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1. Introduction

The purpose of this paper is to present a survey of queueing theoretic methods for the
quantitative modeling and analysis of parallel and distributed systems. We discuss a number
of queueing models that can be viewed as key models for the performance analysis and
optimization of parallel and distributed systems. Most of these models are very simple, but
display an essential feature of distributed processing. In their simplest form they allow an
exact analysis. We explore the possibilities and limitations of existing solution methods for
these key models, with the purpose of obtaining insight into the potential of these solution
methods for more realistic complex quantitative models.

As far as references is concerned, we have restricted ourselves in the text mainly to key
references that make a methodological contribution, and to surveys that give the reader
further access to the literature; we apologize for any inadvertent omissions. The reader
is referred to Gelenbe’s book [65] for a general introduction to the area of multiprocessor
performance modeling and analysis.

Stochastic Petri nets provide another formalism for modeling and performance analysis of
discrete event systems. The reader is referred to the survey paper of Murata [127] for results
of their qualitative analysis. The use of this tool for performance evaluation of parallel and
distributed systems has recently become popular, as is illustrated in the special issue of J. of
Parallel and Distributed Computing (Vol. 15, No. 3, July 1992). A survey on recent results
of their quantitative analysis is found in the paper of Baccelli et al. [6].
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Simulation is an important method for solving queueing models. In this paper, we will not
discuss that approach. The interested reader is referred to the books of Mitrani [125], Sauer
and MacNair [146] and Rubinstein [145].

The paper is organized as follows. Section 2 contains a global discussion of some solution
methods that have been successful in the performance analysis of parallel and distributed
systems. Six key models for this performance analysis are discussed in Section 3, with an
emphasis on solution methodology. Section 4 is concerned with mathematical techniques for
the optimal control of distributed systems. We distinguish between load balancing, routing,
server allocation and scheduling.

2. Solution Methods

The publication of J.W. Cohen’s ‘The Single Server Queue’ [37] in 1969 marked the end of
an era in queueing theory, in which the emphasis in queueing research had been placed on
the exact analysis of models with one server and/or one queue. Around 1970 successful ap-
plications of queueing theory to problems of computer performance began to appear. Rather
simple queueing network models turned out to be able to yield quite accurate predictions
of the behaviour of complex computer systems, thus stimulating queueing network research.
Extensive queueing network results have been obtained in the seventies and eighties and
have been made available for computer engineering purposes by the introduction of efficient
numerical algorithms (see the surveys of Kleinrock [100] and Lavenberg [109]).

The performance analysis of parallel and distributed systems leads in a natural way to
multidimensional queueing models. Generalization of the single-queue solution methods to
those models is straightforward only in rare instances; and adaptation of the queueing net-
work results to parallel and distributed systems is usually only possible by making gross
simplifications. In this section we discuss a few solution methods that try to bridge this gap,
and that have been successful in analyzing the performance of a number of (often admittedly
simple) models of parallel and distributed systems: Product-form solutions, some methods
from complex function theory, a number of analytic-algorithmic methods, heavy and light
traffic approximations, the large deviation technique, and state recursions. The choice of
these methods, above, e.g., aggregation and decomposition methods is undoubtedly influ-
enced by the research interests of the authors. The field of performance analysis of parallel
and distributed systems is still in its infancy, and it is yet far from clear which methods have
the biggest potential for capturing the characteristic features of parallel systems.

2.1 Product-form solutions
An important contribution of queueing network theory is that, under certain assumptions,
it allows one to obtain a simple exact solution for the joint queue length distribution in a
separable form: the product form [96, 163, 158]. The reader is also referred to Liu & Nain [114]
for recent extensions, efficient computational algorithms, and sensitivity analysis of product
form queueing networks, and to Disney & König [50] for an extensive survey of queueing
networks and their random processes.

Although the modeling of parallel and distributed systems only seldom leads to product
forms, queueing networks do provide an important and widely used tool for modeling parallel
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and distributed systems. We mention two interesting product-form applications. Heidel-
berger & Trivedi [83] present a class of parallel processing systems in which jobs subdivide
in several asynchronous tasks; they approximate this non-product-form network iteratively
by a sequence of product-form networks. An interesting new development in product-form
theory has been stimulated by the performance analysis of resource request and allocation
models with positive and negative signals; they were shown to give rise to product-form
networks with positive and negative customers [66, 68]. The latter results are surveyed in
[67]. See Harrison & Pitel [81] for some recent results and further references on sojourn time
distributions in networks with positive and negative customers.

2.2 Methods from complex-function theory
The modeling of queueing systems with multiple queues and/or multiple servers frequently
leads to multi-dimensional models with multiple unbounded components; in particular to the
analysis of Markov processes whose state space is the N -dimensional set of lattice points with
integer-valued non-negative coordinates. The functional equations arising in the analysis of
such processes (obtained after taking transforms of, say, the joint queue length distribution)
usually present formidable analytic difficulties.

For the two-dimensional case, however, techniques have been developed which often make it
possible to reduce these functional equations to standard problems of the theory of boundary
value equations (Wiener-Hopf, Dirichlet, Riemann, Riemann-Hilbert) and singular integral
equations. Pioneering papers are those of Eisenberg [55] (transforming a two-queue polling
problem into a Fredholm integral equation) and Fayolle & Iasnogorodski [57] (transforming
a problem concerning two processors with coupled speeds into a Riemann-Hilbert boundary
value problem). A systematic and detailed study of the ‘boundary value method’ is presented
by Cohen & Boxma [43], with applications to various queueing problems: a two-queue polling
problem, the shorter queue model, processors with coupled speeds, the M/G/2 queue. A
concise exposition of the method, and several applications and references, are presented in
[39]. A detailed investigation of random walks on the two-dimensional lattice in the first
quadrant is continued by Cohen in [40]. This has led to a better understanding of, among
others, the ergodicity conditions and the usefulness of the concept of (boundary) hitting
points.

2.3 Analytic-algorithmic methods
The methods mentioned in the previous subsection are mainly applicable to some specific
‘two-dimensional’ models, and even then the performance measures are not always directly
available. Therefore various analytic-algorithmic methods have been developed to solve multi-
dimensional queueing systems. For multi-dimensional models with all but one component
finite there are good analytic-algorithmic methods, like the well known matrix geometric
method (Neuts [135]) and the related spectral method of Mitra & Mitrani [126]; see also the
interesting and extensive methodological discussion by Gail et al. [64]. Below we discuss the
power series algorithm and the compensation approach, two methods that are not yet so
well known, that are mathematically interesting and that exploit the stochastic properties
of queueing systems more than general methods based on, say, state space truncation and
solving large systems of equations for Markov chains. It should be observed, though, that
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recently much progress has been made in numerically handling large Markov chains. Several
approaches are presented in the conference proceedings [150]; see also the survey of Grassmann
[73].

The power series algorithm (introduced by Hooghiemstra et al. [85]) is a numerical proce-
dure which can, formally, be applied to any Markov process (cf. [107]). It writes the stationary
distribution of the process as a power series of some parameter, in queueing applications usu-
ally the load of the system. In a series of papers Blanc (with co-authors) has shown that
the algorithm works well for many multi-dimensional queueing systems (see his survey [20]).
However, the convergence properties and error estimates of the algorithm are still unknown,
and therefore no guarantee can be given as to the convergence of the method for arbitrary
models.

The compensation approach (developed in Adan’s PhD thesis [1]) can be applied to two-
dimensional homogeneous random walks in the first quadrant without transitions to the
north, north-east and east. It writes the stationary distribution as a sum of product forms,
which all satisfy the steady state equations on the interior, and where each additional term
ensures, alternatively, that the steady state equations on the horizontal, respectively vertical,
axis are satisfied. Generally the algorithm can be shown to converge exponentially fast.
The algorithm is developed by Adan, Wessels & Zijm [2] for the shortest queue model.
Other queueing models which are studied are a multiprogramming queue ([1], ch. 4), and
the 2 × 2 clocked buffered switch of an interconnection network [26]. For the latter model,
the method has been extended to a 3-dimensional case [159]. [26] indicates a link between
the compensation approach and the boundary value method mentioned in subsection 2.2.
Recent work of Cohen [41, 42] considerably adds to this insight. In [41] he studies the class
of two-dimensional nearest neighbour random walks without transitions to the north, north-
east and east, that is also considered in [1]. He shows that the bivariate generating function
of the stationary distribution can be represented by a meromorphic function—an analytic
function apart from a finite number of poles in every finite domain. The poles appear in
fact as powers in the product forms in Adan’s solution representation (cf. the correspondence
between the representations 1/(1− az) and

∑
anzn). Cohen exposes the construction of this

representation as a meromorphic function. He does this in much more detail for a special case
of this class of random walks, the symmetrical shortest queue: he shows [42] how all poles,
and all zeros, of the meromorphic generating function can be determined from the original
functional equation. This leads to a simple expression for the main performance measures,
which are easily calculated with any desired accuracy.

2.4 Heavy and light traffic approximations
Approximation techniques present an alternative approach to numerical methods for solving
analytically intractable queueing systems. Heavy and light traffic approximations are among
the most popular techniques of this kind.

By heavy traffic we mean that the system approaches saturation, so that the queues are
nonempty most of the time. In this case, the queue lengths, when properly normalized, can be
approximated by Brownian motions with drift, which leads to a diffusion approximation of the
system. The reader is referred to the survey of Glynn [72]. For generalized Jackson queueing
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networks, Harrison & Williams [78] prove the existence of stationary distributions of diffusions
and their product form. They also show [79] that the notion of quasireversibility for queueing
networks extends to the Brownian limit. Closed queueing networks are analyzed in Harrison,
Williams & Chen [80]. Not all multiclass queueing networks can have such approximations
(see e.g. [45]). Sufficient conditions for the existence and uniqueness of Brownian models are
established in Reiman et al. [140] and Dai & Williams [46].

In light traffic approximations, a performance measure is considered as a function of the
arrival rate. Derivatives of this function are computed at point zero. The light traffic ap-
proximations are developed in Burman & Smith [27, 28] for a single queue and in Reiman &
Simon [139] for an open queueing network.

Approximations for moderate traffic can be obtained by interpolating heavy and light traffic
approximations.

2.5 Large deviations
Although there is an extensive literature of large deviations on Markov processes (see Deuschel
& Stroock [49], Dembo & Zeitouni [48]), it is only recently that these techniques have become
important tools for solving queueing systems. Large deviations principle has been proved,
under different statistical assumptions, for single queues, see e.g. Chang [31], Duffield &
O’Connell [52], Liu et al. [116], and for queueing networks, see e.g. Tsoucas [157], Dupuis &
Ellis [53].

A comprehensive treatment is provided in the forthcoming book [54]. Large deviations
estimates have also been applied to rare event simulations, see Chang et al. [33].

2.6 State recursion
For queueing systems with synchronization constraints, as frequently occur in parallel sys-
tems, one can often write the dynamics in the form of a state recursion equation, generalizing
Lindley’s equation: Baccelli & Makowski [13], Baccelli & Liu [11]. Some of these state recur-
sions lead to solvable integral equations as in the recent work of Jean-Marie [91]. Among the
other techniques which were proposed based on state recursions, we would quote

• bounds: computable bounds on noncomputable stochastic models can often be obtained
using stochastic ordering techniques (e.g. convex ordering, Schur convexity, association
etc.). A good reference for this is the book by D. Stoyan [151]. A survey on the
application of these techniques to synchronization problems can be found in [13].

• large deviation estimates as in Baccelli & Konstantopoulos [9]. This technique is based
on the computation of the Cramer Legendre transform of the Perron Frobenius eigen-
value of the Laplace transform of the matrix that shows up in the state recursion.

3. Key Models

In this section we discuss some queueing models that can be viewed as key models for the
performance analysis of parallel and distributed systems: fork-join, task graph, resequencing,
shortest queue, polling and time warp models. The discussion is methodologically oriented,
which has also guided our choice of references.
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3.1 Fork-Join Model
The Fork-Join model is a simple queueing model of a parallel processing system. It consists
of c parallel processors, each with a local queue. Each arriving job consists of c tasks, who
each join the queue of a different processor (the fork primitive). A job is completed if all its
tasks have completed service (the join primitive). Thus the model consists of c interrelated
parallel queues (which are stochastically dependent due to the simultaneous arrivals).

For c = 2 and Poisson arrivals this model has been studied analytically. Flatto & Hahn [58]
solve the model for inhomogeneous exponential servers, and obtain the limiting distribution
as the number of tasks in one of the queues grows to infinity. This result is generalized by
Wright [170], who also allows jobs consisting of a single task to join the system. Baccelli [5]
solves the model for general, but exchangeable, service times using complex-function theory
methods. De Klein [99] solves the model with general service times using the boundary value
approach.

A completely different approach to obtain the asymptotic results is used by Shwartz &
Weiss [148] (see also the afterword in [170]), who use large deviations and reversibility. Given
there are n tasks in the second queue, they use reversibility to show that this queue built up
with arrival and service rate reversed. It follows from the theory of large deviations that the
moment at which the rates are reversed is almost deterministic, for n large. As the arrival
rates of both queues are the same, conclusions can be drawn for the arrival rate in the first
queue, and using transient results for the M |M |1 queue, the asymptotics are derived.

Because the analytic results only hold for c = 2 (and even then, performance measures
are hard to obtain), attention has been paid to approximations and bounds. Both Nelson &
Tantawi [130, 131] and Baccelli et al. [14] derive bounds for the system. In [131] bounds on the
mean job response time are derived using inequalities on the maximum of associated random
variables. In [14] the exponential conditions are dropped, and bounds on various performance
measures are derived, again using associated random variables, but also stochastic orderings.
It is interesting to note that both papers show that the response time grows logarithmically in
the number of processors. Varma & Makowski [162] present an approximation for symmetric
fork-join queues, interpolating between light-traffic and heavy-traffic results.

Kim & Agrawala [97] provide an algorithm to obtain the response times in the case of
Erlang service time distributions.

Nelson et al. [133] compare the Fork-Join model with three other models with and without
local queues and distributed processing. A central queue and distributed processing (which
is equivalent to an M |M |c queue with batch arrivals) performs best.

3.2 Task Graph Models
Directed acyclic graphs are frequently used to represent parallel programs, and are referred
to as task graphs. In a monoprogramming system (i.e. a system where at most one parallel
program runs at any time), the computation of program completion time can be performed by
PERT techniques. We refer the reader to Baccelli et al. [8] for a survey on these techniques.

In order to model multiprogramming systems (i.e. systems where more than one parallel
program can run simultaneously), queueing models with extended (synchronization) primi-
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tives can be used.

The Fork-Join model can be considered as the ancestor of a line of models involving the
execution of task graphs on parallel machines. Acyclic Fork-Join queueing models (corre-
sponding to acyclic task graphs with precedence constraints) were introduced by Baccelli,
Massey & Towsley in [15], where also a relation is indicated with the resequencing model
that is considered below. The basic Fork-Join model is a special case of this acyclic case
when all tasks have a single predecessor and a single successor.

A more general model with identical task graphs statically mapped on a set of processors
was then introduced by Baccelli & Liu in [11]. The acyclic Fork-Join model mentioned above
is a special case of this one when the number of processors is equal to the number of tasks
in the graph. The model in [11] involves a non-trivial stability condition (which was recently
understood in terms of so-called (max,+) Lyapunov exponents) and integral equations for
the response times of tasks on processors that can be seen as the plain generalization of
Lindley’s integral equation. However, exact solutions of these equations are difficult except
for very special cases.

Several variations on this basic model were proposed by the same authors in relation with
distributed data base models ([10] and [113]). The main results for these models bear on (i)
the shape of the stability region, (ii) the computation of the throughput either by stochastic
ordering or using large deviation estimates as in [9], and (iii) bounds based on stochastic
ordering. These models were also investigated using various asymptotic limits including the
light traffic limits in the work of Varma [161] and diffusion limits as in the Stanford school
around M. Harrison and in particular the work of Nguyen [136, 137].

3.3 Resequencing
The first stochastic resequencing models were infinite-server models, proposed in the context
of reordering of packets in data communication networks. Kamoun, Kleinrock & Muntz [95]
studied the exponential service time case using differential equations, and Baccelli, Gelenbe
& Plateau [7] studied the non-exponential case using Wiener Hopf factorization. The model
is basic in serialisation problems which arise quite naturally in various distributed algorithms.
Models with no queueing effects were also considered by Harrus & Plateau [82] and by Varma
[160], using analytical techniques. Recently Downey [51] made interesting new connections
between the model considered in [7] and the cost of synchronization in parallel systems.
The techniques used in these papers are mainly analytical ones based on complex variables,
allowing to get simple series representations for the moments of response times etc.

In [166] Whitt presents a general exploration of overtaking phenomena in queueing net-
works; this includes an investigation of disordering in multiserver queues. He analyzes the
number of jobs overtaken by an arbitrary job for GI/M/s and M/GI/s models with the
First Come First Serve (FCFS) service policy. Iliadis & Lien [88] explicitly calculate the re-
sequencing delay for two heterogeneous servers under two different threshold-type scheduling
disciplines.

Other lines of thought consist in looking at

• more elaborate serialisation algorithms (e.g., timestamp ordering or two phase locking
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[16], [13]). The analysis method is essentially that of state recursions.

• more structured disordering structures like interconnection networks as considered in
the thesis of A. Jean-Marie [89] (see also [90]), where complex-analysis methods are
used to compute the moments of the resequencing delays.

Resequencing is surveyed in [13].

3.4 The shortest queue and the smallest workload model
An example of a model with distributed processing is the shortest queue model. Here arriving
customers join out of two (or more) queues the one with the least customers in it. Usually the
arrival process is taken to be Poisson and the service times are taken exponential. The idea
behind joining the shorter queue is that it balances the load in the system. For qualitative
questions concerning this model, see section 4.2. Here we will deal with the quantitative
aspects, i.e. with the performance analysis of the 2-queue shortest queue model.

Complex-variable methods have led to an exact analysis of the joint queue length process.
Kingman [98] and Flatto & McKean [59] use a uniformization technique to determine the
equilibrium distribution in the case of equal service rates. Fayolle and Iasnogorodski in their
theses [56, 86] show that, even for asymmetric service rates, the problem can be reduced
to a — generalized — Riemann-Hilbert boundary value problem; see also [43]. Knessl et
al. [103] develop a scheme to obtain approximations for the joint queue length distribution,
valid when one of the queue lengths is large. Foschini & Salz [60] employ a heavy traffic
diffusion approximation. Interesting numerical approaches are proposed by Adan et al. [2]
(the compensation approach), Blanc [19] (the power series algorithm, applicable to the case
of more than two queues and general service times), Gertsbakh [71] (the matrix-geometric
method) and Zhao & Grassmann [173] (who present an algorithm based on the results of
[59]). Halfin [77] employs linear programming techniques to obtain bounds, and Nelson &
Philips [134] present mean response time approximations for the case of K queues and general
interarrival and service time distributions, assuming in their approximation method that the
various queue lengths can differ by at most one.

For the 2-queue model where the customers are assigned to the queue with the smallest
workload (and general service times) a performance analysis has been presented in [104].
Formal asymptotic approximations are constructed for the two-dimensional workload pro-
cess, treating separately the asymptotic limits of heavy traffic, light traffic and large buffer
contents. Cohen [36] presents an exact analysis of this M/G/2 queue, using a Wiener-Hopf
decomposition. Cohen [38] also solves the 2-queue model with server priority for the longer
queue (in a sense dual to the shortest queue model); here he uses a translation into a Riemann
boundary value problem of a type that was not studied earlier in a queueing context.

3.5 Polling
The performance analysis of distributed systems often gives rise to single-server multi-queue
polling models. The characteristic feature of polling models is that the server is moving
between queues (which possibly requires switchover times), implying that the priority of the
queues is dynamically (e.g., cyclically) changing. Some examples are token passing schemes in
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local area networks with distributed channel access control, and resource arbitration and load
sharing in multiprocessor computers. Many computer-communication examples of polling can
be found in [74, 112, 153].

In a single-server cyclic polling model, the joint queue length process can — under some
conditions on the service disciplines at the queues — be represented by a multi-type branching
process with immigration [141]. The theory of such branching processes then immediately
yields necessary and sufficient ergodicity conditions, and a complete solution for the joint
queue length distribution. Unfortunately, the branching property does not hold for several
important service disciplines, like those that put a limit on the number of services or the
time of a server visit. In exceptional two-queue cases of the latter class, the joint queue
length distribution can be determined by using the theory of Riemann-Hilbert boundary
value problems [25, 43].

Proving ergodicity conditions for polling models generally is a challenging mathematical
problem, for which recently considerable progress has been made; cf. the approach of [70]
(based on stochastic dominance techniques and the well-known Loynes stability criteria for
a queue in isolation), [4] (which uses Lyapunov functions for the verification of Foster’s
criterion), and [63] (based on a stochastic monotonicity property of the multidimensional
queue length Markov chain at polling instants).

A quite generally valid result for (even non-cyclic) polling models is the pseudo-conservation
law—an exact expression for a weighted sum of the mean queue lengths or mean waiting times
[23]. The pseudo-conservation law has been extensively used to develop mean waiting time
approximations.

Leung [110] has developed an interesting numerical procedure, based on the fast Fourier
transform, that enables one in principle to determine polling performance measures with any
required accuracy. The power series algorithm [18] is also applicable to a large class of polling
models. An essential difficulty of these numerical techniques is their large computational
complexity.

Takagi [152] gives an extensive bibliography of polling studies.

3.6 Time Warp
Simulations are usually well suited for parallel processing, especially if the physical model to
be simulated consists of several components which can be simulated on different processors.
Messages sent between the processors deal with the interaction between the components. A
method to synchronize the components is the Time Warp protocol, as introduced by Jefferson
[94]. Each processor continues the simulation, handling the already arrived messages. If a
message arrives which should have been handled before, the processing rolls back to a point in
time before the time associated with the message, and execution starts again. This mechanism
can also be used for distributed systems other than simulation.

Besides local clocks for each component, there is a global clock, indicating a time before
which no component has to be rolled back. The progression of the global time for specific
models is the subject of several studies.

Kleinrock & Felderman [101] study a discrete-time model with two processors. The local
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times of the processors increase with geometric jumps and sojourns. After each jump a
message for the other processor is generated with a fixed probability. If that processor’s local
time is ahead of the time of the message, then it rolls back to that time. A related Markov
chain is studied and the speed-up, relative to a single processor, is calculated. The results of
[101] are a superset of those of Lavenberg et al. [108]. Mitra & Mitrani [124] analyze a model
related to that of [101] in which the jump sizes can be arbitrary; their approach is based on
a Wiener-Hopf factorization.

In Akyildiz et al. [3] a model with c processors and a limited shared memory capacity is
analyzed using a simple Markov process, which approximates the used memory space. The
results are compared with experimental data.

4. Optimization

In this section, we discuss optimization issues of parallel and distributed systems which can
be tackled using queueing network formalisms. We shall first provide a general discussion
about load balancing problems. Then we discuss in more detail the routing problem which is
a special case of the load balancing problem, followed by a discussion on a dual problem, the
problem of server allocation. In the last subsection, we will consider scheduling problems.

4.1 Load balancing
An operational aspect of distributed systems is the availability of a protocol which optimally
balances the workload over the servers: a load balancing protocol. These protocols can roughly
be divided into routing models, where at their moment of arrival in the system jobs are
(irrevocably) routed to one of the servers, and server allocation models, where the servers
determine from which input sources they draw their jobs.

Another important element of a load balancing protocol is the information it requires to
operate. This information can range from total knowledge about the system at any point
in time, to only information about some basic characteristics, like arrival rate and service
times. In general, the term dynamic is used for policies which operate under time dependent
information, whereas protocols operating under time independent characteristics of the sys-
tem are called static. Below we give overviews of routing, server allocation and stochastic
scheduling models, again with an emphasis on methodology. See Gelenbe & Pekergin [69]
for an interesting general discussion on load balancing in parallel and distributed systems,
that also touches upon the trade-off between static and dynamic load balancing; see Wang &
Morris [164] for a taxonomy of the current load balancing protocols, discriminating between
routing (called source initiative) and server allocation (server initiative) models. They pro-
vide numerical comparisons, based on analysis and simulation, of various allocation protocols,
both static and dynamic.

4.2 Routing
The routing or customer allocation problem, as a special case of the load balancing problem,
consists in assigning arriving customers to one of several parallel queues (which are usually
assumed to have a single server). Thus, no jockeying amongst the queues is allowed. We will
consider both static and dynamic routing problems.
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For all sorts of information structure both the symmetric (i.e., the service times are equally
distributed for each queue) and the asymmetric case are studied. For the symmetric models
it is often possible to find the optimal policy, mostly using coupling, dynamic programming
or stochastic orderings. Consequently, these are transient results, which often hold for a large
class of cost functions and general arrivals.

Asymmetric models on the other hand rarely have a simple optimal policy; it usually
depends on the arrival process, the service times, etc. The analysis is therefore often numerical
in nature, Poisson arrivals are assumed and only long-run results are obtained.

Two static allocation policies have been proposed: probabilistic allocation (assign arriving
jobs to a queue according to a fixed probability), and pattern allocation (route arriving jobs
to a queue according to a routing table).

When the servers are identical the symmetric (or equal probability) routing policy is opti-
mal among the probabilistic policies for the minimization of response times and resequencing
delay. This can be shown using stochastic orderings and coupling (Chang et al. [32], Gün &
Jean-Marie [92]).

For the general non-symmetrical problem, Buzen & Chen [30] present an algorithm for
determining the probabilistic allocation which minimizes the mean sojourn time of a job.

In most of the numerical studies, queueing theory is used to determine an expression for the
performance measure that is to be minimized. The separability of that expression in terms
relating to only one particular queue, and the convexity of each term, lead to a tractable non-
linear optimization problem of the class of resource allocation problems that is extensively
discussed in the book of Ibaraki & Katoh [87].

Ross & Yao [144] study a probabilistic allocation problem with additional dedicated ar-
rival streams and local priority scheduling. Proving convexity in their case is an interesting
problem, that is solved using matroid theory. Bonomi & Kumar [22] also discuss probabilis-
tic allocation with additional dedicated arrival streams. They consider the situation where
not all system parameters are known, or where some of the parameters may change from
time to time. They propose several adaptive load balancing algorithms, using stochastic
approximation and stochastic control methods.

Pattern allocation leads to a more regular arrival process than probabilistic allocation, and
hence better performance can be expected. However, constructing the optimal pattern is
generally an unsolved problem. Various studies have been carried out for characterizing the
optimal routing policies, see for example [17, 143] and the references therein.

When the servers are identical, Walrand [163] uses coupling arguments to show that assign-
ing the jobs cyclicly to the queues (the round robin policy) is optimal for exponential service
times. Recently, using a coupling technique and majorization theory, Liu & Towsley [119]
generalized the optimality of the round robin policy to the case of identical IFR (Increasing
Failure Rate) servers.

Under the assumption of general service time distributions, the round robin policy yields
smaller (in the sense of increasing convex ordering) stationary and transient job waiting times
than the symmetric probabilistic routing policy (Stoyan [151], Jean-Marie & Liu [93]).
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For the case of non-identical servers Hajek [76] proves how the pattern allocation to a single
queue should be, given that a fixed fraction of the arrivals should be sent to that queue,
to minimize the average number of customers in that queue. His proof involves showing
multimodularity (a generalization of convexity to multiple dimensions) of certain functions.
Ramakrishnan [138] proposes a useful approximation procedure for non-identical exponential
servers; see [44] for the case of general servers. Again separability of the objective function
and convexity of each term are exploited.

A well studied dynamic model is that with exponential servers and decisions based on the
numbers of jobs in the queues. For the symmetric model the optimality of shortest queue
routing was first proved by Winston [167]. This result has been generalized in different di-
rections by various authors. The techniques used are dynamic programming and coupling.
A recent paper, showing the optimality for Schur convex cost functions, ILR (i.e., increas-
ing in likelihood ratio) service time distributions and including finite buffers, is [156]. For
asymmetric models the optimal policy does not have a nice structure. Several authors have
tried to obtain good policies (e.g., Shenker & Weinrib [147]). Using dynamic programming,
Hajek [75] showed for the model with two queues (and some additional features) that there is
a non-decreasing switching curve. Xu & Chen [171] considered the limiting behavior of this
curve for discounted costs, and showed that it converges to a constant, for unequal holding
cost rates.

A model with a different information structure is the one where decisions are based on the
workload in the queues. Routing to the queue with the smallest workload minimizes both the
total workload (in fact, each weak Schur convex function of the workload vector is minimized)
and the job response times. Note that the smallest workload policy is equivalent to FCFS.
Some references are Wolff [168, 169], Foss [61, 62] and Daley [47]. It is interesting to note
that basically all results are established using the same coupling argument. A generalization
to network models, and an extensive list of references, can be found in [105].

An overview of routing policies and their performances is given by Boel & Van Schuppen
[21]. They consider the problem from a control point of view, and discuss the question what
amount of information is required at the routing points to achieve good system performance.
Their paper concentrates on analytically and numerically tractable models.

4.3 Server allocation
As a dual problem to routing problems (which can be seen as job allocation problems), the
problem of server allocation has also received much interest in the literature. However, there
are few results on static server allocation problems.

We will restrict ourselves to single server models, one reason being that the results on
multiple server models are less relevant to the present survey, the other being that policies,
which are optimal for single server models, often perform very well if applied to multiple
server models (e.g., Weiss [165]). As a general reference for multiple server models, we refer
to Righter [142].

In the simplest model jobs arrive in several queues (single queue models are discussed in
Subsection 4.3 on scheduling), each requiring an exponentially distributed amount of process-
ing, depending on the queue. The objective is to minimize the weighted holding costs. Using
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a simple interchange argument it can be shown that the single server should process the jobs
(preemptively) in decreasing order of product of processing rate and holding cost rate [29].
This policy is known as the µc or cµ rule. Such a type of policy is called a list policy, i.e., a
policy which has associated a list of the queues, and which processes the job whose queue is
highest in the list.

Generalizations are possible in several directions. Assume that the service times are general,
and that jobs, after completing service, can re-enter in a, possibly different, queue. We restrict
ourselves to Poisson arrivals and non-preemptive policies. The problem of finding the server
allocation policy that minimizes the weighted number of jobs in the system is known as
Klimov’s problem. It is shown in [102] that a list policy is optimal. A good reference for
Klimov’s and related problems is chapter 9 in [163].

If we assume that there are switching times between serving different queues, we arrive
at polling models (cf. Subsection 2.5). Polling optimization issues have only recently been
tackled. Some static and dynamic server routing optimization problems are reviewed in
[24] and [172], respectively. Symmetric optimization models are discussed in [115], and an
asymmetric optimization model is studied in [106].

Contrary to most studies discussed so far, the optimal policy in the model of Menich &
Serfozo [123] is not a list policy. They augment a symmetric routing model with a movable
server, and show that it should be assigned to the longest queue. In the case of finite buffers,
the duality between various job allocation and server allocation problems where queue lengths
are available to the controller has been established in Sparaggis et al. [149].

4.4 Scheduling
In most routing or server allocation models jobs are processed in FCFS order. Here this and
other service policies are discussed. By scheduling we mean policies that determine the order
according to which servers serve jobs waiting in the queue.

Consider a single G/GI/s queue. Then the FCFS policy minimizes the stationary wait-
ing times in the sense of the increasing convex ordering, in the case that the service time
distribution is of IFR type (Hirayama & Kijima [84], Chang & Yao [35]).

Now assume that every job has a due date. Several papers have studied the effect that
different scheduling policies have on the job lateness (defined as the amount of time the
completion time of a job exceeds the due date of that job). The optimality of stochastic
versions of SDD (the policy which processes jobs with the shortest due date first) has been
established in Liu & Towsley [118]. Also for the G/M/s queue when jobs have hard deadlines
(meaning that a job leaves the system either when it finishes service or when its due date
occurs) SDD is optimal (Towsley & Panwar [155]).

For queueing networks, where each queue has its own servers, the optimality of SDD
was first shown in Towsley & Baccelli [154] for queues in tandem in the sense of convex
ordering. More general results were established by Liu & Towsley [120] for in-forest networks
consisting of multi-server queues. In [120], extremal properties of FCFS, LCFS (Last Come
First Serve), stochastic SDD and LDD (standing for longest due date) policies were proved
for the minimization (or maximization) of job response times, lateness and end-to-end delays.
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The scheduling problem in more realistic parallel processing models has been addressed in
a recent paper by Baccelli, Liu & Towsley [12]. They provide extremal properties of various
scheduling strategies for multiprogrammed multitasked multiprocessor systems where task
executions are constrained by precedence relations.

In most of the above mentioned studies, the techniques used are stochastic comparison
and sample path analysis. Quite strong stochastic qualitative properties are established
when these techniques are applicable. A general and unified theoretical formalism of these
techniques has been proposed in a recent paper of Liu et al. [117].

In the following studies, the authors use queueing analysis to compare average performance
measures of different scheduling policies.

Nelson et al. [34, 121, 122] considered the problem of allocating parallel tasks to proces-
sors so as to minimize job (consisting of parallel tasks) response times. They showed that
allocation of tasks to different processors is not always a good strategy.

Performance analysis of scheduling policies in multiprogrammed multiprocessor systems
with parallel tasks can be found in Nelson et al. [133], [128] for FCFS policies, in Towsley et
al. [129] for processor sharing, and in Nelson & Towsley [132] for priority policies. Leutenegger
& Vernon [111] provide a comparison of performances of various scheduling policies.
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