leading to longer response times and a host of undesirable effects.

(it) Queue lengths. These are necessary to estimate sizes of required data structures and the

number of active processes that can be tolerated.

(ill) System operating capacity, defined as the maximum input rate the system can sustain

without saturating.

We mention briefly that these devices also give rise to several types of problems of a stochastic

nature, which are not amenable to a queueingwtheoretic approach. For example there are

placement problems (of files and records) based on access frequencies. compression and

relocation problems, and others. Several are considered in (Wong, 1983). See also Section 4.

The following notation will be used in the rest of the paper:

S - service time duration.

!L-l - first moment of S.

A- rate of Poisson arrival processes.

p = All' - traffic intensity or load.

X - queue length (ofteo at a specific set of epochs).

A (z) - probability generating function (pgf) for the discrete random variable (rv) A.

A (s) - Laplace-Stiel~es-Transform (LS1) for the continuous rv A.

(When A denotes a process, the function A(') refers to its steady-state distribution).

a - the number of arrivals to a queue during a period denoted by the rv U. Thus

U(z) - U("i.-"A.z).
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(1)

Random variables with their parameters and associated transforms will often be subscripted by

a class index, e.g. Sj, Ili. "-i. etc.

Vectors will be distinguished by bold (heavy) type. With no fear of ambiguity we shall need no

explicit distinction between column and row vectors. Matrices are denoted by capital letters,

their elements usually by the corresponding lower case characters.

2. Generic Models

Many results and techniques from queueing theory have been brought to bear on problems

arising in the study of secondary storage systems. They have ranged widely in their

appropriateness, sophistication and success. The characteristics of the devices and their modes

of operation single out several techniques as particularly apt. These are reviewed below.

ILlustrations of their use appear in Section 3.

2.1. A single server with vacations

The first analysis of this model is in Skinner (1967). It has enjoyed high popularity since then;

a comprehensive summary is given in Doshi (1986). Interesting applications and more recent

results and generalizations may be found in Fuhrmann and Cooper (1985), KeiIson and Servi

(1987) and Loris-Teghem (1988). Takagi (1987) collects many of the results and applications

in a text-book format. The model is a variation on the standard M/G/1 queueing model:

Whenever the server becomes idle (i.e. when a departing customer leaves an empty queue), the

server "takes a vacation". When the vacation terminates the server returns and inspects the

queue. If it is still empty, he embarks on another vacation. Once the queue length at a

vacation end is non-zero, the server resumes normal service activity until the queue re-empties,

whereupon the cycle is repeated.

We use the well known fact that the queue length at departure epochs evolves as a Markov

chain. Assuming stability, the following equations need to be satisfied

xn .iii P(X ... n immediately following a departure)

n+1 _ __ n+1...,

-Xo ~ P(Ur ~ T ) p ( S - n - T + 1 ) + ~ x , P ( S -n-T+1)
r_1 r-l

where U is the length of a single vacation, and fj1 is the number of arrivals during a vacation,

given that there is at least one such arrival. The pgf for X is then

_ Ur(z) - 1
X(z) = ~xnzn -xoS (z) _ , Xo ~ (1- p)(1- U('A.))J'AE(U). (20)

n>O z - S (z)

The reasoning used for the standard M/G/1 queue, with arrivals and departures occurring

singly, shows that X(z) is the pgf for the queue length observed by an arriving request, as well

as by a random observer.
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Since the input process and the service mechanism are independent when the queue is non

empty, one has for the LST of the sojourn time, when the selection for service is FCFS

H(s) - W(s)S(s) -X(l- s/A) , (3)

(2b)PI e P + ),E(7).

which also provides W(s), the LST for the distribution of the steady-state waiting time, from

request arrival till the beginning of its service.

The above analysis is implied in (Skinner, 1967). He considers the situation where following

each service S there is an "inspection period" (T) after which either a service or a vacation

takes place. The analysis is entirely similar; we use the notation 51 = 5 + T, and observe that a

vacation will only start following a departure at which the queue is empty, and no arrivals

come during the subsequent inspection period. As T(A) equals the probability of no arrivals

during T, we find for this system

- til(z) - 1 1 - U(1\)
X(z) - Xo T(A)S (z) _ ,Xo - (1 - PI)·-:-::-=:::~'-,-

z - S I(z) ),E(U)T(A)

Skinner also computes an additional distribution which we use in the next section. He

considers the distribution of the queue length not at departure epochs, but at inspection-end

epochs, just before a service (S) or a vacation (U) commences. We denote this random variable

by XI' Referring to Fig. 3, the distribution we computed above is for the queue length when

the server is at point A, whereas we compute now the probabilities at the epochs the server is

at point B. These probabilities need to satisfy the equations

B

NO YES
IS X>O?.

VACATION SERVICE
'--

U TIME
S

A

INSPECTION
PERIOD -

T

Figure 3: A generalized M/G/1 server itinerary.
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Xl,n El P(X .. n immediately following an inspection or vacation)
_ n+l _

-xI,OP(U-n)+ 2 : x I , , . p ( S I ~ n - r + 1),
r_1

9

(4)

and so, with obvious notation,

zU (z) - SI(Z)
X I ( Z ) ~ X I O _

, Z -SI(z)

1 - PI
x 1,0 ~ " ' l - - - P " : I - + . . ! A E ~ ( - = U ) = - ' PI ~ AE(Sl)' (5)

Our version of the model of a single server with vacations has enjoyed a few generalizations.

Doshi (1985) considers the case where successive vacations not separated by a busy-period

have different (independent) distributions. Another straightforward generalization is analyzed

by Hofti (1985), where the vacation sequence is tenninated only when X ~ m. for some

predetennined integer m. The Skinner model would correspond to m..1-

Much of the recent work on vacation models concentrated on relating them to the underlying

MlG!1 model (where the server is always available). Fuhrmann and Cooper (1985) provide an

elegant representation of such relations. showing that the steady-state pgf for the number of

customers in the system is a product of the corresponding pgf of the M!G/l model-denoted

by n;(z)-and other, vacation-related pgf's that usually have intuitive interpretations.

In particular, they allow the server to take vacations at epochs other than when the queue is

empty, with the following limitations:

(a) A vacation may only start at service- (or another vacation-) termination.

(b) Vacation beginning and end times must be independent of the future of the arrival process

("non-anticipatory vacations").

(c) The number of customers in the queue at vacation beginning has a stationary distribution.

with a pgf denoted by l;(z), and the duration of the vacation must be independent of this

number.

Letting fJ (z) denote as above the pgf for the number of arrivals during a vacation, and X(z) the

pgf of the numbers of customers in the system at a random instant during a vacation, they

show the obvious relation

1 - U(z)
x(z) - 1;(z) E (U)(1 _ z) . (6)

Then X (z), the pgf of the number of customers left in the system behind a departing one. given

above in equation (2), has the product form

X(z) ~ x(z)n(z), (7)

with 1t(z) given familiarly by the Khintchine-Pollaczek formula

n(z) ~ (1 _ p) (z - rj (z) . (8)
z - S (z)

One has only to note that the pgf U1(z) used in equation (2) equals [U (z) - U(J,.)]/[l - U(t.)]

to see that the two expressions agree.
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It is remarkable that the relation (7) holds even when requirement (c) is not satisfied. Naturally

equation (6) cannot hold then as well.

A related interesting decomposition can be effected with respect to the sojourn time of a

request in a system with a FCFS regime. Using equations (3) and (7) we see

H(s) - X(l - sl)")o(l - sl),.~ (9)

(10)

Now n(1 - s/')..) is just the 1ST of HM /Gfl , the sojourn time in the underlying MlG/1 system.

When ~ ( z ) - 1 (exhaustive service between vacations) X(l - sl),.) is simply the LST of U', the

vacation residual life-time (forward recurrence-time) at a random instant during a vacation.

This means that H may be represented as HM /Gfl + U', when the two components are

considered independent.

2.2. Exhaustive service with one server and several queues (Eisenberg, 1972)

This model consists of M queues, fed by independent Poisson arrival processes with rates ')..m

and service requirements 8m, Is m s M. The server has a fixed cyclical itinerary of I stages,

where stage i is associated with a queue mi. The cycle may have any form; thus for

m ... 3, I ... 6 the server could be required to visit the queues repeatedly in the sequence

(1,2,1,3,1,2). The server remains at a queue until it empties, at which point the server switches

to the next queue of the cycle. This switching starts the next stage. The switching time in stage

i, from queue mi_l to queue mj requires a random duration denoted by Cj • If queue mj is

empty when the server arrives there, switching to queue mi+l starts immediately. Note that the

switching time is allowed to depend not only on the queues involved, but also on the stage

index. In the above example we allow C 1 and C 5 to be differently distributed even though

they both refer to switching from queue 1 to queue 2. Arithmetic in stage indices is always 1

modulo I (e.g., i-1- I when i - 1).

This model may be viewed as a generalization of the previous one, but it is considerably more

ambitious, as the objective is to obtain the joint distribution of the M queue-lengths at two sets

of epochs. One consists of the instants when a queue just emptied; such an event will be called

<lend of stage". The second set of epochs is embedded at all service completions. Note that

the queue lengths at both sets of epochs form Markov chains.

The first set of epochs is "coarser" and easier to start with. Define Pi,:r as the steady state

probability that at the end of stage i the queue lengths are x - (Xl> .•. ,XM), and let 0.,,%

denote the corresponding probabilities at stage i service beginnings. Queue mj is empty at a

stage-i ending, so Pi,x""O for all xm, yo! 0, by definition. To compute these distributions we start

by defining the pgf

A·(Z) e "'A, z% e '" •.. '" A. Z%, ••• Z%M
t-'I ..,t-' ,.J: '" '" t-'1,'x"j ...'x"M 1 M'

X XI~ 'x"M~

and similarly the pgf UI(Z). It is easier to proceed directly in lenns of the pgfs, exploiting the

independence of services, inter-arrival and switching times. The definition of Ci leads to a

relation uacross" a switching time:
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a,(z) - ~i_,(z)E ,(z),

where

E ,(z) - C,( ~ '-m(l - zm»).
m_1

11

(11)

(12)

A similar relation across a stage service is derived as follows. Stage i starts service in state x,

with the pgf a,(z), hence its duration has the LST B',;,' 0 where BmO is the LST of a busy

period in queue m initiated by a single customer:

(13)

The pgf of the number of arrivals to queue T during this stage is then B~7 Q..r - t..,.z). These

arrivals have to be added to the xr customers present when the stage service startedj hence a

straightforward if seemingly forbidding summation (Coffman and Hofri, 1982, p. 63) provides

the relation

where

M

1],(z) - Bm( L '-,(1 - z,»).
,.1
n,,",

Then from equation (11) we obtain the recurrence relation

Pursuing equation (16) is difficult in its present form, so we further define

(14)

(15)

(16)

f,')(Z) - f;(z),

where the subscripts regress from 1 to T. Applying equation (16) k times yields

k

Mz) - ~i-kltfk)(z)] II E i_i.,ltfi)(z)]. (17)

I.'
Eisenberg (1972) sbowed that f,')(z) - e, where e - (1, ... ,1) ERM, for z in the multidisk

1_00

IZm I" 1, l"m"M, when P -:l: Pm < 1; since Me) -1, (17) provides the formal solutioo

~ , ( z ) - II E '-I.,ltf0(Z)]. (18)

I.'
We comment later on computing numbers from this solution.

In order to compute waiting times in queue m, we need the (marginal) queue length

distribution in queue m at service completions. This can be acquired directly from the marginal

aj(z) Iz",-l, ml#1lt (A similar computation was made by Hofri, 1986). However, Eisenberg uses a

nice device that merits attention. Consider a lime interval [0, I) and random variables over it:

OJj(/;z) = The number of service beginnings within stage i during [0,/), when the state is z

(necessarily xm, > 0).
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1tj(l; z) = The number of service completions within stage i during [0, I), when the state is x.

ai(1 ;z) = The number of stage i service beginnings during [0, I), when the state is x.

13j(l; z) = The number of stage i completions during [0, I), when the state is x.

The dependence of these random variables on the initial state will be disregarded, as we intend

to consider only ratios of these variables when t -- 00. Focusing on a particular state x and

stage i, the key observation is that the number of service beginnings which do not start a stage

service is equal to the number of service completions which do not conclude a stage, Le.

oo,(I;lt) - a,(I;lt) - ",(I;lt) - MI;lt).

Now define

(19)

00(1) - k koo,(I;lt),
, %

,,(I) - k k",(I;lt),
, %

00,,% - lim [OO,(I;lt)/OO(I)],
,-~

"" %- lim [",(I ;It)/''(I)].
, - ~

Note that Wj,x and :Tti,x are the respective probabilities that service beginnings and completions

occur in stage i and find state x. The stage service beginning and ending probabilities ai,x and

13i,x result from a similar procedure; i.e.

and

MI) - kMI;lt),
%

a,(I) - ka,(1 ;It),
%

~;.% - lim [MI ; I t ) / ~ , ( I ) l ,
I-~

For any 1 we bave

a;.% - Iim[a,(I;lt)/a,(I)].
, - ~

100(1) - "(1)1 " 1, Ia, (I) - MI) I " 1, IMI) - MI) I " 1. (20)

Hence, lhe limiting ratio ya lim [~,(I)/"(I)] is independent of i. Dividing equation (19) hy
,-~

:n:(I), letting 1 -- 00 and using the last observation we obtain

OOj,x - yaj,x - :Ttj,x - 1 13;, x,

which in terms of pgfs hecomes

ya,(z) + ",(z) - oo;(z) + y ~,(z).

Since clearly,

",(z) - oo,(z)S m,(z)/zm"

equations (11) and (21) relate ",(z) to lhe pgf at stage completions,

_ ~'_l(z)E ,(z) - Mz)
",(z) - yS m,(z) Z -s (z) .

m, m/

(21)

(22)

(23)

We stili need the parameter y that appears in equation (23). This may he ohtained directly

from equation (23) by setting z ... e, but a more elegant way is to observe that the lengths of

successive cycles of the server form a derivative Markov process with a limit distribution. If
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the mean cycle length is D, then the mean number of services per cycle is "AD, where

A. = XmAm. Observing that stage i is visited precisely once per cycle, it follows that

1
y - fJ) • (24)

The mean cycle length is easy to evaluate by mean-value arguments. During each cycle queue

m is served for a fraction Pm. of the time. We conclude that

D - pD + ~E(C,) or D - ~(C,)/(l - pl.,
where p = ~Pm, and hence that

m

1.(1 - p)
y- };E(C,) .

(25)

(26)

This completes the specification of J'tj(z).

Note that in this system arrivals to queue m and departures from queue m see the same

distribution of Xm . These two sets of epochs will not normally provide the same distribution

for the other queues (Xn, n ;<! m). Nor is it generally true that if mj - m - mj, i ;<! j, then

1(;j(z) = 1(;j(z), Thus none of these distributions is equal to the distribution of Xm as seen by

arrivals to queue m. Nevertheless, 1(;j(z) gives us the distribution of the waiting time of

requests that are serviced during stage i, and such a request leaves behind in queue m precisely
1 IZ _z

those that arrived during its sojourn. Since 1(;j(z) Ei -- 1I:[(Z) :",':1 m_m. is the marginal pgf
",(e) •

for Xm/ at departures during stage i, we have 1(;j(z) "" Wi(Z}S ml(z) or

W,(s) - ",(1 - s/t.m,)/Sm,(s). (27)

(28)

This result does not yet complete the determination of waiting times at queue m, since

customers at this queue may be served at any stage i for which m = mj. All that remains is to

weight the contributions of these stages according to the fraction of the load they carry,

namely, 1(;j(l)/ ~ J'tj(l). Thus the 1ST of the waiting time in queue m is given by
j Imr- m

W(m)(S) - ~ ",(l)W,(s)/ ~ "/1).
jim,..", jim}..",

Eisenberg also discusses briefly a variant regime. usually called gated service (arrivals at the

queue where the server is located are not served until the server reaches the same queue again).

The required differences in the analysis are mild.

Evaluating the moments of queue lengths or waiting times via equations (18), (23), (27) and

(28) calls for derivatives of 13;(z) with respect to zm, and Zm,+1 at z 11II e. Obtaining these directly

from equation (18) is not as simple as one would like. Instead, they can be obtained from

equation (16), by successive differentiation for every value of i and iterating the resultant

equations. The procedure is given explicitly in Coffman and Hofri (1982). It is straightforward

and numerically stable, but the iteration calls for a complex program. Recently, Baker and

Rubin (1987) have shown, at the price of a slightly more complicated notation, a scheme to
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compute the expected waiting-times that is considerably simpler to do. It even has a slightly

lower computational complexity at [(I-I) equations, rather than the [2 required in the above

scheme.

An element of this model essential to its tractability is the assumption that the itinerary does

not depend on the states of the queues. Giving this up is not likely to result in a compact

analysis. Hofti (1986), has made a partial generalization: The server does not move when a

queue is vacated unless the next queue on the itinerary has a length not less than a given

threshold. Thus, a certain reordering of the services is allowed to depend on the states of the

queues. Only the simplest case (M-[-=Z) has been treated, and even this results in ratber

heavy going for general threshold levels (the required numerical computations are particularly

daunting).

2.3. Single-server qneue with dependent services (Nenls, 1977)

We mentioned earlier that in modeling a secondary storage device, the standard MIGII

queueing analysis will not normally apply because of the dependence of successive services.

Indeed, overlooking this dependence has been the undoing of a few published analyses of such

devices. An exact analysis requires that this dependence be taken into account explicitly. The

most remarkable analyses of such models were begun in the mid '70s by Marcel F. Neuts and

several of bis students. Much of the underlying mathematics may be found in (Neuts, 1981).

Here we shall present a more specific treatment that has been found useful for modeling

secondary storage devices. We follow the development in Neuts (1977), except for two

changes. First, we do not treat batch arrivals; giving up tbis feature entails no sacrifice with our

modeling needs, but substantial simplifications accrue in the analysis. Secondly, we assume

that, as often happens, the first service in a busy period has a distribution different from that of

the remaining services. For the MIGII system this elaboration was analyzed by Welch (1964).

We shall incorporate it in the following analysis (this was done in part by Coffman and Hofri,

1978).

(a) Model Specification. We consider a single queue with unlimited capacity, fed by Poisson

arrivals at rate A.. Services are of m types, with transitions governed by the matrix P - {Pij},

1 s; i, j s; m, where Pij is the probability that a service of type j follows a service of type i.

Thus successive service types form a Markov Chain. The stationary probability vector (spv) of

P is denoted by 1(;.

We let A(x) - {8 ij(x)} denote the joint distribution of the type and service time, possibly

dependent, whicb follow a type i service. The matrix b (x) - {t i/X)} is similarly defined,

when the type i and type j services are separated by an idle period. The LSTs of A(x) and

b (x) are denoted by A(s) and 8(s), respectively. Note tbat the dependence between

successive services is via their types, not their durations. Thus, we have P - A (0) .. B(O). This

structure may be used to model a dependence inherent in the service mechanism or, when

selection for service depends on the order of arrivals, e.g. FCFS, it may be used to model

sources that generate customers of m possible types according to a first-order Markov chain
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governed by P. For services of customers that follow a type i service we then have the vectoIS

of distribution functions

m

H,(x) - L a",(x) - (A ~)e);, 1" i" m,
'_1

~ ~
m

J,(x) - L j', ,,(x) - (fJ (x)e)" 1" i" m,
'_1

when the service is within a busy period, or initiates one, respectively.

Note that the distribution functions of a service of type i are given by

Si(X)'" (~r_l1tkald(X»/1t1 or S,(init)(x) = (~r ..l1tkg /d(x»/1tj, when the service is within a busy

period. or initiates one, respectively. We shall nonnally ascribe type to a customer, but

throughout the rest of this section one may replace «a customer of type r" with "a customer

which received type r service".

The analysis presented below has two interesting features: the method used to compute

boundary probabilities. and the calculation of queue-length and waiting time moments.

For details of the following we refer the reader to Neuts (1977).

(b) Queue lenglh distribution. We start with the analysis of the queue-length distribution at

departure epochs, assuming ergodicity (and hence, that P is aperiodic and irreducible). Define

Xi "" (Xi, I> .•• ,Xi,m). where xi,T is the probability that a departing customer was of type rand

left i in the queue. This state will be denoted by (i,r). 10 Neuts (1977), the same symbol is

used but with r denoting the type of the next service. Our definition is more natural for our

purposes, and the two are trivially related: Neuts' Xi is given by (xP)j in our notation. Also,

let aij,k(/) denote the probability that following a type i customer. a type j customer was

served for a duration up to I, and during the service k arrivals occurred. We have

I (Net
a'j,.(t) - f e-'-< k' d1J Ij(X), (30)

zoO .

and similarly.

'f>'"
j', 'j,.(t) - f e-'-< ~ df, ,Ax). (31)

zoO .

The LST's ofA.(x) and fJ .(x) are denoted by A.(s) and B.(s); fluther, define A. - A.(O), and

Bk '" Bk(O). so the following equations obtain for the steady-state queue-length distribution

i O!: O.
j +1

Xj co %oBi + ~%.0i-k+l'
'_1

For the vector pgf X(z) - LX'z', equation (32) immediately provides
,.0

(32)
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X(z)[zl - A ('- - '-z)] - xo[zB('- - '-z) - A ('- - '-z)J.
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(33)

Note that from equation (33), X(l) -,.. Now consider the vector Y(z), thai denotes the joint

pgf of queue length and service type as seen at a random time (or by an arriving customer). It

is interesting to note that Y(z) is not equal to X(z), but has the value

Y(z) - [xo diag(H('- - '-z) - zJ(,- - '-z)) +X(z)diag(e - H('- - '-z))]/(1 - z). (34)

(35)

The symbol diag(a) stands for a diagonal matrix, with the vector a strung along the main

diagonal. The vector Xo is presented in equation (45) below. Naturally Y(z)e ... X(z)e, i.e. the

same marginal queue length distribution is observed at arrivals and departures.

(c) Boundary probabilities - busy-period analysis. The next task is to compute {XO,r}, the

probabilities that a departing customer is of type r and leaves an empty queue. To this avail

we consider an auxiliary, 'sparser' Markov chain, L, that effects transitions at queue-emptying

epochs, and takes values in {I, ... ,m}, which represent the types of departing customers.

Clearly, the times when the chain L assumes the state r correspond precisely to occurrences of

lhe slate (0, r) for the (queue-length, customer-type) process X. A transition of L corresponds

to a busy cycle (an idle period combined with the subsequent busy period) of the X process.

Because of the special distribution of the service initiating a busy-period we must first compute

a related quantity, the down-crossing-period or dcp. This is the time that elapses from the

occurrence of the state (k,r), for k > 0, until the instant when level k-I is reached for the first

time. Clearly, this variable is independent of Ie, and only regular services (governed by A,

rather than B) need be considered. Given that a type i service has terminated, let Gij(z,s) be

the conditional joint pgf-LST of the number of services during the following dcp (marked by

z), its duration (marked by s) and the probability that the last service will be of type j. The

usual "busywperiod argument", due to Takacs. conditions on events during the first service and

shows that the matrix G(z,s) must satisfy

G(z,s) - Z~Ak(S)Gk(z,s).
hO

Let L(z,s) be the matrix similar to G(z,s), but based on busy-periods rather than dcp's. Then

the same argument yields

L (z,s) - Z~Bk(S)Gk(z,s).
hO

(36)

Note that the matrix L (z,O) is the pgf of the number of services during a busy-period, and

L (1, s) the LST of its duration.

Let f.li and fii denote the mean number of services in a dcp, and its expected duration, given

that it starts after a type i service. i.e.:

d
J1 ~ [dZ G(z,s)e],_I.S-o, j:i ~ -[ :s G(z, S)o],_1,9-o· (37)

We show below that these vectors have the following explicit forms:
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.. = (/- G+ G)[/-P+ G- Niiag(a)Grle,

ii = (/- G+ G)[/- P+ G- Niiag(a)Grla,

where

ai is the mean of the service time distribution Hi in equation (29),

G = G (1, 0), is a stochastic matrix,

g is the SPy of G

aod
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(38)

G is a matrix with all its rows equal to g.

Efficient algorithms to compute G are discussed hy Neuls (1976); Snyder and Stewart (1983)

present acceleration techniques.

We now prove the first result in (38), starting from equation (35). We have

aG(z,s) _ kA,(s)G'(z,s)+z kA,(s) ~ Gi-I(Z,S) aG(z,s) G'-i(Z,S).
iJz k;tO bJ:J i ..1 iJz

Setting z-i, s ... O, multiplying on the right by e and remembering that G is stochastic and

A,(O) - A., we ohtain

, .
.. - kA,e + k A, k G,-I ...

.hO k ~ i_I

, . I

Denote1:Ak 1: G1
- by T, and compute it from

k~ i ..1

_ k. _

T(/-G+G)- kA, k G,-I(/-G+G),
k ~ i ..l

and, since GG =- G,

T(/- G+ G) - kA,(/- G'+ kG) = P- G+ Niiag(a)G.
»0

Thus

T = (P - G + Niiag(a)G)(1 - G + Grl
.

Using equation (39) and the stochasticity of P we conclude that

.. - e + (P - G + Niiag(a)G)(1 - G + Grl
.. ,

or

..[/- (P- G+ Niiag(a)G)(/- G+ Grl
] = e.

(39)

(40)

After some rearranging we obtain the desired result. The second part of (38) is proved in 8

similar way.

Corresponding to the matrix G, we have the stochastic matrix L, with the spv I. The vectors

corresponding to p., ji for a busy-period are denoted by 11·, ji•. and defined as in equation

(37), with G replaced by L. The new vectors are easy to compute, starting with equation (36):
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fl· - e + [P - L + Adiag(P)G][1 - G + GrIfl,

ji. - P + [P-L+ Adiag(P)G][/- G+ GrIji,

where Pi is the mean of the service time distribution Jj(x) defined in (29).

Useful relations satisfied by the various 1.1. vectors are:

18

(41)

flg - 1/(1 - p), jig - p/[t.{1 - p)], P - A>.a (42)

fl·1 - (1 - t.{la - AlP»/(1- p), ji·l- p(1 - A(la -IP»/[A(1 - p)] (43)

fl- Aji - e - fl· - Aji· (44)

We are finally in position to determine zo. Observe that 1/xo. r is equal to the mean number of

departures between returns of the process X to the state (0, r), whereas 11lr is the mean

number of busy periods between returns to the state r for the chain L. (Ir is component r of

the vector I). By Theorem 2.11 in Hunter (1969), the mean number of services between these

returns is (Ip.·)/Ir• We conclude that

•xo., - I,/(Ifl), or Xo - 1(1 - p)/(1 - A(la - IP». (45)

(d) Moments of the queue lengths. For the derivative of equation (33), evaluated at z-l, we

obtain

X'(1)(1 - P) + "(I + M '(0» - .xo(P - AlJ'(O) + M '(0».
- -

Since 1 - P is singular, but 1- P + P is no~ we add X'(l)P - ,.(X'(1)e) to both sides to obtain

X'(l) - [.xo(P - AlJ'(O) + M'(O) - ,,(I+ M '(0»](1 - p + pr i
+ "(X'(1)e). (46)

The quantity E(X) -X'(1)e on the right-hand side seems to need a more circuitous approach.

While we limit the following to the first moment, the higher moments can be found in

precisely the same way. The expressions promptly become unwieldy, however, so symbolic

manipulation by a computer is recommended.

The underlying idea is to examine the eigenvalue with highest absolute value of the matrix

A (s) (its Perron-Frobenius eigenvalue), which is denoted by 6(s) and has right and left

eigenvectors u(s) and v(s), i.e.

with

A (s)u(s) - b(s)u(s), v(s)A(s) - b(s)v(s), (47)

v(s)e - 1.u(s)v(s) - 1,

Since A (0) - P, we have

6(0) - 1, u(O) - e, v(O) - ".

(48)

(49)

The appropriateness of the normalization lies in the ease of computing derivatives of 5, U and

v at s ... 0 to any desired order. Again, we proceed only as far as the first moment of X requires.

The calculation of higher order moments is quite straightforward (see Neuts, 1977).
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Differentiating the equation defining u(s) yields

[A'(s) - 6'(s)Iju(s) + [A(s) - 6(s)Iju'(s) - 0,

and at s-O

[A '(0) - I6'(0)je + (P - l)u'(O) - O.

Multiplying equatinn (50) nn the left by v(s) annibilales the second term, sn that al s - 0,

6'(0) - wI'(O)e - -"a = -E(S).

From equatinn (51) we lhen find for u'(O)

(I-P)u'(O) - -a + E(S)e,

nr
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(50)

(51)

(52)

u'(O) - (I-P+Pf'(-a + E(s)e + Pu'(O)).

Hnwever, PU'(O) - (xu'(O))e and differentiating lhe relalions between u(s) and v(s) at s-O

reveals "U'(O) - 0 (and v'(O)e - 0 as well). Hence

u'(O)-(I-P+Pf'(E(S)e-a). (53)

Similarly we derive

v'(O) - ,,[A'(O)(l- P + Pf' + IE (S)j

and

u"(O) - (I - P + Pf'[2(A'(0) + IE (S))u'(O) + (A"(O) - 6"(0)e] - 2(u'(0)v'(0))e.

Thus we also need the second derivative of 6(s) at s=O. We proceed as in the development of

equations (50) and (52), with one more differentiation yielding

6"(0) _ E(S2) + 2M '(O)u '(0) , (54)

where E (S2) - 3A "(O)e. Now, E (X) is obtained by multiplying equalion (33) on the rigbl by

u(A - /"z), obtaining

X() (
' _, _) _ J280 - f"z) - I6(/" - f"z)ju(/" - f"z)

Z U A ~ "'0 ." , _ •
z-u".-~)

Differentiating equation (55) and evaluating at z=l finally brings at some labor

(55)

(56)

E(X) - X'(1)e

- "'0[/,,36"(0)(1 - P)u'(O) - /,,2(1 - p)(I - P)u"(O)

+ 21..(1 - p)(pI- P - AB'(O))u'(O)

+ (1 - p)[2/"1I + /,,211(2) - /,,26"(0)e + /,,26"(0)(e + t..p - pe)]]/2(l - p)',

where pf) is the second moment derived from the service time distribution liO.

Equation (56) can be simplified, if we note lhat (I-P)(I-P+Pf' -I-P, bUllhere is nol

much '0 gain. By juggling in this way equations (33), (47), (48) one can obtain any moment in
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terms of lower order moments.
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(e) Sojourn times. By the remark following equation (33) the marginal sojourn time is given

by the LST

W(s) ~ X(l - sl)...).. (57)

Note that the marginal and virtual waiting times have the same distribution. However, when

the types are associated with the customersJ not the service mechanism, the LST of the sojourn

time distribution of a type j-customer, Wj(s) =Xj(l - sl')..), is sometimes more informative,

especially when the services required by the different types are highly heterogeneous. The

computation of moments is simple once those for the queue length are available. The special

services at busy-period initiation need no special consideration. Hofti (1984) computed the

waiting time for an LCFS regime in a model of similar structure.

2.4. Queueing networks

Networks of queues have enjoyed enormous popularity among performance analysts since the

mid '70s. Strictly speaking they are outside the scope of this survey, which focuses on models

for isolated devices. We should mention, however, that they have been used extensively to

model the performance of entire computing systems, where secondary storage devices, or

subsystems, are represented by single nodes. The fine structure of the device operation is not

compatible with known, efficient solution techniques for such models. Thus, approximations

of the service times and delays in such a node have been used. with the parameters either

empirically derived or computed from an isolated device model. Fuller and Baskett (1975) and

Zahorjan, Hume and Sevcik (1978) consider interesting examples.

A short, enlightening text-book introduction to these models has been written by Gelenbe and

Mitrani (1981). Kelly (1979) provides a much more elaborate discussion. Walrand (1988)

provides also recent advances, including much on the control of such networks. Solution

techniques are dealt witb by Bruell and Balbo (1980) and Sauer and Chandy (1981).

3. Device Models

In this section we review several analyses of device models that are of special interest either

from an engineering point of view or a methodological one. The order of presentation is

arbitrary, except that the more exotic devices are treated later.

3.1. FIFO service discipline for disks and drums

We shall present specializations of the model described in Section 2.3 for these devices. A

specialization is defined by the matrices A(x) and A(X), or equivalently, the transition

probabilities {Plj} and the service distributions derived from these matrices.
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(59)

(a) Parametrizing the FIFO disk. The type of a request is identified with the cyiinder

addressed. The cylinders are numbered 1 through M, and when successive requests are to

cylinders i and j, i;<!! j, a seek Tjj is needed. A reasonable estimate of this time is

Tij-u+v!i-ii. lsi,j"M. (58)

Typical values for u and v are 10 msec. and 100 fASec/cylinder respectively, and at the level of

detail of our model Tij may be taken as deterministic. The durations of rotational latency and

data transmission can be lumped when reconnect delays are disregarded. A common practice,

which is a reasonable approximation in many systems, is to let their sum equal the time of one

full revolution of the disk, denoted by 't. We may then consider this part of the service

detenninistic as well. The total service is then Sjj = 't + T jj •

So far, we have considered services within a busy period. How do we treat a service that

initiates a busy-period? This depends on the way the device is managed. A common practice

is to leave the arm at rest when the device is not servicing, so that b;j = ajj. This approach

minimizes system overhead, at the expense of occasionally leaving the arm near an edge of the

disk. Such an event increases the expected seek length for the next request. Coffman and Hofti

(1978) briefly consider an alternative, according to which the arm is dispatched to a popUlar,

central location at the end of a busy-period.

The matrix driving the address sequence, P, is less obvious. It depends on the way programs

address their data, on the number of disk drives in the system, and to some extent on the policy

used to allocate areas for files. One usage (common among performance modelers) is to

assume each cylinder bas an associated probability of being addressed, independently of earlier

requests. Thus Pij - Pj. This is the assumption used by Coffman and Hofri (1978). Another

approach is to recognize the fact that the vast majority of files are accessed sequentially and

often allocated in contiguous blocks, and hence addresses tend to cluster in "local runs".

There is some empirical evidence for this as well. A first order matrix tbat reflects this

property is given by

{

P + (l-P)Pi i -j,

Pij - (l-p)pj i ,. j,

where p is the probability that a request continues a local run. Hofti (1980) considered such a

matrix (in the "zero order" approximation, where all p;'s were taken equal to 11M). Naturally,

the richer the parametrization, the more difficult it is to use symmetry and obtain closed-form

expressions for the pgfs and moments of the random variables of interest. Let us apply the

results in Section 2.3 to this model, with the assumption Ajj = B jj (i.e., the arm rests when a

busy-period tenninates), so that Sij = 't + T ij for all requests.

The spv of P is the vector p, used in equation (59). The matrices Ak do not display any useful

structure, so G and g have to be determined numerically.

The process X has the pgf X(z) satisfying

X(z)[zl - A (1. - Az)] - g(z -1)A (1. - Az)(1 - pl· (60)

From equations (33) and the observation that g = I when A (s) - B(s), the expected service
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time following a type i customer is

M

a; - , < + ( l - p ) ~ p j ( U +vli-jl),
i_I
ir'i

(61)

which is clearly smaller for centrally located cylinders, regardless of the distribution {pj}.

The various quantities evaluated in Section 2.3.(d) do not appear to be reducible to any simpler

form with this parametrization, but numerical evaluation is straightforward.

(62)

lsi<j5,N

15,jsisN

ljj '" j

D- ~ d ..
hi

(b) Parametrizing the FIFO drum. The drum is assumed to comprise N logical sectors. The

number of tracks is left unspecified. The time required to read or write sector i is a constant d;,

and hence the rotational latency is given by

j-l

~ d..
k-i+l

where D "",,'1:.f_ldk. We assume that the physical motion of the drum is the only source of

delays in the system; i.e., switching times between the heads of different tracks as well as

software delays for interrupt processing and request scheduling are neglected. If the dj's are

all equal the device is called a paging drum, which is treated in the next section under a more

natural and effective policy.

The input process is specialized by assuming that an arrival is a request for sector i with

probability Pi, independently of previous requests and the state of the queue and server. A

curious consequence of this specialization is that the expected value of rotational latency

within a busy period depends on the {Pi} and {djh but not on the relative arrangemenl of the

sectors. Indeed, within a busy-period

n N 1 N N

E(T) - ~ Pi ~ Pjtij - 2" ~ ~(tij + tji)PiPj-
i_I j-I i-I i_I

From equation (62) we find lbat

{

D -d; -dj

ljj+ljj-= W - ~ i """ j,

and hence

D ( N 2) N
E(T)-z l + ~ P i - ~ p A .

i-I i-I
(63)

in which the invariance is manifest. Coffman and Hofri (1978) have shown that this invariance

does not hold when the rotational latency of busy-period initiating requests is taken into

account as well.
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(66)

Adapting the notation of Section 2.3 to this model, we first see that the matrix P is degenerate,

withpjj - Pj, and hence also n=- p. In addition,

A ( ) --.(1'1 + dl) (64)
ij S = Pje .

The evaluation of BO calls for a more involved computation; by conditioning on the length of

the idle-period we find (Coffman and Hofri, 1978) that

, ~ --.dl

B'j(s)~ ''Pje -w {e-"'/[e-.<D- 1]-e"'"'/[e-W -1]}. (65)
(/,.-s)(1-e )

Although the form of equation (64) suggests that G might have an explicit closed form, none

was found, so the rest of the computations need to be done numerically, according to the

procedures outlined in Section 2.3.

3.2. The SLTF drum

Consider again the paging drum defined in the previous subsection, i.e. a drum with equal

sized sectors, t4 - DIN, I=:;; i sN, and each accommodates a page of information. An obvious

way to reduce latency is to process a queue of requests in the order that the starting addresses

of the requested sectors appear at the read/write heads. This ordering changes dynamically as

new page requests arrive and old ones depart. For obvious reasons this scheduling rule is called

the shortest-Iatency-time-first (SLlF) policy.

The mathematical model can be represented as in Fig. 4, where for convenience the read/write

heads are presented as rotating around the stationary drum surface. As shown in the figure the

waiting requests are logically partitioned into queues based on the sectors they address. Each

queue is served in FIFO order, with one request being served each drum revolution while the

queue is non-empty. We assume that arrivals are governed by a Poisson process at rate

A... :I:f~lAkJ and that they are filtered so that AkJ l:s;k:s;N is the rate of arrivals to the k th sector

queue. Under this assumption, the individual sector queues can be analyzed in isolation to

obtain queue-length and waiting-time distributions for each queue. While a direct Markov

chain analysis is not difficult to work out (see e.g. Coffman, 1969), a simpler approach is to

recognize each sector queue as a special case of the server-with-vacations models in Section

2.1 or the more general model of Section 2.3. In particular, consider the extended server

with-vacations model in Section 2.1, where each service period S is followed by an inspection

period T. In associating this model with a sector queue of the paging drum, we choose a

constant service time DIN (the time spent over sector k), a constant inspection period

(N -1)DIN (the time to rotate from the end of sector k hack to the start of sector k), and a

constant vacation time D (the time between successive visits to the start of sector k). For the

generating functions of the number of arrivals during these periods we obtain

S-( ) -A.(l-')DIN T-() -AJ.l-'XN-l)DIN u- ( ) -A,(l-')D
Z -e ,z -e J z "",e .

Replacing S(z) in equation (2) with S(z)'f (z) and then substituting the above generating

functions gives us the generating functions for the desired queue-length probabilities, and

hence the LST for the waiting times via equation (3).
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Figure 4: A mathematical model for the paging drum under SLlF

Note that this approach does not provide the joint distribution of the queue-lengths, which are

dependent through the service ordering induced by the rotation of the drum.

The paging drum and certain variants of it have been studied by Fuller and Baskett (1975) and

others (Gelenbe and Mitrani (1980) provide several references). In a useful generalization of

the model, a request is assumed to be for K consecutive pages beginning at a specified sector,

where K has a given stationary distribution. The analysis of this model appears to be much

more difficult and remains as an open problem. (One may view it as a system of queues with

batched arrivals and services.)

A study of SLTF scheduling in the more general setting of a file drwn can be found in Fuller

and Baskett (1975). In this model the pages become files with both slarling addresses aod

lengths considered as random variables. Once again, exact results are elusive even under the

simplest of distributional assumptions. Fuller and Baskett (1975) have investigated a number

of approximations in considerable detail. In the final section, we relum to the file drum in our

discussion of open problems.

3.3. The SCANing disk

The SCAN policy for disks is a popular approach to reducing the response time of the device

by recognizing its non-random nature. A separate queue is held for requests addressing each
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cylinder, and each such queue is served exhaustively in (local) FIFO order. A "current

direction" is maintained; when a queue empties, the arm seeks to the next cylinder in that

direction, until the extreme cylinder is reached or there are no non--empty queues in that

direction. The "current..<J.irectionJJ is reversed and the operation continues to cycle. For details

about variants of this policy and its relation to others see Denning (1967).

The SCAN policy was aoalyzed by Coffman and Hofri (1982) under the following simplifying

assumptions:

(z) The arrivals to each cylinder follow a time-homogeneous Poisson process with rate A; (to

cylinder z)j the total arrival rate is A -1:Ai.

(il) When a queue empties the arm seeks to the adjacent cylinder, in the "current-direction".

The seek requires a fixed time, a. If that cylinder has no queued requests the next seek

is instantly started. The "current direction" is reversed only when cylinder 1 (or M) is

reached.

(iil) Satisfying a request requires a fixed time, T, equal for all cylinders. This assumption is

immaterial for the tractability of the model, which could just as well have a differently

distributed random duration Tj at each cylinder.

Under assumptions (l) and (b.) the model is entirely equivalent to the model described in

Section 2.2 with the following specializations:

1-2M-2,

mi - m for i- m or i- ZM- m, 1 s is ZM-m, 1 s msM.

Cj = a.

All the results in Section 2.2 then translate to the SCAN model. In particular equation (28)

reduces to

"m(1)Wm(s) + "2M~(l)W2M_m(s)

W(m)(s) - "m(1) + "2M-m(1) (67)

A fluid limit of the SCAN model is studied in Coffman and Gilbert (1987), where scanning is

called "polling:' In terms of the parameters introduced above, let 't- (M -1)a be the time that

the arm spends in motion when crossing from cylinder 1 to cylinder M or vice versa. Let L be

the distance then moved and v=LI't the constant speed. They consider only the unifonn

model where A, = AIM, for 1 s i sM. The fluid limit is ohtained hy holding L, ~ (or v), and the

traffic intensity p - AT < 1 constant, while allowing f.., N -- 00 and a, T -- O.

In this limit, work (required service) arrives deterministically at a rate plL per unit time per

unit distance on [0, L]. Waiting service requests in this limiting system are described in terms

of a continuous function, a density w(x) of work distributed over Osx sL. We outline below

the derivation of w(x) and a related function t(x) that describes the deterministic (but not

constant) motion of the arm.

Define w(x) specifically as the work per unit distance at point 0 sX s L when the arm is at the

origin, and let t (x) denote the time required by the arm to move from the origin to point x

(then r (L) just describes half of the cycle with the ann moving from left to right). Moving
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from x to x+dx the ann encounters the work w (x)dx originally present plus the new work

pt(x)dx/L that arrived during the motion from 0 to x. One obtains easily

d
<Ix t(x) - w(x) + pt(x)/L + l/v. (68)

For another relation between t(x) and w(x), we consider the reverse motion from L to 0, in

which a time t(x) is taken to move from L to L -x. We find from the definition of w(x)

w(x) - p[t(L) - t(L-x)]/L,

so equation (68) becomes

d
<Ix t(x) - p[t(L) + t(x) - t(L-x)]/L + l/v.

Substituting L -x for x changes equation (70) to

d
- <Ix t(L -x) - p[t(L) + t(L - x) - t(x)]/L + l/v,

whereupon combination with equation (70) yields

d
<Ix [t(x) - t(L-x)] = 2pt(L)/L + 2/v,

and since t (0) - 0, integration gives

t(x) - t(L-x) - [2pt(L)/L + 2/v]x - t(L).

(69)

(70)

(71)

(72)

We see tbat t(L)-,/(1- p), so substitution of equation (72) into equation (70) yields a first

order differential equation with the solution

t(x) - : (1 + L(;~ P)·

Then equations (69) and (73) give

w(x) - LV(~P- p) (1 + p -1:-).

(73)

(74)

According to equations (73) and (74), we see that the ann starting at position 0 sees work

density w (0) - 0 and moves at speed v. As it travels it encounters an increasing work density

and its speed decreases. The total work present when the arm is at y and moving right is easily

shown to be

...e!- (1.. + ..e. + (1- p)l'..(1- 1'..)
1- p 2 6 L L

which reaches a maximum of p«3/4 - p/12)/(1- p) at y-L/2 and a minimum of

p«l/2 + p/6)/(1 - p) aty - 0 and y - L.

Expected waiting times are also easy to derive from (73). In particular, at a random point in

time let W(y) be the waiting time up to the arm's first return to point y. Then
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W(y)- ~ [1+(1_.3lc)2],
2(1- p) L

so the mean wait for service at a random point y, distributed uniformly over [0, L], is

L 2

W - {W(Y)dYIL - 3(1: p)

We remark that the fluid limit can be used as an effective approximation for any traffic

intensity p "" AT, but for fixed parameters L, 't', and p it requires the rate of arrivals to be

relatively high and the service times to be correspondingly small. A numerical study of the

approximation can be found in Coffman and Gilbert (1987); see figure 10 there.

3.4. Disks with two read/write heads

In the few studies dealing with two-head systems. the difficult mathematical questions have

focused on the calculation of seek time distributions under various head selection policies, i.e.

rules which select for each request the head to perform the seek and read/write operation. As

illustrated below, a variety of problems has emerged from the need to incorporate one or more

physical constraints. Since performance in terms of queue lengths, waiting times and related

measures has yet to be analyzed for two-head systems. this research takes us somewhat afield

of classical queueing applications. Thus. we merely outline the basic models and results. It

will be evident that the results mentioned below can be used, at least in principle, as a

description of service times within the general queueing model of Section 2.3.

The assumption of a single data path between the disk system and primary memory is common

to all models. The set of cylinder addresses is approximated by the unit interval [0.1].

Requests are modeled by a sequence of addresses I b 12, •.• , usually assumed to be

independently and uniformly distributed over [0,1]. Each request must be served, in the order

given, without the benefit of advance information on subsequent requests. The state of the

system just after serving the i th request is given by a pair (Xii Yj), O.s;XjsYrs: 1, denoting the

positions of the two heads. Necessarily, either Xj -lj or Yj "" Ii' With an initial state (xo,Yo)

given. the sequence {(Xj, Yj)j i ~O} constitutes a Markov chain in all cases of interest.

The models below are distinguished by whether there are two heads on the same arm or one on

each of two arms. In the latter case two further models arise depending on whether the two

arms are positioned by a single controller, or by two autonomous controllers. In all models the

nearer-server (or greedy) rule is clearly of interest: if in state (Xi, Yi) both heads can be

positioned at Ii +1> then the head at Xi is chosen for the seek if Ili+l -xii < IIj +1 - Yi I;
otherwise, the head at Yi is chosen.

(a) Two arms autonomously controlled. This is the most flexible system, since both heads can

be moved concurrently to any pair of addresses in [0,1]. In serving a request one head

performs the seek while the other jockeys so as to be in a favorable position for the next

request. As shown hy Hofri (1983), ao optimal policy is relatively easy to find, provided the

cost function to be minimized is limited to total or average seek time, i.e. no cost is incurred
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by the jockeying motion. Indeed, it is not difficult to show that a sequence of locally optimum

decisions is also globally optimum. In particular, the nearer head is always chosen for the

seek, i.e. - the greedy rule is optimal. During a seek to point t the jockeying head is

positioned at 1/3 if I ~ 1/2 and at 1- (1-1)/3 if 1<1/2; a calculation shows that this

minimizes the expected seek to the next request. The same policy is optimal even when

successive requests are dependent and not uniformly distributed, but the expression for the

jockeying target is more involved.

(b) Two arms and a single controller. In this system the heads are moved independently but

not concurrently; in serving a request only one head is moved. The minimization of expected

seek times remains an open problem for this system, but it is conjectured that a head selection

rule of threshold type is optimal, i.e. for each state (Xj,Y/) there is a threshold A(Xj,Yi) such that

if 1/+1 < A.(Xj.yj) the head at Xl serves the request at ti+lI and if tl+l > A(Xi,Yj) the head at Yi

serves the request. By a combination of analysis and numerical evaluation of Bellman

equations Calderbank, Coffman and Flatto (1985) compared an optimal policy with the nearer

server rule and found that expected seek times under the latter are very nearly minimum.

(e) A single arm with two fixed heads. In serving a request both heads move at a fixed

distance, d, apart, and for each request one is selected to perform the read/write operation.

Such a configuration was first investigated by Page and Wood (1981), wbo based their

simulation study on actual systems. Calderbank, Coffman and Platto (1984) analyzed the

nearer-server rule under two assumptions: In the first model both heads had to be kept on the

disk surface (i.e. in [0,1]). Thus, the left and right heads were restricted to [0, d] and [1-d, 1],

respectively, and the nearer-server criterion was applied only to requests in [d, I-d]. In the

second model, whose analysis was very similar, there were no restrictions on head positioning

other than the fixed separation distance. Explicit forms were obtained for the stationary

distribution of the position of the left (and hence right) head. Prom these results expected seek

times as functions of d were obtained. Interestingly, it was shown that an optimization with

respect to d produced an expected seek time which was slightly less than that in the system

with two independent arms and a single controller.

In each of the above systems the interval [0,1] can be divided in half with a head reserved

exclusively for serving requests in each half. This clearly doubles the performance (halves the

expected seek times) of single-head systems. An interesting result of all of the studies is that

when the (implicit) interior boundary between the heads is removed, the expected seek time

can be reduced to less than one half the expected seek time in a single-head system. (fwo

heads are better than twice as good as one head.)

As a final remark, we mention the extension of the above models to systems in which one or

more directories are kept on the disk. In such a model Ij denotes a logical address (such as a

file name). To convert this to a disk address an initial read must be done at one of the fixed

directory locations on the disk. Thus, in general, the servicing of requests consists of

alternating directory and file operations. Within the earlier mathematical models, Calderbank,

Coffman and Flatto (1988) have analyzed the expected total seek time per request under an



Queueing Models ofSet:ondary Storage Devices...

optimal head selection policy.
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3.5. ControlliDg • CCD shift register

(Hofti and Rosberg, 1985). In this section we describe a mathematical model and its analysis

for a different device. The treatment is also different, in that within the technological

constraints we can determine an optimal operating policy for the device.

(a) Device Description. The device considered here is a register that may be viewed as one

track on the surface of a disk or a drum. The technology however is entirely different (see

Matick, 1977): the information is not magnetically recorded but is carried by electrical charges

that rotate continuously at a rate u that is bounded above and below by physical requirements,

a sus b. We note that the ratio r "" bla is fairly large and can exceed 104. The register is L

bits long. It may be read or written through a single "port", an electric connection represented

by the point P in Fig. 5. Reading or writing commence once a special portion of the contents

(the register "signature") reaches the port. We shall denote this portion by "bit 0". In our

model we do not distinguish between read and write requests, and we assume that they all

require the entire contents of the register to be shifted across the port. (The complete system

will typically have numerous such registeIS in parallel, but their operation is independent

except for memory contention. Our model will consider a single register in isolation.)

Request arrivals are assumed to be triggered by a time-homogeneous Poisson process with rate

/0.. A request that arrives and finds the register busy servicing another is enqueued. Otherwise,

the start of service awaits the arrival of bit a to P. If it arrives when bit 0 is at distance s from

the port, its waiting time will be minimized if this portion of the cycle is completed at the

TOTAL LENGTH =L

BIT 0 s

u:)

p

Figure 5: The geometry of a ceo shift register.
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(75)

(76)

maximum rate, b. Thus far the model resembles the one discussed in Section 2.1. However, we

have not yet specified the service or the "vacation" distribution. Since the rotation rate u can

be fixed by the device controller, Hofri and Rosberg (1985) address the questions of

determining the optimal rate during service and during a lfvacation" a rotation that starts

when there are no queued requests.

(b) Optimal Service Policy. First, we note that it is not obvious that service should be

invariably at the maximum rate. Consider a realization where at 1= 0 there is one queued

request, bit 0 is at P and its service commences. The next request, in this realization, is due to

arrive at I=Llb + e. Service at rate b would have the next request wait almost an entire extra

rotation, whereas a first service at rate =Lbl(L+ eb) would slightly delay the first, halve the

time in system for the second, and so provide a much shorter aggregate sojourn time.

Nevertheless, it is shown by Hofri and Rosberg (1985) that the service should be at the

constant rate b to minimize overall expecled sojourn time.

The proof assumes that rate changes are instantaneous (which is reasonable at the level of

detail of the model) and are effected at N equidistant points on the cycle of bit 0, for some

integer N (which may be arbitrarily large).

Let l! .. LIN. A policy that makes decisions at these points is called a 6.-policy. Under an

optimal b.-policy let WA(i, S), S ~ 0, i ~ 1 denote the expected aggregate sojourn time

experienced by requests in the system, beginning at time I = 0 and extending to the end of the

current busy-period, given that at I .. 0, bit °was at position sand i requests were present.

Let W
A

(i, s, u) be similar to W
A

(i, s), except that the action for the first 8. segment is known to

be u (not necessarily optimal), and thereafter the optimal policy is to apply. An immediate

calculation yields

AI,

W. (i, s, u) - i~ + Jl..e"'[ ~ - t + W. (/+1, s - I\.)]dt + e-M/'W (i, s-I\.)
u 0 u u A

-(/+1)~ - ~+(l-e-M/')W.(/+l,S_I\.)+e-M/'[~ +W/i,s-I\.)].

Noting that W
A

U, s - 8.) does not depend on u, we differentiate equation (75) with respect to u:

...!!...W. (i, s, u)-au 0

-(I + 1) ~ + ~ e-M/
' - ~ e-M/

' [W.(i +1, s -1\.) - W.(i, s - 1\.)].
u u u

Since the value in brackets is positive the right-hand-side of equation (76) is negative for i ~ 0

and f... ~ O. This establishes the claim.

(c) Optimal Vacation Policy. At first glance it appears that the register should be left to rotate

at rate b when there are no queued requests. This, however, is not the case. Since a request

which arrives at a non-busy register and finds bit 0 at position s experiences a latency sIb, we

want to minimize s at "interception time". It appears that a more reasonable policy would be
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to shift fast (at b) when s is large, and then slow down, to tarry as long as possible at low s

values, when bit 0 approaches the port. Indeed, Hofti and Rosberg prove the following:

(I) When control is effected every Ii. time units, the optimal rate is b so long as $ > S1; it is a

when s < s 1; and it may assume an intermediate value at the single decision point $ l' There is

an algorithm to compute $1 (and that intermediate value), which essentially amounts to solving

a set of Bellman equations. It is rather simple because the form of the optimal policy is known.

In actual computations the "intermediate" optimal value turns out to be very often either a or

b, so the optimal policy is of a bang-bang type.

(it) When control can be applied continuously at every s value, then the optimal policy is

always pure bang-bang, assigning rate b for s > s ", and rate a for $:S; $", where $" is

detennined through the equation

b ( e - l . ( L ~ ' ) l b _ e""la) + (b-a)(e""la-l) +)..L _ o.

For low arrival rates one may neglect terms of order ( ....!:....)3. Note that f..L < b is required for
aIL

stability. One then finds

• L
8 -

- 1 + vr ' r 13 bID. (77)

It is interesting that the ratio of the optimal expected latency time to the value L/2b, obtained

under the naive policy which maintains the rate b throughout, is given by 2v .Since r can
1 + r

easily be in the thousands this is a substantial improvement.

(d) Performance analysis. Having determined the optimal service and idle period behavior the

remaining analysis is routine. Note that the model is close, but not identical, to the model

presented in Section 2.1, since the first arrival during a vacation will modify its duration.

Eqnalion (2) holds, but (j (z) should be assigned the value zU, (i..(l-z)lb), where U, (-) here is

the LST for the time between a first arrival during an "idle" rotation and the completion of

that rotation. Let U denote the duration of an uninterrupted idle rotation. We have then

U = (L-s ")/b + s·/a. The time of a first arrival during an idle-period, T, relative to the time

when the rotation during which it occurred started, has a truncated exponential distribution (the

truncation is at U); for a time-of-interception T=t the position of bit 0 is given by

{
. .

L -bt, O"t< I =(L-8 )Ib
s (t) -.. • ..

8 -a(/-t), t < I"U.

The distribution of T induces one for s(1). Since U1 - s(1)/b the computation of its LST is

immediate, yielding
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(78)

CJ,JJ;lb) _ 1 {_;.._ e-L,lb [1- e-<'(A-'J]
1 - e-W ;.. - ~

+ /.. e-i,Ua/b [e-tOCk-i,alb) _ e-U('}..-i,a1b)]}.

;.. - ~alb

The expression for Ut (") together with equations (2) and (3) allows us to compute momenls of

the response time.

3.6. Multidisk Systems

It is obvious that the analyses of individual device models do not cover the entire spectrum of

congestion phenomena that occur when several storage modules operate concurrently. We

have already mentioned one such phenomenon, the reconnect delay, but there are others as

well.

The reconnect delay has been recently analyzed in detail, albeit only approximately, by Gavish

and Sumita (1988). They consider a model consisting of two channels and two strings of

disks. Their main contribution is in showing that a careful consideration of channel

interference permits the model of Section 2.3 to provide a very good estimate of system

performance.

The lotal sojourn time of a request for disk j in the subsystem is split into the following

successive components:

"'.; - waiting time in the queue;

C - time to send the seek command;

Sj - seek time;

Wi - waiting time for the channel to become free;

C - time to send the set sector/read command;

L j - rotational latency time;

Rj - rotational delay (integral number of rotations);

Hj - time to find the head of the block within the sector;

Tj - time to transfer the block.

The command times, C, are constant. The seek times follow equation (58). Seek targets in

their model obey the scheme of Hofri (1980) (each cylinder has a possibly different locality

parameter; otherwise the address distribution is uniform). L j and H j are obtained from

uniformity assumptions. The two deliberate approximations in the model involve the

components We and R·. We is estimated as the residual life-time of the channel-blocking

duration, due to the other disks. This duration is computed in a state-independent way by a

simple mixing of channel-use durations of the command and transfer times of the other disks,

when they hold the channel, weighted by their traffic intensities. The variable R· is assumed

to be a geometrically distributed number of disk rotations; the parameter of the distributions is

the channel utilization, which is obtained when We is computed.
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In computing the waiting time Wj they recognize that a request arriving to an empty queue

may be delayed from initiating the seek operation, due to the channel being busy with a

different disk. Hence they adopt the approach of the model described in Section 2.1, and use

the decomposition of the waiting time given by equation (9).

Their results were compared with a straightforward simulation of the model, to estimate the

effect of the approximations inherent in it. The comparison revealed that the errors in mean

values-device utilizations and expected response times-are usually bound by 4%, but may

reach 8-9% at close to saturating loads.

It is of interest to note that the model was easy to adapt to reflect technology changes, such as

using two arms per disk (that can only access non-overlapping regions on the disk surface) and

multiple controllers with various access capabilities.

In dealing with even more ambitious models, techniques other than those we have used so far

need lo be invoked. For an interesting, well-considered approach see Bard (1981), which also

contains a number of additional references.

4. Discussion and Open Problems

There are open problems of many types in the analysis of computer secondary storage systems.

In this section we mention a few representative ones; in the literature the reader will find many

more that are concerned with specific devices.

The idealizations introduced in the various models comprise the most obvious source of open

problems. The tritest of these is the assumption of time-homogeneous exponential

distributions for interarrival times, read/write times, etc. The value of these assumptions in

producing tractable Markov processes is easy to see in virtually all cases. The sacrifices made

are not so well understood; it is hoped but rarely proved that expected-value performance

measures are sensitive only to the first one or two moments of the constituent probability

distributions taken as exponential.

What is likely to introduce even rougher approximations is the frequent assumption of the

independence of two or more random variables. Such an assumption usually provides a critical

reduction in the dimensionality of a Markov model. An important example is the assumed

independence of arrival rates and the number in queue. In many applications the number of

active users of a storage device is simply 100 small for the Poisson assumption. One of the

few concessions to this reality appears in the analysis of the SLTF file drum mentioned in

Section 3. Fuller and Baskett (1975) analyze a closed two-server cyclic queue, where one

server is a CPU and the other is a drum with a state-dependent service mechanism reflecting

SLTF scheduling. Exponential service times with a rate parameter depending on queue length

are assumed, so an analysis along conventional lines is possible. An added benefit of this

simplification is that such storage models can be taken as elements (stations) in very general

product-form queueing networks. Recent work by Mitra and McKenna (1984) provides
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efficient computational tools for analyzing networks with state dependent service times and

multiple job classes.

The above model, however, represents another type of approximation involving the assumption

of independence, viz. that a service time (more specifically, a latency delay in their case)

depends only on the current state of the system. We return to this point later.

A third illustration of questionable independence assumptions was mentioned in Section 3. In

the commonly adopted independent reference model, request addresses are taken as

independent, when in fact a great deal of "locality" is often exhibited by these sequences in

practice. Even a very simple model of locality, such as the one presented in Section 3.1, can

make important improvements in the value of the mathematical analysis.

Thus far we have considered modeling issues and related open problems which arise in a very

broad range of computer performance evaluation studies. In the present setting the more

interesting open problems are those dealing with structures and algorithms peculiar to

secondary storage devices. Two of these are presented next, one having to do with latency

minimization and the other with seek-time minimization. In order to bring out clearly the

essence of these problems, we shall adopt simplistic models, continuous in both time and

space.

Consider first a model of the SLTF file drum. As shown in Fig. 4., assume that the server

(read/write head) moves about a circle (the drum) at constant speed, rather than fixing the

server and rotating the circle. Let us normalize the circumference of the circle to 1 and assume

that arrivals constitute a Poisson process in the two dimensions of time and space, i.e. the

probability of an arrival in [t, t +dt] x [x, x +dx] is f...dtdx. The arrivals represent starting

addresses of files to be read or written.

Now according to the SLTF policy suppose the server has just completed the service of a

request and is at position x. The next request served, say at y, is the first request encountered

by the server in its constant circular motion starting at x. Beginning at the time the server is at

point Y, an exponentially distributed service period with parameter 1.1. commences. From the

point where the server is located at the end of this service period, it then moves to the next

request as before and starts the next service.

Waiting times in this model were analyzed approximately by Fuller and Baskett 0975) under

the assumption that on completion of a service the waiting requests (starting addresses) were

distributed uniformly around the circle. It is not difficult to verify heuristically that this is not

the case and that in fact, according to the actual distribution, the latency (motion to the next

request) can be expected to be stochastically larger. Thus, even a conservative approximation

to waiting times (Le. one which provides a reasonable upper bound for the waiting times)

under the SLTF policy remains an open problem.

A satisfactory analysis of SSTF sequencing, to obtain the request waiting time and a

description of the server trajectory, is another intriguing open problem, even with a time

homogeneous arrival process. The problem resembles certain polling problems defined on the

circle rather than the interval. In particular, if the server is constrained to move
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unidirectionally at a constant speed around a circle when not serving, we have a continuous

polling model successfully analyzed by Coffman and Gilbert (1986). There, the assumption of

constant service times was crucial to the formulation of a tractable Markov process.

The arm moves, however, on an interval. Using the simplified continuous model as before, we

represent the set of cylinder addresses by the unit interval [0,1]. Arriving cylinder requests are

again described by a Poisson process in two dimensions. just as for the SLTF model. In the

simplest model we assume constant service times. After serving a request at point x. the bead

is moved to a waiting request nearest to x for its next service. The invariant measure describing

the equilibrium server position, waiting times as a function of position and expected server

motion per request are all important objectives of the analysis. A simulation study conducted

by Hofri (1980) led to the following specific conjecture: The waiting time under a FCFS policy

is stochastically larger than the waiting time under SSTF.

In special cases results of this sort have been proved. For example, in the absence of seek

times (i.e. we have instantaneous transitions), the sum of queue lengths is invariant under the

choice of a strategy among those that do not idle the disk when non-empty queues are present,

assuming equal service times at each cylinder. When these times are not equal, Klimov (1974)

gives a head-of-the-line priority rule by which the queues should be served (non-exhaustively)

so as to minimize mean waiting time. Naturally, when switching incurs no cost, the optimal

ordering depends on arrival and service characteristics only, and not on queue and server states.

When the seek times are non-zero, exhaustive service is optimal in minimizing the total queue

length (Ross, 1985), and under certain combinations of parametem it appears to be optimal not

to depart from an empty queue until the next to be served has a queue larger than some

positive threshold. The latter was shown to be the case for two queues by Hofri (1986). The

last few years have seen an increase in the number of works on optimal control of queues; we

have yet to see an application of any of those results to operating systems.

Recently it was observed by Daniel and Geist (1983) (and elaborated in Geist and Daniel,

1987), partly from simulation data, and partly from meaaurements (in a lightly ioaded system)

that a policy intermediate between SCAN and SSTF, provides lower mean waiting limes than

both do. This policy, tenned V-SCAN, computes seek distances and then 'seeks' to the closest

non-empty cylinder, as SSTF does. However, the distance in front of the head (defined as the

direction of its last motion) is compared to the corresponding distance behind the head plus a

prespeclfied constant R. This yields the SSTF and SCAN rules, when R equais 0 and N-tbe

number of cylindem-respectively. Simulations with R~ 0.2N showed that in the region of

moderate arrival rates, mean waiting times under V-SCAN were a few percent lower than the

minimum of those under SSTF and SCAN. The data also indicated that at high arrival rates

SCAN was superior to SSTF. This has recently been confinned in independent extensive

simulation by Coffman and Gilbert, (1987); their data suggest that for all sufficiently large

traffic intensities, SSTF is inferior to SCAN, but that they converge to the same heavy-traffic

iimi!. A number of analytical results (described above in Section 3.3) for the simpier SCAN

policy on both the circle and the interval support the heavy-traffic behavior seen in the

simulation data.
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Gopal and Rosberg (1986) take a different approach to the problem. They propose an algorithm

to compute the scheduling of a given number of requests when there are no subsequent

arrivals, prove its optimality and compare its performance (via simulation) with the standard

scheduling policies. On the basis of this algorithm they propose QOPT, a quasi-optimal

schedule when arrivals are allowed: after completing each request, on the basis of the requests

then present, it finds the next request the optimal algorithm (with no more arrivals) would have

served, and 'seeks' there. The required computation is quadratic in the number of requests

(which is small in all reasonable situations). In simulation experiments this algorithm

outperformed SSTF and SCAN for all arrival rates, in tenns of waiting times. The differences

exceeded a fraction of a percent only at the very highest rates.

An area of queueing theory of high engineering interest, but difficult to pursue for the problems

we considered here, concerns transient, or time-dependent analysis. Going beyond the

conventional steady-state formulation is especially important when we want to assess the

"surge behavior" of a system and the rate at which it dissipates backlogs of requests which

accumulate during periods when the arrival rate temporarily far exceeds the processing rate.

When the service mechanism is independent of the state of the queue (as is the case in standard

queueing models such as the MlG/1 queue), or when the dependence is easy to take into

account, as is the case in the model displayed in Section 2.3, a busy-period or dcp analysis

provides the answer. The treatment of the relaxation time of the M/G/1 model wiLh vacations

by Keilson and Servi (1987), provides this information for a more useful model. When the

dependence is more contrived, as is often the case with the devices and policies we face here,

results are much harder to come by. Consider for example a disk under tbe SSTF policy.

Obviously the larger the backlog, the rarer and shorter are the seek motions the arm will have

to perform. Put another way: the service improves as the state of the subsystem deteriorates.

From an engineering point of view this is a definite advantage, but it does not make for an easy

analysis. Some interesting results along these lines have recently been obtained for Jackson

type queueing networks by Massey (1984), but extending them to the models we have

discussed may well be quite difficult.

Recently disk systems have been provided with a new feature: a cache-a solid-state device

tbat stores the recent blocks read or written to Lhe disks. Accessing the cache is much faster

than the disks proper, since there is no mechanical motion involvedj when the bit-ratio

(fraction of the requests satisfied from the cache) is high, as has often been observed, a very

substantial speed-up results. No satisfactory analysis of such a system, e.g., an analysis tbat

would provide recommendations on the desired cache management policy, or changes in the

disk scheduling algorithms, is available yet.

There are many stochastic optimization questions closely related to the queueing models we

have discussed. In very general tenns a typical statement will take the form: Among a given

class of policies for deciding the sequence in which requests are to be served, find one which

minimizes the expected waiting time (or the expected number in system, expected head/drum

motion per request, etc.). The case shown in Section 3.5 is a nice exception, but such problems

are usually very difficult, even when attention is restricted to the class of stationary Markovian
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policies (Ross, 1983) which base decisions only on the current state of the system.

While in most cases the analysis is quite different from that found in the theory of queues, a

queueing analysis may be an integral part of a problem in optimal allocation. For example,

consider a general FCFS drum model (as in Section 3.1) whose parameters include the sector

access probabilities {Pi}. The Pi'S are determined by the way records are assigned to sectors

and, to some extent at least, are under the control of the designer. A reasonable objective

would be to distribute a set of records with known access frequencies among the sectors so as

to produce a distribution {pj} which minimizes expected waiting time.

A direct solution to this problem begins with a queueing analysis to obtain a formula

expressing the expected waiting time as a function of {Pj}. After finding a set of values for

the Pi'S which minimizes this function, we have the essentially combinatorial problem of

partitioning the records among the sectors so as to obtain the desired distribution {Pi}' Of

course, similar problems can be formulated for disk systems, where cylinders play the role of

sectors.
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