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QUEUES AND RISK PROCESSES WITH DEPENDENCIES

E. S. Badila, O. J. Boxma, and J. A. C. Resing

EURANDOM, Department of Mathematics and Computer Science, Eindhoven University of
Technology, Eindhoven, The Netherlands

� We study the generalization of the G/G/1 queue obtained by relaxing the assumption of inde-
pendence between inter-arrival times and service requirements. The analysis is carried out for the
class of multivariate matrix exponential distributions introduced in Ref.[13]. In this setting, we ob-
tain the steady-state waiting time distribution, and we show that the classical relation between the
steady-state waiting time and workload distributions remains valid when the independence assump-
tion is relaxed. We also prove duality results with the ruin functions in an ordinary and a delayed
ruin process. These extend several known dualities between queueing and risk models in the inde-
pendent case. Finally, we show that there exist stochastic order relations between the waiting times
under various instances of correlation.

Keywords Dependence; Duality; G/G/1 queue; Insurance risk; Ruin probability;
Stochastic ordering; Value at Risk; Waiting time; Workload.

Mathematics Subject Classification Primary 60K25; 91B30.

1. INTRODUCTION

In this article, we study a single server queue with the special feature
that the service requirement of each arriving customer is correlated with the
subsequent inter-arrival time. Dependence between service and inter-arrival
times arises naturally in a number of applications. If one has some control
over the arrival process to the server, then one might, e.g., wait a relatively
long (short) time with dispatching a new job to the server, if the previous
job was relatively big (small). In fact, we shall see in Section 5 that a
positive correlation between the service requirement and the subsequent
inter-arrival time reduces the waiting times, whereas negative correlation
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Queues and Risk Processes 391

increases waiting times. The increase/decrease is in the sense of convex
ordering (cf. Ref.

[31]
, Ch. 1).

In studying the single server queue G/G/1, it is usually assumed that
all inter-arrival times and service requirements are independent. An impor-
tant exception is the class of queues with Batch Markovian Arrival Process,
BMAP/G/1, see, for example, Lucantoni[28] and references therein. The
BMAP/G/1 queue provides a framework to model dependence between
successive interarrival times. In Ref.[21], it is also used to study an M/G/1
queue in which service requirements depend on the previous inter-arrival
times; see Ref.[15] for a different approach to the latter form of dependence,
which does not use the MAP machinery. An important paper regarding de-
pendence between inter-arrival and service requirements is the one by Adan
and Kulkarni[1]. They consider a single server queue with Markov-dependent
inter-arrival and service requirements: a service requirement and subsequent
inter-arrival time have a bivariate distribution that depends on an underlying
Markov chain that jumps at customer arrival epochs. The inter-arrival times
in Ref.[1] are exponentially distributed, with rate λ j when the Markov chain
jumps to state j.

It should be observed that the analysis of a G/G/1 queue with some
dependence structure between a service requirement Bi and the subsequent
inter-arrival time Ai is intrinsically easier than that of a G/G/1 queue with
some dependence structure between Ai and the next Bi+1. The reason is that
Bi and Ai only appear as a difference Bi − Ai in the Lindley recursion Wi+1 =
max(Wi + Bi − Ai , 0) for the waiting time Wi of the i th arriving customer. In a
sense, the study of the waiting time distribution in the G/G/1 queue reduces
to the study of a random walk with steps Bi − Ai . Still, there are not many
examples known of joint distributions of (Bi , Ai ) that allow a detailed exact
analysis. One of the exceptions is provided in Ref.[17], where a threshold-type
dependence between Bi and Ai is shown to be analytically tractable.

In the present study, we shall consider a very general class of bivari-
ate distributions of (Bi , Ai ), which allows us to obtain detailed, explicit
results for the steady-state waiting time and workload distribution. The de-
pendence structure under consideration is modeled by a class of bivariate
matrix-exponential distributions (Bladt and Nielsen[13]) in which the joint
Laplace–Stieltjes transform of the claim size and the inter-claim time is a
rational function.

While this article was under preparation, Hansjoerg Albrecher kindly
pointed out to us that Constantinescu et al.[22] were obtaining results similar
to ours for a generalization of the Sparre Andersen insurance risk model. The
classical Sparre Andersen model considers the development of the capital of
an insurance company that earns premium at a fixed rate and that receives
claims with a stochastic size at stochastic inter-arrival times—all the input
variables being independent. In contrast, Constantinescu et al.[22] allow a
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392 Badila et al.

claim size to depend on the previous inter-claim time, in a similar way as
an inter-arrival time depends on the previous service requirement in our
queueing model. One can establish a duality relation between the insurance
risk model of Ref.[22] and our model (cf. Section 4), and this duality relation
in particular implies that the probability of ruin of the insurance company,
with initial capital u, equals the probability that the steady-state waiting time
in the corresponding queueing model exceeds u. Our approach is based
on Wiener-Hopf factorization; Constantinescu et al.[22] use a completely
different approach, based on operator theory methods. We shall explore the
relation between the queueing and insurance risk models with dependence
in more detail, which will allow us to also obtain the so-called delayed ruin
probability in the model of Ref.[22], viz., the ruin probability when time 0 is
not a claim arrival epoch but an arbitrary epoch, the claim arrival process
being in stationarity.

Already having discussed the queueing literature with dependence be-
tween inter-arrival and service requirement, let us now turn to the insurance
risk literature with dependence between inter-claim time and claim size. In
recent years, this has been a hot topic in risk theory. Albrecher and Boxma[2]

derive exact formulas for the ruin probability in a Cramér-Lundberg model
with a threshold-type dependence between a claim size and the next inter-
claim time. In Ref.[3] a much more general semi-Markovian risk model is
being considered, which bears some resemblance to the queueing model in
Ref.[1]. Kwan and Yang[27] consider a specific threshold-type dependence of
claim size on previous inter-claim time; in Ref.[4], this is put in the larger
framework of Markov Additive Processes. Another specific dependence struc-
ture between claim size and previous inter-claim time is treated in Boudreault
et al.[16]. Asymptotic results are obtained in Albrecher and Kantor[5], where
the relation between the dependence structure and the Lundberg exponent
is studied. Also Albrecher and Teugels[6] give asymptotic results for the finite
and infinite horizon ruin probabilities when the current claim size and the
previous inter-claim time are dependent according to an arbitrary copula
structure.

The main contributions of the article are the following. (i) We provide an
exact analysis of the waiting time distribution in a G/G/1 queue with corre-
lation between a service requirement B and the subsequent interarrival time
A, B and A having a multivariate matrix-exponential distribution. (ii) We
prove that the simple relation that holds between steady-state workload and
waiting time distributions in the ordinary G/G/1 queue remains valid in the
case of correlated B and A. (iii) We consider the dual Sparre Andersen insur-
ance risk model with correlation between inter-claim time and subsequent
claim size, and in particular we show that the Takács relation (cf. Ref.[23],
Corollary 4.5.4) between the ordinary ruin probability and the delayed ruin
probability remains valid. (iv) Finally, we show that, in comparison with the
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Queues and Risk Processes 393

classical setup without dependence, positive and negative correlation, re-
spectively, decreases and increases the waiting times in the sense of convex
ordering. We also illustrate with numerical results the influence of depen-
dence on the expected values of the waiting times but also on the 95%
percentiles of the ruin functions (VaRs).

The article is organized as follows. Section 2 contains a detailed model
description, which in particular includes a description of the class of bivariate
distributions under consideration. It also presents the waiting time analysis.
The relation between the steady-state waiting time and workload distribu-
tions is exposed in Section 3. Section 4 is devoted to the dual insurance
risk model. In Section 5, we consider several examples of bivariate distribu-
tions of Bi and Ai . For these examples, we present numerical results on the
mean and tail of the waiting time distribution (and, by duality, on the ruin
probability), which exhibit the effect of (positive or negative) correlation on
waiting time and ruin probability, together with stochastic ordering results
and, by consequence, ordering between the waiting times.

2. MODEL DESCRIPTION AND ANALYSIS OF THE WAITING TIME

We study a generalization of the classical G/G/1 model, where we al-
low for an arbitrary correlation between the service requirement of the nth

customer and the inter-arrival time between the nth and (n + 1)th customer.
As a key performance measure in this model, we first consider the waiting
time process in an initially empty system. In Section 3, we prove that the
steady-state waiting time is related to the steady-state workload in a similar
way as in the independent case.

Let Bi be the service requirement of the i th customer, Ai the inter-arrival
time between the i th and the (i + 1)th customer, and c the server’s speed.
We assume that (Ai , Bi ) are i.i.d. sequences of random vectors. This im-
plies that the arrival process of customers is renewal and that the quantities
(Bi − cAi ) are i.i.d. However, within a pair, Ai and Bi are dependent; hence
the i th service requirement and the subsequent inter-arrival time are corre-
lated. We denote by (B, A) a generic pair made up of a service requirement
and the subsequent inter-arrival time. In Figure 1, we display the workload
process {Vt , t ≥ 0} and the waiting time process {Wn, n = 1, 2, . . . }; here
Vt denotes work in the system at time t, and Wn denotes the waiting time
of the nth arriving customer. The waiting time process satisfies the Lindley
recursion:

Wn+1 = max(Wn + c−1Bn − An, 0).

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 0

0:
32

 1
5 

A
ug

us
t 2

01
4 



394 Badila et al.

Vt

B1

B2

B3

W2 W3W1 = 0
cW2 cW3

A1 A2 A3

t

FIGURE 1 Workload process and waiting time process.

Under the stability condition E(c−1B − A) < 0, Wn converges in distri-
bution to a proper random variable W and we can write:

W d= max
(
W + c−1B − A, 0

)
. (1)

The dependence structure: We model the dependence structure using the
class of multivariate matrix-exponential distributions (MVME), which was
introduced by Bladt and Nielsen[13]. This class contains other known classes
of distributions with interesting probabilistic interpretations, such as the
multivariate phase-type distributions studied in Assaf et al.[11] and further in
Kulkarni[26]. We will further discuss this class in Section 5, where we also give
examples that admit a probabilistic interpretation. Below we cite Definition
4.1 of Bladt and Nielsen[13]:

Definition 2.1. A non-negative random vector (A, B) is said to have a bivari-
ate matrix-exponential distribution if the joint Laplace-Stieltjes transform (LST)
Ee −s1A−s2B is a rational function in (s1, s2), i.e., it can be written as F (s1,s2)

G(s1,s2) , where
F (s1, s2) and G(s1, s2) are polynomial functions in s1 and s2.

As a consequence of this defining property, the transform of the dif-
ference Y := c−1B − A is also a rational function. The distribution of Y is
called a bilateral matrix exponential (see Bladt et al.[12], Thm. 3.1). For
simplicity, let us denote Ee−sY := f (s)

g(s) . We rewrite identity (1) in terms of
Laplace-Stieltjes transforms. After some straightforward computations, one
obtains

Ee −sW [
1 − Ee −sY ] = P (W + Y ≤ 0) − Ee −s(W +Y )1{W +Y ≤0}. (2)
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Queues and Risk Processes 395

Using the rationality of the transform of Y , we can rewrite (2):

Ee −sW g(s) − f (s)
g(s)

= R−(s),

where R−(s) is the function on the right-hand side of (2), which is analytic
in Re s < 0 and continuous in Re s ≤ 0. Also, since W ≥ 0 by definition,
Ee −sW is analytic in Re s > 0 and continuous in Re s ≥ 0.

In the next theorem, we calculate the Wiener-Hopf factors of the associ-
ated random walk. These factors are the solution to the following boundary
value problem:

Given the rational function 1 − Ee −sY , find two functions K +(s) and K −(s)
with the following properties:

1. K +(s) is analytic in Re s > 0, K −(s) is analytic in Re s < 0, and both are
continuous up to the imaginary axis.

2. On the imaginary axis, K +(s) and K −(s) satisfy the identity

(1 − K +(s))(1 − K −(s)) = 1 − Ee −sY .

The above factorization is unique and the Wiener-Hopf factors 1 − K +(s),
1 − K −(s) can be represented using Spitzer’s identity (Prabhu[30], Ch.1).
For the random walk with increments Yn, n ≥ 1, K +(s) and K −(s) are the
transforms of the first ascending ladder height and the first descending
ladder height, respectively (for a probabilistic introduction, see Cohen[18]).
Using the Wiener-Hopf factorization, we now obtain the LST of the steady-
state waiting time distribution:

Theorem 2.1. For (A, B) having a bivariate matrix exponential distribution, the
LST of the steady state waiting time is given by

E e −sW =
∏

s̃−
j
(1 − s

s̃−
j
)∏

s−
k

(1 − s
s−

k
)
, (3)

where s−
k are the zeros of 1 − Ee −sY in Re s < 0 and s̃−

j are its poles in Re s < 0.

Proof. Let m+ be the number of zeros of g(s) in Re s ≥ 0. We move these
to the right-hand side of the identity above:

Ee −sW g(s) − f (s)
g−(s)

= g+(s)R−(s), (4)
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396 Badila et al.

where g+(s) = ∏m+
k=1(s − s̃+

k ), the product being over the zeros of g with
Re s̃+

k ≥ 0; and g−(s) = g(s)/g+(s). Now the left-hand side of (4) is analytic
in Re s ≥ 0, the right-hand side remains analytic in Re s < 0; therefore, by
analytic continuation, the left-hand side is an entire function.

We use a version of Liouville’s Theorem A.2 (see Appendix), which
states that an entire function with asymptotic behavior O(|s |m+) must be a
polynomial of degree at most m+. Liouville’s theorem implies that the left-
hand side of (4) is a polynomial P(s) of degree deg(P) ≤ deg(g+) = m+.
Therefore, we can write

Ee −sW = g−(s)
g(s) − f (s)

P(s). (5)

Since g−(s) has zeros only in Re s < 0, P(s) must have all the zeros of g − f
from Re s ≥ 0 because otherwise Ee −sW would have a pole in Re s ≥ 0 which
is not possible.

Now all boils down to showing that g(s) − f (s) and g(s) have the same
number of zeros (i.e., m+) in Re s ≥ 0. Rouché’s Theorem A.1 in the Ap-
pendix is the right tool for this, and in Lemma A.1 in the Appendix we show
that, indeed, |g(s)| > | f (s)| in Re s ≥ 0.

Since P(s) must have these m+ zeros of g(s) − f (s) as its own, and
at the same time deg(P) ≤ m+ from the above, this determines P(s) up
to a constant: P(s) = C(g − f )+(s), where (g − f )+(s) := ∏

s+
k

(s − s+
k ), s+

k
being the zeros of (g − f )(s) with Re s ≥ 0 (this also includes the zero at
s0 = 0). After replacing P(s) and reducing the factors in Formula (5), we
obtain the following formula for Ee −sW :

Ee −sW = C

∏
s̃−

j
(s − s̃−

j )∏
s−

k
(s − s−

k )
. (6)

Setting s = 0 determines the constant: C = ∏
s−

k
(−s−

k )/
∏

s̃−
j
(−s̃−

j ), hence
(3) follows. �

Remark 2.1. The PASTA property does not hold, and hence the distribution
of the steady-state workload differs in principle from that of cW, the steady-
state workload as seen by an arriving customer. In particular, we have P(V =
0) �= P(cW = 0). Actually, we find the atom at zero of cW if we take s → ∞
in (3), with the additional remark that the numerator has the same number
of factors as the denominator, which follows from Rouché’s theorem:

P(cW = 0) = C =
∏
s−

k

s−
k /
∏
s̃−

j

s̃−
j . (7)

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 0

0:
32

 1
5 

A
ug

us
t 2

01
4 



Queues and Risk Processes 397

On the other hand, from first principles we have, with ρ := EB
cEA , for the

steady-state probability of an empty system:

P(V = 0) = 1 − ρ.

The factorization used in the proof of identity (3) can be also used to obtain
the transform Ee sI of I , the steady-state idle period of the system.

Corollary 2.1. The transform of the idle period is given by

Ee sI = 1 −
∏
s+

k

(s − s+
k )/

∏
s̃+

j

(s − s̃+
j ), Re s ≤ 0,

with s+
k being the zeroes of g(s)− f (s)

g(s) in Re s ≥ 0 and s̃+
j its poles in Re s > 0.

Proof. Conditional on W + Y ≤ 0, I = −(W + Y ), so we may write

Ee sI = 1
P(W + Y ≤ 0)

Ee s(−W −Y )1{W +Y ≤0}.

The transform Ee s(−W −Y )1{W +Y ≤0} already appears on the right-hand side of
(2), hence the transform of the idle period can be rewritten as

Ee sI = 1 − 1
P(W + Y ≤ 0)

· Ee −sW · g(s) − f (s)
g(s)

. (8)

As in the proof of Theorem 2.1, we make use of the factorizations g(s) =
g+(s) · g−(s) and (g − f )(s) = (g − f )+(s) · (g − f )−(s), which were ob-
tained via Rouché’s theorem. Therefore, using (5), (6), and (7) we may
write

Ee sI = 1 − P(W = 0)
P(W + Y ≤ 0)

· g−(s)
(g − f )−(s)

· g(s) − f (s)
g(s)

.

Note that the identity in law (1) implies P(W = 0) = P(W + Y ≤ 0). After
canceling the factors above, Ee sI reduces to

Ee sI = 1 −
∏
s+

k

(s − s+
k )/

∏
s̃+

j

(s − s̃+
j ).

�
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398 Badila et al.

Remark 2.2. Alternatively, we can use Formula (6.20) in Cohen[19], p. 21,
which makes use of the regenerative structure of the workload process w.r.t.
the busy cycles of the queue. It can be shown that the formula remains valid
even in the dependent case. The connection with (8) is then 1

P(W +Y ≤0) = EN,
the mean number of customers served during a busy cycle.

In the next section, we show that similar arguments involving regen-
eration as the ones employed in Ref.[19] can be extended in our setting
to give the relation between the steady-state workload and waiting time
distributions.

3. THE STEADY-STATE WORKLOAD

In this section, we consider the steady-state workload in the queueing
model with correlation between service requirement B and subsequent inter-
arrival time A. We shall prove that the known relation between the steady-
state workload and waiting time for the single server queue with independent
service requirement and inter-arrival time (Ref.[8], p. 274, Ref.[19], p. 19/20,
or Ref.[20], p. 296/297) remains valid. For this purpose, we adapt the proof
in Ref.[19], which is based on the fact that the workload process regenerates
at the beginning of each busy cycle. The LST of the workload and waiting
time distributions can then be written as stochastic mean values of the LST
over one full busy cycle.

Theorem 3.1. The steady-state workload V and the waiting time W are related in
the following way:

P(V ≤ v) = 1 − ρ + ρ P(cW + Br e s ≤ v), (9)

with ρ = EB
cEA and Br e s the marginal distribution of a residual service requirement,

viz.,

P(Br e s ≤ v) = 1
EB

∫ v
0 P(B > u) du.

Remark that only the marginal distribution of the residual service require-
ment appears in the above, not the joint distribution of A and B.

Proof. Let 0 be the beginning of a busy period and P be its length. Following
Cohen[19], within this busy period, we may write (cf. Figure 1):

Vt = cWn(t) + Bn(t) − c(t − tn(t)),
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Queues and Risk Processes 399

where Vt is the workload at time t, n(t) is the number of arrivals in [0, t] and
tn(t) is the last arrival epoch before t. The following identities hold path-wise:

∫ P

0
e −sVt dt =

∫ P

0
e −s[cWn(t)+Bn(t)−c(t−tn(t))] dt

=
N −1∑
i=1

∫ Ai

0
e −s(cWi +Bi −c t)dt +

∫ AN −I

0
e −s(cWN +BN −c t) dt. (10)

Here, N is the number of customers served during a busy period. The key
observation is that the following relation holds even when Ai and Bi are
dependent:

∫ Ai

0
e −s(cWi +Bi −c t)dt = e −s(cWi +Bi ) 1

cs
(e csAi − 1).

There is no expectation taken so integration is carried out as usual, all these
being path-wise identities. Formula (10) now becomes

∫ P

0
e −sVt dt = 1

cs

N −1∑
i=1

e −s(cWi +Bi )
[
e csAi − 1

]+ 1
cs

e −s(cWN +BN )

× [
e cs(AN −I ) − 1

] = 1
cs

N −1∑
i=1

[
e −s(cWi +Bi −cAi ) − e −s(cWi +Bi )

]

+ 1
cs

e −s[cWN +BN −c(AN −I )] − 1
cs

e −s(cWN +BN ).

We make use of the following identities for the waiting time during a busy
period: For i ≤ N − 1, cWi + Bi − cAi = cWi+1; and cWN + BN − cAN =
−cI , hence

∫ P

0
e −sVt dt = 1

cs

N −1∑
i=1

(
e −s cWi+1 − e −s cWi −sBi

)+ 1
cs

[
1 − e −s cWN −sBN

]

= 1
cs

N∑
i=1

e −s cWi (1 − e −sBi ). (11)

All derivations up to this point are path-wise manipulations, hence insensitive
to correlations between Ai and Bi . Remark that Bn is independent of Wn but
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400 Badila et al.

also of the r.v. 1{N ≥n}. So if we take expectations in (11)

E

∫ P

0
e −sVt dt = 1

cs
E

∞∑
n=1

[
e −s cWn1{N ≥n}(1 − e −sBn)

]

= E

( ∞∑
n=1

e −s cWn1{N ≥n}

)
1 − Ee −sB1

cs
,

so that

E

∫ P

0
e −sVt dt = E

(
N∑

i=1

e −s cWi

)
1 − Ee −sB1

cs
. (12)

A key remark is that the workload process is still regenerative with respect
to the renewal sequence given by the epochs at which busy periods begin.
Under the stability condition, the mean cycle length EC of the workload
process is finite; hence the stochastic mean value results still hold in this case
(cf. Cohen[19], Thm. 4.1), and we have the identities:

Ee −sV = 1
EC

E

∫ C

0
e −sVt dt,

and

Ee −sW = 1
EN

E

N∑
1

e −sWi .

We can now use these identities together with (12) and EC = EP + EI , so
we may write

Ee −sV = E
∫ P

0 e −sVt dt + EI
EP + EI

= EN EB
EC

Ee −s cW 1 − Ee −sB

c sEB
+ EI

EC
.

Note that by definition, P = ∑N
i=1 c−1Bi , with Bi the i.i.d. sequence such that

Bi is the service requirement of the i th customer in a busy cycle. Hence Wald’s
identity gives cEP = EN EB, and using in addition EP

EC = ρ, EI
EC = 1 − ρ , we

can rewrite the above as

Ee −sV = ρ
1 − Ee −sB

sEB
Ee −s cW + (1 − ρ), Re s ≥ 0.

This can immediately be inverted to give the desired relation (9). �
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Queues and Risk Processes 401

4. DUALITY BETWEEN THE INSURANCE AND QUEUEING

PROCESSES

It is well known that there are duality relations between the classical
G/G/1 queue and the corresponding classical Sparre Andersen insurance
risk model, with independence between service requirements (respectively
claim sizes) and inter-arrival times. In this case “corresponding” means: the
same inter-arrival distributions, the service requirement distribution equals
the claim size distribution, the service rate c is the same as the premium rate.
There are two versions of the duality result (cf. Asmussen and Albrecher[9],
p. 45, 161):

(i)�0(u) = P(cW > u), (13)

(i i)�(u) = P(V > u). (14)

Here, P(cW > u) is the tail of the amount of work as seen by an arriving
customer in equilibrium, and P(V > u) is the tail of the steady-state workload
in the G/G/1 queue. �0(u) is the ruin probability in the Sparre Andersen
model, when at time t = 0 the capital is u and a new inter-arrival time
begins, i.e., t = 0 is an arrival epoch. �(u) is the ruin probability when the
risk process is started in stationarity, i.e., t = 0 is independent of the process
itself. In this case the time elapsed until the first claim arrives has a residual
distribution. We will call �0(u) the ordinary ruin probability and �(u) the
delayed ruin probability. It is also worth while to notice that the relations
obtained in this section between �0 and � do not use the bilateral matrix
exponential structure of the increments Yn.

We pose and answer three questions in this section, for the dependencies
under consideration (between service requirement and subsequent inter-
arrival time, respectively between inter claim time and subsequent claim
size):

1. Does the duality relation (13) still hold?
2. Does the duality relation (14) still hold?
3. Does the relation between steady-state workload and waiting time from

Theorem 3.1 translate to a relation between delayed ruin probability and
ordinary ruin probability, just as it does in the independent case (cf.
p. 69 of Grandell[24])?

The answer to question 1 is immediately seen to be positive, as shown in
Asmussen and Albrecher[9] p. 45, because this relation uses only the random
walk structure of the risk/queueing process embedded at arrival epochs,
which is preserved in the model we study (Bi and Ai only appear in the
random walk via the difference Bi − cAi ). The Laplace transform of the ruin
probability now immediately follows from the waiting time LST in Theorem
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402 Badila et al.

2.1, by observing that the relation �0(u) = P(cW > u) becomes in terms of
transforms: �∗

0 (s) = 1
s

(
1 − Ee −s cW

)
. Hence, we have the following:

Corollary 4.1. The Laplace transform of �0(u), �∗
0 (s) := ∫∞

0 e −su�0(u) du
equals

�∗
0 (s) = 1

s

[
1 −

∏
s̃−

j
(1 − cs

s̃−
j
)∏

s−
k

(1 − cs
s−

k
)

]
.

Notice that, as mentioned in the Introduction, this result was also ob-
tained in Constantinescu et al.[22], using operator theory.

We shall prove that the answer to question 3 is also affirmative. In combi-
nation with the duality relation (13), this implies that the answer to question
2 is also affirmative: the duality relation (14) still holds in the dependent
case.

For the purpose of studying the relation between the ordinary and the
delayed ruin functions below, we assume that the pair (A,B) has a joint
density, fA,B(r, z).

Let φ0(u) := 1 − �0(u) and φ(u) := 1 − �(u) be the survival functions
for the ordinary risk process and for its stationary version, respectively. In
addition, denote by u the initial capital, and let α := 1

EA be the arrival rate
of claims.

Theorem 4.1. The relation between the survival functions for the two versions of
the ruin process is

φ(u) = φ(0) + α

c

∫ ∞

v=0

∫ u

w=0
φ0(u − w)

∫ ∞

z=w
fA,B(v, z) dz dw dv.

Let us make some remarks about this formula before proving it.

Remark 4.1. In the stationary version of the ruin process, the first claim
arrival happens after a time distributed as the residual inter-arrival time.
Because of the correlation between claim sizes and their inter-arrival times,
the claim size that corresponds to the residual arrival time will have a dis-
tinguished distribution; therefore, let us denote the first pair by (Ar es , B∗).
Regarding the density function, it can be shown that (see Lemma A.3)

fAr e s ,B∗(r, z) = α

∫ ∞

v=r
fA,B(v, z) dv. (15)
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Queues and Risk Processes 403

Remark 4.2. The double integral that appears in the last term from Theo-
rem 4.1 above:

∫ ∞

v=0

∫ ∞

z=w
fA,B(v, z) dz dv

equals the marginal tail of a claim size, 1 − FB(w). If we replace this in the
relation from Theorem 4.1, we obtain the same formula as in Grandell[24],
p. 69:

φ(u) = φ(0) + αEB
c

∫ u

w=0
φ0(u − w)

1 − FB(w)
EB

dw . (16)

This is also known as Takács’ formula (see Ref.[23], Corollary 4.5.4). (16)
shows that only the marginal residual service requirement appears in this
relation between φ(·) and φ0(·), even if we have the correlation between a
pair (A, B).

By using the fact that φ(u), φ0(u) → 1 as u → ∞, together with dom-
inated convergence, to argue that it is allowed to interchange limit and
integration, one can easily show that φ(0) = 1 − αEB

c . Now observe that Re-
lation (16) between delayed and ordinary survival function is the precise
counterpart/equivalent of relation (9) between the workload and waiting
time distributions.

Proof of Theorem 4.1. We follow the derivation that Grandell[24] (p. 69;
see also p. 5) has given for the case when A and B are independent. Starting
with the stationary risk process, we condition on the arrival time of the first
claim, together with its size:

φ(w) =
∫ ∞

r =0

∫ w+cr

z=0
φ0(w + cr − z) fAr e s ,B∗(r, z) dz dr.

Using (15), we obtain:

φ(w) = α

∫ ∞

r =0

∫ ∞

v=r

∫ w+cr

z=0
φ0(w + cr − z) fA,B(v, z) dz dv dr.

By changing the order of integration between variables v and r , we have

φ(w) = α

∫ ∞

v=0

∫ v

r =0

∫ w+cr

z=0
fA,B(v, z) φ0(w + cr − z) dz dr dv.
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404 Badila et al.

We use the change of variable x := w + cr :

φ(w) = α

c

∫ ∞

v=0

∫ w+cv

x=w

∫ x

z=0
fA,B(v, z) φ0(x − z) dz dx dv. (17)

Let us take the derivative of φ(w). In Lemma A.2 in the Appendix, we argue
that this is allowed.

φ′(w) = α

c

∫ ∞

v=0

[∫ w+cv

z=0
fA,B(v, z) φ0(w + cv − z)dz

−
∫ w

z=0
fA,B(v, z) φ0(w − z)dz

]
dv

= α

c
φ0(w) − α

c

∫ ∞

v=0

∫ w

z=0
fA,B(v, z) φ0(w − z) dz dv.

Here, we replaced the first term in the right-hand side by virtue of the
renewal equation for the ordinary survival probability. We can now integrate
w between 0 and u:

φ(u) − φ(0) = α

c

∫ u

w=0
φ0(w) dw−α

c

∫ u

w=0

∫ ∞

v=0

∫ w

z=0

φ0(w − z) fA,B(v, z) dz dv dw . (18)

Let us focus on the last term from (18), to be called L. Integration over v
yields, with fB(·) the density of the service requirement distribution FB(·):

L = α

c

∫ u

w=0

∫ w

z=0
φ0(w − z) fB(z)dz dw . (19)

Partial integration gives

L = α

c

∫ u

w=0
φ0(0)FB(w) dw + α

c

∫ u

w=0

∫ w

z=0
FB(z)φ′

0(w − z) dz dw

= α

c

∫ u

w=0
φ0(0)FB(w) dw + α

c

∫ u

z=0
FB(z)

∫ u

w=z
φ′

0(w − z) dw dz

= α

c

∫ u

w=0
φ0(0)FB(w) dw + α

c

∫ u

z=0
FB(z)[φ0(u − z) − φ0(0)] dz

= α

c

∫ u

z=0
FB(z)φ0(u − z) dz. (20)
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Queues and Risk Processes 405

Substitution of (20) in (18) gives (16) and thus the result of the proposition.
�

5. EXAMPLES AND NUMERICAL RESULTS

In this section, we present examples of dependence structures that are
tractable and have a probabilistic interpretation. We also numerically illus-
trate the effect of correlations on the waiting time distribution/ruin proba-
bility. Throughout the section, we take for simplicity c = 1.

A comprehensive survey of multivariate matrix-exponential distributions
(MVME) can be found in Bladt and Nielsen[13]. As a special subclass of
these, Kulkarni[26] introduced multivariate phase-type (MPH) distributions
(see also Assaf et al.[11]). In the bivariate case, these are defined as follows:
Consider a continuous-time Markov chain X (t), with finite state space S,
with an absorbing state �, and generator matrix

Q =
(

Q −Q1
0 0

)

together with a reward matrix (r ( j)
x )x, j , r ( j)

x ≥ 0 for x ∈ S\{�}, j = 1, 2.
Assume that as long as we stay in state x, we earn at rate vector rx = (r (1)

x , r (2)
x ).

We look at the bivariate distribution of the random vector (Z1, Z2), where
the marginals of this vector are defined to be the total accumulated rewards
until absorption:

Zk =
∫ ζ

0
r (k)

X (t)dt,

with ζ the time to absorption. Remark that Zk can be rewritten as

Zk =
M∑

i=1

r (k)
Xi

Hi , k = 1, 2, (21)

M being the number of jumps until absorption of the embedded discrete-
time Markov chain Xi and Hi the holding time in state Xi . The Hi ’s are
independent exponentials with rates −QXi Xi . The dependence structure be-
tween Z1 and Z2 is thus given by the underlying continuous-time Markov
chain X (t). That this is indeed a subclass of MVME follows from Theorem
4.1 of Ref.[13].

As a special case of Kulkarni’s bivariate-phase type distributions, one
can obtain a fairly large class of distributions by a partial decoupling of the
bivariate phase-type: For the discrete-time Markov chain Xi , and for a fixed
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406 Badila et al.

i, let H (1)
i , H (2)

i be independent, having exponential distributions with rates
λXi and μXi , respectively. Without loss of generality we can consider r (k)

Xi
= 1,

k = 1, 2 and set

A =
M∑

i=1

H (1)
i , B =

M∑
i=1

H (2)
i .

The difference with Formula (21) is that now the dependence structure is
given only by the common underlying discrete-time Markov chain Xi . Fur-
thermore, if we assume the jump rates to be the same in each state, i.e.,
H (1)

i ∼ exp(λ), H (2)
i ∼ exp(μ), then the number of jumps M before absorp-

tion is a sufficient statistic for the joint distribution of (A, B). More precisely,
conditional on M , A and B are independent Erlang(M, λ), Erlang(M, μ),
respectively.

Remark 5.1. This dependence structure can be realized as in the descrip-
tion of Kulkarni’s class. More precisely, we obtain the partial decoupling by
doubling all states of the underlying Markov process: replace each transient
state x with x1, x2 and allow only the corresponding component of (A, B)
to increase while in state xi (formally, put r (1)

x1 = r (1)
x , r (1)

x2 = 0 and similarly
r (2)

x1 = 0, r (2)
x2 = r (2)

x ). Extend the transition matrix of the Markov chain such
that after visiting state x1, it always jumps to state x2 and thereafter jumps
according to the original transition matrix.

If we denote by α the initial distribution of {Xn}, by T the transient
component of its transition matrix, and by t the vector of exit probabilities,
then by conditioning on M we obtain the following result as a probabilistic
alternative to Theorem 3.2 in Bladt and Nielsen[13]:

Lemma 5.1.

a) The Laplace-Stieltjes transform of (A, B) is

Ee −s1A−s2B = α′
[

(λ + s1)(μ + s2)
λμ

I − T
]−1

t .

b) The transform Ee −sY of the difference (B − A), is a rational function of the
form f (s)

g(s) , with f and g polynomial functions such that deg( f ) < deg(g).

Proof. See Appendix.
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Queues and Risk Processes 407

Example 5.1. Kibble and Moran’s bivariate Gamma distribution (Kotz
et al.[25]) can be realized as above. Consider the state space {1, ..., m, �}.
Assume the Markov chain Xn starts in 1 and jumps from i to i + 1 w.p. p or
stays in state i w.p. 1 − p . Furthermore, assume the same rates for the holding
times in every state: H (1)

n ∼exp(λ), H (2)
n ∼exp(μ), for λ, μ > 0. Hence this

distribution is the m−fold convolution of Kibble and Moran’s bivariate expo-
nential with itself (cf. Ref.[25]), where this bivariate exponential distribution
can be represented as

(Er lang(λ, M), Er lang(μ, M)),

with M having a geometric distribution. In the insurance risk setting, the
analysis for this example has been done in Ambagaspitiya[7] and also in
Constantinescu et al.[22] using operator theory. The Laplace transform of
the ordinary ruin probability �0(u) is given by

�∗
0 (s) = 1

s

[
1 − (1 − s

b )m∏
sk

(1 − s
sk

)

]
,

with b the pole of order m of 1 − Ee −sY such that Re b < 0.

Example 5.2. Cheriyan and Ramabhadran’s bivariate Gamma is another
example of Kulkarni’s bivariate phase-type. This was also analyzed in Amba-
gaspitiya[7] in the insurance risk setting.

For nonnegative integers m0, m1, m2, consider the state space S =
{1, ..., m0 + m1 + m2, �}, with the set of transient states partitioned as:
S\{�} = S0 ∪ S1 ∪ S2 with S0 = {1, ..., m0}, S1 = {m0 + 1, ..., m0 + m1},
S2 = {m0 + m1 + 1, ..., m0 + m1 + m2}. The chain starts in state 1 and jumps
from state i to i + 1. The jump rates are βk while in state x ∈ Sk , k ∈ {0, 1, 2}.
The reward rates in state x are r (1)

x = r (2)
x = 1 for x ∈ S0; r (1)

x = 1, r (2)
x = 0 for

x ∈ S1, and r (1)
x = 0, r (2)

x = 1 for x ∈ S2. Then the bivariate total accumulated
reward has a distribution of the form

(A, B) d= (Z0 + Z1, Z0 + Z2),

where Zk are mutually independent ∼Erlang(mk, βk), k ∈ {0, 1, 2}.

Example 5.3. In the class of MVME, it is possible to achieve negative cor-
relation as well. Consider M to be a discrete random variable with finite
support: M ∈ {1, ..., K}, for K some positive integer. Negative correlation
can be achieved if we consider the following mixture of Erlang distributions:

(A, B)−
d= (Er lang(λ, M), Er lang(μ, K − M + 1)) .
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408 Badila et al.

For more examples of negatively correlated phase-type distributions, we refer
to Ref.[14].

Stochastic ordering results. We compare the tails of the waiting times
for the mixed Erlang distributions in the following scenarios: the negatively
correlated one from Example 5.3 versus the positively correlated case

(A, B)+
d= (Er lang(λ, M), Er lang(μ, M)) ,

and the corresponding independent pair obtained by sampling twice from
the distribution of M ; i.e. for M1 and M2 i.i.d. copies of M

(A, B)0
d= (Er lang(λ, M1), Er lang(μ, M2)) .

Here M is taken to have finite support, as in Example 5.3 above.
Denote, respectively, by D−, D+ and D0, the differences A − B in the

three scenarios above. In Theorem 5.1 below, we show that under a mild
assumption on the distribution of M , there exists convex ordering between
the random variables D+, D0 and D−. For two r.v.’s X and Y , X c x Y means,
by definition, that for any arbitrary convex function ϕ(x),

Eϕ(X ) ≤ Eϕ(Y ). (22)

For more about the notion of convex order and other related stochastic
orderings, we refer the reader to Ref.[31], Ch. 1. Before we give the result, let
us recall a useful criterion (cf. Ref.[31], Prop. 1.5.1):

Proposition 5.1. (Karlin & Novikoff’s cut criterion). For X, Y r.v.’s with c.d.f.’s
FX and FY respectively, and finite first moments, assume that EX = EY , and that
there exists an x0 such that FX (x) ≤ FY (x), for x ≤ x0 and FX (x) ≥ FY (x) for
x ≥ x0. Then X c x Y .

Theorem 5.1.

D+ c x D0. (23)

Moreover, if M has a symmetric distribution, M d= K + 1 − M, then we also have

D0 c x D−. (24)
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Queues and Risk Processes 409

Proof. Let Cλ
i and Cμ

j , respectively, be Erlang(i, λ) and Erlang( j, μ) dis-
tributed random variables independent of each other, for i = 1, . . . , K ; also
denote πi := P(M = i).

We will first prove ic x ordering, that is the functional inequality (22) is
restricted to increasing convex functions ϕ. This together with the fact that
the expected values of D−, D+ and D0 are the same implies c x ordering (see
Ref.[31], Thm. 1.3.1, p.9).

Take ϕ to be any convex and increasing function. First, we prove (23),
that is, we must show that Eϕ(D+) ≤ Eϕ(D0), or equivalently,

K∑
i=1

πiEϕ(Cλ
i − Cμ

i ) ≤
K∑

i=1

K∑
j=1

πiπ j Eϕ(Cλ
i − Cμ

j ).

Let us put for simplicity ϕ(i, j) := Eϕ(Cλ
i − Cμ

j ), so we can rewrite the above
as ∑

i

πiϕ(i, i) ≤
∑

i

∑
j

πiπ jϕ(i, j). (25)

Note that (25) is an association type of inequality, similar to Cebishev’s
inequality (see Ref.[10], Lemma 2.3 and the references therein). Using that
the π ′

j s form a probability distribution, we can further rewrite (25)

∑
i

∑
j

πiπ jϕ(i, i) ≤
∑

i

∑
j

πiπ jϕ(i, j)

⇔
∑

i

∑
j>i

πiπ j [ϕ(i, i) − ϕ(i, j)] ≤
∑

m

∑
l<m

πmπl[ϕ(m, l) − ϕ(m, m)].

(26)

Remark that there is an equal number of terms on the two sides of (26)
because we sum over indices that lie, respectively, above and below the main
diagonal of the tableaux (ϕ(i, j))i, j . We are done as soon as we show that
the inequality holds for a one-to-one correspondence between these indices;
more precisely, for the correspondence (i, j) ↔ ( j, i), j > i , we will prove
that

ϕ(i, i) − ϕ(i, j) ≤ ϕ( j, i) − ϕ( j, j), (27)

that is, (26) holds term by term, and remark that the coefficients πiπ j and
π jπi cancel against each other. Put u := j − i and denote

γ (x) := Eϕ(x + Cλ
i − Cμ

j ).
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410 Badila et al.

Obviously, γ (x) is increasing and convex, because ϕ is. Consider the decom-
position of Cμ

j and Cλ
j as sums of independent r.v.’s Cμ

j := Cμ

i + Cμ
u , and

Cλ
j := Cλ

i + Cλ
u with Cμ

u , Cλ
u Erlang distributed of order u and rates μ and λ,

respectively. By conditioning on Cλ
u and Cμ

u , we can write

ϕ( j, i) = E{E[ϕ(y + Cλ
i − Cμ

i − x + x)|Cλ
u = y , Cμ

u = x]} ⇔
ϕ( j, i) = E{E[γ (y + x)|Cλ

u = y , Cμ
u = x]} = Eγ (Cλ

u + Cμ
u ).

Similarly, we obtain ϕ(i, i) = Eγ (Cμ
u ) and ϕ( j, j) = Eγ (Cλ

u ), so that (27)
becomes

Eγ (Cμ
u ) + Eγ (Cλ

u ) ≤ Eγ (Cλ
u + Cμ

u ) + γ (0). (28)

All boils down to proving (28). In order to achieve this, let X be a r.v.
with a Bernoulli(1/2) distribution and let cμ �= cλ be two arbitrary positive
constants. Consider the following r.v.’s

Z1 := cλX + cμX, Z2 := cλX + cμ(1 − X ).

We have the following identities in distribution

Z1
d= 1

2
[δ0 + δcλ+cμ

], Z2
d= 1

2
[δcλ

+ δcμ
],

with δx being the Dirac measure at x. Now it follows easily from the cut
criterion in Proposition 5.1 above that Z2 c x Z1. Hence, in particular, we
can choose γ (x) as a test function to obtain

Eγ (cλX + cμ(1 − X )) ≤ Eγ (cλX + cμX ).

Because X is a Bernoulli(1/2), the inequality above becomes

γ (cλ) + γ (cμ) ≤ γ (cλ + cμ) + γ (0).

Finally, taking the double mixture over cλ and cμ according to the distri-
butions of Cλ

u and Cμ
u respectively, shows that (28) is true, and this proves

(23).
Now, for inequality (24) we have to prove that Eϕ(D0) ≤ Eϕ(D−), that

is, keeping the same notation as in (25),

∑
i

∑
j

πiπ jϕ(i, j) ≤
∑

i

∑
j

πiπ jϕ(i, K + 1 − i),
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Queues and Risk Processes 411

and upon regrouping terms, it becomes

∑
i

∑
j : j<K+1−i

πiπ j [ϕ(i, j) − ϕ(i, K + 1 − i)]

≤
∑

m

∑
l : l>K+1−m

πmπl[ϕ(m, K + 1 − m) − ϕ(m, l)].

This is the analogue of (26). Again, it suffices to prove the term by term
inequalities similar to (27). The symmetry axis in this case is the second
diagonal of the tableaux. This means that the correspondence is (i, j) ↔
(K + 1 − j, K + 1 − i), so the analogue of (27) that we prove is, for i, j fixed,
j < K + 1 − i

ϕ(i, j) − ϕ(i, K + 1 − i) ≤ ϕ(K + 1 − j, j) − ϕ(K + 1 − j, K + 1 − i).

(29)

In (29), we dropped the coefficients πiπ j and πK+1−iπK+1− j because these
are equal since M is assumed to have a symmetric distribution. If we set
u = (K + 1 − i) − j = (K + 1 − j) − i , from this point on the analysis is
essentially the same. Consider the analogue of γ ,

η(x) := Eϕ
(
x + Cλ

i − Cμ

K+1−i

)
,

then (29) becomes

Eη(Cμ
u ) − η(0) ≤ Eη(Cλ

u + Cμ
u ) − Eη(Cλ

u ).

This is precisely (28) with γ (x) replaced by η(x), and since ϕ was taken to
be an arbitrary increasing convex function, the proof is complete. �

Remark 5.2. The requirement for M to have a symmetric distribution may
be too strong in general. Some assumption on the distribution of M is
necessary but only for the ordering D0 c x D−. For example, if we let K = 2

and M d= δ1 (Dirac mass in 1), then D0 is the difference of two independent
Erlang-1, whereas D− is an Erlang-1 minus an Erlang-2 so D− is c x -dominated
in this case.

The above proof of the inequality between D+ and D0 does not require
the finiteness of the support of M ; M discrete phase type is also a possible
case in which the sums that appear in the proof become series. There are
no convergence problems and we are allowed to change summation order
as well, due to probabilistic interpretations. Of course there are restrictions
if we look for negative correlation when M has infinite support. More about
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412 Badila et al.

TABLE 1 Mean waiting times, atoms at 0 and 95% percentiles for ρ = .5 and
various values of K

K EW+ EW0 EW− P(W+ = 0) P(W0 = 0) P(W− = 0) q+ q0 q−

2 0.86 1.11 1.36 0.57 0.54 0.51 4.36 5.31 6.25
4 0.68 1.37 2.11 0.67 0.58 0.52 3.93 6.78 9.48
7 0.51 1.78 3.22 0.75 0.61 0.53 3.39 9.09 14.35
14 0.31 2.79 5.82 0.85 0.64 0.54 2.33 14.58 25.74

this possibility can be found in Bladt and Nielsen[14] on negatively correlated
exponentials.

Proposition 5.2. Let W−, W0, and W+, be the steady-state waiting times, that
correspond to the increments of the random walk distributed as −D−, −D0, and −D+,
respectively. Then we have convex ordering between the waiting times in the three
scenarios

W+ c x W0 c x W−.

Proof. From the definition of convex ordering, D+ c x D0 is the same as
−D+ c x −D0, and similarly D0 c x D− is the same as −D0 c x −D−. There-
fore, the external monotonicity result from Daley and Stoyan[31] (Thm. 5.2.1,
p. 80) implies that the steady-state workloads are convex ordered in the three
scenarios, according to the increments of the random walk. This can also be
seen in the numerical tables and the plots below. �

In Table 1 we keep ρ fixed, say ρ = .5, and we vary K . In Table 2, we
vary the load coefficient ρ, and we keep the mixing distribution M uniform
on {1, ..., 5} (i.e., K = 5). The tables contain the mean waiting times, their
atoms at zero and q, the 95% quantile of the survival function/waiting time
(i.e., q is the value of the initial capital for which P(W ≤ q ) = φ0(q ) = .95).
The plots of the tails of the ruin functions are in Figure 2 and Figure 3.

TABLE 2 Mean waiting times, atoms at 0 and 95% percentiles for K = 5 and various
values of ρ

ρ EW+ EW0 EW− P(W+ = 0) P(W0 = 0) P(W− = 0) q+ q0 q−

.05 0.01 0.07 0.15 0.988 0.960 0.950 0.00 0.00 0.00

.25 0.12 0.47 0.88 0.900 0.820 0.760 0.85 3.54 5.72

.50 0.62 1.50 2.48 0.700 0.590 0.520 3.74 7.54 11.10

.75 2.48 4.77 7.15 0.390 0.320 0.270 10.14 17.81 25.50

.95 18.40 31.40 44.48 0.080 0.066 0.056 58.26 97.89 137.58
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(b) ρ = .5, K = 4

5 10 15 20
u

0.1

0.2

0.3

0.4

0.5
Ψ0 u

positive correlation
independent
negative correlation

(c) ρ = .5, K = 7
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(d) ρ = .5, K = 14

FIGURE 2 P(W > u) = �0(u).

APPENDIX

Theorem A.1. (Rouché , Ref.[32], p.116). If two functions g(s) and f (s) are
analytic inside and on a closed contour C, and |g(s)| > | f (s)| on C, then g(s)
and g(s) − f (s) have the same number of zeros inside C.

Theorem A.2. (Liouville , Ref.[32], p. 85). If f (s) is analytic for all finite values
of s, and as |s | → ∞,

f (s) = O(|s |m),

then f (s) is a polynomial of order ≤ m.

We can now formulate and prove the following lemma.

Lemma A.1. Let f (s) and g(s) be the numerator and the denominator of
Ee −s(c−1B−A). Then g(s) − f (s) and g(s) have the same number of zeros in
Re s ≥ 0.
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(d) ρ = .75, K = 5
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(e) ρ = .95, K = 5

FIGURE 3 P(W > u) = �0(u).

Proof. Via Rouché’s theorem, we first prove that |g(s)| > | f (s)| on a suitably
chosen contour in the complex plane. The fact that f (0) = g(0) and that the
transform is rational (so it is also analytic on a strip in Re s < 0) suggests that
we consider the following contour made up from the extended semi-circle

Cε := {R(cos ϕ + i sin ϕ); ϕ ∈ [−π/2 − arccos ε, π/2 + arccos ε]} ,

together with the vertical line segment S := { − ε + iω; |ω| ∈[
0, R

√
1 − ε2

]}.

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 0

0:
32

 1
5 

A
ug

us
t 2

01
4 



Queues and Risk Processes 415

We show that |g(s)| > | f (s)| on this contour, for ε sufficiently small.

First on Cε :
∣∣∣ f (Re iϕ)

g(Re iϕ)

∣∣∣ ≤ Ee −R cos ϕ(c−1B−A) → P(c−1B − A = 0) as R → ∞. We

can assume P(A = c−1B) < 1, else there is nothing to prove. This means
| f (Re iϕ)

g(Re iϕ) | < 1 for R sufficiently large.
In order to prove the inequality on the line segment S, we use the

stability condition: E(A − c−1B) = d
ds

f (s)
g(s) |s=0 > 0. So for ε sufficiently small,

f (−ε)
g(−ε) <

f (0)
g(0) = 1. Then on S we have

∣∣∣∣ f (−ε + iω)
g(−ε + iω)

∣∣∣∣ = |Ee −(−ε+iω)(c−1B−A)| ≤ Ee ε(c−1B−A)|e −iω(c−1B−A)| = f (−ε)
g(−ε)

< 1.

Hence | f (s)| < |g(s)| on the whole contour. These being polynomials,
Rouché’s theorem A.1 ensures that g and g − f have the same number
of zeros inside Cε , and since ε was arbitrarily small, this also holds on
∩ε>0C◦

ε = {s ; Re s ≥ 0} ∩ {s ; |s | ≤ R}, where C◦
ε is the interior of Cε . Finally,

letting R → ∞, proves the assertion. �

Proof of Lemma 5.1. a) We can write the joint Laplace-Stieltjes transform
by conditioning on M :

Ee −s1A−s2B =
∞∑

n=1

P(M = n)
(

λ

λ + s1

)n(
μ

μ + s2

)n

.

If we set z = λ
λ+s1

μ

μ+s2
, we can recognize the probability generating function

of M at z, call it PM (z).
M has a discrete phase-type distribution with representation (α, T)

(Neuts[29]), such that I − T is non-singular (here I is the identity matrix),
and the probability vector α is supported on the transient states. Thus

P(M = n) = α′T n−1t

for n ≥ 1, t = (I − T)1, P(M = 0) = 0. If we now focus on this generating
function, we have the following (Asmussen[8], Prop. 4.1, p. 83):

PM (z) = α′(
1
z

I − T)−1t,

and we have proved part a.
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416 Badila et al.

b) To see why Ee −sY = PM ( λ
λ−s

μ

μ+s ) is a rational function, rewrite the
inverse

(
1
z

I − T
)−1

= 1

det
(1

z I − T
) (1

z
I − T

)∗
.

Remark that the denominator det(1
z I − T) is a polynomial of order |S| − 1

(the number of transient states) in 1
z , because z−1 appears only on the

diagonal of the matrix (1
z I − T). (1

z I − T)∗ is the algebraic complement of
(1

z I − T) (also known as matrix of cofactors). Its entries are of the form
(−1)i+ j det(Mi j ), where Mi j is the matrix obtained by deleting row i and
column j of (1

z I − T). These are polynomials in z−1 of order < |S| − 1
(because of the deleted rows and columns in the entries, the degree of
the determinants of these sub-blocks as polynomials in z−1 is always smaller
than the dimension of the matrix T) and hence so is the bilinear form
α′(1

z I − T)∗t , which is the numerator of PM (z). �

Lemma A.2. φ(w) in (17) is differentiable.

Proof. Let hw (v) := ∫ w+cv
x=w

∫ x
z=0 fA,B(v, z) φ0(x − z) dz dx. Using the triangle

inequality, we have the following upper bound

|hw+ε(v) − hw (v)| ≤
∫ w+ε

x=w

∫ x

z=0
fA,B(v, z)φ0(x − z) dz dx

+
∫ w+cv+ε

x=w+cv

∫ x

z=0
fA,B(v, z)φ0(x − z) dz dx.

Let us denote by I and I I the first and the second term that appear above,
respectively. If we use the fact that φ0(x) ≤ 1, we find the upper bounds on
I and I I :

I ≤
∫ w+ε

x=w

∫ w+ε

z=0
fA,B(v, z) dz dx = ε

∫ w+ε

z=0
fA,B(v, z) dz,

and similarly,

I I ≤ ε

∫ w+cv+ε

z=0
fA,B(v, z) dz.
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Queues and Risk Processes 417

So if we denote Dε(v) := hw+ε(v)−hw (v)
ε

,

|Dε(v)| ≤
∫ w+ε

z=0
fA,B(v, z) dz +

∫ w+cv+ε

z=0
fA,B(v, z) dz ≤ 2 fA(v),

and clearly the upper bound is integrable as a function of v. By virtue of
dominated convergence

φ′(w) = lim
ε→0

∫ ∞

v=0
Dε(v) dv =

∫ ∞

v=0
lim
ε→0

Dε(v) dv =
∫ ∞

v=0

∂

∂w
hw (v) dv.

�

Lemma A.3. Under the conditions from Remark 4.1, the density of the pair
(Ar es , B∗) is

f(Ar e s ,B∗)(r, z) = α

∫ ∞

v=r
f(A,B)(v, z) dv.

Proof. Consider the augmented pair (Ã, B∗) which by definition has density

f(Ã,B∗)(v, z) := αv fA,B(v, z),

where α acts as the normalizing factor: 1
α

= EA = ∫
z

∫
v v fA,B(v, z) dv dz. Let U

be a standard uniform r.v., independent of both A and B. Then (Ar es , B∗) d=
((1 − U )Ã, B∗), therefore conditional on Ã, Ar es is uniformly distributed
over the interval [0, Ã], so we may write in terms of density functions

f(Ar e s ,B∗)(v, z) =
∫ ∞

r =v

1
r

f(Ã,B∗)(r, z) dr = α

∫ ∞

r =v
f(A,B)(r, z) dr.

�
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