QUEUES SUBJECT TO SERVICE INTERRUPTION
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Summary. A treatment is given of the M/G/1 queue with interruptions of
Poisson incidence occasioned either by server breakdown or the arrival of custom-
ers with higher priority. Interruption times and priority service times have
arbitrary distribution. After pre-emptive interruption, ordinary service is either
repeated or resumed. The time dependent behavior of the system is discussed in a
complete state space and the joint density in all system variables of this space
is constructed systematically from the densities associated with a set of simpler
first-passage problems. Equilibrium distributions are available as limiting forms
and server busy period distributions obtained.

1. Introduction. Queues subject to interruption due to service breakdown or
the arrival of priority customers have been extensively treated in the literature,
and bibliographies covering all but the most recent work may be found in the
papers of Miller [9] and Heathcote [3]. Three types of service discipline govern-
ing the disposition of the ordinary customer in service when an interruption
occurs have been discussed, postponeable or “head-of-the-line” discipline, ‘“‘pre-
emptive resume” discipline, and “pre-emptive repeat’” discipline. A detailed
description of these may be found in Section 2.

Until recently, the only service time and interruption time distributions con-
sidered were exponential, limiting somewhat severely the usefulness of the results.
This paper was motivated at its inception by the need for a treatment consider-
ing more general distributions. Since the paper was first presented,! however,
two such treatments by Gaver [2] and Jaiswal [4, 5] have been published which
duplicate many of the results obtained and make a lengthy exposition unde-
sirable. A condensed version of the original paper [6] is here presented emphasiz-
ing those elements of the methodology and those results which are believed to
be new.

As in the phase space procedure previously developed [7, 8] for the discus-
sion of multidimensional systems, the supplementary variables required for a
Markovian characterization of the queue length processes are explicitly carried.
A system of equations describing the motion in this phase space may be written
down but is of considerable complexity. The disadvantages associated with a
formal analysis [4, 5] of the system may be avoided by a constructive description
of the phase space motion compounded successively from the distributions
associated with a set of simpler first passage problems. The procedure enables
one to treat all three disciplines simultaneously and to generate the joint time
dependent distribution of all system variables, from which the joint or individual
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distribution of any subset of variables may be deduced. Equilibrium distribu-
tions may be examined as limiting forms and server busy period distributions
extracted from the time-dependent solution. A similar structure may be seen
in the extended chain method treatment of Gaver [2], who does not, however,
deal with the joint queue length distributions.

The basic first passage process, given for each of the three service disciplines
in Section 2, is the server sojourn process describing the state of the server from
the time an ordinary customer enters service to the time the server is available
for a next ordinary customer. The description of the full process (Section 3)
follows from standard results for the M/G/1 queuing system.

Throughout the paper, discussion will be conducted in terms of probability
densities rather than distributions. These densities and the operations of integra-
tion and differentiation applied to them may either be understood in a generalized
sense, such as that of the theory of distributions of L. Schwartz, or regarded
as limiting forms of functions on which the operations may be unambiguously
performed. Effort will be made wherever possible to present results in real time.
The paper however is principally intended as methodological.

2. The basic server sojourn process. The process commences at time § = 0
with the entry of an ordinary customer having a service time requirement s,
of probability Dy (so). For the preemptive disciplines, service of the customer is
subject to interruptions with Poisson incidence and frequency A, the interrup-
tions having duration s; of probability density D, (s;). These interruptions may
be due to breakdown or to a sequence of priority customers the last of whom
must be served before service can be resumed. After an interruption, service
may continue from its phase at interruption (resume policy) or from the starting
phase (repeat policy). When service is completed, the sojourn process ends in
the completion state B. The server sojourn problem for head-of-the-line dis-
cipline describes the completion of service of the customer without interruption
and the subsequent removal of all priority demands on the server.

(a) Pre-emptive resume discipline. We first consider the process for the resume
policy. At time 6, the server will be in one of the following states:

Interruption state I:(xy, x,) Service has been interrupted. Time z; has
elapsed since interruption, at which time a total service time z, had been re-
ceived by the customer.

Free state F:(x,) Customer is being served, and has now received a total
xo of service time.

Rest state B The customer has completed service.

The states F, I, and R are mutually exclusive and exhaustive and provide a
Markovian characterization of the server sojourn process. A typical trajectory
in the phase space is shown in Figure 1. We are interested in the distribution on
this phase space at time 6. Sojourn (first passage) probability densities will
be denoted here and henceforth by script and Greek letters. State densities
for the full process will be denoted by Roman letters. Let the probability densities
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for states F and I be denoted by Wo(zo, ) and Wi (zo, x1, 0). Let n(xo) dzo
be the probability of service completion in the interval (o, 20 + dzo) of a
customer who has been in service for time z,, so that Dy(zy) =
70 (%) exp [—No(xo)] where No(zo) = [3° no(xo) do . Similarly let n; (z;) be the

conditional interruption termination rate and D,(z;) = m exp [—Ni]. For
motion in the subspace I:(xo, ), zo remains fixed and W, (zo, z;, 6) obeys
6‘\&71/60 + 6'\&71/6231 = —m(xl)Wl SO th&t

Wi (To, 21, 0) = Wi (20,0, 0 — z1) exp [—Ni(z1)].

For all 2o and 6, moreover, continuity of probability requires that W, (z, , 0, 8) =
MWy (o, 8) so that the density W, (zo, 21, ) is related to Wo(xo, 6) by

(2.1) Wl(xo y L1y 0) = )\fWo(xo y 6 — xl) exp [—Nl(:cl)]

Another simple continuity argument leads to the equation

dxo

<] i) B
(2.2) |:— + 0 Tht nO(x"):I Wo(2o,0) = le(xo » 21, 0)m(zy) dry

= M Wo(xo, 0) * D:1(6)

the asterisk denoting convolution in . Boundary conditions on (2.2) at § = 0
and z, = 0 are given by

(2.3) Wo(o,0) = 0;  Wo(0,8) =5(6— 0+)

where §(6) is the Dirac delta function. Laplace transformation of (2.2) with



QUEUES SUBJECT TO SERVICE INTERRUPTION 1317

respect to 9 and solution of the elementary differential equation resulting yields

(2.4a) wo(Zo, p) = exp {—No(zo) — M[1 — dy(p)]xo — pxo}.
Also from (2.1)
(2.4b) w1 (To, 1, P) = Mwo(To, p) exp [—Ni(21) — pzi.

wo , w and d; denote the Laplace transforms of W,, W;, and D; respectively.
The probability of service completion R (6) is found from R(0) = 0 and

(25) B [" wa(zo, 0)m(z0) doo = DL(0).

Equation (2.5) defines D, (s.), the density of effective service times s, for resume
discipline. From (2.4a), D.(s.) is given immediately in transformed form by

(2.6) de(p) = do(p + M[1 — di(p)])

where d, and d, correspond to D, and Dy,. We observe from (2.6) that when
the rate of interruption or the duration of interruptions goes to zero, d.(p)
becomes simply do(p) as it must. It is also clear that if interruptions always
terminate, i.e., if d;(0) = 1, d.(0) = 1 and a customer will always complete
service. The state densities and effective service time density are readily ex-
hibited in real time. Thus from (2.4a) we have

2.7) Wo(xo, 0) = Z: [ (o) "/n 1] D{® (6 — x0) exp {—No(zo) — Mo}

where D{™ (0) is the n-fold convolution of D, (6) with itself. D{” () is the delta
function 6 (8) . W (o, 1, ) is then given by (2.1). For D, () we find from (2.6)

@8) D) = 3 {[0u0)"/n11™*Do(0)) » DV 0).

In (2.8) the asterisk denotes convolution. When Dy(0) and D,(6) are both
Erlangian functions, D,(8) may be expressed via (2.8) as a series of Erlangian
functions.

When interruptions are due to the arrival of priority customers at rate Ap
with service time density Dr(sp) = np(sp)e "7 P the state of the server may
be described by the states F:(xo) and I:(zo; mp, xp) in place of F:(z) and
I:(z0, r1). Here mp is the number of priority customers in line, and zp is the
length of time the priority customer in service has been in service. If
W™ (mp , zp ; 6) is employed to designate the density of states in the space
{(mp, zp)} at time @ for a tour initiated in that space at (k, 0), and terminated
by departure of the last priority customer, and if Wy (o, 8) and W, (zo ; mp , e ; 6)
denote the densities for the server sojourn tour initiated by the entry of an
ordinary customer into service and terminated by his departure from service,
then in parallel with (2.1) we have

(2.9) Wi (o ; mp, Tp 5 0) = NeWo(@o, 0) * WE' (mp, 25 3 6),
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where the asterisk denotes convolution in 6. For the Laplace transforms of the
generating functions, (2.9) becomes

(2.10) y1(xo ; up, xp ; P) = Apwo (2o, p)’71[°0] (up, xp ;D).

The transformed generating function of W5’ may be obtained quickly from
the M/G/1 state space discussion of Keilson and Kooharian [7] or Gaver [1] to
be

v¥ (up , T2 5 D)

= (W = Al — dep + Mll = ws])JJe TP,
In (2.10) and (2.11) rp, is the unique root of the denominator inside the unit
circle. D;(s;) is now the classical M/G/1 server busy period density Sp(s;)
for the service of the priority customers, with transform sz(p) = 7p,. D.(s.),

the effective service time density, continues to be given by (2.8). Sz (s1) is given
in real time [10] by

Sp(s1) = ;e—“’" Aps1) "DtV (s1) /(n + 1)1

(2.11)

(b) Pre-emptive repeat discipline. In the foregoing process our system resumes
its sojourn in the state F':(xo) at the point z, at which it was interrupted. Next
we shall briefly examine the process for repeat discipline in which service must
start over at z, = 0 after an interruption. Again we will have state F':(z)
and state R. For the interruption state I, indexing with z, is now unnecessary
since the server forgets where he was at interruption, but for convenience of
notation we will retain z, in the state designation and the corresponding density.
The more important subcase of repeat discipline is that where the customer
diverted is returned to service and his service time requirement is unchanged.
We then find by an argument similar to that for resume discipline

“© dsDo(s)U(s — x)e M=%
24'a T, = f { g
( ) wo( 0 P) A 1— N dl(p)[l — e_(p.*.)\l),](p T A1)__1
where U (s) is the unit step function, vanishing for negative s,

’ ® (dsDo(s)[1 — & P\ exp {—Ni(z1) — pz
24b)  alm,zi,p) = ]t: { 0 ME+p—NM dl(lp)ll - e“(lk““;)’] =

and
@40 d) = [

dsDy(s)e” M1tPe
1 — Mdi(p)l — eP™0(p + )7

When the state of the server is described in terms of the variables ms and zp ,
the sojourn tour densities wo(xo, D), w1 (X0 ; mp, Zp ; ), 71 (%o ; Up, Zr ; p) and
d,(p) are obtained from (2.4'a), (2.4'b) and (2.4'c) by the substitutions \; = Ap,
di(p) = s»(p), and replacement of ¢ V*“ 77 by v} (up , 25 ; p).

(¢) Head-of-the-line discipline. The server sojourn process commences with
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the entry of an ordinary customer. After he has completed service, any priority
demands that have appeared during the service period are given attention. The
server sojourn process ends when all priority demands on hand have been
accommodated. The number of priority customers appearing will depend on
the service period of the ordinary customer and the interruption duration will
vary accordingly. If time s, has been spent in service, mp priority customers will
be present at the end of the service period with probability (Apso)™Fe 7" /m5p!.
A period s, with density S&"F ) (s1) must be expended subsequently to eliminate
all priority demands that will have presented themselves. The interruption
duration subsequent to a service period s, has density

Dy (1) = ‘Va: [(Aeso) ™/m1Je PS5 (31)

so that the density D.(s.) of the clearance time s, = s, 4 s, is again given by
(2.8). The density Wo(zo, 6) is just eV ™5z, — 6) and Wy (o ; me , Zp; 0),
where z, is again retained for uniformity of notation, is given by

0

2 {Do(8) (A\e8) "'[(m + 1) 7€ 7%} % W (mp , 25 ; 6).

m=0
For the transformed generating functions we then have from (2.11)
(2.12) Yo(Zo, p) = € VOV
and
v1(%o; up , 2p; P)

(2-13) _ {do(p + )\p[l - uP]) - do(p + XP[l - TPp])} e-—Np(xp)e——)\p(l—.,p)zP
Up — dp(p + A1 — ugp]) '

3. Associated queuing process. The server sojourn processes of Section 2 may
be combined with elementary results for the M/G/1 queue to give a complete
discussion of the queue length process for a queue with general interruptions,
and of the joint queue length process for priority queues.

Consider such a system from the point of view of the ordinary customers.
We assume that (a) such customers arrive at rate A\, with Poisson interarrival
time density; (b) if the server is attending an ordinary customer there is prob-
ability per unit time \; of interruption; (c) if the server is idle there is probability
per unit time X; of interruption. The use of distinct A\; and A, enables us to treat
simultaneously the cases Ay = A\, appropriate for priority queues and A\; = 0
appropriate for some breakdown situations. When the system is in the idle state,
an ordinary customer will arrive with probability Ao/ (\¢ + ;) and enter service.
The system will then embark on a sequence 3J;, of sojourn tours each having a
duration s, of density D.(s.) appropriate to the nature of the interruptions
and the service discipline prevalent. If the queue is stable the sequence of sojourn
tours will terminate at the idle state when a tour ends and no ordinary customers
are in queue. With probability Xs/ (A¢ + A2), the system will leave the empty
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state and be unavailable to ordinary customers for a period s; with density
D;(s;). For interruptions due to priority customers D;(s:) = Sp(s2). At the
end of the interruption, m, ordinary customers will have accumulated with
probability (Aesz) e °°2/mol. A sequence Im,—; of sojourn tours starting with
(mo — 1) customers in line will then ensue, if mo % 0, ending at the idle state
for the stable case. We refer to the first passage process commencing with de-
parture from the idle state and terminating at the idle state as the regeneration
tour. The time elapsed since the initiation of this tour will be denoted by 7.
Let 9., (7) be the probability per unit time that a sequence 3., of sojourn

tours will commence at time 7 during the regeneration tour. Then
(XO ) —N\oT

)\D‘()( +1)ze

my=01,2 -

9,,,0(7') =

(3.1) o + ™ 6(7')8"10 o + *

+

In (8.1) 6(7) is the Dirac delta function. Each sojourn tour has duration s,
with density D.(s.). The sequence 3., of tours has duration » of density
8™t (), where S (v) is the M/G/1 server busy period density for arrival
rate Ao and service time density D,(s.). Consequently from (3.1) we have for
the density of regeneration times v of the system

(32) 80) = s SP0) + e T (000)™6 " Da(v)/mol] # S (0)

with Laplace transform

(3.3) s(p) = s.(p) + di(p + Nl — s.(p)]).

A
)\+>\ M+)\

From 4,,(7) and the same result in M/G/1 theory called upon for (2.11) we
may obtain the probability per unit time ®@.(7) that a sojourn tour is initiated
at time 7 during the regeneration tour leaving m ordinary customers in line.
The component @™ () for a tour J,,, commenced at § = 0 has g.f. transform

a[mol (u p)
{Z u a,‘,."‘"‘(o)} W™ — 5,(p)™/lu — do(p + N1 — u))].

Since Gm(7) = Xmo Imo(7) * @I (), we have for a(u, p) = £{ D u"Gun(r)}
a(u, p)
B4 Mlu — s.(p)] + Mafda(p + Mll — u]) — dip + ML — s.(P)D)}
(Mo + M) {u — do(p + N[l — u])}

Consider now the full system motion. If the system is known to be in the idle
state & at ¢ = 0, and E(f) denotes the probability that the system is idle at
time ¢, the probability 4, (f) per unit time of the entry of an ordinary customer
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into service leaving m in line is given by A»(t) = (Ao 4+ N)E(f) * Gn(t), so
that a(u, p) = £{D 0 u™An(®)} = (o + A)e(p)a(u, p). Between ordinary
customer entries, the number of ordinary customers arriving is independent of
the coordinates describing the server sojourn state. If we denote by Wo(m, , , t),
and W, (m, o, 7, , ¢) the densities associated with the states F:(zo) and I:(x, z,),
and their generating functions by Gy (u, o, t) and Gi(u; xo, 1, ), we have at
once for the pre-emptive disciplines and general interruption

Go(u, 2o, t) = [ uAn(t)] * [ Wy (20, 8)]
Gy (u, To, 1, 8) = [ u™Am(@)] * [ %Wy (20, 21, £)]
and for the Laplace transforms
B5) gou, o, p) = (o + M)e(@)a(y, Plw(o, p + (1 — w))
and
(3.6) g1(u,x0, 71, p) = (No+ M)e(p)a(u, p)wr(zo, 21, p + (1l — u))

where a(u, p) is given by (3.4). For the states (m, z;) corresponding to in-
interruptions that took place when the server was idle there is a density
Wo(m, 23, 1) = NE (t — 21) (A1) "¢ ¢ Y /m| whose transformed generating
function is given by

(B.7) g:(u, 71, p) = Ne(p) exp [—Ni(z1)) — pr1 — M(l — w)zy].

For E (t) we observe that dE/dt = — (N0 + M)E(@) + (Ao + MN)E(@) *S(t)
where S (¢) is given by (3.2). We thus have

(3.8) e@) = {p+ o+ M) —s@]

For a priority queue with any of the three basic disciplines, (3.4), (3.5), (3.7)
and (3.8) retain their utility and (3.6) is replaced by

(3.9) g1(u,z0 ;up,zp ;p) = Mo+ N)e (D) a(u, P)v1(@o ;up ,Zp ;0 + N[l — u])

where v, is given by (2.10), (2.13) and in the paragraph below (2.4'c). The
steady state distributions are obtained by the customary Tauberian procedure.

For all of the many results checked against those of Miller [9] Heathcote [3]
Gaver [2] and Jaiswal [4, 5], agreement has been found.
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