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KARL SIGMAN,*** Columbia University 

Abstract 

We study single-server queueing models where in addition to regular arriving 
customers, there are negative arrivals. A negative arrival has the effect of removing a 
customer from the queue. The way in which this removal is specified gives rise to 
several different models. Unlike the standard FIFO GI/GI/1 model, the stability 
conditions for these new models may depend upon more than just the arrival and 
service rates; the entire distributions of interarrival and service times may be 
involved. 

STABILITY; REMOVALS 

1. Introduction 

Consider a single-server FIFO queue with two types of arrivals, regular and negative. 
Regular arrivals correspond to customers who upon arrival, join the queue with the 
intention of getting served and then leaving the system. At a negative arrival epoch, the 
system is affected if and only if customers are present; in which case a customer is 
removed from the system. Intuitively, the introduction of negative arrivals makes the 
system less congested than if they were not present. In particular, one would expect that a 
steady-state distribution for queue length can exist even when the regular arrival rate is 
greater than the service rate. In the present paper, we consider several single-server 
models of this type and give necessary and sufficient conditions for the existence of a 
unique steady-state distribution of queue length. As we show, the stability conditions 
may depend upon more than just arrival and service rates. 

The notion of negative arrivals was introduced in [3] in the case of a Markovian 
network generalising a Jackson network [4] to include negative as well as regular 
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(positive) arrivals. In particular, it was shown [3] that such a network has product form, 
though its customer flow equations are non-linear. Several practical applications 
motivate these kinds of models. Negative arrivals can represent commands to delete 
some transaction, as in distributed computer systems or databases [1] in which 
certain operations become impossible because of locking of data or because of in- 
consistency. Negative and positive customers may also represent inhibitory and 
excitatory signals, respectively, in mathematical models of neural networks [5], 
[6], while queue length in this case represents the input potential to a neuron. Other 
types of models that allow customers to leave early before service (but not due to 
external causes as in the present paper) have been considered in the literature and are 
called queues with impatient customers or queues with reneging (see for example, 
Section 2.9, p. 122 of [5]). 

2. Removal of the customer in service 

In this section we consider the case when a negative arrival removes the customer 
(if any) in service (RCS). We study two different models of this kind. The first 
model assumes that regular arrivals form a marked point process Vy = ((t,, S,): n 0)}, 
where (t,,SS) denotes the nth customer's arrival and service time. Negative 
arrivals form a Poisson process (at rate a) assumed independent of V. Let L(t) 
denote the number of customers in the system at time t. Let (Z, } and Z be 
i.i.d - exp(a) independent of V/. Our first model is very elementary, as the following 
lemma shows. 

Lemma 2.1. (L(t)} has the same distribution as if the model was a FIFO single- 
server queue with marked point process / = ((t,, S,): n 0) } with S, = min(S,, Z,). 

Proof. Because of the properties of the Poisson process, when the n th cus- 
tomer begins service, the amount of time spent with the server is distributed as 

min(S,, Z,). It follows that (L(t)} is stochastically identical to that for 
a FIFO single-server queue having customer arrival times (t, } and service times 

The importance of the above proposition is that it allows us to analyze our model 
using known methods. We give one such example. 

Proposition 2.1. If regular interarrival times are i.i.d. (general distribution A) with 
rate 0 < A < c, and service times are i.i.d. (general distribution G) at rate ! > 0 and are 
independent of the arrival process then {L (t) } is a positive recurrent regenerative process if 
and only if)A < i where 

d- E{min(S, Z)} = f e-s"(1 - G(s))ds. 

Proof. From Lemma. 2.1 we see that (L(t)} is stochastically the same as the 
number in system process of a FIFO GI/GI/1 queue with interarrival time dis- 
tribution A and service time distribution that of min(S., Z,). The result thus 
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follows from well-known results on such queues (see for example, Chapter 9 
of[11]). 

We point out (more generally) that if V/ is either stationary ergodic or governed by a 
Harris recurrent Markov process (HRMP) then so is V/. In this case let S denote a generic 
service time from a Palm version of Vy. Then {L(t)} has a stationary ergodic version as 
long as A < E{min(S, Z)} ([2], [8], [9]). 

Our second model assumes that the superposition of negative and regular arrivals 
forms a renewal process with general interarrival time distribution F assumed to have 
non-zero finite first moment; T will denote a generic random variable -F. 
Independent of the past, with probability 0< p < 1 an arrival is regular and 
with probability q = 1 - p an arrival is negative. We assume that customer service 
times (S,:n n 0} are i.i.d. - G, where G is a general distribution with non-zero 

def finite first moment. = (E(S)) -' is the service rate (S denotes a generic service 
time). We assume that the service time sequence is independent of the exogenous 
renewal process. We refer to this as the coin flipping model (CF). Let N(t) denote 
the counting process of a non-delayed renewal process having cycle lengths 
i.i.d. G. Let T_ denote a generic negative interarrival time. T_ has the dis- 
tribution of a geometric sum (parameter q) of i.i.d. F distributed interarrival 
times; E(T_) = E(T)/p. 

E(N(T_)) = E(N(t)) {n1 pn -qF*(dt) 

denotes the expected number of potential service completions during T_. Here F*n 
denotes the nth-fold convolution of F. 

Proposition 2.2. For the coin flipping RCS model, {L(t)} is positive recurrent 
regenerative if and only if3 d (p/q) - E(N(T_)) - 1 < 0. 

Proof. First we prove sufficiency. Let t4 denote the time of the nth negative 
arrival. Let X, = L(t, + ). It is easily seen that X is an aperiodic irreducible Markov 
chain with state space the non-negative integers. We show that X is ergodic by use 
of Foster's negative drift criterion (see for example, Theorem 6.1 of [10]). To this 
end, it suffices to show that for some k there exists an e >0 such that for 
1> k, Et(X,) <1 - e. Observe that p/q is precisely the expected number of 
regular arrivals between two consecutive negative arrivals. For 1 sufficiently large we 
thus have Ei(X,) - 1 < 0 by our hypothesis. It follows that for any 0 < < 
I p/q - E(N(T_))- II a k can be found giving us the desired negative drift. Thus 
X is ergodic. Assume that X0 = 0, let z, denote the consecutive times at which X 
hits 0 and embed them into continuous time via sv = t-. By ergodicity 

E(rl,) 
< o 

and hence by Wald's equation E(s,) = E(z,)E(T_) = E(T~,)E(T)/p < c. Thus L(t) is 
positive recurrent regenerative with respect to the renewal process (sn). For necessity, we 
apply (iii) of Theorem 11.3 of[10]. Assume that p/q - E(N(T_)) - 1 = 6 > 0. We must 
find a bounded non-negative function g such that 

Eig(Xl) 
g(l), x > k and 

g(l)> sup{ g(y) : y < k), I > k. For k large, we will use g(x) = min(x, k + 3). Let 
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A be distributed as the number of regular arrivals during T_. If 1 > k, g(l) = 

min(l, k + 6) and Eig(X1)= E{min((l + A - N(T_) - 1)+, k + 6))} k + 6 as k - oc. 
Thus X, is transient. In particular only finitely many regular arrivals ever find an empty 
system. But visits of X, to any fixed state i also can occur only finitely many times, thus, 
L(t)-* oo as t - oo and L(t) can not be positive recurrent regenerative with respect to 
any embedded renewal process. For the case 6 = 0, we can apply Theorem 8.1 of [10] 
with g(x) = x, A = [0, k] and f = p/q to show that the set [0, k] is null recurrent for all 
sufficiently large k. This implies that X is null recurrent and hence P(s, < c) = 1 and 
E(s,) = oo (via Wald's equation). In this case, let pk denote the limit as t --o of 
1/t f P(L(s) = k)ds. From renewal theory Pk = 0 if E s I(L(s) = k)ds < :c. To estab- 
lish this, consider an alternative system (designated by L, etc.) with the same input 
except each service time has been scaled by a > 0. For a < 1, L(t) 

- 
L(t) for all t. 

Moreover, for a sufficiently small 3 <0 so that L(t) is positive recurrent. Hence 

E I(L(s) < k)ds < E I(L(s) = k)ds < co. 

Thus Pk = 0 for all k implying that L(t) is not stochastically tight and hence can 
not be positive recurrent regenerative with respect to any embedded renewal process. 

Remark 2.1. In the case of Poisson regular arrivals (rate 2), negative interarrival 
times i.i.d. - A (general distribution), and i.i.d. service times (general distribution G) 
one can use the method used in proving Proposition 2.2 to obtain the following result: 
L(t) is positive recurrent regenerative if and only if AE(T_ ) - E(N(T_)) - 1 < 0 where 
now T_ - A. 

3. Removal of the customer at the tail of the queue 

In this section we consider a model where at a negative arrival epoch, the customer in 
the system who arrived most recently is removed; if the system is empty then nothing is 
done. Observe that the only time a customer is removed from service is when he is the 
only one in the system at a negative arrival epoch. This model amounts to removing the 
customer at the tail of the queue; hence, we refer to it as the RCT model. We assume that 
the superposition of regular and negative arrival times, t,) }, forms a renewal process at 
rate 0 < A < o0 with interarrival times T, i.i.d. - F. Let K, = 1 if the n th arrival is 
positive and 0 if negative. We shall assume that {K,n) is a recurrent Markov chain 
independent of {t, } and having the property that P(K, = 1 K0= 0)= 1, that is, 
two or more negative arrivals cannot occur in a row. Let p = P(K, = 1 I K0 = 1) 
q = P(K = 01 Ko = 1) = 1 - p; 0 < p < I. Service times S, are assumed i.i.d. - G, 
independent of {t,, K,) } and we assume that 0 <~ -I' E(S) < x. 

Proposition 3.1. For the RCT model, (L (t)} is positive recurrent regenerative if and 
only if) <g(1 + p)/(l1 - p). 

Proof. For mathematical convenience, we imagine that every arrival (regular or 
negative) brings a service time with it; S, denotes the service time of the n th arrival. Let 
V(t) denote the total amount of work in system at time t. Define W, = Vi(t, - ) ifK, = 1; 
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W, = V(t, + ) if Kn = 0. Define A, = SnKn - Tn - Sn(1 - 
K,+~). 

It follows (with a little 
thought) that 

(3.1) W,+1 = { W, + An) +, 

and hence we have a reflected random walk with increments A, governed by the 
Harris ergodic Markov chain X,, = (S,, T,, K,, K,,+). From known results (see [8]) 
we obtain Harris ergodicity of the Markov chain Z, =(W,,, X,) if and only if 
E,(A,) <0 where v is the stationary distribution for X,. It is easily shown 
that P,(K,, = 0)=p/(l + p) and hence (since (K,,) is assumed independent of 

((S,,, T,)}) that 

(1 -p) 
E,(A,,) = E(S) - E(T). 

(1 + p) 

Thus (W,,, X,) is positive Harris recurrent if and only if A < u(1 + p)/(1 - p); in this 
case let 7r be the stationary distribution for (W,, X,). P,( W, = 0)> 0 and hence either 
P,(W, = 0,K,K = 1)> 0 or P,(Wn = O, K, = 0)> 0. But if the event Wn = 0,K, = 0} 
occurs (a negative arrival leaves behind an empty system) then so will (W,n+ = 0, 
K,, + = 1) (the next arrival, necessarily regular, finds the system empty) since by assump- 
tion, two negative arrivals can not occur in a row. It follows that P,( W, = 0, K, = 1) > 0 
and hence by Wald's equation L(t) is positive recurrent with regeneration points 
the consecutive times at which a regular arrival finds an empty system. Analogous 
to the proof of Proposition 2.2, (L(t)} is not stochastically tight when E,(An,) 

_ 
0, 

and hence cannot be positive recurrent regenerative with respect to any embedded 
renewal process. 

Remark 3.1. Results like Proposition 3.1 can be obtained in a more general set-up: 
when (S,, T,, K,) is assumed governed by a positive Harris recurrent Markov chain 0 

(and P(K,+, = 0 I K, = 0) = 0). In this case, however, the regenerative structure of L(t) 
is more complicated. 

Remark 3.2. When the input to RCT is a general marked point process y/ = 

(t,, S,, K,), the stability conditions can be quite varied as the following example 
shows. Start with an initially empty M/M/1 queue with arrival rate ) and service rate 

u; p = A/ < 1. Let V = (t,, S,) denote the corresponding point process of arrival 
and service times. Let I, denote the length of the nth idle period and choose U, 
such that (Un, In)-- Uniform(0, I,) and (Un,,I,) are i.i.d. As soon as the nth idle 
period begins, let a negative arrival occur U, time units later. Construct a new marked 
point process y = (t,, S,, K,) where t, denotes the nth arrival (regular or negative), 
S,, the nth arrival's service time (we imagine that negative arrivals bring one with 
them), and K, is defined as before. By construction, every negative arrival finds 
an empty system and hence has no effect on the system; p < 1 remains the correct 
stability condition. Moreover, the proportion of arrivals that are negative is strictly 
greater than zero. Finally observe that the point process regenerates at each negative 
arrival epoch. 
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