
Copyright © 2007 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
I3D 2007, Seattle, Washington, April 30 – May 02, 2007.
© 2007 ACM 978-1-59593-628-8/07/0004 $5.00

Quick Transitions with Cached Multi-way Blends

Leslie Ikemoto

University of California, Berkeley

Okan Arikan

University of Texas, Austin

David Forsyth

University of Illinois, Urbana-Champaign

Figure 1: This figure is a time-lapsed shot of a transition synthesized in real-time using our method. The character transitions in one second
from walking to skipping in a seamless, natural way. We invite the reader to view this animation in the accompanying movie.

Abstract

We describe a discriminative method for distinguishing natural-
looking from unnatural-looking motion. Our method is based on
physical and data-driven features of motion to which humans seem
sensitive. We demonstrate that our technique is significantly more
accurate than current alternatives.

We use this technique as the testing part of a hypothesize-and-test
motion synthesis procedure. The mechanism we build using this
procedure can quickly provide an application with a transition of
user-specified duration from any frame in a motion collection to any
other frame in the collection. During pre-processing, we search all
possible 2-, 3-, and 4-way blends between representative samples
of motion obtained using clustering. The blends are automatically
evaluated, and the recipe (i.e., the representatives and the set of
weighting functions) that created the best blend is cached.

At run-time, we build a transition between motions by matching a
future window of the source motion to a representative, matching
the past of the target motion to a representative, and then applying
the blend recipe recovered from the cache to source and target mo-
tion. People seem sensitive to poor contact with the environment
like sliding foot plants. We determine appropriate temporal and po-
sitional constraints for each foot plant using a novel technique, then
apply an off-the-shelf inverse kinematics technique to enforce the
constraints. This synthesis procedure yields good-looking transi-
tions between distinct motions with very low online cost.

Keywords: Motion evaluation, motion synthesis, motion blending

1 Introduction

Many applications require realistic, high-quality character anima-
tion. Applications as diverse as simulation, movies, and video
games depend upon natural-looking motion to increase the believ-
ability of virtual worlds.

Applications commonly demand sequences that transition between
types of motion (such as skipping to running) or between particular
frames in a motion collection. There may be several constraints on
the transition, but typically the transition must look realistic and be
of a particular duration.

Motion graphs [Molina-Tanco and Hilton 2000; Kovar et al. 2002a;
Lee et al. 2002; Arikan and Forsyth 2002] are an effective motion
synthesis technique, and can be used to generate such transitions.
The major difficulty with doing so is that the motions may not be re-
sponsive, because the shortest path between two frames may be too
long or look bad. This problem is common in practice (Section 8).

In this paper, we present a method that can generate transitions of
a user-specified length from any frame in a motion collection to
any other frame or type of motion. Our technique is a hypothesize-
and-test method, which depends on an accurate scoring mechanism
to automatically evaluate large numbers of transitions. We demon-
strate that our scoring mechanism is more reliable at recognizing
natural-looking transitions than current alternatives on our data sets.
Although we cannot generate a natural-looking transition for every
frame pair, we compute a score that indicates each transition’s qual-
ity. Hence, applications know before display whether the transition
will look natural or not.

2 Previous Work

Producing natural looking human motion is a topic of broad inter-
est. Motion can be obtained using physical considerations [Witkin
and Kass 1988; Sulejmanpas̆ić and Popović 2005], statistical mod-
els [Li et al. 2002], or by measurement [Menache 1999]. Rear-
ranging clips taken from a collection of motion can produce new,
believable motions. These new motions are obtained by search on
a motion graph — a graph where each node is a frame of motion,
each directed edge represents the possibility that one frame can be
placed after another, and each path represents an acceptable mo-

145

tion [Molina-Tanco and Hilton 2000; Kovar et al. 2002a; Lee et al.
2002; Arikan and Forsyth 2002]. The main question in motion
graphs is how to insert edges that are not observed. Methods in-
clude: linking when frames are similar [Lee et al. 2002; Arikan and
Forsyth 2002]; building short blends between similar frames [Kovar
et al. 2002a]; or adding edges by hand [Gleicher et al. 2003].

Transitions present difficulties. [Wang and Bodenheimer 2004]
show a careful choice of blend schedule and duration can signifi-
cantly improve transitions between similar frames. Transitions be-
tween widely differing motions — from a walk to a stand, for ex-
ample — are difficult to construct in the absence of observations,
because the considerations that apply (such as avoiding awkward
body configurations) are more than physical. [Wang and Boden-
heimer 2003] describe some success with a metric for selecting
transitions. Spacetime methods can be used to generate dynami-
cally plausible constraints [Rose et al. 1996]. [Arikan et al. 2005]
combine physical models with motion data to create transitions.
Transitions are important, because one wants a motion graph of
small diameter — it should be possible to get from one frame to
another with a relatively short path. One trivial and unwise way to
get a motion graph with a short diameter is by inserting edges be-
tween dissimilar frames (or in the most extreme case, between all
frames). Transitioning between dissimilar frames will likely result
in displeasing visual artifacts, where the character appears to move
unnaturally. Currently, no method can automatically yield a motion
graph with a short diameter that also produces natural human mo-
tion. We demonstrate some difficulties in Figure 4; [Gleicher et al.
2003] describe a method to engineer a motion graph with small di-
ameter that also produces high quality motion by hand.

It is natural to blend motion clips to create transitions. This ap-
proach is known to be effective for similar motions, and a sensi-
ble choice of blending procedure can produce physically correct
motion [Safonova and Hodgins 2005]. Sequences can be warped
in time and space to create visually pleasing blends ([Kovar and
Gleicher 2003]). [Wang and Bodenheimer 2004] demonstrates that
the length of a linear interpolation is important. One may obtain
a better blend by blending more than two sequences. The meth-
ods of [Bruderlin and Williams 1995; Wiley and Hahn 1997; Rose
et al. 1998] generate visually pleasing multi-way blends for many
blend sources, but produce unnatural-looking blends for others.
Our method attacks the problem of determining which were suc-
cessful. [Kovar and Gleicher 2004] describes how to find multi-
ple motions that can be blended, and how to create parameterized
blend spaces within these multiple examples. [Park et al. 2002; Park
et al. 2004; Kwon and Shin 2005] show how to create a parameter-
ized blend space for each of walking, running, and standing; their
method can generate realistic transitions between these three types
of motion.

Unlike previous papers that use multi-way blending, we do not re-
strict our blend space to contain only motions of a homogenous
type. Instead, our method searches a very large number of blends
for good results, and so we can find transitions between signifi-
cantly different motions.

Our method relies on automatic evaluation of motion, so we re-
quire a reliable, automatic scoring technique. [Ikemoto and Forsyth
2004; Arikan et al. 2005] demonstrate that supervised classifiers
can discriminate between natural and unnatural motions produced
by their synthesis techniques. [Ren et al. 2005] demonstrate and
evaluate several unsupervised techniques that discriminate natural-
looking motion regardless of the synthesis technique used. In sec-
tion 6, we demonstrate a novel motion evaluation method that im-
proves on current practice.

Our blended motions may be subject to footskate. There are nu-

merous footskate cleanup methods that involve some manual inter-
vention: one marks footplants and plant locations, then uses inverse
kinematics to ensure the constraints are met (e.g. [Bindiganavale
and Badler 1998; Shin et al. 2001; Kovar et al. 2002b; Liu and
Popovic 2002]). Because we must clean up a large collection of
blends, we require a fully automatic method such as [Ikemoto et al.
2006] or [Le Callennec and Boulic 2006]. Our method is based
on [Ikemoto et al. 2006].

3 Overview

Our goal is to create a compact motion synthesis mechanism that
can meet transition demands in real-time with a natural-looking se-
quence of user-specified duration.

Interpolation is a popular technique for creating transitions. We can
build a transition from frame s to t by interpolating between S (the
motion clip that starts with s), T (the motion clip that ends with t),
and one or more other motion clips (which we call intermediaries)
once all of the clips have been time-aligned (Appendix A). Some
multi-way blended transitions look natural and some do not. We
need a method for deciding which intermediaries produce the most
natural-looking blended transition.

We use a hypothesize-and-test procedure that automatically
searches over the intermediaries to find the most natural-looking
transition available, scoring motions with a novel evaluation tech-
nique (Section 7). We demonstrate that this evaluation technique is
more accurate for our datasets than current alternatives.

There are too many motion clips to search over, so we reduce the
search space by clustering them (Section 5). We define the repre-
sentative of a motion clip to be the medoid of the cluster to which
the clip belongs. If the clustering is effective, the motion clip’s
representative will be similar to the clip. Searching over only the
representatives greatly reduces the number of multi-way blends we
need to evaluate, but still retains much of the variation we would
encounter if we conducted the entire search.

4 Run-time mechanism

intermediary

Source Motion

Target Motion

Similar to intermediary i

Similar to intermediary j

i

j

Precomputed
transition table

Source Motion

Target Motion

Figure 2: To synthesize a frame-to-frame transition online, we find the
representative i that is closest to the source motion and the representative
j that is closest to the target motion. We use i and j as indices into a
precomputed transition table that indicates which motion clips to blend with
the source and target to create the transition. We call these motion clips
intermediaries.

To synthesize a frame-to-frame transition online, we find the repre-
sentative that is most similar to the motion beginning at the source
frame (S), and the representative that is most similar to the motion
ending at the target frame (T). We then retrieve the intermediaries
required for these two representatives. We perform the blend on
S, T , and the cached intermediaries after time-warping the motion
clips. Figure 2 illustrates our mechanism.

Before display, we clean up footskate automatically. We first de-
cide when and where the feet should be planted using the method

146

described in Section 7.1. We then modify the character’s degrees of
freedom to meet the foot plant constraints using inverse kinematics
(IK). Since IK may produce awkward poses if the target location is
too far from the original position of the foot, we attempt to move
the foot only if the target is less than a small distance away (we use
6-12 inches). Moving the feet may introduce discontinuities in the
blended motion. We smooth these discontinuities over neighboring
frames.

5 Clustering

We first split the motion dataset into overlapping clips with length
equal to the user-specified transition duration, then use k-means
clustering in spectral embedded space ([Pothen et al. 1990]) to sep-
arate the clips by similarity. We use the cluster medoids as the
representatives.

Spectral embedding is a method developed in the computer vision
community for producing features that tend to cluster data points
consistently with an affinity matrix. To compute the affinity be-
tween two clips, we first align their center frames in the global co-
ordinate system, then compute the sum of squared differences of
the joint positions over the motion (similar to the method used in
[Kovar et al. 2002a]). The affinity matrix is then used to embed
all clips in a low-dimensional subspace by computing the principal
components of the affinity matrix, then using the ones with largest
variance to project each clip into a lower-dimensional subspace. We
use 10 principal components. k-means clustering can then be used
to cluster the clips. Setting k equal to 50 gave good results for our
dataset.

Computing an affinity between all pairs of clips is expensive be-
cause the computation time is proportional to the number of motion
clips squared, and the number of clips can be large. Using a dense
affinity matrix to compute an embedding is also very expensive. We
use the approximate spectral embedding method of [Fowlkes et al.
2004], which uses the Nystrom approximation to reduce the compu-
tational burden considerably. Briefly, the approximation computes
affinities between only a small random subset of motion clips and
all other clips. This partial affinity matrix is used to approximate an
embedding.

6 Scoring Baseline Method

Hypothesize-and-test is a natural algorithm for constructing human
motions. There are now many possible methods for producing hy-
potheses, but no wholly reliable scoring methods. Generalization
— giving an accurate score to motions very different from the train-
ing motions — is a notoriously difficult problem. Ikemoto and
Forsyth use a classifier to evaluate motions produced by a cut-and-
paste method, and find the classifier significantly less accurate on
novel motions [Ikemoto and Forsyth 2004]. The classifier is trained
using both positive and negative examples.

There is some advantage to not using negative examples, which can
be difficult to obtain. [Ren et al. 2005] fit an ensemble of generative
models to positive examples; motion is scored by taking the lowest
likelihood over all models to obtain a conservative score. While the
combined generative model gives the best behavior in practice, their
combined Hidden Markov model (ensemble of HMMs) is almost
as accurate. There is no information on generalization behaviour.
However, if negative examples are available, we expect that models
trained discriminatively are likely to perform better, because they
possess more information about the location of the boundary be-
tween good and bad motion.

Training set: We picked 400 transitions generated from multi-way

blends of different source-target pairs and intermediaries at random.
These were annotated as natural-looking or unnatural-looking mo-
tions by hand.

Baseline: We fit an ensemble of HMMs (one for the body, one for
each limb, and one for each pair of limbs) to positive motion ex-
amples. Each example is represented by a feature vector containing
joint position, velocity, and acceleration data over the motion. Mo-
tions are scored with their likelihood under this model.

7 Scoring Transitions

Several papers have observed that humans find footskate notice-
able and objectionable [Kovar and Gleicher 2002; Arikan 2006].
While there are many effective techniques for fixing footskate, large
amounts of footskate where the foot slides a great deal usually can-
not be fixed in a natural-looking way. This motivates using an error
metric based on footskate to determine whether a motion looks nat-
ural (Section 7.1).

Unnaturalness may also stem from other parts of the body. In a
physically valid motion, the zero moment point (the point on the
ground plane at which the moment of the ground reaction forces
is zero) is always within or on the boundary of the support poly-
gon (the convex hull of the points at which the character is contact-
ing the ground). People seem to find motions which do not obey
this constraint objectionable, as the physical inconsistency often ap-
pears as loss of balance (though it is important to note that the zero
moment point constraint holds even if the character is falling) [Shin
et al. 2003]. We can use the distance between the character’s zero
moment point and support polygon as another error metric, which
we explain further in Section 7.2.

We use these two error metrics to automatically evaluate the natu-
ralness of the transitions we generate between between two frames.
The best transition is the one with the lowest combined error. We
obtained good results by simply summing the foot plant error and
the zero moment point error.

7.1 Foot plant error

To determine footskate error, we first need to decide when and
where foot plants should occur in the blend. Then, we can measure
how much the foot moves relative to where it should be planted. If
the foot does not move very much, the IK module will only need to
make small changes to the motion, which will probably look nat-
ural. However, if the foot moves a great deal when it is supposed
to be planted, the motion may still look objectionable if IK is used
because the model will make large changes to the motion. Hence,
we can use the extent to which the foot moves as an approximate
error metric for the naturalness of the motion.

Determining foot plants: We wish to identify when and where
foot plants should occur in the blended motion. One solution is
to identify the frames in the blended motion where one or both of
the feet are close to the ground and roughly stationary. [Kovar and
Gleicher 2002] used such a scheme to compute input constraints for
their IK algorithm (though they note that this scheme required some
manual clean-up to get good results). While this technique can be
successful for fixing footskate, it may not work well for determining
foot plant error because the error estimated will always be small.

An observation we make is that since the blended motion is a com-
bination of known blend sources B, we assume that the blended
motion’s foot plants are a combination of the blend sources’ foot
plants.

Given this observation, a possible solution is to blend the source

147

A

C
B

0.2

0.9

1.1

0.9

0.8

2.1

.900 90

111.11

900.99

.122 12

Figure 3: Choosing when and where foot plants should occur in the
blended motion: Consider three blend sources A, B, and C. We would like
to choose foot plants for the left foot of the blended motion. The frames con-
taining left foot plants in each of the source motions have been labeled. In
this example, all three motions contain two left foot plants. For each left foot
plant, we compute the displacement error between the plant’s position and
the position of the blended motion’s left foot at the corresponding frames.
Then we choose non-overlapping left footplants in order of lowest error. We
first choose the first plant in A. This means we cannot choose the first plant
in B or the first plant in C. The next valid footplant with lowest error is
the second plant in B. We choose this one, which invalidates the rest of the
footplants.

foot plants using the same weighting scheme we used to blend the
source motions. However, this technique will yield fractional val-
ues for the foot plants. These fractional values could be thresholded
to obtain binary values, but it is unclear how to set the threshold to
obtain good results.

Instead, we consider the entire set of source foot plants, and choose
the non-overlapping combination that is closest to the trajectories
of the character’s feet in the blended motion.

More specifically, we first compute the position of each footplant
for each motion in B relative to the blended character’s torso coor-
dinate frame. We now take each right footplant in each motion in
B. Over the period of the footplant, we average the absolute value
of the displacement error between the trajectory of the right foot in
the blended motion, and the location of the right footplant. We put
each right footplant in a priority queue. We then follow the same
procedure to put the left foot plants in a second priority queue.

We now dequeue the right footplant with lowest error. We label the
corresponding frames in the blend to indicate that they contain a
footplant and where the footplant should be located. We then de-
queue another right footplant. If the footplant does not overlap the
first, we again label the corresponding frames to indicate that they
contain a footplant and where the footplant should be located. We
stop once the queue is empty. We do the same for the left footplants.
Figure 3 illustrates this algorithm.

Computing footskate error: Now that we have determined when
and where footplants should occur, we can compute footskate er-
ror. We compute the displacement between the foot’s actual posi-
tion and the target foot plant location at every frame labeled as a
foot plant. The displacement indicates how much the IK module
will move the foot. IK can generally produce natural-looking mo-
tion for small displacements but not for large ones. Also, a large
displacement indicates that the blended transition is very dissimi-
lar from the blending sources, which means that it probably looks
unnatural. We use the average displacement as our measure of foot-
skate error.

7.2 Zero moment point error

At every point at which the character contacts the ground, the char-
acter is subject to ground reaction forces. The zero moment point

(ZMP) is the point on the ground plane where the moment of these
forces is zero. In a physically valid motion, the ZMP lies within
or on the boundary of the support polygon. This concept was first
introduced by [Vukobratovic and Juricic 1969] and has been used
previously in robotics and graphics (e.g., [Tak et al. 2000; Shin et al.
2003]).

We compute the distance between the ZMP and the support poly-
gon at every frame in a transition we wish to evaluate, then use the
maximum distance as our error metric.

We calculate the ZMP at each frame using the equations from Shin,
Kovar, and Gleicher [Shin et al. 2003]. These equations depend
on knowing the mass of each segment of the character’s body. As
[Shin et al. 2003] suggest, we compute the character’s mass distri-
bution using optimization with an average mass distribution (mea-
sured by [Winter 2005]) as the starting point. The optimization
yields a mass distribution close to the starting point that gave plau-
sible ZMP locations for our original motion collection. We believe
that this is because our motion collection is large and contains var-
ied types of motion.

8 Results

The accompanying movie contains several comparisons of the 2-, 3-
, and 4-way blends we synthesize using our method. All transitions
we generated were one-second long (or 60 frames in our motion
collection, which was captured at 60 Hz). We can generate high-
quality transitions which are normally considered difficult, such as
a transition from a walk to a skip, and a run to a stand. These ex-
amples are included in the video. The video shows our results side-
by-side with transitions obtained using the baseline HMM-based
classifier described in Section 6 and by traversing a motion graph.
These examples demonstrate that the HMM-based classifier can in-
accurately choose visually displeasing transitions, and that a transi-
tion obtained by traversing a motion graph may be too long or may
have visual artifacts.

Our motion synthesis mechanism (Section 4) operates in real-time.
We randomly sampled 200 source frame/target frame pairs. The
average time the synthesizer required to create a one second long
blend and cleanup footskate in the sequence was 0.012 seconds.
Amortized over 60 frames, this cost is negligible. We also randomly
sampled 200 source frame/target annotation pairs. The average time
the synthesizer required to create the blend and cleanup footskate
was 0.014 seconds, which means the extra time to search for a good
target cluster is very small.

Our mechanism is also compact. We can compute the upperbound
on the size of our transition mechanism. A maximum size entry
(i.e., intermediaries and timewarp) contains a 4-way blend and the
worst case timewarp, which is 120 frames long. Such an entry re-
quires 1.9 KB. There are 50 clusters, so there are 50 members in the
representative set. Thus, there are 50 × 50 entries in the transition
mechanism, so the upperbound on the size of the matrix is less than
5 MB. Storing the differences between all one-second clips in the
database to all cluster medoids consumes 200 bytes per frame (4
bytes per float × 50 cluster medoids).

Figure 4 contains a scatter plot comparing the performance of mo-
tion graphs to our synthesizer. Each point represents a random
source frame/target frame pair (there are 500 total). The horizontal
axis is the number of frames required to make the transition in a
motion graph. The vertical axis is the cost our scoring mechanism
estimated for making a 60-frame transition in our synthesizer. This
figure demonstrates that our synthesizer can synthesize many tran-
sitions that motion graphs cannot. We believe that the two mecha-
nisms can nicely complement each other. Our plot is separated into

148

quadrants. The bottom lefthand quadrant contains the frame pairs
for which the motion graph can synthesize a motion that is less
than 1 second long. For these demands, it is best to use a motion
graph, but our synthesizer still produces good results. The upper
lefthand quadrant contains the pairs for which our synthesizer can-
not generate a natural looking transition, but a motion graph can
easily generate one, so for these demands also, it is best to use a
motion graph. The bottom righthand quadrant contains the frame
pairs for which the transition synthesized by the motion graph is
long, but we can produce a natural 1 second long transition. These
demands are best served with our synthesizer. The upper righthand
quadrant contains frame pairs for which the motion graph and our
synthesizer cannot produce a good transition.

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

16

18

20

Length of motion graph path (in seconds)

C
os

t o
f 1

 s
ec

on
d

tr
an

si
tio

n
in

 s
yn

th
es

iz
er

Figure 4: Comparison to motion graphs. This scatter plot compares the
performance of a motion graph to our synthesizer. Each point represents a
random source frame/target frame pair (there are 1000 total). The x-axis
represents the length of the shortest transition between this pair of frames
using motion graph, and y represents the cost of the 1-second long transi-
tion between the frames using our synthesizer. A cost under the horizontal
line generally corresponds to a natural-looking motion. Note that there
are many points in the bottom righthand quadrant (302 points), indicating
that there are many frame pairs for which our synthesizer can generate a
natural-looking, 1-second long transition while the shortest transition in a
motion graph would take longer than 1 second. (Some of the motion graph
paths are in fact quite long, reaching 10 seconds in one case.) Note also
that there are few points in the upper righthand quadrant (57 points), which
means there are few frame pairs for which both our synthesizer and a mo-
tion graph cannot produce a good transition. There are 581 points in the
lower left hand quadrant (where both our method and motion graphs per-
form well), and 60 points in the upper left (where motion graphs outperform
our method). These results indicate that our technique and motion graphs
nicely complement each other, and that together there are few transition
demands the combination cannot meet.

We compare our scoring mechanism to the state-of-the-art HMM
baseline described in Section 6. Figure 5 demonstrates that our
method outperforms the baseline. This is consistent with the gen-
eral belief that natural behavior at the feet and whether the character
appears in balance are important tests for the goodness of a motion.

Because our scoring mechanism is reliable, if a natural-looking
blended transition exists in our search space, we are likely to find
and cache it. Therefore, our aggressive hypothesize-and-test strat-
egy can produce natural-looking transitions for many demands. For
some demands, there may not be a natural-looking transition in our
search space. This problem could be alleviated by conducting more
search, but in general, transitioning to a very different activity over
a short time period is difficult to synthesize convincingly (and may
in fact be hard for a human to perform).

Our method can be easily extended to synthesize transitions be-
tween a source frame and a target annotation by simply picking a
target frame with the desired annotation. We demonstrate an appli-
cation that uses this extension in the video.

Figure 5: We compare the performance of our method for scoring the
naturalness of motion with HMM’s. The most natural way to compare is
to classify good from bad motion using a threshold, then plot the receiver
operating curves (ROC). A completely random classifier’s ROC would lie
along the black dotted line from bottom left to top right (sometimes called
the no-discrimination line), and a perfect classifier’s ROC would be a point
in the upper left corner. The area between a classifier’s ROC and the no-
discrimination line is commonly used as an indicator of the performance of
the classifier, where a larger area indicates a more discriminative classifier.
We used a test set of 200 multi-way blended transitions chosen at random
which were not in the training set. A user labeled each as natural (118
total in our test set) or unnatural (82 total). We compared each classifier’s
labels against the user’s labels. As the figure shows, our method clearly
outperforms the HMM’s.

9 Conclusions & Future Work

We have demonstrated a fast, compact mechanism that can syn-
thesize transitions of a user-specified duration between arbitrary
frames in a motion dataset. Our technique searches over and au-
tomatically evaluates many candidate blends to find the best ones.
If two frames differ significantly, there may not be a good tran-
sition between them. In this case, we synthesize the best blend
possible. However, there is no reason to believe that our blending
algorithm is optimal. Another blending algorithm might produce
natural-looking blends where ours fails. Because we have an effec-
tive scoring mechanism, we could expand the search to incorporate
different blending weights and strategies. This is an area of future
work.

The error metrics we use to evaluate the naturalness of motion are
only valid if there are foot plants in the motion. For ballistic motion,
another error metric, such as checking that conservation of angular
momentum is maintained, may work well.

A third area of future work is to explore the potential to produce
transitions that vary significantly from one another. Currently, a
transition between particular frames is fixed. However, replacing
intermediaries with other motions in the same cluster could produce

149

a rich source of variation.

For our motion collection, we found that our scoring mechanism
performed markedly better than HMMs. Improving hypothesize-
and-search motion synthesis methods crucially depends on im-
proved scoring methods. We expect further advances in motion
scoring to be a significant area of future work.

A Multi-way blending

In this appendix, we describe how we create a multi-way blended
transition of a particular duration between a source motion, a target
motion, and intermediaries. Multi-way blending is not new (see for
example [Rose et al. 1998; Wiley and Hahn 1997; Bruderlin and
Williams 1995; Kovar and Gleicher 2004]) and has been shown to
produce high-quality motion for many blend sources. We describe
our time-warping and weighting techniques for completeness.

[Kovar and Gleicher 2003] demonstrate that aligning motion se-
quences in time so that similar frames correspond is an important
precursor to blending. They show how to use dynamic timewarping
to time-align two motions by constructing a distance matrix. Each
row in the distance matrix corresponds to a frame in the source
sequence, and each column corresponds to a frame in the target
sequence. Each cell corresponds to a possible frame correspon-
dence, and stores the error between the source and target frame.
Paths through the matrix are possible time alignments. Dynamic
programming can find a minimum cost path.

Call the set of motions to blend B and the ith motion in the set Bi.
To form a multi-way blend, we time-align all of the motions in B,
then blend. Because we search large pools of possible blends, we
may need to blend very dissimilar motions. This means that we
may not be able to follow the dynamic timewarp constraints rec-
ommended in [Kovar and Gleicher 2003] and [Kovar and Gleicher
2004]. In these cases, we simply use the time-alignment that tra-
verses the diagonal of the distance matrix. Timewarping squashes
and stretches time slightly, and so the blends that we produce may
not be exactly 1 second (60 frames) long. We allow time to stretch
at maximum by a factor of 2, but in practice 99% of our cached
transitions are fewer than 80 frames in length.

Now that we have computed a time alignment for the motions in
B, we can interpolate them. To do so, we need to devise blend
weights. We create a weighting function W , where W (t) gives
us the weights for the frames we are interpolating. Our blending
weights are Bezier functions. We chose Bezier functions because
they seem to produce visually good blends, and because they ex-
tend linear blending. For example, a quadratic Bezier function is a
linear interpolation of two linear interpolations. Therefore, choos-
ing a quadratic Bezier function for a three-way blend is equivalent
to interpolating B0 and B1, then B1 and B2, and then the two re-
sulting blends. However, there are several plausible possibilities for
weighting functions. It is an easy extension to our method to search
over alternative weighting functions.

Once we have obtained the time alignment and the weighting func-
tions, we can interpolate the motions. Each frame contains the 2D
position of the root, the rotation of the root about the vertical axis,
and the 3D position of each joint. We interpolate each joint’s posi-
tion using W . We cannot simply interpolate the root’s position be-
cause doing so can cause the root’s path to collapse on itself [Kovar
and Gleicher 2003]. Instead, we interpolate the differential move-
ment of the root of each Bi. The position of the root at the tth

frame of the blend is:

p(t− 1) +

N∑

i=0

W (i, t)(pBi(t)− pBi(t− 1))

where p is the position of the blended root, pBi is the position of
Bi’s root, W (i, t) is the current blend weight on Bi, and N is the
total number of motions in B. The position of the blended root at
time 0 is taken from the first frame in the source motion.

Acknowledgements

We would like to thank the Berkeley graphics group for their helpful
comments and suggestions. This work was generously supported
by ONR N00014-01-1-0890, and benefited from motion capture
data donated by Sony Computer Entertainment America.

References
ARIKAN, O., AND FORSYTH, D. A. 2002. Interactive motion generation

from examples. In SIGGRAPH.

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. F. 2005. Pushing

people around. In SCA.

ARIKAN, O. 2006. Compression of motion capture databases. In SIG-
GRAPH 2006.

BINDIGANAVALE, R., AND BADLER, N. I. 1998. Motion abstraction and

mapping with spatial constraints. In CAPTECH 1998, Springer-Verlag,

London, UK, 70–82.

BRUDERLIN, A., AND WILLIAMS, L. 1995. Motion signal processing. In

SIGGRAPH.

FOWLKES, C., BELONGIE, S., CHUNG, F., AND MALIK, J. 2004. Spectral

grouping using the nystrom method. In PAMI.

GLEICHER, M., SHIN, H. J., KOVAR, L., AND JEPSEN, A. 2003. Snap-

together motion: assembling run-time animations. In Symposium on In-
teractive 3D graphics.

IKEMOTO, L., AND FORSYTH, D. A. 2004. Enriching a motion collection

by transplanting limbs. In SCA.

IKEMOTO, L., ARIKAN, O., AND FORSYTH, D. 2006. Knowing when to

put your foot down. In I3D.

KOVAR, L., AND GLEICHER, M. 2002. Footskate cleanup for motion

capture editing. In SCA.

KOVAR, L., AND GLEICHER, M. 2003. Flexible automatic motion blend-

ing with registration curves. In SCA.

KOVAR, L., AND GLEICHER, M. 2004. Automated extraction and param-

eterization of motions in large data sets. SIGGRAPH.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs. In

SIGGRAPH.

KOVAR, L., SCHREINER, J., AND GLEICHER, M. 2002. Footskate cleanup

for motion capture editing. In SCA.

KWON, T., AND SHIN, S. Y. 2005. Motion modeling for on-line locomo-

tion synthesis. In SCA.

LE CALLENNEC, B., AND BOULIC, R. 2006. Robust Kinematic Constraint

Detection for Motion Data. In SCA.

LEE, J., CHAI, J., REITSMA, P. S. A., HODGINS, J. K., AND POLLARD,

N. S. 2002. Interactive control of avatars animated with human motion

data. In SIGGRAPH.

LI, Y., WANG, T., AND SHUM, H.-Y. 2002. Motion texture: a two-level

statistical model for character motion synthesis. In Computer graphics
and interactive techniques.

LIU, C. K., AND POPOVIC, Z. 2002. Synthesis of complex dynamic char-

acter motion from simple animations. In SIGGRAPH.

MENACHE, A. 1999. Understanding Motion Capture for Computer Ani-
mation and Video Games. Morgan-Kaufmann.

MOLINA-TANCO, L., AND HILTON, A. 2000. Realistic synthesis of novel

human movements from a database of motion capture examples. In

Workshop on Human Motion.

150

PARK, S. I., SHIN, H. J., AND SHIN, S. Y. 2002. On-line locomotion

generation based on motion blending. In SCA.

PARK, S. I., SHIN, H. J., KIM, T. H., AND SHIN, S. Y. 2004. On-line

motion blending for real-time locomotion generation: Research articles.

Comput. Animat. Virtual Worlds.

POTHEN, A., SIMON, H., AND LIOU, K. 1990. Partitioning sparse matri-

ces with eigenvectors of graphs. In SIAM Journal of Matrix Anal. Appl.

REN, L., PATRICK, A., EFROS, A. A., HODGINS, J. K., AND REHG,

J. M. 2005. A data-driven approach to quantifying natural human mo-

tion. SIGGRAPH.

ROSE, C., GUENTER, B., BODENHEIMER, B., AND COHEN, M. F. 1996.

Efficient generation of motion transitions using spacetime constraints. In

SIGGRAPH.

ROSE, C., COHEN, M. F., AND BODENHEIMER, B. 1998. Verbs and

adverbs: Multidimensional motion interpolation. IEEE Comput. Graph.
Appl..

SAFONOVA, A., AND HODGINS, J. K. 2005. Analyzing the physical cor-

rectness of interpolated human motion. In SCA.

SHIN, H. J., LEE, J., SHIN, S. Y., AND GLEICHER, M. 2001. Computer

puppetry: An importance-based approach. ACM Trans. Graph..

SHIN, H. J., KOVAR, L., AND GLEICHER, M. 2003. Physical touch-up

of human motions. In Pacific Conference on Computer Graphics and
Applications.

SULEJMANPAS̆IĆ, A., AND POPOVIĆ, J. 2005. Adaptation of performed

ballistic motion. ACM Trans. Graph..

TAK, S., YOUNG SONG, O., AND KO, H.-S. 2000. Motion balance filter-

ing. Eurographics.

VUKOBRATOVIC, M., AND JURICIC, D. 1969. Contributions to the syn-

thesis of biped gait. In IEEE Transactions on Biomedical Engineering.

WANG, J., AND BODENHEIMER, B. 2003. An evaluation of a cost metric

for selecting transitions between motion segments. In SCA.

WANG, J., AND BODENHEIMER, B. 2004. Computing the duration of

motion transitions: an empirical approach. In SCA.

WILEY, D. J., AND HAHN, J. K. 1997. Interpolation synthesis for articu-

lated figure motion. In Virtual Reality Annual International Symposium.

WINTER, D. 2005. Biomechanics and Motor Control of Human Movement,
Third edition. John Wiley and Sons.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints. In SIGGRAPH.

151

152

