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Queuing Network Models for Delay
Analysis of Multihop Wireless Ad

Hoc Networks

1 INTRODUCTION

A multihop wireless ad hoc network is a collection of nodes that communicate with
each other without any established infrastructure or centralized control. The trans-
mission power of a node is limited, thus the packets may have to be forwarded
by several intermediate nodes before they reach their destinations. Hence each
node may be a source, destination and relay. The wireless medium is shared and
scarce, therefore ad hoc networks require an efficient MAC protocol [2]. Since
ad hoc networks lack infrastructure and centralized control, MAC protocols for ad
hoc networks should be distributed, such as random access MAC protocols, e.g.
MACA [11] and MACAW [2]. The delay and throughput of wireless ad hoc net-
works depend on the number of nodes, the transmission range of the nodes, the
network traffic pattern and the behavior of the MAC protocol.

In this paper we investigate how the end-to-end delay and maximum achievable
throughput in a random access based MAC multihop wireless network with station-
ary nodes depend on the number of nodes, transmission range and traffic pattern.
We propose a queuing network model for delay analysis of random access multi-
hop wireless ad hoc networks. The queuing network model proposed in this paper
is unique in that it allows us to derive closed form expressions for the average end-
to-end delay and maximum achievable throughput. The packet delay is defined as
the time taken by a packet to reach its destination node after it is generated. The
average end-to-end delay is the expectation of the packet delay over all packets and
all possible network topologies. Our analysis takes into account the queuing delays
at source and intermediate nodes. The packets are assumed to have a fixed size and
random arrival process. Moreover we also characterize how the average end-to-end
delay and maximum achievable throughput vary with the degree of locality of traf-
fic. The primary purpose of this study is not to accurately model the performance
of standard protocols like IEEE 802.11 MAC (even though the results do provide
a good match with ns-2 simulations) but to gain insights into the queuing delays
and maximum achievable throughput in random access multihop wireless ad hoc
networks.

Several studies have focused on finding the maximum achievable throughput and
characterizing capacity-delay tradeoffs in wireless ad hoc networks e.g. [8, 10, 14,
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15]. In [10] it is shown that for a wireless network with n stationary nodes, the
per-node capacity scales 2 as Θ(W/

√
n log n). In [14], the authors use simulations

in order to study the dependence of per-node capacity on IEEE 802.11 MAC in-
teractions and traffic pattern for various topologies like single cell, chain, uniform
lattice and random network. An estimate of the expressions for one-hop capacity
and upper bound of per-node throughput is obtained using the simulation results.

In [8], the authors characterize the delay-throughput tradeoffs in wireless networks
with stationary and mobile nodes. It is shown that for a network with stationary
nodes, the average delay and throughput are related by D(n) = Θ(nT (n)), where
D(n) and T (n) are the average end-to-end delay and throughput respectively. How-
ever the delay is defined as the time taken by a packet to reach the destination after
it has left the source. Also, according to the network model, the packet size scales
with the throughput. Under these assumptions the delay is simply proportional to
the average number of hops between a source-destination pair. i.e. In their model,
there is no delay due to queuing. If, more realistically, the packet size is assumed
to be constant and the delay is defined as time taken by a packet to reach the des-
tination after its arrival at the source, there would be queuing delays at the source
and intermediate nodes.

Several recent studies have proposed queuing models for performance evaluation
of the IEEE 802.11 MAC. A finite queuing model is proposed and used in [24]
for evaluating the packet blocking probability and MAC queuing delays in a Basic
Service Set. A queuing model for performance evaluation of IEEE 802.11 MAC
based WLAN in the presence of HTTP traffic is proposed in [17]. In [18] the service
time of a node, in IEEE 802.11 MAC based wireless ad hoc network, is modeled as
a Markov modulated general arrival process. The resulting M/MMGI/1/K queuing
model is used for delay analysis over a single hop in the network. An analytical
model for evaluating closed form expression for the average queuing delay over a
single hop in IEEE 802.11 based wireless networks is presented in [23]. In [19],
the authors use queuing theoretic approach in order to calculate the mean packet
delay, maximum throughput and collision probability for an elementary four node
network with hidden nodes and extend the results to linear wireless networks. It is
worth noting that none of the prior works [17–19, 23, 24] extends to a general two
dimensional wireless network.

2 The asymptotic notations used in this paper have the following meanings:

• f(n) = Θ(g(n)) ⇒ ∃ c1 , c2 , no > 0 s.t. c1g(n) ≤ f(n) ≤ c2g(n) ∀ n ≥ no.

• f(n) = O(g(n) ⇒ ∃ c, no > 0 s.t. 0 ≤ f(n) ≤ cg(n) ∀ n ≥ no .

• f(n) = o(g(n) ⇒ ∃ c, no > 0 s.t. 0 ≤ f(n) < cg(n) ∀ n ≥ no.

• f(n) = ω(g(n)) ⇒ ∃ c, no > 0 s.t. 0 ≤ cg(n) < f(n) ∀ n ≥ no.

.
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We propose a detailed analytic model for multihop wireless ad hoc networks based
on open G/G/1 queuing networks. We first evaluate the mean and second moment
of service time over a single hop by taking into account the back off and collision
avoidance mechanisms of IEEE 802.11 MAC. We then use the diffusion approxi-
mation for solving open queuing networks in order to derive closed form expression
for the average end-to-end packet delay. Using the average service time of the nodes
we obtain an expression for the maximum achievable throughput. We present de-
tailed discussions on how the maximum achievable throughput obtained from our
model compares with the per-node capacity of Gupta-Kumar’s model. The main
results of this paper are:

(1) The average end-to-end packet delay for our model is D(n) = ρ
λ·(1−ρ̂)

, where
ρ is the utilization factor of a node, λ is the packet arrival rate at the nodes
and ρ̂ is a variable whose value depends on first and second moments of inter
arrival and service times.

(2) The maximum achievable throughput in a multihop wireless ad hoc network is
λmax = o

(
1

snr(n)2

)
, where s is the expected number of hops between a source

destination pair and r(n) is the transmission radius of the nodes.
(3) When the parameters of our network model are comparable to the Gupta-

Kumar’s model [10], λmax = o
(

W√
n log n

)
.

The analytical results are verified against extensive simulations and numerical com-
putations. We also perform NS-2 simulations and discuss how the analytical results
compare with the delay results obtained for some of the established wireless proto-
cols.

The rest of the paper is organized as follows. In Section 2 we briefly describe the
well known diffusion approximation for solving open G/G/1 queuing networks. De-
tailed description of the network model in Section 3 Delay and throughput analysis
of multihop wireless networks is presented in Section 4. In Section 5 we present
discuss intuitive interpretations of the analytical results and investigate how the
results deviate from delay and throughput in a more realistic network. The compar-
ison of the analytical and simulation results is presented in Section 6. Finally we
present concluding remarks in Section 7.

2 DIFFUSION APPROXIMATION METHOD

The diffusion approximation [4] can be used for solving an open G/G/1 queuing
network provided that all the nodes in the network are single server with first-come
first-serve (FCFS) service strategy. The advantage of using the diffusion approxi-
mation in this work is that it allows us to obtain closed form expressions for the
average end-to-end delay.
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In this section we briefly describe how the diffusion approximation is used to solve
an open G/G/1 queuing network. (Please see [4] for details). Consider an open
queuing network with n service stations, numbered from 1 to n. The external arrival
of a job is a renewal process with an average inter-arrival time of 1/λe and the
coefficient of variance of inter-arrival time equals cA. The mean and coefficient of
variance of the service time at a station i are denoted by 1/µi and cBi, respectively.

The visit ratio of a station in a queuing network is defined as the average number
of times a job is forwarded by (i.e. visits) the station. The visit ratio of station i,
denoted by ei, is given by

ei = p0i(n) +
j=n∑
j=1

pji(n) · ej (1)

where p0i denotes the probability that a job enters the queuing network from station
i and pji denotes the the probability that a job is routed to station i after completing
its service at station j.

There are two sources of job arrivals at a station: the jobs that are generated at the
station and the jobs that are forwarded to the station by other stations. The resulting
arrival rate is termed the effective arrival rate at a station. The effective arrival rate
at the station i, denoted by λi is given by

λi = λeei (2)

The utilization factor of station i, denoted by ρi, is given by

ρi = λi/µi (3)

The squared coefficient of variance of the inter-arrival time at a station i, denoted
by c2

Ai, is approximated using

c2
Ai = 1 +

n∑
j=0

(c2
Bj − 1) · p2

ji · ej · e−1
i (4)

where c2
B0 = c2

A.

According to the diffusion approximation, the approximate expression for the prob-
ability that the number of jobs at station i equals k, denoted by π̂i(k), is

π̂i(k) =

⎧⎨
⎩1 − ρi k = 0

ρi(1 − ρ̂i)ρ̂
k−1
i k > 0

(5)

where

ρ̂i = exp

(
− 2(1 − ρi)

c2
Ai · ρi + c2

Bi

)
(6)
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Fig. 1. A portion of a multihop wireless ad hoc network.

The mean number of jobs at a station i, denoted by Ki, is

Ki = ρi/(1 − ρ̂i) (7)

3 QUEUING NETWORK MODEL

In this section we present the network model and develop a queuing network model
for multihop wireless networks. We also derive expressions for the parameters of
the queuing network model.

3.1 The Network Model

The network consists of n + 1 nodes, numbered 1 to n + 1, that are distributed
uniformly and independently over a torus of unit area. We assume a torus area in
order to avoid complications in the analysis caused by the edge effects. Each node
is assumed to have an equal transmission range, denoted by r(n). Let rij denote
the distance between nodes i and j. Nodes i and j are said to be neighbors if they
can directly communicate with each other, i.e. if rij ≤ r(n). Let N(i) denote the
set of nodes that are neighbors of node i. All the neighbors of a node lie on a
disc of area A(n) = πr(n)2 centered at the node. The area A(n) is termed the
“communication area” of a node. The communication area is chosen such that the
network is connected which ensures that N(i) �= φ ∀ i. The transmission rate of
each node equals W bits/second.

We use a special case of the Protocol Model of interference described in [10]. If
node i transmits to node j then the transmission will be successful only if (i) rij ≤
r(n) and (ii) rkj > r(n) for every other node k �= i, j that transmits simultaneously
with node i. In other words, node i can successfully transmit a packet to node j
only if i is a neighbor of j and no other neighbor of j is transmitting concurrently
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with i. (This is equivalent to setting ∆ = 0 in the Protocol Model in [10]).

The traffic model for the network may be described as follows. Each node in the
network could be a source, destination and/or relay of packets. Each node generates
packets with rate λ packets/sec. The delay analysis is possible for any packet gener-
ation process as long as the mean and SCV of packet inter arrival time is known. For
the sake of simplicity, we assume in our model that the packet generation process at
each node is an i.i.d. Poisson process. The size of each packet is constant and equals
L bits. When a node receives a packet from any of its neighbors, it either forwards
the packet to its neighbors with probability (1 − p(n)) or absorbs the packet with
probability p(n). The probability p(n) is referred to as “absorption probability”. In
other words, the absorption probability is the probability that a node is the desti-
nation of a packet given that the node has received the packet from its neighbors.
When a node forwards a packet, each of its neighbors is equally likely to receive
the packet. The advantage of such a model is that we can control the locality of the
traffic by varying the parameter p(n). The traffic is highly localized if p(n) is large
while a small value of p(n) implies unlocalized traffic. This would help us to char-
acterize the effect of the locality of the traffic on the average delay and maximum
achievable throughput.

For example, suppose that node j in Figure 1 receives a packet from i. The proba-
bility that node j is the destination of the packet is p(n). The probability that node j
forwards the packet to one of its neighbors is (1− p(n)). Suppose node j forwards
the packet, then the probability that the packet is forwarded to node k is 1

|N(j)| = 1
4
.

We assume that each node in the network has infinite buffers which means that no
packets are dropped in the network. The packets are served by the nodes on first
come first serve basis.

Multihop wireless ad hoc networks can be modeled as a queuing network as shown
in Figure 2(a). The stations of the queuing network correspond to the nodes of the
wireless network. The forwarding probabilities in the queuing network, denoted by
pij , correspond to the probability that a packet that is transmitted by node i enters
the node j’s queue. Figure 2(b) shows a representation of a node in the ad hoc
network as a station in the queuing network.

The end-to-end delay in a wireless network equals the sum of queuing and trans-
mission delays at source and intermediate nodes. We will use the queuing network
model shown in Figures 2(a) and 2(b) in order to mathematically analyze the end-
to-end delay.
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Fig. 2. Queuing network model for multihop wireless ad hoc network.

3.2 Parameters of the Queuing Network Model

In this section we derive expressions for the parameters of the queuing network
model of multihop wireless networks.

Lemma 1 The expected probability that a packet is forwarded from node i to node
j, denoted by pij(n), is

pij(n) =

⎧⎨
⎩

1−p(n)
n

(1 − (1 − A(n))n) i �= j

0 i = j
(8)

Proof Let P [i → j] denote the probability that a packet forwarded by node i
enters the queue at node j. We define βj,k

ij = P [i → j|j ∈ N(i), |N(i)| = k],
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βj
ij = P [i → j|j ∈ N(i)] and αj,k

i = P [|N(i)| = k|j ∈ N(i)]. Thus

βj,k
ij =

1

k
(1 − P [j absorbs the packet]) =

1 − p(n)

k

Since the nodes are uniformly and independently distributed over a unit area, the
probability that a node is in neighborhood of the node i equals A(n). Hence P [j ∈
N(i)] = A(n) and

αj,k
i =

⎛
⎜⎝ n − 1

k − 1

⎞
⎟⎠ (1 − A(n))n−kA(n)k−1

Therefore,

βj
ij = E[βj

ij] =
n∑

k=1

βj,k
ij αj,k

i =
1 − p(n)

nA(n)
(1 − (1 − A(n))n)

Also according to the model node i cannot forward a packet to node j unless j ∈
N(i). Hence E[P [i → j]|j /∈ N(i)] = 0. So the expected forwarding probability is
given by

pij(n) = βj
ijP [j ∈ N(i)] =

1 − p(n)

n
(1 − (1 − A(n))n)

�

Lemma 2 The expected visit ratio of node i, denoted by ei, is given by

ei =
1

(n + 1)p(n)
∀ i (9)

Proof The visit ratio of a node in the queuing network is given by (1). Taking
expectation of both sides of the equation we have,

ei =
1

n + 1
+

j=n+1∑
j=1

pji(n)ej

Each node of the wireless network is similar, thus from symmetry ei = ej ∀ i; j.
Also pij = 1−p(n)

n
(1 − (1 − A(n))n). Since in our model A(n) is chosen such that

the network is connected with high probability, therefore (1 − (1 − A(n))n) ≈ 1

and hence pij(n) ≈ 1−p(n)
n

. From symmetry

ei =
1

n + 1
+

j=n+1∑
j=1,j �=i

1 − p(n)

n
ei
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By rearranging the above equation we get (9). �

Lemmas 1 and 2 (equations 8-9) indicate that the nodes visit ratio and the forward-
ing probabilities averaged over all possible instances of the topologies are similar
to the visit ratios and forwarding probabilities of an average topology where each
node has a number of neighbors equal to the average case. Thus, as a result of
these two lemmas, one may derive the remaining set of model parameters (effec-
tive packet arrival rate and number of packets traversed) by considering the average
case topology. Applying these results in the diffusion model will provide expres-
sions for the average end to end delay, defined as the expectation of the packet delay
over all packets and all possible networks.

Lemma 3 The effective packet arrival rate at a node i, denoted by λi, is

λi = λ/p(n) (10)

Proof The packet arrival process at each node is an i.i.d. Poisson process with rate
λ. So the total external arrival rate, denoted by λe, equals (n + 1)λ. According to
(2), λi = λeei. Substituting ei from (9) and λe we get (10). �

Lemma 4 The expected number of hops traversed by a packet between its source
and destination, denoted by s, equals 1

p(n)
.

Proof Let s denote the number of hops between a source and destination, then
P [s = k] = (1 − p(n))k−1p(n) k ≥ 1. Thus,

s = E[s] =
∞∑

k=1

k · (1 − p(n))k−1p(n) =
1

p(n)
(11)

�

The average queuing delay depends upon the service time distribution of the nodes.
The service time distribution depends on the MAC protocol used by the nodes.

4 QUEUING ANALYSIS

In this section we first present a model for a random access MAC that accounts for
the back off and collision avoidance mechanisms of IEEE 802.11 MAC. We then
present the delay analysis of multihop wireless ad hoc networks by integrating the
MAC model with the queuing network model developed in Section 3.
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4.1 The MAC Model

4.1.1 Interfering Neighbors

Two nodes are said to be interfering neighbors if they lie within a distance of 2r(n)
of each other. The transmission of a node would be successful if none of the inter-
fering neighbors of the node transmits concurrently. Also two nodes may success-
fully transmit at the same time if they are not interfering neighbors of each other.
The definition of interfering neighbors is similar to the definition given in [10].

4.1.2 The Random Access MAC Model

Before transmitting each packet the nodes count down a random back-off timer.
The duration of the timer is exponentially distributed with mean 1/ξ. As in IEEE
802.11, the timer of a node freezes each time an interfering neighbor starts trans-
mitting a packet. When the back off timer of a node expires, it starts transmitting
the packet and the back off timers of all its interfering neighbors are immediately
frozen. The timers of the interfering neighbors are resumed as soon as the trans-
mission of the packet is complete. The time required to transmit a packet from a
node to its neighbor is L/W +To, where To is the time required for the exchange of
RTS, CTS and ACK packets. We assume that To is negligible compared to L/W ,
so in our analysis we assume that the time required to transmit a packet is L/W .
The model is mathematically tractable and at the same time captures the behavior
of IEEE 802.11 MAC protocol.

4.2 Delay Analysis

With the help of the following three lemmas we determine the mean and second
moments of the service time of nodes using the random access MAC model. We
then present the result for end-to-end delay in multihop wireless networks.

Lemma 5 Let Hi denote the number of interfering neighbors of a node i. Then

E[Hi] = 4nA(n) (12)

E[H2
i ] = 4nA(n)(1 + 4(n − 1)A(n)) (13)

where A(n) = π · r(n)2.

Proof Since the nodes are uniformly distributed over a unit area, the probability
that a node is an interfering neighbor of node i equals π(2r(n))2. Thus the proba-
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bility that Hi = h is given by

P [Hi = h] =

⎛
⎜⎝ n

h

⎞
⎟⎠ (4πr(n)2)h · (1 − 4πr(n)2)(n−h)

Thus Hi has a binomial distribution. (12) and (13) are the first and second moment
of the binomial distribution. �

Lemma 6 Let Mi denote the number of interfering neighbors of a node i that have
at least one packet to transmit. Then under steady state,

E[Mi] = ρ4nA(n) (14)

E[M2
i ] = ρ2 · 4nA(n)(1 + 4(n − 1)A(n)) + (1 − ρ)ρ4nA(n) (15)

where ρ is the utilization factor of the nodes.

Proof Let the number of interfering neighbors of node i be Hi. Let Yj, 1 ≤ j ≤ Hi,
be an indicator random variable associated with node j, indicating whether under
steady state node j has a packet to transmit or not. (Yj = 1 if node j has a packet
to transmit, Yj = 0 if node j has no packet to transmit). Using (5) P (Yj = 1) = ρj ,
where ρj is the utilization factor of node j. By symmetry ρj = ρ ∀ j. Mi is equal to∑Hi

j=1 Yj . The expected value of Mi equals

E[Mi] = EHi
[E[Mi|Hi = h]] = EHi

[
h∑

j=1

E[Yj]] = ρE[Hi]

Substituting (12), we get (14).
Similarly the expected value of M2

i , given Hi = h, is given by

E[M2
i |Hi = h] = E[(

h∑
j=1

Yj)(
h∑

k=1

Yk)]

Since Yj is independent of Yk, we get

E[M2
i |Hi = h] =

h∑
j=1

h∑
k=1,k �=j

E[Yj]E[Yk] +
h∑

j=1

E[Y 2
j ]

⇒ E[M2
i ] = ρ2E[H2

i ] + (1 − ρ)ρE[Hi]

Substituting (12) and (13), we get (15). �

Lemma 7 Let Zi denote the number of times the timer of a node i is frozen before
its expiration. Then

E[Zi] = 4 · ρnA(n) (16)
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Proof Let Ti denote the duration of the back off timer of node i. During a transmis-
sion epoch Mi may not remain constant. In order to simplify the analysis we assume
that Mi remains constant throughout a transmission epoch of node i. The timer of
node i is frozen each time a timer of any of the interfering neighbors of i expires.
The timer of each node has an exponential distribution. Thus the probability that
Zi = z, given that Mi = m and Ti = ti, is

P [Zi = z|Ti = ti,Mi = m] = e−m·ξ·ti · (m · ξ · ti)z/z!

⇒ E[Zi|Ti = ti,Mi = m] = mξti (17)
⇒ E[Zi|Mi = m] = mξE[ti] = m ⇒ E[Zi] = E[Mi]

Substituting E[Mi] from (14), we get (16). �

Theorem 1 Let Xi and X2
i denote the mean and second moment of service time

required to serve a packet by a node i. Then

Xi = E[Xi] =
1
ξ

+ L
W

1 − 4nA(n)λi
L
W

(18)

X2
i = E[X2

i ](1 + 3m + 2m2)
L2

W 2
+ 2(2m + 1)

L

W

1

ξ
+

2

ξ2
(19)

where m = E[Mi] (eqn. (14)) and m2 = E[M2
i ] (eqn. (15)).

Proof The time taken by node i to serve a packet, denoted by Xi, is the sum of
three terms: (i) the duration of the random back off timer (ti), (ii) the duration for
which the timer remains frozen (ZiL/W ), and (iii) the transmission time (L/W ).
Thus

Xi = ti + Zi
L

W
+

L

W
(20)

Taking expectation of both sides we get,

E[Xi] = E[ti] + E[Zi] · L

W
+

L

W
=

1

ξ
+ 4ρnA(n)

L

W
+

L

W
(21)

Substituting ρ = λiXi and by rearranging, we get (18).

Also from (20) we have X2
i = (ti + Zi + L

W
)2 Given Mi = m and Ti = ti, Zi has a

Poisson distribution. So E[Z2
i |Mi = m,Ti = ti] = mξti + (mξti)

2. Using this and
(17), we get

E[X2
i |Ti = ti,Mi = m] = (1 +

L2

W 2
m2ξ2)t2i + (

2L

W
+

3L2

W 2
mξ)ti +

L2

W 2

12



Taking expectation with respect to ti we get

E[X2
i |Mi = m] = ETi

[E[X2
i |Ti = ti,Mi = m]] =

(1 + 3m + 2m2)
L2

W 2
+ 2(2m + 1)

L

W

1

ξ
+

2

ξ2

Taking expectation of the RHS w.r.t m, we get (19). �

Corollary 1 The standard deviation of service time of a node i, denoted by σ2
Xi

, is
given by

σ2
Xi

=
L2

W 2
(m + m2 + σ2

m) + 2(2m + 1)
L

W

1

ξ
+

1

ξ2
(22)

where σ2
m = m2 − m2.

The squared coefficient of variance of the service time at a node i, denoted by c2
Bi is

given by σ2
Xi

/Xi
2
. Using (4), the squared coefficient of variance of the inter arrival

time at a node i, denoted by c2
Ai, is given by

c2
Ai = 1 +

n+1∑
j=1,j �=i

(c2
Bi − 1)

1 − p(n)

n
= 1 + (c2

Bi − 1)(1 − p(n))

With the knowledge of c2
Ai, c2

Bi and ρ, we can find the parameter ρ̂ as given in (6).

Theorem 2 For the random access MAC model the average end-to-end delay in a
multihop wireless network, denoted by D(n), is given by

D(n) =
ρi

λ · (1 − ρ̂)
(23)

Proof Let Di denote the average delay at a node i. According to Little’s Law,
Di = Ki/λi, where Ki is the average number of packets in the queue of node i.
Substituting Ki from (7) we get

Di = Ki/λi = ρ/(λi(1 − ρ̂))

By symmetry the average delay at each node is same. Thus the average end-to-end
delay equals the product of the average number of hops traversed by a packet and
the average delay at each node. Hence D(n) = s · Di which leads to (23). �

4.3 Maximum Achievable Throughput

The maximum achievable throughput, denoted by λmax, is defined as the maximum
packet arrival rate at each node for which the average end-to-end delay remains
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finite. If the packet arrival rate exceeds λmax, the delay would tend to infinity. The
following corollary, that follows from Theorem 1, yields a relationship between the
maximum achievable throughput and the network parameters.

Corollary 2 For a multihop wireless network the maximum achievable throughput
λmax is

λmax =
p(n)

1
ξ

+ L
W

+ 4nA(n) L
W

(24)

Also from (24), λmax = o (1/snA(n)).

Proof From (18) the utilization factor of a node, ρi, is given by

ρi = λi ·
1
ξ

+ L
W

1 − 4nA(n)λi
L
W

(25)

For the average delay to be finite ρi must be strictly less than 1. Thus the following
inequality must be satisfied to ensure finite delay.

λi ·
1
ξ

+ L
W

1 − 4nA(n)λi
L
W

< 1

Substituting c = 1
ξ

+ L
W

, λi = λ
p(n)

and rearranging, we get

λ <
p(n)

c + 4nA(n) L
W

(26)

Thus the maximum achievable throughput λmax is p(n)

c+4nA(n) L
W

. Also c > 0, thus

λmax < p(n)W
nA(n)L

. So for a fixed packet size L and transmission rate W , λmax =

o( p(n)
nA(n)

). Substituting p(n) = 1
s
, λmax = o( 1

snA(n)
). �

The result of Corollary 2 re-emphasizes the importance of carefully choosing the
transmission ranges of nodes. λmax increases with decrease in r(n). However if
r(n) is too small then the network would become disconnected. According to [13],

the network is asymptotically connected for r(n) = ω(
√

log n/n). So for a con-

nected network A(n) = ω(log n/n) and λmax = o( p(n)
c+4 log(n)(L/W )

).

Another interesting observation is the dependence of λmax on the traffic pattern.
λmax is directly proportional to p(n). From (11) the expected number of hops tra-
versed by a packet equals 1/p(n). Thus another way of interpreting the result is that
λmax is inversely proportional to the expected number of hops between a source-
destination pair.

We further investigate how our result on the maximum achievable throughput com-
pares with the result by Gupta-Kumar on throughput capacity. According to the
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Gupta-Kumar model, the nodes are distributed uniformly and independently over a
sphere of unit surface area and each source chooses a random destination. Therefore
the expected distance between a source and the corresponding destination equals
the expected distance between two points uniformly and independently distributed
on a sphere. Thus the expected distance between a source destination pair in Gupta-
Kumar’s model is a constant (i.e. does not vary with n), say s

GK
. The transmission

range in their model is ω(
√

log n/n). Thus the expected number of hops between a

source-destination pair in Gupta-Kumar model is o(
√

n/ log n).

In order to compare our results with Gupta-Kumar’s results we choose our model
parameters such that we have comparable average number of hops between a source-
destination pair and comparable transmission range. In our model if we choose
p(n) =

√
log n/n, then the expected number of hops between a source and desti-

nation node is s = 1/p(n) =
√

n/ log n, which is comparable to the Gupta-Kumar

model. Also r(n) =
√

log n/n or A(n) = π log n/n makes the transmission range
of our model comparable to that of the Gupta-Kumar model. So for the model pa-
rameters that are comparable to the Gupta-Kumar model, the maximum achievable
throughput is

λmax =

1
4π

W√
n log nL

1 + c
4π log n(L/W )

(27)

or λmax = o(W/
√

n log n).

The above discussion implies that for the similar values of parameters of the net-
work model we get a bound similar to the Gupta-Kumar’s bound on throughput ca-
pacity, but for our model the bound is not achievable. The reason for the bound not
being achievable is that in our model we consider a random access MAC protocol
rather than a perfect deterministic scheduling. Thus the bound becomes unachiev-
able because some channel capacity is wasted by the nodes during contention for
the channel.

5 DISCUSSIONS

In this section we present a brief intuitive interpretation of the mean service time
and evaluate the maximum achievable throughput for multihop wireless networks.
We also discuss how our analytical results vary from those obtained for a more
pragmatic network model.
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5.1 Interpretation of Mean Service Time

We present a mathematically non-rigorous, but intuitive, derivation of mean service
time of a node for the random access MAC model. This derivation further elucidates
the result on service time. Consider a hypothetical two node network where one of
the nodes transmits packets to the other node. Both nodes use the random access
MAC model described in 4.1. In this scenario there is no contention for the channel
and the average service time of the transmitter would be 1

ξ
+ L

W
. We refer to 1

ξ
+ L

W

as the uncontended service time.

Now consider a node (say node 0) with m interfering neighbors, numbered 1 through
m. The node and its interfering neighbors use the random access MAC model for
collision avoidance. Packets of size Lj bits arrive at a rate of αj packets/second at
neighbor j. From the point of view of node 0, the channel is available when no other
interfering neighbor is transmitting. Under steady state, the fraction of time that the
channel is available to node 0 is 1 − ∑m

k=1 αk(Lk/W ). So the service time of node
0 would be the uncontended service time scaled by the fraction of time the channel
is available to node 0. Hence the service time of node 0 equals 1/ξ+L0/W

1−
∑m

k=1
αk(Lk/W )

.

We refer to
∑m

k=1 αk(Lk/W ) as the contention term.

In a multihop wireless network, m is analogous to the number of interfering neigh-
bors and αj = λi, Lj = L ∀ j. The expected value of the contention term (or
fraction of time channel is not available to a node) is 4nA(n)λi

L
W

and therefore the

service time of a node equals 1/ξ+L/W
1−4nA(n)λi(L/W )

.

5.2 Comparison With Delay and Throughput in Real Networks

The analytical model in this paper is kept reasonably simple so that it is possible
to obtain closed form expressions for delay and throughput. In particular our MAC
model does not take into account packet collisions and our routing model is random
walk of packets over the network. Thus our model deviates from the real world
scenarios where the packets collide due to random access MAC and the packets are
routed along fixed paths dictated by routing protocols. In this subsection we discuss
how much the delay and maximum achievable throughput in real world networks
deviate from our analytical results.

5.2.1 Effect of Packet Collisions

Consider a more practical MAC model where a node transmits as soon as its trans-
mit timer expires and the interfering neighbors freeze their timers only when they
sense the transmission. For such a MAC, the transmission of node i may collide
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with transmission of an interfering neighbor if difference between the time in-
stances when the transmit timers of nodes i and that of interfering neighbor expire
is less than the propagation delay between the nodes. Let d denote the propagation
delay between node i and its interfering neighbor that has a packet to send, then
the probability that the transmission of i does not collide with that of the interfer-
ing neighbor equals e−2ξd. Since the interfering neighbors are located within two
hops of node i, d ≤ 2r/c = δ, where v is velocity of electromagnetic waves. Thus
the probability that the transmission of node i does not collide with an interfering
node’s transmission is greater than e−2ξδ. So if node i has I interfering neighbors,
then the probability that a transmission is a success is bounded by

P [Success] ≥ e−2ξδI (28)

Let Ps denote the expected probability of success, averaged over all possible topolo-
gies, then

Ps ≥
(
1 −

(
1 − e−2ξδ

)
4A(n)

)n
= P (L)

s (29)

The expected number of times a node transmits a packet before it is received suc-
cessfully by its neighbor equals 1/Ps. It is easy to see that the RHS of eqn. (21) is
scaled by a factor of 1/Ps and mean service time may be evaluated by rearranging
the resulting equation. So for the more practical MAC model, that allows packet
collisions, the mean service time is bounded by

1
ξ

+ L
W

1 − 4nA(n)λiL/W
≤ Xi ≤

1
ξ

+ L
W

P
(L)
s − 4nA(n)λiL/W

(30)

The maximum achievable throughput, evaluated using λiXi < 1, is bounded by

λ(L)
max =

P (L)
s p(n)

1
ξ

+ L
W

+ 4nA(n) L
W

≤ λmax ≤ p(n)
1
ξ

+ L
W

+ 4nA(n) L
W

= λ(U)
max (31)

The dependence of λ(L)
max, the lower bound of λmax, on the rate of transmit timer,

ξ, is particularly interesting. As ξ increases, both P (L)
s and 1/ξ term in the de-

nominator decrease. Thus there is a tradeoff in choosing the rate of the transmit
timer - a high ξ leads to lower waiting time before transmission but leads to higher
probability of packet collision. Let ξ� be the optimal value of ξ that maximizes the
lower bound of λmax. Equating dλ(L)

max/dξ to 0 yields that ξ� satisfies the following
relation

(b(n)ξ�2 + ξ�)e−2ξ�δ

(1 − 4A(n)(1 − e−2ξ�δ))
=

1

8nA(n)δ
(32)

where b(n) = L/W + 4nA(n)L/W . Closed form expression for ξ� cannot be
evaluated from the above relation. However by approximating e−2ξ�δ ≈ 1 (high
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probability of success) and solving the resulting quadratic equation we get

ξ� ≈ 1

2L/W

1

1 + 4nA(n)

⎛
⎝

√√√√1 +
(1 + 4nA(n))L

2nA(n)Wδ
− 1

⎞
⎠ (33)

As expected, ξ� decreases with increase in the expected number of interfering
neighbors, packet transmission time and propagation delay.

5.2.2 Effect of Deterministic Routing

In the routing model used in this paper, a node forwards a packet to any of its neigh-
bor with equal probability which spreads the traffic evenly throughout the network.
On the other hand, a deterministic routing protocol routes each packet belonging to
a particular flow (typically identified by source-destination pair) along a determin-
istic path, determined using some goodness metric. This often leads to a situation
where large number of flows pass through a few nodes that have good paths to
many flow destinations. This leads to creation of routing bottlenecks leading to
large queuing delays intermediate nodes and higher end-to-end delays. Thus (23)
is a lower bound on the average end-to-end delays in networks with deterministic
routing.

6 SIMULATIONS

We perform the following simulations:

(1) Simulations of the model: These simulations verify the validity of the assump-
tions made in the analysis and the accuracy of diffusion analysis.

(2) Simulations using shortest path routing instead of probabilistic routing: We
compare the analytical results with a practical scenario where the packets are
routed along the shortest path rather than undergoing probabilistic routing.

(3) NS simulations: These simulations provide comparison of the results of our
analytical model against results obtained from NS simulations that employ
standard MAC (IEEE 802.11) and routing (DSDV) protocols.

The rest of this section presents the simulation results for each of the above scenar-
ios.

18



100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ve

ra
ge

 e
nd

−
to

−
en

d 
de

la
y

Number of nodes

Theory, λ = 1.0
Simulation, λ = 1.0
Theory, λ = 0.7
Simulation, λ = 0.7
Theory, λ = 0.5
Simulation, λ = 0.5

(a) Average end-to-end delay vs. num-
ber of nodes for varying arrival rates.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 e
nd

−
to

−
en

d 
de

la
y

Arrival Rate (λ)

Theory, n = 800
Simulation, n = 800
Theory, n = 600
Simulation, n = 600
Theory, n = 500
Simulation, n = 500

(b) Average end-to-end delay vs. ar-
rival rate for varying network size.

100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ve

ra
ge

 e
nd

−
to

−
en

d 
de

la
y

Number of nodes

Theory, p(n) = 1.2(log(n)/n)0.5

Simulation, p(n) = 1.2(log(n)/n)0.5

Theory, p(n) = (log(n)/n)0.5

Simulation, p(n) = (log(n)/n)0.5

Theory, p(n) = 0.8(log(n)/n)0.5

Simulation, p(n) = 0.8(log(n)/n)0.5

(c) Average end-to-end delay vs. num-
ber of nodes for varying absorption
probabilities.

100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

0.3

A
ve

ra
ge

 e
nd

−
to

−
en

d 
de

la
y

Number of nodes

Theory, λ = 1.2
Simulation, λ = 1.2
Theory, λ = 1.0
Simulation, λ = 1.0
Theory, λ = 0.8
Simulation, λ = 0.8
Theory, λ = 0.6
Simulation, λ = 0.6

(d) Comparison of analytical results
with simulation results for the shortest
path routing.

Fig. 3. Comparison of the analytical results with simulation results.

6.1 Simulations for Validating the Analytical Results

The simulation setting is the following. The network topology for the simulations
consists of n nodes scattered randomly over a torus of unit surface area. Each node
can communicate with the nodes within a distance r(n) =

√
log n

n
. The random ac-

cess MAC protocol used by the nodes is the same as described in 4.2. Each node
produces packets of size L = 1 Kbits at the rate of λ packets/sec. The transmission
rate of each node is W = 106 bits/sec. The probabilistic routing described in Sec-
tion 3 is used for the simulations. In order to ensure that the network is in a steady
state, the first 100 seconds of the simulations are discarded. The average delay for
a particular topology is obtained by averaging the end-to-end delay of all pack-
ets produced during the simulation. In order to average out the effect of topology,
each simulation is repeated over several topologies. The average end-to-end delay
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is obtained by averaging the average delay for all topologies.

Figure 3(a) shows how the average end to end delay, as obtained from the simu-
lations, varies with the number of nodes for λ = 0.5, λ = 0.7 and λ = 1.0 with
p(n) =

√
log n

n
. Figure 3(b) shows how the average end to end delay varies with

the arrival rate (λ) for n = 500, 600 and 800 with p(n) =
√

log n
n

. Figure 3(c)
shows how the average end to end delay varies with the number of nodes for vari-
ous values of absorption probability with λ = 1 packets/sec. The theoretical values
of the average end-to-end delay as obtained from the analytical results are plotted
alongside the simulation results in Figures 3(a), 3(b) and 3(c). It is observed that
the simulation results agree closely with the theoretical values.

6.2 Comparison of Results for the Shortest Path Routing with the Analytical Re-
sults

In our model the packets are subjected to probabilistic routing, which is similar
to a random walk. It would be pertinent to compare the analytical results for our
model with the simulations where the packets are routed to the destination along
the shortest path.

The simulation setting differs from the setting described in the previous subsection
in the following manner. When a new packet is generated at a node, a destination
node for the packet is chosen at random. The packet is routed to the destination node
along the shortest path. In order to route the packets along shortest paths, each node
maintains a routing table. The routing tables are constructed using Bellman Ford
algorithm.

Figure 3(d) shows the simulation results for the shortest path routing along with
the analytical results obtained from our model. The absorption probability of our
model is scaled appropriately so that the average number of hops between a source-
destination pair for the shortest path routing matches with the average number of
hops traversed by a packet in the probabilistic routing model. It is observed that
when the network is lightly loaded, the analytical results closely approximate the
average delay with the shortest path routing. However as the network becomes
loaded the average delay obtained from the simulations is much higher than the
analytical results. The reason for this deviation is that in the case of the shortest
path routing bottlenecks are formed in the network in highly loaded conditions. The
probabilistic routing ensures that the traffic is spread uniformly over the network
and thus the average end-to-end for the analytical model increases less rapidly.
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6.3 Comparison Against Results from NS Simulations

As mentioned earlier, the aim of the delay analysis presented in this paper is to
capture the effect of random access MAC and queuing delays on the average end to
end delay and maximum achievable throughput of multihop wireless networks. Our
model includes an idealistic random access MAC and probabilistic routing model.
The MAC model assumes that the transmission timers of all interfering neighbors
of a node freeze as soon as the node starts transmitting. This precludes the possibil-
ity of any packet collision at the intended receiver. However IEEE 802.11, which
is the de facto MAC protocol of wireless networks, is not free from collisions. The
RTS packets transmitted by a node may collide with a transmission at the intended
receiver which would then prevent the node from grabbing the channel. (This is
more likely in networks with large contention window, e.g. long propagation de-
lays.) Also when a node, in an ad-hoc IEEE 802.11 network, starts transmitting,
the transmission timers of only a subset of interfering neighbors are frozen. This
subset includes only the neighbors of the transmitter and the intended receiver.

In this section we compare the analytical results for our model with the average
delay obtained from NS-2 simulations, that use IEEE 802.11 as MAC and DSDV
for routing. The purpose of this comparison is to understand how the end to end
delay in a network based on the established protocols would differ from the results
obtained from our model, given that our model includes some simplifying assump-
tions that does not capture the actual protocols (and their interactions).

The NS simulation set-up is as follows. The network consists of n nodes that are
uniformly and independently distributed over a 500m×500m area. An exponential
traffic source is attached to each node, which produces packets of length 1000 bytes
at the rate of λ packets per second. Each node chooses a random destination and
the traffic is routed to the destination using routes maintained by DSDV 3 . UDP
is used as the transport layer protocol in order to avoid delays due to congestion
avoidance mechanisms of TCP. The receive threshold 4 of the nodes is set such that
each node within a distance of 500 ·

√
log n/n meters from a transmitter is able to

listen to the transmission, in absence of any interference. The IEEE 802.11 MAC
and free space propagation models are used for the simulations.

In order to compare the simulation results with the analytical results we set the
values of the parameters of the analytical model such that they are comparable to
that of the simulation. This is done in the following manner. We obtain the values
of the average duration of the IEEE 802.11 backoff timer (ξ′) and the transmission
duration (T ′

o)
5 for each simulation setting. We use ξ = ξ′ and L

W
= T ′

o in the

3 Since the nodes are stationary, DSDV is the ideal routing protocol.
4 If the signal strength at a receiver is below receive threshold, the receiver cannot detect
the signal. Please see [7] for details.
5 T ′

o includes the time taken for the exchange of RTS, CTS, data and ACK packets i.e.
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Fig. 4. Average end-to-end delay vs. number of nodes for NS simulations.

analytical results. This ensures that the average backoff duration of MAC protocol
and the transmission time of the analytical model is same as that of the simulations.

Figure 4 shows the plots of average end-to-end delay, obtained from NS-2 simula-
tions and analytical model, as a function of number of nodes. We observe that for
lightly loaded conditions (small λ and/or n) the simulation results are less than the
analytical results. This is because in IEEE 802.11 only the transmission timers of
the neighbors of the transmitter and receiver are frozen during a transmission while
in our model we assume that the timers of all interfering neighbors are frozen. Thus
the number of times the transmission timer of a node is frozen in IEEE 802.11 is
smaller than that in our model. So the average time in which the transmission timer
of a node expires is less in IEEE 802.11 leading to lesser delays. However as the
traffic load in the network increases the average end-to-end delay of the simulation
becomes larger than the analytical results. This is because the number collisions
in the simulations increase sharply as the network load increases. The number of
collisions is further increased due to the broadcast of routing update packet which
are not preceded by virtual carrier sense and RTS-CTS exchange [6]. The delay is
also affected by the formation of routing hot spots in heavy load conditions. The
simulation results indicate that the capacity of wireless networks based on standard
protocols is significantly lower than that predicted by our model. The decreased in
capacity is caused due to the collision of packets and broadcast of routing updates.

7 CONCLUSION AND FUTURE WORK

Characterization of capacity and delay in ad hoc networks has been focus of con-
siderable research. However capacity and delay of networks based on random ac-
cess MAC, like IEEE 802.11, have not been substantially studied. In this paper

T ′
o = TRTS + TSIFS + TCTS + TSIFS + TDATA + TSIFS + TACK.
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we presented delay analysis of random access MAC multihop wireless ad hoc net-
works. We derived closed form expressions for the average end-to-end delay and
maximum achievable throughput. We showed that, for comparable network param-
eters, the upper bound on maximum achievable throughput is of the same order
as the Gupta-Kumar’s bound. However for the random access MAC the bound is
not achievable. The analytical results are verified using simulations. The NS-2 sim-
ulations indicate that under heavy load the performance of the standard wireless
protocols is worse than the performance predicted by our model.

The results and framework presented in this paper leads to several venues for future
research. Our current directions include the delay analysis and characterization of
the maximum achievable throughput for hierarchical networks, many to one com-
munication scenarios, wireless networks with sleeping nodes and wireless networks
with other medium access control algorithms.
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