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Abstract We study queues in tandem with customer deadlines and retrials. We first
consider a 2-queue Markovian system with blocking at the second queue, analyze it,
and derive its stability condition. We then study a non-Markovian setting and derive
the stability condition for an approximating diffusion, showing its similarity to the
former condition. In the Markovian setting, we use probability generating functions
and matrix analytic techniques. In the diffusion setting, we consider expectations of
the first hitting times of compact sets.

Keywords Tandem queues · Deadlines · Retrials · Blocking · Diffusion
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1 Introduction

In this paper we study a system of queues in tandem with customer deadlines and re-
trials. Networks of queues in tandem or more elaborate topologies have long been the
subject of many articles in the literature (e.g., the famous Jackson network [13, 14]).
Tandem queues with finite buffers and blocking, causing retrials, have recently been
studied and applied to Internet data traffic (see, for eaxample, [6, 7]). There is also
a vast literature on retrial queues (e.g., [3, 9, 11, 30] and references therein). Queues
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with impatient customers and abandonments have also been studied; see, for example,
[1, 31]. Many authors have also recently studied many-server queues with abandon-
ments [2, 12, 19, 20].

We are motivated by a scenario in which data packets are being sent through sev-
eral routers. Each packet has a deadline time by which it must arrive at its final desti-
nation. If the packet is still in the system when its deadline expires, then it is removed
from the system and in its place a new packet is entered into the system. The new
packet is assigned a new deadline time as well.

Consequently, we consider a system comprised of two queues in tandem, where
the first queue has an unlimited buffer capacity and the second queue has a finite
buffer capacity. Each arriving job (customer) carries with it a deadline time such that
if its processing at the first queue does not start by the time its deadline expires, the
job is fed back to the end of the queue. Upon completion of service at the first queue,
the job proceeds to the second queue. If it is blocked there, because the buffer is full,
the job is fed back to the end of the first queue. The same applies if the job is admitted
to the second queue but its waiting time there exceeds its deadline.

We first study a Markovian system with two queues in tandem and with exponen-
tial deadlines in each queue. We use both a Probability Generating Function (PGF)
approach, as well as Matrix Geometric analysis. We obtain the condition for stability
and give it a probabilistic interpretation. Based on this interpretation, we consider a
more general 2-queue system with general arrival and service processes and apply a
diffusion approximation to obtain the stability condition of the system.

The structure of the paper is as follows. The Markovian model is presented in
Sect. 2. Balance equations are derived in Sect. 3. PGFs are applied in Sect. 4, while
the calculation of the so-called ‘boundary probabilities’ is discussed in Sect. 5. A the-
orem on the roots of a polynomial related to the set of PGFs is presented, from which
the stability condition of the system is derived. Marginal probabilities are discussed
in Sect. 6. The Matrix Geometric method is used in Sect. 7 and a stability condition
is obtained. It is shown that this condition is equivalent to the stability condition de-
rived in Sect. 5. A probabilistic interpretation is discussed in Sect. 8. In Sect. 9 we
consider the non-Markovian setting and present a diffusion approximation in Sect. 10.
In Sect. 11 we present a stability result regarding our diffusion approximation, and
the subsequent proof may be found in Sects. 12 and 13.

2 The model

We consider a system comprised of two Markovian queues in tandem. The first queue
(Q1) is an unlimited-buffer M/M/1-type queue with homogeneous Poisson arrivals
at rate λ. The service time for each individual customer at station 1 is exponentially
distributed with mean 1/μ1. Each customer in Q1 has a deadline on her waiting time.
If service does not start before the customer’s deadline runs out, the customer reneges
from her position in the waiting line and goes to the end of the queue, activating a new
deadline, independent of the previous deadlines. We assume that the deadline time is
a random variable, exponentially distributed, with mean 1/γ . Upon completion of
service in Q1, a customer immediately moves to queue 2 (Q2), which is a limited-
buffer ·/M/1/N queue with service rate μ2. Here again, there is a deadline on a
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Fig. 1 Two queues in tandem with deadlines, blocking, and retrials

customer’s queueing time. However, if the deadline, exponentially distributed with
mean 1/γ , expires before the customer starts service in Q2, the customer moves all
the way back to the end of the first queue, Q1. Moreover, when a customer completes
service in Q1 and finds that there are N customers present in Q2 (N − 1 waiting and
one being served), she is fedback all the way to the end of the first queue. The system
is depicted in Fig. 1.

Our aim is to analyze this “deadline-with-blocking and retrials” system, find its
steady-state 2-dimensional distribution function, reveal the system’s stability condi-
tion, and give it a probabilistic interpretation.

3 Balance equations

Consider the system in steady state. Let Li denote the total number of customers
(waiting and being served) in Qi for i = 1,2. Then (L1,L2) is a Markov process
with transition-rate diagram as depicted in Fig. 2. In this section we derive the balance
equations for (L1,L2) in stationarity.

Define the steady-state probabilities of the system’s states

Pmn = P(L1 = m,L2 = n) m = 0,1,2, . . . ; n = 0,1, . . . ,N.

Then, we can write the balance equations as follows:

(i) For L2 = 0,

L1 = 0 : λP00 = μ2P01; (1)

L1 = m : (λ + μ1)Pm0 = μ2Pm1 + λPm−1,0 (m = 1,2,3, . . .), (2)

(ii) For L2 = n (1 ≤ n ≤ N − 1),

L1 = 0 : (
λ + μ2 + (n − 1)γ

)
P0n = μ2P0,n+1 + μ1P1,n−1; (3)

L1 = m : (
λ + μ2 + (n − 1)γ + μ1

)
Pmn

= μ2Pm,n+1 + μ1Pm+1,n−1 + nγPm−1,n+1 + λPm−1,n,

m ≥ 1, (4)
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Fig. 2 Transition-rate diagram for (L1,L2)

(iii) For L2 = N ,

L1 = 0 : (
λ + μ2 + (N − 1)γ

)
P0N = μ1P1,N−1; (5)

L1 = m : (
λ + μ2 + (N − 1)γ

)
PmN = μ1Pm+1,N−1 + +λPm−1,N

(m ≥ 1). (6)
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4 Generating functions

Define N + 1 probability generating functions (PGFs) as follows:

Gn(z) =
∞∑

m=0

Pmnz
m, 0 ≤ n ≤ N.

Then, for L2 = 0, multiplying each equation in (2) by zm and summing all resulting
equations, including (1), leads to

λG0(z) + μ1
(
G0(z) − P00

) = μ2G1(z) + λzG0(z).

Arranging terms we have
[
λ(1 − z) + μ1

]
G0(z) − μ2G1(z) = μ1P00. (7)

Similarly, for L2 = n (1 ≤ n ≤ N − 1), using (3) and (4) results in
[
λ + μ2 + (n − 1)γ

]
Gn(z) + μ1

[
Gn(z) − P0n

]

= μ2Gn+1(z) + μ1

z

[
Gn−1(z) − P0,n−1

]+ nγ zGn+1(z) + λzGn(z).

Arranging terms we get

z
[
λ(1 − z) + μ1 + μ2 + (n − 1)γ

]
Gn(z) − μ1Gn−1(z) − z[μ2 + nγ z]Gn+1(z)

= μ1zP0,n − μ1P0,n−1 (1 ≤ n ≤ N − 1). (8)

Finally, for L2 = N , considering (5) and (6), we obtain

[
λ + μ2 + (N − 1)γ

]
GN(z) = μ1

z

[
GN−1(z) − P0,N−1

]+ λzGN(z),

or

z
[
λ(1 − z) + μ2 + (N − 1)γ

]
GN(z) − μ1GN−1(z) = −μ1P0,N−1. (9)

Equations (7), (8), and (9) define a linear set of equations in the unknown PGFs
G0(z),G1(z), . . . ,GN(z), depending on the N unknown boundary probabilities
P00,P01, . . . ,P0,N−1.

5 Solving for the boundary probabilities P00,P01, . . . ,P0,N−1

Define the (N +1)-dimensional column vector G(z) = (G0(z),G1(z), . . . ,GN(z))T ,
and the column vector

b(z) = μ1[P00, zP01 − P00, zP02 − P01, . . . , zP0,N−1 − P0,N−2,−P0,N−1].
Then, (7), (8), and (9) can be written in a matrix form as

A(z)G(z) = b(z), (10)
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where the (N + 1)-dimensional square matrix A(z) is given by

0 1 2 3 · · ·
0
1
2
3
...

N − 1
N

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎜
⎝

[λ(1 − z) + μ1] −β0(z) 0 0 · · ·
−μ1 α1(z) −zβ1(z) 0 · · ·

0 −μ1 α2(z) −zβ2(z) · · ·
0 0 −μ1 α3(z) · · ·
...

...
...

...
. . .

0 0 0 0 · · ·
0 0 0 0 · · ·

N − 2 N − 1 N

0 0 0
0 0 0
0 0 0
0 0 0
...

...
...

−μ1 αN−1(z) −zβN−1(z)

0 −μ1 z[λ(1 − z) + μ2 + (N − 1)γ ]

⎞

⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

with

αn(z) = z
[
λ(1 − z) + μ1 + μ2 + (n − 1)γ

]
, 1 ≤ n ≤ N − 1

and

βn(z) = μ2 + nγ z, n = 0,1,2, . . . ,N − 1.

By Cramer’s rule, each generating function can be calculated as

Gn(z) = |An(z)|
|A(z)| , n = 0,1,2, . . . ,N, (11)

where An(z) is obtained from A(z) by replacing its nth column with the RHS vector
b(z) of (10), and |A(z)| is the determinant of the matrix A(z).

Thus, if we know the N unknown boundary probabilities appearing in the vector
b(z), each generating function Gn(z), n = 0,1,2, . . . ,N , is fully determined by (11).
Now, since Gn(z) is analytic within −1 ≤ z ≤ 1, if there is a root ẑ in that interval
such that |A(ẑ)| = 0, then the same root applies to An(z) so that |An(ẑ)| = 0 as
well. Moreover, |An(ẑ)| = 0 gives an equation involving the N unknown boundary
probabilities appearing in b(z). In order to solve for those N probabilities, we claim
the following.

Theorem 5.1 For any λ > 0, μ1 ≥ 0, μ2 ≥ 0, γ ≥ 0, and N = 2k − 1 or N = 2k,
where k = 1,2,3, . . . , the determinant |A(z)| is a polynomial of degree 2N + 1,
possessing the following roots:
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(i) a root of multiplicity k at z0 = 0;
(ii) N − k − 1 distinct roots in the open interval (0,1);

(iii) a single root at z∗ = 1;
(iv) N roots in the open interval (1,∞); and
(v) another root as follows: If the condition

λ > μ1

(

1 +
N−1∑

k=1

μk
1∏k

j=1(μ2 + jγ )

)(

1 +
N∑

k=1

μk
1∏k−1

j=0(μ2 + jγ )

)−1

holds, then this root falls in the open interval (0,1). If

λ < μ1

(

1 +
N−1∑

k=1

μk
1∏k

j=1(μ2 + jγ )

)(

1 +
N∑

k=1

μk
1∏k−1

j=0(μ2 + jγ )

)−1

, (12)

this root falls in the open interval (1,∞). In the case

λ = μ1

(

1 +
N−1∑

k=1

μk
1∏k

j=1(μ2 + jγ )

)(

1 +
N∑

k=1

μk
1∏k−1

j=0(μ2 + jγ )

)−1

,

this root is simply z = 1.

Proof The line of reasoning of the tedious proof is similar to the proofs given in [18]
and [23], and therefore will be omitted. �

Now, if (12) holds, we have kN roots at z0 = 0 and N − kN −1 roots in (0,1) for a
total of N − 1 roots in [0,1). Each root yields an equation involving the N unknown
probabilities. Together with (1), we have N equations determining the probabilities
in b(z), as needed.

It follows that condition (12) is the condition for stability of the system, namely
for (L1,L2) to be positive recurrent. If condition (12) is reversed, we have an extra
root, yielding another equation in the unknown probabilities, leading to an unsolved
set of equations; i.e., (L1,L2) is transient. If (12) is an equality, then (L1,L2) is
null-recurrent. In the sections that follow, we provide a meaningful probabilistic (and
intuitive) interpretation of the condition (12).

6 Marginal probabilities

Define the marginal probabilities for L2:

P•n = P(L2 = n) =
∞∑

m=0

Pmn, n = 0,1,2, . . . ,N.

Then, by setting z = 1 in (7), (8), and (9) we get respectively

μ1P•0 − μ2P•1 = μ1P00, (13)
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(
μ1 + μ2 + (n − 1)γ

)
P•n − μ1P•,n−1 − (μ2 + nγ )P•,n+1 = μ1(P0n − P0,n−1)

(1 ≤ n ≤ N − 1), (14)
(
μ2 + (N − 1)γ

)
P•N − μ1P•,N−1 = −μ1P0,N−1. (15)

Adding (13) to (14) for n = 1 yields

μ1(P•1 − P01) = (μ2 + γ )P•2.

Continuing, we obtain

μ1(P•n − P0n) = (μ2 + nγ )P•,n+1 (0 ≤ n ≤ N − 1). (16)

Now, once the boundary probabilities (P00,P01, . . . ,P0,N−1) are determined, the set
of (16) together with the normalizing condition

N∑

n=0

P•n = 1

provide a unique solution to the marginal probabilities {P•n}.

Remark Equations (16) can also be obtained by considering horizontal ‘cuts’ in
Fig. 2 between “levels” L2 = n and L2 = n + 1 (n = 0,1,2, . . . ,N − 1).

Define now the marginal probabilities for L1 = m:

pm• =
N∑

n=0

Pmn, m = 0,1,2, . . . .

Then, by taking vertical ‘cuts’ between columns m and m + 1 in Fig. 2, we get

λPm• + γ

N∑

n=1

(n − 1)Pmn = μ1Pm+1,•, m = 0,1,2, . . . . (17)

Summing (17) over m yields

λ + γ

N∑

n=1

(n − 1)P•n = μ1(1 − P0•).

That is,

λ + γE[Q̃2] = μ1(1 − P0•), (18)

where E[Q̃2] denotes the mean queue size (customers waiting for service to start)
of Q2. In (18), the LHS gives the total effective arrival rate to the server at Q1,
composed of the original rate λ and the feedback customers that didn’t meet their
deadline in Q2 (the feedback customers from Q1 do not affect L1 as they renege
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before their service starts). This effective arrival rate equals the effective service rate
at Q1, being μ1(1−P0•). Finally, once P0• is determined, E[Q̃2] is easily calculated,
and γE[Q̃2] gives the rate of customers not meeting their deadline in Q2.

7 Matrix geometric method

Consider again the state space {m,n} denoting m customers in Q1 and n customers
in Q2, m ≥ 0, 0 ≤ n ≤ N . When L2 = n, we say that the system is in level, or
in phase, n. We construct a quasi birth-and-death (QBD) process with generator Q,
satisfying

PQ = 0,

where

P = (P 0,P 1,P 2, . . .)

with

P m = (Pm0,Pm1, . . . ,PmN), m = 0,1,2, . . . .

P m denotes the (N +1)-dimensional vector of probabilities that the system is in state
m and level n (n = 0,1,2, . . . ,N). The generator Q is given by

Q =

⎛

⎜⎜
⎜⎜⎜
⎝

A0
1 A0 0 · · · · · · · · · · · ·

A2 A1 A0 0 · · · · · · · · ·
0 A2 A1 A0 0 · · · · · ·
...

. . .
. . .

. . .
. . .

. . . · · ·
...

...
. . .

. . .
. . .

. . .
. . .

⎞

⎟⎟
⎟⎟⎟
⎠

,

where the (N + 1) × (N + 1) square matrices A0
1,A

0
0,A2,A1, and A0 are given by

A0
1 =

⎛

⎜⎜⎜⎜
⎝

−λ 0 0 0 · · · 0 0
μ2 −(λ + μ2) 0 0 · · · 0 0
0 μ2 −(λ + μ2 + γ ) 0 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 0 · · · · · · μ2 −(λ + μ2 + (N − 1)γ )

⎞

⎟⎟⎟⎟
⎠

,

A0 =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ 0 0 · · · · · · 0 0
0 λ 0 · · · · · · 0 0

0 γ λ
. . . · · · 0 0

...
. . .

. . .
. . .

. . .
...

...
...

...
. . .

. . . λ 0 0
...

...
...

. . . (N − 2)γ λ 0
0 0 0 · · · 0 (N − 1)γ λ

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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A2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 μ1 0 · · · 0 0
0 0 μ1 · · · 0 0
...

...
. . .

. . .
...

...
...

...
...

. . .
. . .

...

0 0 0 · · · 0 μ1
0 0 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and

A1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−(λ + μ1) 0 0 · · · 0 0 0
μ2 a0 0 · · · 0 0 0
0 μ2 a1 · · · 0 0 0
0 0 μ2 a2 0 0 0

0 0 0
. . .

. . . 0 0
...

...
...

... μ2 aN−2 0
0 0 0 · · · 0 μ2 −(λ + μ2 + (N − 1)γ )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

with an = −(λ + μ1 + μ2 + nγ ), n = 0,1,2, . . . ,N − 2.
Consider now the matrix A = A0 + A1 + A2, which is given by

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

−μ1 μ1 0 0 · · ·
μ2 −(μ1 + μ2) μ1 0 · · ·
0 (μ2 + γ ) −(μ1 + μ2 + γ ) μ1 · · ·
...

...
. . .

. . .
...

...
...

...
. . .

. . .

...
...

...
...

. . .

0 0 0 0 · · ·
0 0 0 0 · · ·

0 0 0
0 0 0
0 0 0
...

...
...

...
...

...

. . .
...

...

(μ2 + (N − 2)γ ) −(μ1 + μ2 + (N − 2)γ ) μ1
0 (μ2 + (N − 1)γ ) −(μ2 + (N − 1)γ )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

.

The matrix A represents the generator of a limited-buffer M/M/1/N +M-type queue
with constant arrival rate μ1, service rate μ2, and individual reneging (abandonment)
rate γ such that, if the number of customers present is L = j , the instantaneous
departure rate from the system A is μ2 + (j − 1)γ . This system is depicted in Fig. 3.
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Fig. 3 The system given by the
generator A

This queue has a stationary distribution function π = (π0,π1, . . . , πN), where
πk = P(L = k), k = 0,1,2, . . . ,N . We have

πA = 0 and π · e = 1, where e = (1,1, . . . ,1)T .

We readily obtain

π0 =
[

1 +
N∑

k=1

μk
1∏k−1

j=0(μ2 + jγ )

]−1

and

πk = μk
1∏k−1

j=0(μ2 + jγ )
π0, k = 1,2, . . . ,N.

The stability condition for the QBD process with the generator Q is given by (see
[22])

πA0e < πA2e. (19)

Now, denoting by Lq(A) the queue size in the system represented by the matrix A,
we have

πA0e = λ + γ

N∑

k=2

(k − 1)πk = λ + γE
[
Lq(A)

]

and

πA2e = μ1(1 − πN).

Thus, the stability condition (19) for the QBD process Q is

λ + γE
[
Lq(A)

]
< μ1(1 − πN). (20)

We remark that it can be shown, following tedious algebraic calculations, that condi-
tion (20) is exactly condition (12) given in Theorem 5.1.

If N = 1, E[Lq(A)] = 0, π0 = μ2/(μ1 + μ2), and π1 = μ1/(μ1 + μ2). Thus,
condition (20) translates into

λ <
μ1μ2

μ1 + μ2
,
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independent of γ . If μ1 = μ2, then condition (20) is further reduced to λ < μ1/2.
Finally, the steady-state probability vectors P m are given by

P 0A
0
1 + P 1A2 = 0,

P 0A
0
0 + P 1A1 + P 2A2 = 0,

P m−1A0 + P mA1 + P m+1A2 = 0, m = 2,3, . . .

with

P m = P m−1R = P 1R
m−1 (m ≥ 2).

The matrix R is the minimal non-negative solution of the matrix equation

A0 + RA1 + R2A2 = 0.

The normalizing condition is

∞∑

m=0

P me = P 0e +
∞∑

m=1

P me

=
(

P 0 + P 1

∞∑

m=0

Rm

)

e

= (
P 0 + P 1(I − R)−1)e

= 1.

Now, the mean number of customers in the first queue, Q1, is given by

E[L1] =
∞∑

m=1

mP me = P 1

∞∑

m=1

mRm−1e = P 1(I − R)−2 · e.

8 Probabilistic interpretation

We now provide a probabilistic interpretation for the stability conditions (12) and
(20). As indicated, these conditions can be shown to be equivalent to one another.
We begin with an explanation of sufficiency. Consider the right-hand side of (20).
Here μ1(1 − πN) represents the maximum possible rate at which customers may
be processed at station 1. Next, consider the left-hand side of (20). In particular,
consider γE[Lq(A)]. This represents the maximum possible rate at which customers
may abandon from station 2 back to station 1. We say total maximum since in the
generator A we assume that customers arrive at station 2 at the maximum possible
rate μ1. The maximum possible rate at which customers can arrive at station 1 is
therefore λ + γE[Lq(A)], and so if this is less than μ1(1 − πN), the system will be
stable.
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Suppose, on the other hand, that the inequality (20) is reversed and that initially
at time zero there are a large number of customers at station 1. While processing this
initial set of customers, the departure rate from station 1 will be μ1. Moreover, up
until the final customer is processed, the departure process will behave as a Poisson
process with rate μ1. This will then cause station 2 to behave as the process described
by the generator A and consequently customers will abandon back to station one at
approximately rate γE[Lq(A)]. Thus, if λ + γE[Lq(A)] > μ1(1 − πN), station 1
will not be able to finish processing its initial set of customers before receiving an
additional round of customers. In fact, the number of customers at station 1 will grow
larger while it is processing its initial set customers and so the system will be unstable.

The type of reasoning used above is made rigorous in the following section where
we provide an approximating stability condition for the non-Markovian setting.

9 Non-Markovian setting

We now consider the system depicted in Fig. 1 but with general interarrival and ser-
vice time distributions and with unlimited buffer space at station two (N = ∞). We
suppose that the external arrival process to the system (A(t), t ≥ 0) is a renewal pro-
cess where

A(t) = max

{

n :
n∑

i=1

ui ≤ λt

}

,

where {ui, i ≥ 1} is an i.i.d. sequence of random variables with mean one and vari-
ance a1 and that λ > 0. We also assume that the number of customers served by
station i, i = 1,2, in its first t units of processing time is given by

Si(t) = max

{

n :
n∑

i=1

vi ≤ μit

}

,

where {vi, i ≥ 1} is an i.i.d. sequence of random variables with mean one and variance
bi and μi > 0. Finally, we assume that customers abandon station 2 according to an
exponential distribution and return to station 1 at a Poissonian rate γ .

Unlike the exact stability condition for the Markovian case given by (12) and (20),
the exact stability condition in this non-Markovian setting appears to be difficult to
determine. However, the type of network described above falls into the class of net-
works referred to as generalized Jackson networks in [25]. In particular, Theorem 1
of [25] provides a heavy-traffic diffusion approximation to the queue length process
for this network. Our approach therefore is to first use Theorem 1 of [25] in order
determine the proper heavy-traffic diffusion approximation for this system and then
to determine the stability condition for the diffusion approximation.

10 Diffusion approximation

As in Sect. 3, let (L1,L2) = ((L1(t),L2(t)), t ≥ 0) be the two-dimensional process
representing the number of customers present at stations 1 and 2, respectively, at
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time t . Our main result in this section is to show that (L1,L2) may be approxi-
mated by a two-dimensional diffusion approximation known as a reflected Ornstein–
Uhlenbeck (RO–U) process. We therefore first provide the following definition of a
one-dimensional RO–U process and then provide the analogous definition of a two-
dimensional RO–U process. Let θ, γ ∈ R and σ ∈ R+.

Definition 1 A one-dimensional RO–U process confined to R+ with parameters
(θ, σ, γ ) and initial position Z(0) ∈ R+ is defined to be the process Z = (Z(t),

t ≥ 0) ∈ D([0,∞),R+) satisfying

Z(t) = Z(0) + B(t) + θt −
∫ t

0
γZ(s) ds + Y(t), t ≥ 0,

where B = (B(t), t ≥ 0) is a one-dimensional Brownian motion with infinitesimal
variance σ 2, Z(t) ∈ R+ for t ≥ 0, and Y = (Y (t), t ≥ 0) ∈ D([0,∞),R+) is such
that

1. Y(0) = 0,
2. Y = (Y (t), t ≥ 0) is non-decreasing,
3.

∫∞
0 1{Z(s) > 0}dY (s) = 0.

As shown in Proposition 2 of [25], there will always be a unique, strong solution
Z in Definition 1 above.

Next, we provide the definition of a two-dimensional RO–U process. Let θ ∈ R
2

and let C,M,	 ∈ R
2×2, where C is a variance–covariance matrix.

Definition 2 A two-dimensional RO–U process confined to R
2+ with parameters

(θ,C,M,	) and initial position Z(0) ∈ R
2+ is defined to be the process Z =

(Z(t), t ≥ 0) ∈ D([0,∞),R
2+) satisfying in vector notation

Z(t) = Z(0) + B(t) + θt −
∫ t

0
Γ Z(s) ds + MY(t), t ≥ 0,

where B = (B(t), t ≥ 0) is a two-dimensional Brownian motion with variance–
covariance matrix C, Z(t) ∈ R

2+ for t ≥ 0, and Y = (Y (t), t ≥ 0) ∈ D([0,∞),R
2+) is

such that for each i = 1,2,

1. Yi(0) = 0,
2. Yi = (Yi(t), t ≥ 0) is non-decreasing,
3.

∫∞
0 1{Zi(s) > 0}dYi(s) = 0.

We remark that, as is shown in Proposition 2 of [25], when the matrix M has
positive diagonal elements, non-positive off-diagonal elements and a non-negative
inverse, then there exists a unique, strong solution Z in Definition 2 above.

We now introduce the heavy-traffic regime of [25] in which (L1,L2) may be ap-
proximated by a two-dimensional RO–U. We consider a sequence of systems indexed
by n ≥ 1. For the nth system, we denote the system parameters by λn,μn

1,μn
2, and
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Fig. 4 The state space and
directions of reflection for L̃

γ n and we assume that as n → ∞,

n−1λn → λ, n−1μn
1 → μ1, n−1μn

2 → μ2 (21)

and
√

n
(
n−1λn − n−1μn

1

)→ θ1,
√

n
(
n−1μn

1 − n−1μn
2

)→ θ2, (22)

for some (θ1, θ2) ∈ R
2. We also assume that

γ n = γ, n ≥ 1. (23)

Now, for each n ≥ 1, let (Ln
1,Ln

2) be the two-dimensional process representing
the number of customers present at stations 1 and 2, respectively, at time t in the
nth system and let (L̃n

1, L̃n
2) = (1/

√
n)(Ln

1,Ln
2) be the diffusion scaled queue length

process. The following is then a direct result of Theorem 1 of [25].

Proposition 1 Under assumptions (21)–(23), if (L̃n
1(0), L̃n

2(0)) ⇒ (L̃1(0), L̃2(0))

as n → ∞, then (L̃n
1, L̃n

2) ⇒ L̃ = (L̃1, L̃2) as n → ∞, where (L̃1, L̃2) is a two-
dimensional RO–U process confined to R

2+ with parameters (θ,C,M,Γ ) and initial
position (L̃1(0), L̃2(0)), where θ = (θ1, θ2),

C =
[
λa1 + μ1b1 −μ1b1

−μ1b1 μ1b1 + μ2b2

]
, M =

[
1 0

−1 1

]
, and Γ =

[
0 γ

0 −γ

]
.

We remark that the matrix M given above satisfies the criteria for uniqueness of
the RO–U given by Proposition 2 of [25] and hence the above limit is unique in law.
One may also consult Fig. 4 below for a depiction of the state-space and directions
of reflection for L̃.

11 Stability condition for RO–U approximation

The following is our main result of this section. It provides a necessary and sufficient
condition for the limit process L̃ = (L̃1, L̃2) in Proposition 1 to be positive recurrent.
Let N (μ,σ 2) be a normal random variable with mean μ and variance σ 2.
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Theorem 11.1 The limit process L̃ in Proposition 1 is positive recurrent if and only
if

γ · E
[

N
(

θ2

γ
,
μ1b1 + μ2b2

2γ

)∣∣∣∣N
(

θ2

γ
,
μ1b1 + μ2b2

2γ

)
> 0

]
< −θ1. (24)

We remark that the probabilistic interpretation of condition (24) is similar to that
of (20) for the Markovian setting in Sect. 8. In particular, we make the following
observations. The quantity on the left-hand side of (24), after multiplying by

√
n,

approximately represents the maximum possible steady-state rate of abandonment
from station 2 in the nth system, assuming that station 1 is never idle. That is, we
approximately have

γ
E[Ln

2(∞)]√
n

< γ · E
[

N
(

θ2

γ
,
μ1b1 + μ2b2

2γ

)∣∣∣∣N
(

θ2

γ
,
μ1b1 + μ2b2

2γ

)
> 0

]
. (25)

On the other hand, by (22),

θ1 ≈ λn

√
n

− μn
1√
n
. (26)

Thus, using (25) and (26), one sees that (24) is approximately the same as the condi-
tion

λn + γE
[
Ln

2(∞)
]
< μn

1,

which is similar to (20).

12 Proof of necessity

In this section we provide the proof of the necessity of (24) in order for L̃ to be
positive recurrent. In Sect. 13 we provide the proof of sufficiency.

Proof of necessity of condition (24) Let L̂2 be a (θ2,μ1b1 + μ2b2,1, γ ) 1-d
RO–U confined to R+, with initial condition L̂2(0). In other words, L̂2 is given by
the unique, strong solution to

L̂2(t) = L̂2(0) + X̃2(t) + θ2t − γ

∫ t

0
L̂2(s) ds + Ŷ2(t), (27)

for t ≥ 0, where X̃2 = (X̃2(t), t ≥ 0) is a Brownian motion with infinitesimal variance
μ1b1 + μ2b2 and Ŷ2 satisfies Conditions 1–3 of Definition 1. Since γ > 0, it is well
known (see, for instance, [27]) that L̂2(t) ⇒ L̂2(∞) as t → ∞, where L̂2(∞) is
distributed as

N
(

θ2

γ
,
μ1b1 + μ2b2

2γ

)∣∣∣∣N
(

θ2

γ
,
μ1b1 + μ2b2

2γ

)
> 0.

That is, L̂2(∞) is distributed as a normal random variable conditioned to be positive.
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Now note that one may view L̂2 as a regenerative process with regeneration
point 0. In particular, let δ > 0 and set

ϑ(δ) = inf
{
t > 0 : L̂2(t) = δ

}
and β0(δ) = inf

{
t > ϑ(δ) : L̂2(t) = 0

}

and define β0(δ) to be a regeneration cycle started from 0. By Theorem 2 of [27],
it follows that E[ϑ(δ)|L̂2(0) = 0] < ∞. Next, let ϑ(0) = inf{t > 0 : L̂2(t) = 0}. By
Proposition 4 of [27], the fact that L̂2 is a strong Markov process and the P -a.s.
continuity of the sample-paths of L̂2, one has that

E
[
β0(δ) − ϑ(δ)|L̂2(0) = 0

] = E
[
ϑ(0)|L̂2(0) = δ

]
< ∞.

Hence, E[β0(δ) − ϑ(δ)|L̂2(0) = 0] < ∞ and so L̂2 has finite expected regeneration
times. Next note, again using the fact that L̂2 is a strong Markov process and the
P -a.s. continuity of the sample-paths of L̂2, that

E

[∫ β0(δ)

0
L̂2(u) du

∣∣∣L̂2(0) = 0

]

= E

[∫ ϑ(δ)

0
L̂2(u) du

∣∣∣L̂2(0) = 0

]
+ E

[∫ ϑ(0)

0
L̂2(u) du

∣∣∣L̂2(0) = δ

]

≤ δE
[
ϑ(δ)|L̂2(0) = 0

]+ E

[∫ ϑ(0)

0
L̂2(u) du|L̂2(0) = δ

]
. (28)

By Theorem 2 of [27], δE[ϑ(δ)|L̂2(0) = 0] < ∞. Next, by the definition of L̂2 in
(27), the fact that ϑ(0) is a stopping time and the optional sampling theorem [16], it
follows that

0 = δ + θ2E
[
ϑ(0)|L̂2(0) = δ

]− γE

[∫ ϑ(0)

0
L̂2(u) du

∣∣∣L̂2(0) = δ

]

+ E
[
Ŷ2
(
ϑ(0)

)|L̂2(0) = δ
]
.

By Condition 3 of Definition 1,

E
[
Ŷ2
(
ϑ(0)

)|L̂2(0) = δ
] = 0.

Moreover, by Proposition 4 of [27], E[ϑ(0)|L̂2(0) = δ] < ∞, so that

E

[∫ ϑ(0)

0
L̂2(u) du

∣∣∣L̂2(0) = δ

]
< ∞,

which, by (28), implies

E

[∫ β0(δ)

0
L̂2(u) du

∣∣∣L̂2(0) = 0

]
< ∞.
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Now let

κ = E

[
N
(

θ2

γ
,
μ1b1 + μ2b2

2γ

)∣∣∣∣N
(

θ2

γ
,
μ1b1 + μ2b2

2γ

)
> 0

]
. (29)

It then follows by Theorem 3.1 of [4] that for each z2 ≥ 0,

P

(
lim

t→∞
1

t

∫ t

0
L̂2(s) ds = κ

∣∣∣L̂2(0) = z2

)
(30)

equals one.
Now assume that condition (24) does not hold (assume that the inequality is re-

versed) and let ε, δ > 0 be such that ε < 1 and that there exists a vε,δ such that

P

(
γ

∫ u

0
L̂2(s) ds > (−θ1 + δ)u for u ≥ vδ,ε

∣∣∣L̂2(0) = z2

)
> 1 − ε. (31)

Such a triplet (ε, δ, vδ,ε) may always be found by virtue of (30) and the assumption
that the inequality in (24) is reversed.

Next, let X̃1 = (X̃1(t), t ≥ 0) be a Brownian motion with infinitesimal variance
λa1 + μ1b1 and note that by the strong law of large numbers for Brownian motion
[15]

P

(
lim

t→∞
X̃1(t)

t
= 0

)
= 1.

Thus, there exists a wε,δ such that

P

(
X̃1(u) > − δ

2
u for u ≥ wδ,ε

)
> 1 − ε. (32)

Finally, let z1 > 0 be sufficiently large such that

P
(

inf
0≤u≤vε,δ∨wε,δ

X̃1(u) + θ1u > −z1/2
)

> 1 − ε. (33)

Now note that by Proposition 1 and by Definition 2, (L̃1, L̃2) may be written as
the unique, strong solution to the stochastic differential equation

L̃1(t) = L̃1(0) + X̃1(t) + θ1t + γ

∫ t

0
L̃2(s) ds + Ỹ1(t), (34)

L̃2(t) = L̃2(0) + X̃2(t) + θ2t − γ

∫ t

0
L̃2(s) ds − Ỹ1(t) + Y̌2(t), (35)

for t ≥ 0, subject to (L̃1(t), L̃2(t)) ∈ R
2+ and (Ỹ1, Ỹ2) adhering to Conditions 1–3 of

Definition 2. It will also be assumed that (L̃1, L̃2) is defined on the same probability
space as L̂2 in (27). In particular, the process X̃2 is shared by both (L̃1, L̃2) and L̂2.
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Now let z1, z2 be as defined above and fix (L̃1(0), L̃2(0)) = (z1, z2) ∈ R
2+. Next,

define the set

Ξ =
{
γ

∫ u

0
L̂2(s) ds > (−θ1 + δ)u for u ≥ vδ,ε

}

∩
{
X̃1(u) > − δ

2
u for u ≥ wδ,ε

}

∩
{

inf
0≤u≤vε,δ∨wε,δ

X̃1(u) + θ1u > −z1/2
}
.

By (31), (32), and (33), it is clear that P(Ξ) > 1 − 3ε. Moreover, we claim that on
the set Ξ one has that

L̃1(t) = z1 + X̃1(t) + θ1t + γ

∫ t

0
L̂2(s) ds, (36)

for t ≥ 0. By the definition of Ξ , this implies that on Ξ one has that for u ≥
vε,δ ∨ wε,δ ,

L̃1(u) > z1 + δ

2
u → ∞ as u → ∞.

Thus,

P

(
lim

u→∞ L̃1(u) = ∞∣∣(L̃1(0), L̃2(0)
) = (z1, z2)

)
> 1 − 3ε,

which implies that (L̃1, L̃2) cannot be positive recurrent as desired.
In order to complete the proof, it now suffices to show that (36) holds. First note

that by the definition of Ξ ,

Ξ ⊆
{

inf
0≤u≤vε,δ∨wε,δ

X̃1(u) + θ1u > −z1/2
}
,

and so it follows by (34) and the positivity of γ that on Ξ one has L̃1(t) > 0 for
0 ≤ t ≤ vε,δ ∨ wε,δ . By Condition 3 of Definition 2, this then implies that Ỹ1(t) = 0
for 0 ≤ t ≤ vε,δ ∨ wε,δ , which, by (27) and (34), implies that L̃2(t) = L̂2(t) for 0 ≤
t ≤ vε,δ ∨ wε,δ . Thus, (36) holds on Ξ for 0 ≤ t ≤ vε,δ ∨ wε,δ . Next, note that

Ξ ⊆
{
γ

∫ u

0
L̂2(s) ds > (−θ1 + δ)u for u ≥ vδ,ε

}
∩
{
X̃1(u) > − δ

2
u for u ≥ wδ,ε

}
.

Thus, on Ξ , one has that for u > vε,δ ∨ wε,δ ,

z1 + X̃1(u) + θ1u + γ

∫ u

0
L̂2(s) ds > z1 + δ

2
u > 0. (37)

We now claim that (37) implies that Ỹ1(u) = 0 for u > vε,δ ∨ wε,δ , which, using
(27), (34), and (35), implies (36) on Ξ for t ≥ vε,δ ∨ wε,δ , thus completing the proof.



20 Queueing Syst (2013) 73:1–34

Suppose that Ỹ1(u) > 0 for some u > vε,δ ∨ wε,δ . By Condition 3 of Definition 2,
this necessarily implies that L̃1(u) = 0 for some u > vε,δ ∨ wε,δ . However, since
L̂2(u) = L̃2(u) up until the first time that L̃1 hits zero, by (34) this then implies that

z1 + X̃1(u) + θ1u + γ

∫ u

0
L̂2(s) ds = 0 (38)

for some u > vε,δ ∨ wε,δ . However, (38) is in direct contradiction to (37), which
completes the proof. �

13 Proof of sufficiency

In this section we provide the proof of the sufficiency of condition (24). For each
z = (z1, z2) ∈ R

2+, let L̃z = (L̃z
1, L̃

z
2) be the limit process in Proposition 1 started from

z. That is, L̃z is the unique, strong solution to the stochastic differential equation

L̃z
1(t) = z1 + X̃1(t) + θ1t + γ

∫ t

0
L̃z

2(s) ds + Ỹ z
1 (t), (39)

L̃z
2(t) = z2 + X̃2(t) + θ2t − γ

∫ t

0
L̃z

2(s) ds − Ỹ z
1 (t) + Ỹ z

2 (t), (40)

for t ≥ 0, subject to (L̃z
1(t), L̃

z
2(t)) ∈ R

2+ and (Ỹ z
1 , Ỹ z

2 ) adhering to Conditions 1–3 of
Definition 2. All relevant quantities in (39)–(40) are superscripted by z in order to
emphasize their dependence on the initial state z. Note also that it is not necessary to
superscript X̃ since X̃ is always a Brownian motion started at the origin.

Next, for each z = (z1, z2) ∈ R
2+, define the norm |z| = |z1| + |z2| and, for each

ε > 0, let Bε be the compact set

Bε = {
z ∈ R

2+ : |z| ≤ ε
}
.

Let us also define the stopping time

τ z
ε = inf

{
t ≥ 0 : L̃z(t) ∈ Bε

}
.

Our main result in this section is the following.

Proposition 2 If (24) holds, then there exists a κ > 0 such that for each z ∈ R
2+,

E[τ z
κ ] < ∞. Moreover, for each compact set C ⊂ R

2+,

sup
z∈C

E
[
τ z
κ

]
< ∞.

Using a standard argument such as that provided by the proof of Theorem 4.1
of [5], one may then show that Proposition 2 implies Theorem 11.1. The details are
omitted in the present paper.

The proof of Proposition 2 relies on the following critical lemma whose proof we
postpone for the moment.
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Lemma 1 If (24) holds, then there exists a δ > 0 such that

E

[
1

|z| · ∣∣L̃z
(|z|δ)∣∣

]
→ 0 as z → ∞.

Given Lemma 1, Proposition 2 may now be proven in a manner similar to the
proof of Theorem 3.1 of [10]. The details are as follows.

Proof of Proposition 2 We follow the proof of Theorem 3.1 of [10]. Let 0 < ε < 1
and note that by Lemma 1 there exists a κ ≥ 1 such that

E

[
1

|z| · ∣∣L̃z
(|z|δ)∣∣

]
≤ 1 − ε

for all z ∈ R
2+ such that |z| ≥ κ . Moreover, following the same reasoning as in the

proof of Lemma 1, there exists a b > 0 such that

sup
z∈Bκ

E
[∣∣L̃z

(|z|δ)∣∣]≤ b. (41)

Thus, we may write

E
[∣∣L̃z

(|z|δ)∣∣]≤ (1 − ε)|z| + b1{z ∈ Bκ}. (42)

Now let n(z) = |z|δ if z /∈ Bκ and let n(z) = δ if z ∈ Bκ . Note that n(z) ≥ δ for all
z ∈ R

2+ and so it follows from (41) and (42) that

E
[∣∣L̃z

(
n(z)

)∣∣] ≤ (1 − ε)|z| + b1{z ∈ Bκ} ≤ |z| − ε

δ
n(z) + b̃1{z ∈ Bκ}

for some b̃ > 0 and all z ∈ R
2+. Therefore, proceeding exactly as in the proof of

Theorem 2.1(ii) of [21], it follows that for each z ∈ R
2+,

E
[
τ z
κ

] ≤ δ

ε

(|z| + b̃
)

< ∞,

which completes the proof. �

The remainder of this section is now dedicated to proving Lemma 1. Our ap-
proach is to first study a coupled process which on a sample-path basis is P -a.s.

larger than L̃z. For each z = (z1, z2) ∈ R
2+, let L̂z = ((L̂z

1(t), L̂
z
2(t)), t ≥ 0) be the

solution to the stochastic differential equation

L̂z
1(t) = z1 + X̃1(t) + θ1t + γ

∫ t

0
L̂z

2(s) ds + Ŷ z
1 (t), (43)

L̂z
2(t) = z2 + X̃2(t) + θ2t − γ

∫ t

0
L̂z

2(s) ds + Ŷ z
2 (t), (44)
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for t ≥ 0, subject to (L̂z
1(t), L̂

z
2(t)) ∈ R

2+ and (Ŷ z
1 , Ŷ z

2 ) adhering to Conditions 1–3 of
Definition 2. Note that the process X̃ is the same for both L̃z and L̂z, implying that
L̃z and L̂z are defined on the same probability space.

The following is our first result and it shows that L̂z dominates L̃z on a sample-
path basis. We assume in the proofs that follow that e = (t, t ≥ 0) is the identity
process.

Lemma 2 For each (y1, y2), (z1, z2) ∈ R
2+ such that y1 ≤ z1 and y2 ≤ z2, L̃

y

1(t) ≤
L̂z

1(t) and L̃
y

2(t) ≤ L̂z
2(t) for t ≥ 0, P -a.s.

Proof Let (y1, y2), (z1, z2) ∈ R
2+ be such that y1 ≤ z1 and y2 ≤ z2. Then, by (40),

(44) and the fact that Ỹ
y

1 is a non-decreasing process, it follows by Proposition 2.2 of
[26] that L̃

y

2(t) ≤ L̂z
2(t), P -a.s., for each t ≥ 0.

Next, note that from (39) and Condition 1–3 of Definition 2, we may write

L̃
y

1 = Ψ

(
y1 + X̃1 + θ1e + γ

∫ e

0
L̃

y

2(s) ds

)
, (45)

where Ψ : D([0,∞),R) �→ D([0,∞),R) is the standard one-dimensional regulator
map [28] and, from (43) and Conditions 1–3 of Definition 2, we may write

L̂z
1 = Ψ

(
z1 + X̃1 + θ1e + γ

∫ e

0
L̂z

2(s) ds

)
. (46)

From the first portion of the proof L̂z
2(t) ≥ L̃

y

2(t) ≥ 0, P -a.s., which implies that for
each t ≥ 0,

γ

∫ t

0
L̂z

2(s) ds ≥ γ

∫ t

0
L̃

y

2(s) ds, (47)

P -a.s.. Thus, using (45), (46), (47) and the fact that y1 ≤ z1, it follows by standard
monotonicity results for Ψ that for each t ≥ 0, L̃

y

1(t) ≤ L̂z
1(t), P -a.s. This completes

the proof. �

We now study the process L̂z. Recall that for a generic vector z = (z1, z2) ∈ R
2+,

we define |z| = |z1| + |z2|. Also, in the next result we assume that z = (z1, z1) where
z1 ∈ R+.

Lemma 3 If (24) holds, then there exists a δ > 0 such that for each ε > 0,

P

(
1

|z| · ∣∣L̂z
(|z|δ)∣∣> ε

)
→ 0 as z1 → ∞. (48)

Proof In order to show (48), we show that there exists a δ > 0 such that for each
ε > 0,

P

(
1

|z| · ∣∣L̂z
1

(|z|δ)∣∣> ε

)
→ 0 as z1 → ∞ (49)
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and

P

(
1

|z| · ∣∣L̂z
2

(|z|δ)∣∣> ε

)
→ 0 as z1 → ∞. (50)

Let δ > 0 and z = (z1, z1) ∈ R
2+. By (43), after some algebra we may write

1

|z| L̂
z
2

(|z|δ) = 1

2
+ X̃2(|z|δ)

|z| + θ2δ − γ

∫ δ

0
L̂z

2

(|z|s)ds + 1

|z| · Ŷ z
2

(|z|δ).

Since Ŷ z
2 satisfies Conditions 1–3 of Definition 2, it then follows that we may write

1

|z| L̂
z
2

(|z|δ)= Ψ

(
1

2
+ X̃2(|z|e)

|z| + θ2e − γ

∫ e

0
L̂z

2

(|z|s)ds

)
(δ), (51)

where Ψ : D([0,∞),R) �→ D([0,∞),R) is the standard one-dimensional regulator
map [28], which is well known to be continuous.

Next, let c = θ2/γ and set

τ z
c,0 = inf

{
t ≥ 0 : L̂z

2(t) = c ∨ 0
}
.

Since L̂z
2(t) ≥ 0 for each t ≥ 0, we then have, for each t ≥ 0,

γ

∫ t

0
L̂z

2

(|z|s)ds = γ

|z|
∫ |z|t

0
L̂z

2(s) ds

= γ

|z|
∫ τ z

c,0∧|z|t

0
L̂z

2(s) ds + γ

|z|
∫ |z|t

τ z
c,0∧|z|t

L̂z
2(s) ds

≥ γ

|z|
∫ |z|t

τ z
c,0∧|z|t

L̂z
2(s) ds. (52)

Thus, using (51) and (52), it follows by standard monotonicity results for the map Ψ

that

1

|z| L̂
z
2

(|z|δ)≤ Ψ

(
1

2
+ X̃2(|z|e)

|z| + θ2e − γ

|z|
∫ |z|e

τz
c,0∧|z|e

L̂z
2(s) ds

)
(δ). (53)

Now recall the definition of κ in (29) and note that κ > min{0, θ2/γ }. We then
claim that

1

2
+ X̃2(|z|e)

|z| + θ2e − γ

|z|
∫ |z|e

τz
c,0∧|z|e

L̂z
2(s) ds ⇒ 1

2
+ θ2e − γ κe. (54)

Using Doob’s martingale inequality [15], it is straightforward to show that

X̃2(|z|e)
|z| ⇒ 0 as z1 → ∞.
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Therefore, in order to show (54), it remains to show that

1

|z|
∫ |z|e

τz
c,0∧|z|e

L̂2(s) ds ⇒ κe as z1 → ∞. (55)

However, note that since

1

|z|
∫ |z|e

τz
c,0∧|z|e

L̂2(s) ds

is a non-decreasing process, in order to show (55) it suffices to show that for each
t ≥ 0,

1

|z|
∫ |z|t

τ z
c,0∧|z|t

L̂2(s) ds ⇒ κt as z1 → ∞. (56)

We begin by evaluating E[τ z
c,0]. Suppose first that c ≥ 0 and that z1 is sufficiently

large so that z1 ≥ c. That is, 0 ≤ c ≤ z1. It then follows that τ z
c,0 is equal in law to the

first hitting time of c by an unreflected O–U process started at the level z1. Using the
representation for the distribution of τ z

c,0 found in [24], one may write

E
[
τ z
c,0

]=
∫ ∞

0
t · |ξ |√

2π

(
γ

sinh(γ t)

)3/2

exp

(
− γ ξ2e−γ t

2 sinh(γ t)
+ γ t

2

)
dt, (57)

where

ξ = z1

μ1b1 + μ2b2
− θ2

γ (μ1b1 + μ2b2)
. (58)

Using (57) and (58), it is then straightforward to show that

E[τ z
c,0]

|z| → 0 as z1 → ∞. (59)

Now suppose that c < 0 and let τ̃ z
c be equal in law to the first hitting time of c by

an unreflected O–U process started at the level z1. Recall also that for z1 ≥ c, τ z
c,0 is

equal in the law to the first hitting time of an unreflected O–U process to the level
c ∨ 0. Thus, τ z

c,0 ≤st τ̃ z
c . Moreover, formula (57) continues to hold for c < 0 and so

E[τ z
c,0]

|z| ≤ E[τ̃ z
c ]

|z| → 0 as z1 → ∞. (60)

Next note that using straightforward algebra, for each t ≥ 0 we may write

1

|z|t
∫ |z|t

τ z
c,0∧|z|t

L̂z
2(s) ds

=
(

1 −
(

τ z
c,0

|z|t ∧ 1

))
· 1

|z|t − τ z
c,0 ∧ |z|t

∫ |z|t

τ z
c,0∧|z|t

L̂z
2(s) ds. (61)
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Equations (59) and (60) and the fact that τ z
c,0 ≥ 0 imply that

(
1 −

(
τ z
c,0

|z|t ∧ 1

))
⇒ 1 as z1 → ∞ (62)

and also that, for each b > 0,

P
(|z|t − τ z

c,0 ∧ |z|t > b
)→ 1 as z1 → ∞. (63)

Recall next by [27] that L̂z
2(t) ⇒ L̃z

2(∞) as t → ∞, where L̂z
2(∞) has the distribu-

tion

N
(

θ2

γ
,
μ1b1 + μ2b2

2γ

)∣∣∣∣N
(

θ2

γ
,
μ1b1 + μ2b2

2γ

)
> 0.

Thus, since L̂z
2 is a strong Markov process and τ z

c,0 is a stopping time for L̂z
2, (63)

and Theorem 3.1 of [4] may be used to show that

1

|z|t − τ z
c,0 ∧ |z|t

∫ |z|t

τ z
c,0∧|z|t

L̂z
2(s) ds ⇒ κ as z1 → ∞. (64)

Equations (61), (62), and (64) now imply (55), which implies (54).
Now note that by (51), (54) and the continuous mapping theorem [8],

Ψ

(
1

2
+ X̃2(|z|e)

|z| + θ2e − γ

|z|
∫ |z|e

τz
c,0∧|z|e

L̂z
2(s) ds

)
(δ)

⇒ Ψ

(
1

2
+ θ2e − γ κe

)
(δ), δ ≥ 0.

However, since κ > min{0, θ2/γ }, it follows that (1/2) + θ2e − γ κe is a strictly
decreasing, linear process and so we may select δ2 large enough so that Ψ (1/2 +
θ2e − γ κe)(δ) = 0 for δ ≥ δ2. Using (53), this then implies (50).

We next proceed to show that (49) holds. Our proof is similar to the proof of (50)
above. Using (43), for each δ > 0 we may write

1

|z| L̂
z
1

(|z|δ)= Ψ

(
1

2
+ X̃1(|z|e)

|z| + θ1e + γ

∫ e

0
L̂z

2

(|z|s)ds

)
(δ), (65)

where Ψ : D([0,∞),R) �→ D([0,∞),R) is the standard one-dimensional regulator
map, which is a continuous map [28]. Next note that since L̂z

2(t) ≥ 0 for each t ≥ 0,
it follows that for each t ≥ 0 we may write
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γ

∫ t

0
L̂z

2

(|z|s)ds = γ

|z|
∫ |z|t

0
L̂z

2(s) ds

= γ

|z|
∫ τ z

c,0∧|z|t

0
L̂z

2(s) ds + γ

|z|
∫ |z|t

τ z
c,0∧|z|t

L̂z
2(s) ds

≤ γ

|z|
∫ τ z

c,0

0
L̂z

2(s) ds + γ

|z|
∫ |z|t

τ z
c,0∧|z|t

L̂z
2(s) ds. (66)

Thus, using (65) it follows by standard monotonicity results for the map Ψ that

1

|z| L̂
z
1

(|z|δ)

≤ Ψ

(
1

2
+ X̃1(|z|e)

|z| + θ1e + γ

|z|
∫ τ z

c,0

0
L̂z

2(s) ds + γ

|z|
∫ |z|t

τ z
c,0∧|z|t

L̂z
2(s) ds

)
(δ).

(67)

We now show that

1

2
+ X̃1(|z|e)

|z| + θ1e + γ

|z|
∫ τ z

c,0

0
L̂z

2(s) ds + γ

|z|
∫ |z|t

τ z
c,0∧|z|t

L̂z
2(s) ds ⇒ 1 + θ1e − γ κe,

(68)
as z1 → ∞. As in the proof of (50), using Doob’s martingale inequality [15] and (61),
in order to show (68), it now suffices to show that

γ

|z|
∫ τ z

c,0

0
L̂z

2(s) ds ⇒ 1

2
as z1 → ∞. (69)

Note that by Conditions 1–3 of Definition 2, Ŷ z
2 (τ z

c,0) = 0, P -a.s. Hence, by [15], we
obtain

γ

|z|
∫ τ z

c,0

0
L̂z

2(s) ds = 1

2
+ X̃2(τ

z
c,0)

|z| + θ2
τ z
c,0

|z| − c ∨ 0

|z| .

By (59) and (60),

E[τ z
c,0]

|z| → 0 as z1 → ∞. (70)

Using Theorem 3.3.28 of [15], (70) then implies

X̃2(τ
z
c,0)

|z| ⇒ 0 as z1 → ∞.

Moreover, since τ z
c,0 ≥ 0, (70) also implies that τ z

c,0/|z| ⇒ 0 as z1 → ∞. Finally,
clearly (c ∨ 0)/|z| → 0 as z1 → ∞. It now follows that (69) holds, which implies
(68).
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Now note that by assumption (24), 1 + θ1e − γ κe is a decreasing process and so
there exists a δ1 > 0 such that

Ψ (1 + θ1e − γ κe)(δ) = 0,

for all δ ≥ δ1. Thus, it follows as in the proof of (50), using (67), (68), and the con-
tinuous mapping theorem [8], that (49) holds, which completes the proof. �

We now strengthen the result of Lemma 3 by upgrading the convergence in (48)
to convergence in expectation. We assume in the following that z = (z1, z1) where
z1 ∈ R.

Lemma 4 If (24) holds, then there exists a δ > 0 such that

E

[
1

|z| · ∣∣L̂z
(|z|δ)∣∣

]
→ 0 as z1 → ∞. (71)

Proof By Lemma 3 and (3.18) of [8], it suffices to show the uniform integrability
condition

sup
z1>0

E

[(
1

|z| · ∣∣L̂z
(|z|δ)∣∣

)2]
< ∞.

However, note that since

(
1

|z| · ∣∣L̂z
(|z|δ)∣∣

)2

=
(

1

|z|
)2(∣∣L̂z

1

(|z|δ)∣∣+ ∣∣L̂2
(|z|δ)∣∣)2

≤ 4 ·
(

1

|z|
)2(∣∣L̂z

1

(|z|δ)∣∣2 + ∣∣L̃z
2

(|z|δ)∣∣2),

it suffices to show both

sup
z1>0

E

[(
1

|z|
∣∣L̂z

1

(|z|δ)∣∣
)2]

< ∞ (72)

and

sup
z1>0

E

[(
1

|z|
∣∣L̂z

2

(|z|δ)∣∣
)2]

< ∞. (73)

We begin with (73). As in the proof of Lemma 3, define the hitting time of the
origin by L̂z

2,

τ z
0 = inf

{
t ≥ 0 : L̂z

2(t) = 0
}
.

Next, recall that L̂z
2 possess the strong Markov property and note that τ z

0 is a stopping

time for L̂z
2 and so
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E
[(

L̂z
2

(|z|δ))2]

= E
[(

L̂z
2

(|z|δ))21
{
τ z

0 ≤ |z|δ}]+ E
[(

L̂z
2

(|z|δ))21
{
τ z

0 > |z|δ}]

=
∫ |z|δ

0
E
[(

L̂0
2

(|z|δ − s
))2]

P
(
τ z

0 ∈ ds
)+ E

[(
L̂z

2

(|z|δ))21
{
τ z

0 > |z|δ}]. (74)

We treat each term on the right-hand side of the final equality above separately.
We begin with the integral term. As in the proof of Lemma 3, let c = γ /θ2 and set

τ z
c,0 = inf

{
t ≥ 0 : L̂z

2(t) = c ∨ 0
}

If c < 0, then τ z
c,0 = τ z

0 and so, as in the proof of Lemma 3, it follows that

E[τ z
0 ]

|z| = E[τ 0
c,z]

|z| → 0 as z1 → ∞. (75)

On the other hand, suppose that c > 0. By [29], E[τ c
0 ] < ∞. Thus, since L̂z

2 is a strong
Markov process and since τ z

c,0 is a stopping time, it follows using (59) in the proof of
Lemma 3 that for z1 ≥ c,

E[τ z
0 ]

|z| = E[τ z
c,0]

|z| + E[τ c
0 ]

|z| → 0 as z1 → ∞. (76)

In summary, by (75) and (76),

E[τ z
0 ]

|z| → 0 as z1 → ∞, (77)

which, since τ 0
z ≥ 0, also implies that

τ z
0

|z| ⇒ 0 as z1 → ∞. (78)

Now consider the integral term

∫ |z|δ

0
E
[(

L̂0
2

(|z|δ − s
))2]

P
(
τ z

0 ∈ ds
)
.

By Proposition 3.3 of [26],

E
[(

L̂0
2(t)

)2]→ E
[(

L̂2(∞)
)2]

< ∞ as t → ∞. (79)

We now claim using (78) and (79) that

∫ |z|δ

0
E
[(

L̂0
2

(|z|δ − s
))2]

P
(
τ z

0 ∈ ds
)→ E

[(
L̂2(∞)

)2] as z1 → ∞. (80)
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In order to see this, first let 0 < δ′ < δ and write

∫ |z|δ

0
E
[(

L̂0
2

(|z|δ − s
))2]

P
(
τ z

0 ∈ ds
)

=
∫ |z|δ′

0
E
[(

L̂0
2

(|z|δ − s
))2]

P
(
τ z

0 ∈ ds
)

+
∫ |z|δ

|z|δ′ E
[(

L̂0
2(|z|δ − s)

)2]
P
(
τ z

0 ∈ ds
)
. (81)

We now treat each of the integral terms on the right-hand side of (81) separately. For
the first term, note that since 0 < δ′ < δ, we find by (79) that

sup
0≤s≤|z|δ′

∣∣E
[(

L̂0
2

(|z|δ − s
))2]− E

[(
L̂2(∞)

)2]∣∣→ 0 as z1 → ∞. (82)

Next, by (78) it follows that P(τz
0 < |z|δ′) → 1 as z1 → ∞. Hence, using (82) one

has

∫ |z|δ′

0
E
[(

L̂0
2

(|z|δ − s
))2]

P
(
τ z

0 ∈ ds
)→ E

[(
L̂2(∞)

)2]
as z1 → ∞. (83)

Regarding the second integral term on the right-hand side of (81), note first by (79)
and the continuity of the function (E[(L̂0

2(t))
2], t ≥ 0) that

sup
t≥0

E
[(

L̂0
2(t)

)2]
< ∞.

Hence, since by (78) it follows that P(τz
0 > |z|δ′) → 0 as z1 → ∞, one has

∫ |z|δ

|z|δ′
E
[(

L̂0
2

(|z|δ − s
))2]

P
(
τ z

0 ∈ ds
)→ 0 as z1 → ∞. (84)

Equations (83) and (84) now imply (80).
Next, consider E[(L̂z

2(|z|δ))21{τ0 > |z|δ}]. First note the equality

E
[(

L̂z
2

(|z|δ))21
{
τ z

0 > |z|δ}]= E
[(

Ľz
2

(|z|δ))21
{
τ̌ z

0 > |z|δ}], (85)

where Ľz
2 is an unreflected O–U process started at z1 and τ̌ z

0 is its first hitting time of

zero. That is, Ľ2 is the unique, strong solution to

Ľz
2(t) = z1 + X̃2(t) + θ2t − γ

∫ t

0
Ľz

2(s) ds, t ≥ 0, (86)

and

τ̌ z
0 = inf

{
t ≥ 0 : Ľz

2(t) = 0
}
. (87)
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Using the explicit form of the solution to (86) (see, for instance, [15]), it is straight-
forward to show that for each δ > 0,

E
[(

Ľz
2

(
δ|z|))2]→ E

[(
Ľ2(∞)

)2]
< ∞ as z1 → ∞. (88)

Next, note that since τ̌ z
0 is equal in distribution to τ z

0 , it follows using (77) that

E[τ̌ z
0 ]

|z| = E[τ z
0 ]

|z| → 0 as z1 → ∞,

which, since τ̌ z
0 ≥ 0, P -a.s., implies that

τ̌ z
0

|z| ⇒ 0 as z1 → ∞. (89)

Now note that we may write

E
[(

Ľz
2

(
δ|z|))2]= E

[(
Ľz

2

(
δ|z|))21

{
τ̌ z

0 ≤ δ|z|}]+ E
[(

Ľz
2

(
δ|z|))21

{
τ̌ z

0 > δ|z|}]. (90)

However, by (88) and (89),

E
[(

Ľz
2

(
δ|z|))21

{
τ̌ z

0 ≤ δ|z|}]→ E
[(

Ľ2(∞)
)2]

< ∞ as z1 → ∞. (91)

Thus, by (90),

E
[(

Ľz
2(δz)

)21{τ̌0 > δz}]→ 0 as z1 → ∞. (92)

Using (74), (80), (85), and (92), it now follows that (73) holds.
Next, consider (72). First note that by the basic inequality

(x1 + · · · + xI )
2 ≤ I 2(x2

1 + · · · + x2
I

)
(93)

and (43), it follows that for each δ > 0,

1

52
·
(

1

|z| · L̂1
(|z|δ)

)2

≤ 1

4
+
(

X̃1(|z|δ)
|z|

)2

+ θ2
1 δ2 + γ 2

(
1

|z| ·
∫ |z|δ

0
L̂z

2(s) ds

)2

+
(

Ŷ z
1 (|z|δ)
|z|

)2

. (94)

Now note that

E

[(
X̃1(|z|δ)

|z|
)2]

= δ2

|z| (λa1 + μ1b1) → 0 as z1 → ∞.
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Next, using (43) and the explicit solution to the one-sided regulator map Ψ , one has
that

Ỹ z
1 (|z|δ)
|z| = − sup

0≤s≤|z|δ
min

{
0,

(
1

2
+ X̃1(s)

|z| + θ1
s

|z| + γ

|z|
∫ s

0
L̂z

2(s) ds

)}

≤ − sup
0≤s≤|z|δ

min

{
0,

(
1

2
+ X̃1(s)

|z| + θ
s

|z|
)}

≤ 1

2
+ θδ + sup

0≤s≤|z|δ

∣∣∣∣
X̃1(s)

|z|
∣∣∣∣. (95)

Using the expression for the distribution of the running maximum of Brownian mo-
tion [15], it is straightforward to show that

sup
z1>0

E

[
sup

0≤s≤|z|δ

∣∣∣∣
X̃1(s)

|z|
∣∣∣∣

2]
< ∞,

and so from (95) it follows that

sup
z1>0

E

[(
Ỹ z

1 (|z|δ)
|z|

)2]
< ∞.

Hence, by (94), in order to complete the proof it suffices to show that

sup
z1>0

E

[(
1

|z| ·
∫ |z|δ

0
L̂z

2(s) ds

)2]
< ∞. (96)

First note that

E

[(
1

|z| ·
∫ |z|δ

0
L̂z

2(s) ds

)2]

= E

[
1

|z|2 ·
∫ |z|δ

0

∫ |z|δ

0
L̂z

2(s)L̂
z
2(u) ds du

]

= 1

|z|2 ·
∫ |z|δ

0

∫ |z|δ

0
E
[
L̂z

2(s)L̂
z
2(u)

]
ds du. (97)

Next, by the Cauchy–Schwartz inequality [17],

E
[
L̂z

2(s)L̂
z
2(u)

] ≤
√

E
[(

L̂z
2(s)

)2] ·
√

E
[(

L̂z
2(u)

)2]
.

Substituting into (97), one then obtains

E

[(
1

|z| ·
∫ |z|δ

0
L̂z

2(s) ds

)2]
≤
(

1

|z| ·
∫ |z|δ

0

√
E
[(

L̂z
2(s)

)2]
ds

)2

. (98)
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Now note that

E
[(

L̂z
2(s)

)2] = E
[(

L̂z
2(s)

)21
{
τ z

0 ≤ s
}]+ E

[(
L̂z

2(s)
)21

{
τ z

0 > s
}]

= E
[(

L̂z
2(s)

)2
1
{
τ z

0 ≤ s
}]+ E

[(
Ľz

2(s)
)2

1
{
τ̌ z

0 > s
}]

≤ E
[(

L̂z
2(s)

)21
{
τ z

0 ≤ s
}]+ E

[(
Ľz

2(s)
)2]

,

where Ľz
2 is the unreflected O–U process given by (86) and τ̌ z

0 = inf{t ≥ 0 :
Ľz

2(t) = 0} as in (87). Thus,

√
E
[(

L̂z
2(s)

)2] ≤
√

E
[(

L̂z
2(s)

)2
1
{
τ z

0 ≤ s
}]+

√
E
[(

Ľz
2(s)

)2]
,

and so by (98),

√

E

[(
1

|z| ·
∫ |z|δ

0
L̂z

2(s) ds

)2]
≤ 1

|z| ·
∫ |z|δ

0

√
E
[(

L̂z
2(s)

)21
{
τ z

0 ≤ s
}]

ds

+ 1

|z| ·
∫ |z|δ

0

√
E
[(

Ľz
2(s)

)2]
ds. (99)

Now consider each of the terms on the right-hand side of (99). Conditioning on τ z
0 as

in (74) and using (79), it follows that

sup
z1,s≥0

√
E
[(

L̂z
2(s)

)21
{
τ z

0 ≤ s
}]

< ∞,

from which one obtains

sup
z1≥0

1

|z| ·
∫ |z|δ

0

√
E
[(

L̂z
2(s)

)
1
{
τ z

0 ≤ s
}]

ds < ∞. (100)

Now note that the explicit solution for L̂z
2 (see, for instance, [15]) is given by

L̂z
2(t) = z1e

−γ t + θ2

γ

(
1 − e−γ t

)+
∫ t

0
eγ (s−t) dX̃2(s). (101)

Squaring both sides of (101), using the basic inequality (93) (with I = 3) and noting
that γ > 0, one then obtains

(
L̂z

2(t)
)2 ≤ 9z2

1e
−2γ t + 9

(
θ2

γ

)2

+ 9

(∫ t

0
eγ (s−t) dX̃2(s)

)2

. (102)

Hence, taking expectations on both sides of (102) and using the Ito isometry [15] it
follows that
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E
[(

L̂z
2(t)

)2] ≤ 9z2
1e

−2γ t + 9

(
θ2

γ

)2

+ 9(μ1b1 + μ2b2)
2
∫ t

0
e2γ (s−t) ds

≤ 9z2
1e

−2γ t + 9

(
θ2

γ

)2

+ 9
(μ1b1 + μ2b2)

2

2γ
. (103)

Now taking square roots on both sides of (103) and using the triangle inequality, one
obtains

√
E
[(

Ľz
2(s)

)2] ≤ κ1z1e
−κ2s + κ3,

where

κ1 = √
9, κ2 = γ, and κ3 =

√

9

((
θ2

γ

)2

+ (μ1b1 + μ2b2)2

2γ

)
.

Hence, since κ1, κ2, and κ3 are independent of z, it follows that

sup
z1>0

1

|z| ·
∫ |z|δ

0

√
E
[(

Ľz
2(s)

)2]
ds ≤ sup

z1>0

1

|z| ·
∫ |z|δ

0

(
κ1z1e

−κ2s + κ3
)
ds

= κ1/κ2 + δκ3

< ∞. (104)

Equations (99), (100), and (104) now show (96), which completes the proof. �

We are now in a position to provide the proof of Lemma 1.

Proof of Lemma 1 Note that by the definition of the norm |z| = |z1| + |z2|, it suffices
to prove that

E

[
1

|z| · ∣∣L̃z
1

(|z|δ)∣∣
]

→ 0 as z → ∞ (105)

and

E

[
1

|z| · ∣∣L̃z
2

(|z|δ)∣∣
]

→ 0 as z → ∞. (106)

Suppose that |z| = ε. Then, by the definition of the norm | · |, z1, z2 ≤ ε and so,
by Lemma 2, L̃z

1(t) ≤ L̃x
1(t) and L̃z

2(t) ≤ L̃x
2(t) for t ≥ 0, where x = (ε, ε). Thus,

L̃z
1(2|z|δ) ≤ L̃x

1(|x|δ) and L̃z
2(2|z|δ) ≤ L̃x

2(|x|δ) for each δ > 0, and (105) and (106)
now follow by Lemma 4. �
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