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QUEUES IN WHICH CUSTOMERS RECEIVE 
SIMULTANEOUS SERVICE FROM A RANDOM NUMBER 

OF SERVERS: A SYSTEM POINT APPROACH* 

PERCY H. BRILLt AND LINDA GREENt 

We examine a multi-server queueing system with Poisson arrivals in which customers 

require simultaneous service from a random number of servers. Servers assigned to the same 

customer begin and end service concurrently. Service times are, in general, assumed to be 

exponentially distributed. A system point approach is presented as a framework for obtaining 

the waiting time distribution for each customer type. Explicit solutions are derived for the 

two-server system. 
(MULTIPLE SERVER QUEUES; SYSTEM POINT METHOD; LEVEL CROSSINGS; 

DISTINGUISHABLE CUSTOMERS) 

0. Introduction 

In many queueing systems, different types of customers require concurrent service 
from different numbers of servers. Service doesn't start until the required number of 
servers is available and servers associated with the same customer begin and end 
service simultaneously. Examples are prevalent, particularly in computer and commu- 
nications systems. In computer systems, programs which contend for space on storage 
devices have varying size and residency time requirements (see, e.g., Arthurs and 
Kaufman 1979 and Omahen 1977). The programs can therefore be viewed as custom- 
ers which require simultaneous service from a random number of the storage units, 
which are the servers of the system. An almost identical situation occurs in the area of 
satellite communications (Nigam 1975). Each satellite has a fixed total number of 
channels (servers) available for transmissions of various types. Each of these customer 
types, e.g. television programs, telephone conversations, and data transmissions, re- 
quires a different number of channels for a random period of time. A transmission of 
any type will be delayed if an insufficient number of channels is available at the time 
its request for service is made. 

Though there are many examples of queueing systems of this type, there is relatively 
little literature on their analysis. This is probably due to the complexity involved as a 
result of the large state space required to model such systems by traditional means, 
even under the usual assumptions of Poisson arrivals and exponential service times. 

Gimpelson (1965) examined a system in which a single wide-band facility is used to 

carry communication traffic of two types: wide-band and narrow-band, and in which 
either no queueing is allowed or a finite queueing capacity is provided for wide-band 
calls only. Using numerical methods, he obtained the blocking probabilities for each 
traffic type. Wolman (1972) studied a problem in which data traffic is directed to a 
random number of destinations and cannot be transmitted until the required number 
of receivers are free. He obtained approximations to the steady-state waiting times by 
solving a simpler model in which it was assumed that all messages are addressed to 
exactly m receivers, where m is an integer greater than 1. Arthurs and Kaufman (1979) 
analyzed the pure loss system version of the problem we examine here. Under the 
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assumption of Poisson arrivals, they showed that the steady-state distribution of the 
number of customers of each type in service has a product form and is dependent on 
the service time distributions only through their means. Related queueing systems in 
which it is assumed that the service times of servers working on the same customer are 
independent once service is begun were studied by Green (1978, 1980) and Gillent 
(1980), and a distinguishable server counterpart with two customer types was analyzed 
by Green (1981b). 

The only previous analysis of the system studied in this paper was done by Kim 
(1979). Kim modelled the system as a Markov process with state variables defined by 
n, the number of customers in the system, and the vector (c1,c2, . .. , cf), where ci is 
the number of servers demanded by the ith customer in the system (in order of arrival) 
and f is the minimum of n and U, the maximum number of customers that can be in 
service simultaneously. Using a matrix-geometric approach (see e.g. Neuts 1980), he 
derived an algorithm for computing the steady-state probabilities of the number in 
system. The major limitation of this approach is that only the overall expected waiting 
time can be computed. The definition of the state space does not allow for either the 
mean waiting time by customer type or any distributional results. In addition, the 

computational effort required renders this approach impractical for all but very small 
systems (size is a function of Ku where K is the number of servers). 

This paper presents a framework for deriving the waiting time distribution for each 
customer type in the multi-server queueing system in which customers need simulta- 
neous service from-a random number of servers. We will assume Poisson arrivals and, 
with certain exceptions, exponential service times. We use a System Point (SP) 
approach which is an extension of the System Point Method developed by Brill (1975) 
and further elucidated and applied in e.g. Brill and Posner (1981a, 1981b) and Brill 
(1979). The method is illustrated by explicitly solving the two server system with 
exponential service times. 

1. Definitions and System Point Theory 

The general system consists of s servers and k customer types (k < s). Type\i, 
i = 1, . . . , k, customers arrive according to a Poisson process at rate Xi and require an 
exponentially distributed amount of service time with mean 1/ ji simultaneously from 
c(i) servers (c(i) < s). (A general service time distribution can be assumed for Typej 
customers if c(j) = s.) Customers are served in the order of their arrival. (See Green 
(1981a) on the relative effectiveness of other service order disciplines.) 

Define W(')(t) to be the virtual waiting time (in queue before service) at time t for a 
Type i customer. We define a random variable M(t), called the system configuration at 
time t, such that the process {< W(O(t), M(t)>} is Markovian for i = 1, . . . , k. Let the 
k customer types be numbered from 1 to k such that c(i) < c(j) for i <j. Then 

M(t) = (nI, . .. , nk) if a Type 1 customer arriving at t would "see" ni Type i 

customers, i = 1, ... , k, in service at his service-starting epoch exclusive of customers 
who arrive at or subsequent to time t. We will denote the set of possible configurations 
for a given system by X4. For example, in the two-server system where Type 1 
customers require one server and Type 2 require two, XA' = {(0, 0), (1, 0)} and M(t) 
= (1,0) if the system is not empty at time t and the last arrival was a Type 1, while 
M(t) = (0,0 ) otherwise. 

The stochastic process {< W(')(t), M(t)>} is called the System Point process for 
customer type i. Let f(')(w, m) denote its density. It is assumed that 

lim fi/')(w,m) =f(i)(w,m), i-1, ... , k. 
tind00 
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condition for the existence of a limiting distribution can be obtained from matrix- 
geometric theory as in Kim (1979). (The general equilibrium condition for matrix- 
geometric queueing systems, which can be found in Neuts (1980), basically requires 
that the total probability of an upward jump in the number in system be strictly less 
than that of a downward jump.) In ?3 this condition is given explicitly for the two 
server system. 

For each SP process, if the state of the system is <w, m> at time t, the state may be 
pictured as a point with coordinates (t, w) in a coordinate system corresponding to 
configuration m. This point, denoted by SP(i) for the ith process, traces out the sample 
function as t increases and is called the System Point. For a system with N configura- 
tions (see ?5 for a characterization of N) there will be N such coordinate systems, 
called "pages" in SP theory, for each customer type. The N pages may be thought of 
as being one behind the other in a "book" with the projection being the "cover." For a 
full description of the concepts of SP, "pages," and "book," see Brill and Posner 
(1981a). So if there are k customer types, their virtual waiting time sample paths will 
be traced out simultaneously in k "books." 

Figures 1 and 2 illustrate this for the two-server system in which both custom- 
er types require an exponentially distributed amount of service time with mean 
1/jt (exp(tt)). The configuration set was described above. Figure 1 depicts the pages 
and a possible sample function traced out by SP(1) over time and Figure 2 depicts the 
sample function for SP(2) corresponding to the same set of events. In each figure, if 
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the two pages are superimposed, the resulting sample function will be a piecewise 
continuous graph of the usual virtual waiting time traced out on the "cover". Consider 
the sample function for a Type 1 customer as shown in Figure 1. For simplicity, the 
configurations (1, 0) and (0, 0) are denoted as 1 and 2, respectively. At t = 0 the system 
is empty and so SP(1) is on page 2. The first customer, a Type 1, arrives at TI, when the 
state is <0,2>. SP(1) jumps to (X1 ,0) on page 1 since a Type 1 arrival at T + would 
enter service immediately and see another Type 1 in service. The next arrival at T2 iS 

also of Type 1 and occurs before the first customer ends service. So SP(1) stays on 
page 1 and jumps to (T2, W(r) (T )) where W(1) (T ) is exp(21). At r3 a Type 2 
customer arrives and SP(1) jumps to page 2. Since M(T3) = 1, a Type 1 arrival at 3- 
would have entered service while one of the previous Type l's was still in service. Since 
the Type 2 arrival at T3 cannot enter service with a Type 1, the size of the SP(1) jump is 
distributed as the sum of a Type 1 and a Type 2 service time, which in this case is 
Erlang (2, ,u). The pattern becomes clear: If SP(1) is at (t, w), w > 0, on page 1, the 
arrival of a Type 1 customer causes a jump of size exp(2,u) on the same page, while a 
Type 2 arrival results in a jump to page 2 of size Erlang (2, ,u). If SP(1) is on page 2, a 
Type 1 arrival causes a jump to page 1 with no increase in waiting time while a Type 2 
arrival results in a jump of exp(,u) on the same page. Similarly, a pattern can be 
established for SP(2): A jump from page 1 is exp(2,u) and stays on page 1 if due to a 
Type 1 arrival, and is exp( It) to page 2 if due to a Type 2. A jump from page 2 is to 
page 1 and of size exp( It) if caused by a Type 1 arrival, and is exp( I) and stays on 
page 2 if due to a Type 2. 

System Point theory relates the joint limiting densities f(-)(w, i), w > 0, A E X to 
the long-run average rate at which SP(i) crosses level w on page mn in the state space. 
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The basic theorem given below is true in any system whose virtual wait has sample 
functions for each configuration as shown in Figures 1 and 2, i.e. piecewise continuous 
and decreasing at a 450 angle for positive values. The proof depends only on the 
geometric properties of the sample functions and the existence of the limiting probabil- 
ity density functions. Therefore this proof is essentially identical to that of the 
corresponding theorem in Brill and Posner (1981a) and is omitted. 

Let Ti(')(w, m) denote the number of SP(i) downcrossings of level w > 0 on page m 
in (0, t]. For each SP, an m-downcrossing of level w > 0 occurs at time to if W(to) = w 
and there exists e > 0 such that W(t) < w for t E (to, to + e) and the configuration is 
M(t) = m for t E (to, to + e). Let #/')(nm) be the number of SP(i) impacts of level zero 
on page m in (0, t]. An SP m-impacts with level zero at to if there exists e > 0 such that 
W(t) > 0 for t E (to -, to], W(to) = 0 and M(t) = m for t E (to-, to]- 

THEOREM 1. 

lim E[ -t(i) (w, m)]t = f(i)(w, M), w >O, i = 1, ... ., k, m E- X,9 

lim E[ f')(r)]/t =f(i)(0,r), i = 1,..., k, mE EX, where 

f(i)(O, m) = lim f(i)(w, m). 

In the next section we present expressions ((2.3)-(2.6)) which equate entrance and 
exit rates of sets in the state space by the system point. It is important to note that 
these equations are valid because this system has the characteristics of Poisson arrivals, 
no multiple events, and the Markov property of {< W(')(t), M(t)>, t > 0}. It is precisely 
these properties that are invoked in the proofs of the corresponding results in Brill and 
Posner (1981 a). 

2. Model Equations for the Two-Server System 

We assume a two-server system with two customer types: Type 1 customers arrive 
according to a Poisson process at rate A,, and require an exponentially distributed 
amount of service time with mean 1/It from one server; Type 2 customers arrive 
according to a Poisson process at rate A2 and require service from both servers 
simultaneously with service time distribution B. We define A = Al + X2. Let po be the 
equilibrium probability that the system is empty. This is a nonwaiting state for both 
customer types. For SP(l) define Pi as the probability that exactly one Type 1 
customer is in service and there is no queue. This is a nonwaiting state for a Type 1 
customer. As noted before, there are two configurations for this system: M(t) = 1 if 
the system is not empty at time t and the last customer to arrive was a Type 1; 
M(t) = 2 otherwise. This is equivalent to the definition of configuration given for the 
general model in the last section. 

For each customer type, we will derive a set of balance equations which equate the 
rate of entrance of the SP into the set {<u, m> O < u < w}, w > 0, m = 1,2, with its 
rate of exit from this set. These equations plus the balance equations for the nonwait- 
ing states and the normalizing condition that all probabilities sum to one will be solved 
for the case where B is exp( ,u) in the next section to yield the waiting time densities for 
each customer type. Note, however, that it is sufficient to solve for the functions 
relating to SP(1) only, namely f( '(w, 1), f( l)(w, 2) and the probabilities po and Pi* The 
SP(2) results can be computed from the following relationships: 

W(2)(t) = W(I)(t) + S, t > 0, M(t) = 1(2.1) 

-()t = V(')(t), t> 0, M1?(t) = 2, 
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where S is distributed as the service time of a Type 1 customer, i.e., exp( A). The first 
relation holds because an arriving Type 2 who follows a Type 1 customer into service 

must wait in queue an amount of time equal to that of a Type 1 who would have 
arrived at the same instant as the Type 2, plus a residual Type 1 service time. The 
second holds because the virtual waits of Type 1 and Type 2 customers who follow a 
Type 2 into service are identical for t > 0. Relationship (2.1) leads to the following 

computation for the equilibrium pdf's in SP(2), once the pdf's in SP(1) are known: 

f(2)(w, 1) =JW_f(')(x, 1)e -(wx) dx + pIe , w >0, (2.2) 

f(2)(w, 2) = f(1)(w, 2), w > 0. 

The following equations are based on the principle of stationary set balance. 
Rigorous derivations of (2.3) and (2.4) can be obtained as in the proofs of Theorems 5 
and 6 of Brill and Posner (1981a). Intuitively, these results are obtained by balancing 
the entrance and exit rates of SP(1) into the set (0, w) on each page. For page 1 we get 

(see Figure 1): 

f( )(w, 1) + X1(1 - e2' )P1 + xi fW(')(a, 2) da 

= X2JWJf(1)(a 1) da + XI we-2t(w-a)Y(l)(a, 1) da + f (1)(O+, 1). (2.3) 

This equation is explained as follows. The left-hand side (LHS) is the total rate at 
which SP(1) enters (0, w) on page 1. This can occur in three ways: 

(i) it can be at level w > w on page 1 and downcross level w; 
(ii) it can be at level w = 0 on page 1 (one Type 1 in service with remaining service 

time R, say, and no queue), a new Type 1 customer arrives with service time S, say, 
and min(R, S) < w; 

(iii) it can be at level wi in the set (0, w) on page 2 and a Type 1 customer arrives. 
From Theorem 1, the rate of the first of these occurrences is given by the first term 

of the LHS of (2.3). The other two terms of the LHS are clearly the rates of the second 
and third occurrences, respectively. Similarly, there are three ways in which SP(1) can 
exit the set (0, w) on page 1 and the rates of these events are given by the right-hand 
side (RHS) of (2.3). The first term is the rate at which SP(1) will exit due to Type 2 
arrivals. The second term is derived by noting that if the Type 1 virtual wait is a < w, 
then a Type 1 arrival will cause the virtual wait to exceed w with probability 
e-2u(w-a). Finally, the third term is, by Theorem 1, the rate at which SP(1) impacts 
with level w = 0. 

Note that Type 2 customers use both servers simultaneously as if they were a single 
server. Hence the virtual wait process on page 2, as in M/G/1, remains Markovian 
when Type 2 customers have a general service time distribution. Therefore the SP(1) 
set balance equation for page 2 is 

f(1)(w, 2) + X2B(w)po + X2PIf ,teiIaB(w-a)do 

+x2f f X -e ((w-a)-')B(t)dt f(')(a, 1)da 

- xl Wf(1)(a, 2)da+ X2 w(I - B(w - a))f(')(a,2)da+ f(')(O+,2), (2.4) 

where B(x) = Pr (Type 2 service time < x). Again, the LHS represents the total 
entrance rate of SP(1) into (0,w) on page 2 and the RHS, the total exit rate. On this 
page, there are four ways in which the SP can enter (0, w) with rates given by the four 
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terms of the LHS of (2.4). Respectively, these terms are (i) the downcrossing rate into 
(0, w) on page 2; (ii) the rate at which Type 2 customers with service time less than w 
arrive to an empty system; (iii) the rate at which Type 2 customers arrive when a Type 
1 is in service, there is no queue and the sum of the Type l's remaining service time 
and the Type 2's service time is less than w; (iv) the analogous case when a Type 2 
arrives when the system state is <a, 1>, 0 < a < w. The exit rates are given by the three 
terms on the RHS and are due to: a Type 1 arrival, a Type 2 arrival that increments 
the virtual wait above w, and the rate at which SP(1) impacts with w = 0. For the 
nonwaiting states corresponding to exactly one Type 1 in service and no queue, and 
the empty system, respectively, we can write 

(X + 0)P = X1P0 + f(1 )(0+, 1), (2.5) 

XPo = PtpI + f( )(o+, 2). (2.6) 

The pdf of an arbitrary Type 1 customer is given by the total density for SP(1), 

g(1)(w) =f(1)(w, 1) +f(1)(w, 2), w > 0. (2.7) 

The normalizing condition for SP(1) is 

f 
g(1)(w) dw + po+p = 1. (2.8) 

Using the same reasoning, we obtain the stationary set balance equation for SP(2) 
on page 1 as 

f(2)(W, 1) + XI(l - e-Aw)po + X1f (1 -e-(w-a))f(2)(a, 2)da 

= X2 Wf(2)(a, l)da+ e fe-2t(w-a)y(2)(a, 1)da+f(2)(0+, 1), (2.9) 

and on page 2 as 

f(2)(w,2) + X2B(w)po + X2J B(w - a)f(2)(a, 1)da 

=I f(2)(a,2)da+ X2 [I - B(w - a)]f(2)(a,2)da+f(2)(0 ,2). (2.10) 

The balance equation for the empty state is 

Xpo = f(2)(0+, 1) + f(2)(0+ 2). (.1 

The pdf of an arbitrary Type 2 customer is given by 

g(2)(w) = f(2)(W, 1) + f(2)(w, 2) (2.12) 

and the normalizing condition for SP(2) is 

f 
g(2)(w)dw+po= 1. (2.13) 

3. The Probability Density of the Waiting Time 

In this section the SP(1) model equations (2.3)-(2.6) are solved for the functions 
f(l)(., 1), f(1)(, 2), g()( -), and constants pI and po for the case B(t) = 1 - e"-. From 
matrix-geometric theory (Kim 1979 and Neuts 1980), an equilibrium distribution will 
exist if X < 2I/(2 - p2) where p = A1/- . The pdf's in SP(2) in .eS ( (2)2 1), f(2) (.,2) and 
g(2) (.), are then calculated by using formula (2.2). 
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3.1. SP(1) pdf's 

The system of integral equations (2.3) and (2.4) was transformed into a system of 
ordinary differential equations (ODE's) for the functions f() (w, 1) and f(1) (w, 2), 
w > 0. The resulting system is equivalent to the same fourth order homogeneous ODE 
both for f(l)(w, 1) and f(l)(w, 2), and is given by (3.1) which was obtained using 
standard methods. (For details see Brill and Green 1982.) The densities will be those 
solutions of (3.1) which are bounded, nonnegative, real valued, tend to zero as w tends 
to infinity, and satisfy certain initial conditions, and the normalizing condition (2.8). 

(y4D4 + y3D3 + y2D2 + y1D + y0)f(')(w, j) = 0, j= 1,2, (3.1) 

where 74 = 1, 

73 = 2(2k - A), 

Y2 = + 4t2 - 6AX2 - 4IX1 + x2, 

Yl = (2[u - X) - 
- I _ 4[t2X2 + 21AX2X, 

= - 21LX24 - 21 uI 
+ 1[A2 

X =X1 + A2, and 

t = -2 - 2[X + AX2. 

The characteristic polynomial equation of (3.1) is 

74Z4 + 73Z3 + 72Z2 + Y1Z + Yo 0 (3.2) 

where Z may be real or complex. 
Any real root x0 and pair of complex roots x0 ? yoi will give rise to terms aw kexow, 

and wkexow(b cos y0w + c sin yow) respectively in the solution of (3.1), where w > 0, 
0 < k < 3, and a, b, c are constants (see e.g. Rainville and Bedient 1969). Since 
necessarily 

lim f(i)(w,j)=O, i,j=1,2, 

these terms will have coefficients of zero in the pdf's when x0 > 0. The product of the 

four roots is yo which is negative in sign when the criterion given in ?2 for existence of 
the pdf's holds, so that (3.2) possesses an odd number (I or 3) of negative real roots. 

Hence we always obtain a solution of (3.2) which, when normalized, satisfies the 

properties of a density function. Moreover (3.2) always has exactly one real positive 

root (see Brill and Green 1982 for a proof). The functional forms of the pdf'sf(')(w, j), 
w > 0, i, j = 1, 2 depend on the specific properties of the roots. Two cases will be 
considered here to illustrate the solution. Other cases are discussed in the Appendix. 

Three Distinct Negative Real Roots. Denote the roots by rj, j = 1,2,3. Then the 

SP(1) pdf's are given by 

3 

f(')(w,i) = aije"rl, i = 1,2, (3.3) 
j=l 

where the constants ai, Po and pI are evaluated by means of eight linearly independent 

equations. The first two of these equations are obtained by substituting (3.3) into (2.5) 
and (2.6), and the next five are initial conditions (for details see Brill and Green 1982). 
The eighth equation is the normalizing condition, obtained by substituting (3.3) into 
(2.8). These substitutions and operations result in the following system of linear 
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equations for the a,'s, Po and PI presented in matrix form: 

1 1 1 0 0 0 X1 -(X+Ai) all 0 

0 0 0 1 1 1 -x A a12 0 

rl-X r2-X r3-X XI XI XI 0 2[X1 a13 0 

I K2 K3 X1(rl + 2[) X1(r2+ 2[) X1(r3 + 2[) 0 0 a2l 0 

O 0 0 r1-X r2 - X r3 - A ['X2 0 a22 = 0 

O 0 0 V IV2 V3 ? I2X2 a23 0 

,22 y2X2 y2A2 81 82 83 0 0 Po 0 

-l/rl -1/r2 -1/r3 - l/rl -1/r2 -1/r3 1 1 PI 1 

(3.4) 

where K= rj + (2t -X)rj -21AX2, 

= rj + ( Xt- X)rj - tX1, 

d= + (2y -) X + ( [2 - 2,uX + - X2)rj-2X1 for j =1, 2, 3. 

When (3.4) is solved the SP(1) pdf's are completely determined by (3.3) and the 

values of po and p1. Example 3 illustrates this case. 
Two Complex Conjugate Roots with Negative Real Part. The parameters may have 

values such that equation (2.3) has one negative real root r, and 2 complex conjugate 
roots with negative real part, a ? /3i, where i = /- 1, and r, a and /8 are real. The 

SP(1) pdf's then involve trigonometric functions and are given by 

f()(w, i) = aiierw + eaw(ai2cos /8w + ai3sin 83w), w > 0, i = 1, 2. (3.5) 

In order to solve for the a 's, po, and Pi, we construct a system of linear equations 
similar to (3.4), resulting in: 

1 1 0 0 0 0 X1 -(x + t) all 0 

O O 0 1 1 0 -x A a12 0 

r-A a-X ,B-x XI XI 0 0 2[tXI a13 0 

K1 K2 K3 XI(r+ 2[) X1(a + 2[) xl/ 0 0 a2l 0 

O O 0 r-X a- X / 1LX2 0 a22 = 0 
2 
X2 I 22 

0 
VI V2 V3 

0 0 
a23 

0 

O 0 0 23 
0 ,L2X2 Po 0 

_ 1 _ a /3 _ 1 _ a /3 1 1 ~~~ 
~~~~~~~~~~~Pi 

1 

r a2+/32 a2 +/2 r a2+/32 a2 + 32 

(3.6) 

where c = r2 + (2[t - X)r- 2pA2, 

K= o2 _ ,82) - (2 X-)a - 21X2, IC (a- /3)+ (21 X) 

IC3 = 2af3 + (2[t - X)f, 

I= r3 + (2t - X)r2 + ([2 - 21X + ILX2)r -2 I 

P2 = a3 - 3a/32 + (21 - X)(a 2 _ 
/82) + ( L2 - 2[X + AX2)a -1i2x 

P3 = 3a2,8 + (2[t - X)2a,8 + ( [L2 - 2[tX + pX2)/83 

= r2 + (1 - X)r - [tXI, 

62 = (a2 _ 
/2) - X)a - [tX1, 

83 = 2af3 + (tL - X)3. 

This case arises in Example 4. 
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3.2. SP(2) pdf's 

The pdf's of the waiting times of Type 2 customers can now be calculated using 
(2.2), the computed SP(1) pdf's and either (3.3) or (3.5) depending on the nature of the 
roots of (3.2). In the SP(2) calculations, the relative value of 11 must also be considered, 
in order to avoid division by zero, and this results in some further cases (cf. Appendix). 
The pdf of an arbitrary Type 2 arrival is given by (2.12). Note that in all cases 
f(2)(w,2) =f(l)(w,2) so that we only have to derive f(2)(w, 1) once the SP(1) pdf's are 
known. 

Three Distinct Negative Real Roots. In (3.3) if rj + 11 /- 0 for j = 1, 2, 3, substituting 
(3.3) into (2.2) we obtain 

3 ajePjw / 3 a .\ 
f(2)(W, 1) it E r + M pi - E r + )e wv w > O, and (3.7) 

j1= r + tL j_ r1 + ti 

3 

f(2)(w, 2) =f(1)(w,2) = Z a21e rj', w > 0. (3.8) 
j=1 

This is the case in Example 3. 
The case when rj + A = 0 for some j = 1, 2, 3 is discussed in the Appendix. 
Two Complex Conjugate Roots with Negative Real Part. In (3.5) if 1i + r 7& 0, 

substituting (3.5) into (2.2) yields 

f(2)(W5 
1 - a I_I_e_rv 

lieraw 

+ 2e [a12((a + p)cos /w + /3sin 8w) + a13((a + A)sin /w - 83cos 8w)] 

[ alI( a p2/ 2] a+A a 38 

+ - ai + [ a+ 32] - Ap,]e-w, (3.9) 

Lr + tt [(al + A)2 + '82] [(a + A)2 + '82] 

w > 0, and 

f(2)(w,2) =f(1)(w,2) = a2lerw + eaw(a22cos /3w + a23sin /3w), w > 0. (3.10) 

This case is illustrated in Example 4. The case when y + r = 0 is discussed in the 
Appendix. 

The probabilitypo of having zero customers in the system is, due to Poisson arrivals, 
also the probability of a zero wait in SP(2). It is only one component of the probability 
of a zero wait in SP(1). However, Pi describes a waiting effect in SP(2) different from 
that in SP(1). In SP(2), Pi is part of the probability of a positive waiting time for Type 
2's, and is incorporated in the expression for f(2) (w, 1), observable in (2.2), (3.7), and 
(3.9). In SP(1), p1 is the other part of the probability of a zero wait for Type l's. 

4. Examples 

The pdf's were computed by means of a computer program for varying values of XI, 
X2, and A. Equations (3.2), (3.4), (3.6) or variants (see Appendix) were solved using 
FORTRAN and IMSL (International Mathematical and Statistical Library) subrou- 
tines in double precision, on an IBM 370 computer. Several examples are presented 
here which illustrate the dynamics of the model. Two examples demonstrate the 
correctness of the solution for known results, and exemplify the conditional nature of 
the virtual waiting time process. 

EXAMPLEl1. A1l=1,X2 =O?, /=2. 
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When X1 = 1, X2 = 0, A = 2, the system specializes to an ordinary M/M/2 queue for 
Type 1 customers. This results in (3.2) having a pair of equal roots (one root is -3, the 
double root is -2). A modified form of (3.4) is solved as discussed following (A. 1) (see 
Appendix). The solution for the a.' s, Po and Pi are: 

a1 =0.3, a12=O, a13=0, a2=O, j= 1,2,3, 

po=0.6 pi=0.3, 

f(1)(w, 1) = 0.3e-3'v, f(1)(w,2) = 0, 
g 5~w)O3 -w(4.1) 

g(1)(w) = 0.3e-, 

f(2)(W, 1) = 1.2e-2w 0.6e-3w f(2)(w, 2) = 0, 

g(2)(w) 1.2e-2w 0.6e-3w for w > 0. 

Notice that the coefficients of the "Erlang" term and some of the exponentials in (A.1) 
are zero. 

In (4.1) the SP(1) pdf's constitute the solution for an M/M/2 queue with arrival 
rate 1 and service rate 2. Even though the arrival rate of Type 2 customers is zero, the 
pdf of the virtual wait of Type 2 customers who follow Type l's exists and is positive, 
due to the conditional character of the process. Both f(1)(.,2) and f(2) (, 2) are 
identically zero, as expected, since no customer can follow a Type 2 into service. The 
form of g(2) (.) is the difference between exponentials. Functions g(l)(.) and g(2)(.) are 
sketched in Figure 3. 

0.8 Pdf of Type I waiting time g(1)(w) , w >0 

g)(w) =0.3 e 3W , w>0 

0.6 _ 

0.4_ 

0.2 

w 

0 1.0 2.0 3.0 

Pdf of Typel Waiting time ?2 (w) , w> 0 

0.6 9(2)(w) 1.2 e-2W-0.6 e-3w,w>0 

0.4 - 

0.2 - 

w 

0 1.0 2.0 3.0 
Po 0.6 

Pt =0.3 

FIGURE 3 
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Example 1 also illustrates that for every x > 0, 

P(W(2) > x) > P(W(I) > x), x >0. 

This can be seen directly from the solution, since 

P(W(2) > X) f?g(2)(w)dw = 0.6e2x - 0.2e 3x, 

x~~~~~3 

P(W(W) > x) =f?g(l)(w)dw = 0. e3x 

EXAMPLE 2. XI = 0, 2 = 1, =2. 
With Al =0, A2 = 1, A = 2, (3.2) has three distinct negative real roots, r, =-4, 

r2 = -2, r3 =- 1, and A + r2 = 0 (see Appendix). The system reduces to an M/M/I1 
queue for Type 2 customers with arrival rate 1 and service rate 2. 

The solution of system (3.4), and the resulting pdf's are a11 = 0 for all i, j, except 
a23 = 0.5, Po = 0.5, Pi = 0, resulting in 

fO)(w 1)- 0, f(1)(w 2) = 0.5e- g(1)(w) = 0.5ew, 

, ~~~~~~~~~~~~~~~~(4.2) 
f(2)(w, 1) = 0, f(2)(w,2) = 0.5e-w, g(2)(w) = 0.5e-w. 

The values of Po and g(2) (w), w > 0, are necessarily identical to those of an M/M/ 1 
queue with arrival rate 1 and service rate 2 for Type 2 customers. Notice again that 
g(l)(w) is positive, although Type l's never arrive at the queue, depicting once again 
the conditional nature of the virtual wait. Also, g(2)(o+ ) = 0.5 = XpO, indicating that 
the impact rate of the "system point" in SP(2) on the zero level is equal to its exit rate 
from the zero level, as in a regular M/M/1 queue (Brill and Posner 1981a). 

EXAMPLE 3. XI = X2 = 1, ,u varies. 
Figure 4 illustrates the graphs of g(l)(.) and g(2)(.) for values of ,u = 1.76, 2, 2.5 and 

3.0, all of which yield three distinct negative real roots for (3.2) and correspond to the 
case treated in ?3. [The existence criterion for the pdf's does not hold for ,u < 1.75.] 
When ,u = 1.76, g(l)(0+) = 0.0108 and g(l)(w) decreases very slowly to 0.0102 at 
w = 3.0. Function g(2)(w) increases very slowly from 0.0099 at 0+ to a maximum of 
0.0104 at approximately w = 0.8, and then decreases very slowly to 0.0102 at w = 3.0. 
In fact both g(l)(.) and g(2)(.) are close to uniform pdf's, at least over the interval 
0 < w < 10, while po = 0.0049 and PI = 0.0029. For example, g(l)(9.9) = 0.0094 and 

g(2)(4.9) = 0.0100 (not shown in the figure). It is clear from Figure 4 that as ,u increases 
from 1.75 the pdf's shift rather sharply towards the production of rapidly increasing 
probabilities for smaller waiting times for both types of customers. Pdf's obtained for a 
large number of other values of A > 1.75 indicate the same pattern emerging. Figure 4 
also illustrates the sensitivity of waiting patterns to changes in ,u, when the existence 
criterion is satisfied by a wide margin, and when it is barely satisfied. For example, 
when y changes from 3 to 2.5 (a 16.7% decrease), the pdf's do not change drastically, 
and the two waiting times' patterns are similar. However, when y changes from A = 2 
to A = 1.76 (a 12% decrease) there is a sharp change to very long waits especially for 
Type 2 customers. 

Figure 5 shows that as y increases from 1.75, po increases first rapidly and then more 
slowly; pI first increases gradually to a maximum in the vicinity of A = 3.3, and then 
slowly decreases. 
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EXAMPLE 4. Xi = 2.5, X2 = 1, 11 = 4. 
The purpose of this example is to show the pdf's when the parameter values are such 

that there are two complex conjugate roots with negative real parts for (3.2), corre- 
sponding to the first such case in ?3. The pdf's contain sine and cosine functions as in 
(3.6), (3.9) and (3.10), which are reflected by the mildly wavy appearance of g(1)( ) 

Pdf of Type I waiting time 

g (w), w > 0 

0.6 3 

0.4 

2.5 

0.2 2 

1.76 

-w 
0 1.0 2.0 3.0 

0.8 Pdf of Type 2 waiting time 

2)(w), w >O 

0.6 3 

0.4 - 

2.5 

0.2 2L 2 
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-w 

0 1.0 2.0 3.0 
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g (w) 

Pdf of Type I waiting time g(l)(w) ,w>0 (Case2) 
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and g(2)(.) in Figure 6. The graph of g(2) (*) would be more sinusoidal except for the 

exponential term pl Ae - w in the convolution (3.9), which smooths it. 

5. Generalization for Larger Systems 

Some systems with more than two servers are mathematically identical or very 

similar to the two-server system solved in the preceding sections. For example, if a 

system has seven servers and there are only two types of customers-those requiring 

three servers and those requiring all seven, we have the same exact structure as with 

two servers and the solution in ?4 will be valid for this larger system as well. 

More generally, the definiton of the system configuration at time t given in ?1 can 

be used in any size system to obtain set balance equations for the virtual waiting time 

distribution of each customer type. For example, consider the system with three servers 

and three customer types. Type i customers arrive according to a Poisson process at 

rate Xi and require service from i servers. Types 1 and 2 customers have service times 

which are exponentially distributed with mean 1/ t (this is easily extended to different 

service rates for each) while Type 3 customers have service time distribution B. By 

definition, there are four possible configurations for this system: (0,0,0), (1,0,0), 

(2, 0, 0), and (0, 1, 0), which can be simplified notationally to (0, 0), (1, 0), (2, 0) and 

(0, 1). Let p. be the equilibrium probability of nonwaiting state m = (0,0), (1,0), (2,0) 

or (0, 1) for a Type 1 customer. Then for each SP and each configuration, we can 

obtain by inspection a set of equations balancing the rates of entrances and exits of the 
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SP into the set (0, w). The equation corresponding to configuration (0,0) for SP(1) is: 

fo(o ( w + X3[ B(w)pOO + (B * exp( ))(w)pO + fw(B * exp( t))(w-a)f(f)(a) da 

+ (B * exp( A) * exp(2A))(w)p20 

+ fw(B * exp( A) * exp(2y))(w-a)f2(l)(a )da +(B* exp( y))(w)p1o 

+fXW(B * exp( p))(w - a)f()(a) da] 

=f0(0')(0+)+(X1+X2)f wf(&)(a)da+X3f (1-B(w-a))f0(0)(a)da, (5.1) 

where exp( /3) is the exponential distribution with rate /3 and " * " denotes convolution. 
The equations for the remaining three configurations are also easily derived. The zero 
waiting states balance equations are: 

f&P)(O+ ) + it(PIo + Poi) = XPoo, (5.2) 

f(1)(O ) + 2PP20 + XIPoo = (X + 0)PIo' (5.3) 

fol)(O) + XIPIo = (X + 2W0P20o (5.4) 

fA1)(O?) + 2Poo = (X + L)Po11 (5.5) 

and the normalizing condition is 

Poo + Pio + P2o + Poi +fJo [ fo(o)(w) + fl(o)(w) + f2(0)(w) + f(ll)(w) ] dw= 1. (5.6) 

The general case of R servers and R customer types can be treated in a similar fashion 
by solving SP(1), and then the other SP's by using the SP(1) results. 

The ease of solution will depend upon the number of pages (configurations) for the 
system which with the zero-waiting states determines the number of equations and 
unknowns that have to be solved. The number of pages (configurations) is the number 
N(R) of nonnegative integer solutions (xl, ... , XR- 1) of the inequality 

Ixi + 2x2 + * * * + (R - )XR-1 I6 R -1, R > 2. (5.7) 

This inequality is interesting since N(R) is the sum of the number of unrestricted 
partitions of the integers 0, . . . , R - 1. Partitions have been treated in L. Euler (1748), 
G. H. Hardy and S. Ramanujan (1918), S. Ramanujan (1919), C. E. Gupta and 
J. C. P. Miller (1958), and the works of other well-known mathematicians. Tables of 
unrestricted partitions for values of R up to 101 are given in Hardy and Ramanujan 
(1918) along with recurrence relations for computing them for any positive integer. 
Table 5.1 gives N(R) for several values of R, using Table 1 in Hardy and Ramanujan 
(1918). 

TABLE 5.1 

The Number of Configurations N(R) for R Servers and R Customer Types 

(Values Obtained Using Table 1 of Gupta and Miller (1958)) 

R 2 3 4 5 6 7 8 | 9 | 10 15 20 25 30 

N(R ) |2 |4 |7 |12 |19 |30 |45 |67 |97 |502 |2087 |7338 |23025 
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The solution technique used in this paper will, of course, only be practical for a 
given application if the configuration space and hence the cost of solution is not 
unduly large relative to the potential benefits of obtaining an exact solution. However, 
the methodology can serve as a guide for devising numerical and approximation 
techniques which would be more appropriate for large values of R (e.g. R > 6) since 
N(R) grows rapidly with R. This dimensionality problem will not be as severe, of 
course, when the number of customer types is smaller than the total number of servers 
as is the case in many real applications. For example, in communications systems, 
there are typically only two or three kinds of transmissions requiring different numbers 
of channels (see e.g. Gimpelson 1965, Nigam 1975). 

The system point model equations, such as (5.1)-(5.4), can always be reduced to 
algebraic equations for the Laplace transforms of the pdf's, since every integral is 
either a convolution, or a simple transform of the pdf. Initial conditions are given by 
(5.5) and (5.6). General numerical methods for solving the system point model 
equations are presently being developed. 

Appendix. Other Cases Generated by Special Values of the Parameters 

When the parameters X1, X2 and y have values which cause (3.2) to have a pair of 

equal roots, or make the value of some root equal to - t, etc. the functional forms of 
the pdf's differ from those given in (3.3), (3.5) or (3.7)-(3.10). We shall list these cases 
here and give the corresponding functional forms for the pdf's. 

Three Distinct Negative Real Roots for (3.2) 

In (3.3) if rj + A = 0, only the SP(2) pdf f(2)(w, 1) requires adjustment to avoid 
division by zero. Thus, if rj + p = 0, then 

fWaije rxye- (wx) dx= a1 we 
- 

LW 

and this term would replace the expression 

eaj erw - eLw] 

rj + tt 

in (3.7). 

Two Complex Conjugate Roots with Negative Real Parts for (3.2) 

If A + r = 0, then f(2)(w, 1) has exactly the same form as (3.9), except that 

I I(e r - e- w)/(r + A) is replaced by a11 we-w. 

Double Negative and One Distinct Negative Real Root for (3.2) 

If r1, r2, r3 are the negative real roots let r2 = r3 = s, so that s is a double root. The 
SP(1) pdf's then have the functional form 

f(')(w, i) = 
aiIerlw + ai2eSw + ai3weSw, w >0, i = 1,2. (A.1) 

The a Y constants in (A. 1), po and P1, are calculated by solving a matrix equation 
similar to (3.4). The resulting matrix is identical to that of (3.4), except for the 
following changes in columns three and six. Denoting the entry in row i and column j 
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by cij, the new entries are: 

C13 = 0, 

C33= 1, 

C43= 2s + 2, -A, 

C73 = 0, 

C83= 1/S2 in column 3; and 

C26 = 0, 

C36 = 0, 

C56= 1, 

C66 = 2s + A - 

C76 = 3s2 + 2(2, - X)s + A2 - 2A + 1A2, 

C86 = 1/S2 in column 6. 

This case arises if X1 > 0, X2 = 0, I > 0; the model then reduces to an ordinary 
M/M/2 queue with arrival rate X1 and service rate y for Type 1 customers. This 
occurs in Example 1. 

If (- ) is not equal to any root, substitution of (A. 1) into (2.2) yields 

f(2)(W, 1) - aaelw +3 e al2 ( L e1 SW 

r, + t s + t (S + [)2 s 5+ 

+ 4_ r?1~~ 
_ 

12 + ?113 +pi e-w, w > 0. (A.2) 

If (- y) equals a root, it may equal r, or s. 
If A + r, = O,f(2)(w, 1) is the same as (A.2) with pa1[ew' - e-W]/(r, + A) replaced 

by a,, Awe-[w 
If A + s = 0, f(2)(w, 1) is given by 

f(2)(W, 1) = a11, eI-' -It ,pae, + a,2 we I 
r + tt r + t / 

+ ?13 w2e w w>0. (A.3) 

Two Other Cases 

We have not strictly ruled out that (3.2) may possibly have two complex roots with 
nonnegative real parts. In that case let r be the one negative real root. Then 
f(1)(w, j)-= aje' (j= 1,2) andf(2)(w,2) =f(1)(w,2) as it always does. Using (2.2) if 
r + A #70, we get 

ae r + ( ? )A 

and if r + A = 0, 

f(2)(w, 1) = (al +p I)I we-W 
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If (3.2) should have a triple negative root, s, then 

f(1)(w, i) = aiIeSW + ai2weSV + ai3eSW (i = 1, 2) and f(2)(w, 2) = f(1)(w, 2). 

The functional form of f(2) (w, 1) is easily calculated using (2.2) and by considering the 
two cases s + y #7 0 and s + y = 0 separately, in a similar manner to the derivation of 
(A.2) and (A.3). Neither of the two cases in this subsection has occurred in a multitude 
of numerical examples.1 

' This research was sponsored by the Faculty Research Fund of the Graduate School of Business, 

Columbia University and by The National Science and Engineering Research Council of Canada, grant no. 

A1775. 
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