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Diffusion MR data sets produce large numbers of streamlines which are hard to visualize,

interact with, and interpret in a clinically acceptable time scale, despite numerous proposed

approaches. As a solution we present a simple, compact, tailor-made clustering algorithm,

QuickBundles (QB), that overcomes the complexity of these large data sets and provides

informative clusters in seconds. Each QB cluster can be represented by a single centroid

streamline; collectively these centroid streamlines can be taken as an effective represen-

tation of the tractography. We provide a number of tests to show how the QB reduction

has good consistency and robustness. We show how the QB reduction can help in the

search for similarities across several subjects.
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1. INTRODUCTION

Following the acquisition of diffusion MR scans, processes

of reconstruction and integration are performed to create a

tractography – that is to say a dataset composed of streamlines,

which are sequences of points in 3D space. Irrespective of the types

of reconstruction and integration, a tractography can contain a

very large number of streamlines (up to 106) depending principally

on the number of seed points used to generate the tractography

but also on how the tractography propagation algorithm handles

voxels with underlying fiber crossings.

The size of these tractographies makes them difficult to inter-

pret and visualize. A clustering of some kind seems to be an

obvious route to simplify the complexity of these data sets and

provide a useful segmentation. As a result, during the last 10 years

there have been numerous efforts by many researchers to address

both unsupervised and supervised learning problems of brain

tractography. As far as we know all these methods suffer from

low time efficiency, i.e., they are very slow when used in practice.

In the tractography literature we can find approaches which

use unsupervised and/or supervised learning algorithms to cre-

ate bundles, i.e., groupings of streamlines with similar spatial

and shape characteristics. In supervised learning the data sets are

divided into a training and a test set. For the training set, experts

will have provided anatomical labels for a set of manually seg-

mented streamline bundles. Those bundles will now correspond to

tracts, e.g., the corticospinal tract or the arcuate fasciculus. The task

then will be to identify similar structures amongst the unlabeled

streamlines in the test set.

In unsupervised learning the focus is on creating a partition-

ing of the streamlines without knowing any labels. In this work

we used unsupervised learning to reduce in a simple and efficient

way the number of streamlines and make manual segmentation of

bundles and tractography exploration less time consuming tasks.

By the term bundle we mean here streamlines which are in close

proximity according to a streamline-based distance, therefore, they

have similar spatial and shape characteristics and not necessarily

direct correspondence to neuroanatomical bundles (tracts).

We believe that a complete unsupervised method cannot

directly create anatomically valid bundles without extensive prior

information preferably from experts or atlases. This is because

anatomical bundles differ considerably both in lengths and in

shape (see Schmahmann and Pandya, 2009) and there is not a

single threshold which can cluster a full dataset with anatom-

ical correspondence (see Guevara et al., 2010). Furthermore, if

one uses such extensive priors then it will be more suitable to

use supervised learning algorithms. Therefore, we propose that

unsupervised learning should be used primarily for dimensional-

ity reduction or simplification of these large data sets. This is the

focus of the approach that we propose here.

Most clustering (unsupervised learning algorithms) are in the

best case of complexity O(N 2) where N the total number of

streamlines: they require the calculation of all pairwise distances

between streamlines in order to create a distance matrix. We found

that most authors tried to create these distance matrices as input to

hierarchical clustering (see Moberts et al., 2005; Zhang and Laid-

law, 2005; Tsai et al., 2007; Zhang et al., 2008; Jianu et al., 2009;
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Guevara et al., 2010, 2012; Visser et al., 2011) or spectral clustering

(see Jonasson et al., 2005; O’Donnell and Westin, 2007; O’Donnell

et al., 2009; Ziyan et al., 2009) or affinity propagation (see Lee-

mans and Jones, 2009; Malcolm et al., 2009). However, they had

to restrict themselves to only a subset of the complete dataset

because the calculations were heavy and the distance matrix too

big for computers with standard memory capacity. For example,

O’Donnell and Westin (2007) used only 10,000 streamlines (∼10%

of the initial tractography) and Visser et al. (2011) used recom-

binations of 10,000 streamlines. We give here an example of how

large that distance matrix can be if used with a full dataset. For

just 100,000 streamlines 38 GBytes are required, and for 1 million

streamlines 3.6 TBytes of memory are required (4 bytes floating

point precision).

Other clustering methods have also been proposed that use

graph theoretic approaches (see Brun et al., 2004; Gerig et al.,

2004; El Kouby et al., 2005), k-nearest neighbors (see Ding et al.,

2003; Moberts et al., 2005), Gaussian processes (see Wassermann

et al., 2010), hierarchical dirichlet processes (see Wang et al., 2011),

currents (see Durrleman et al., 2009, 2011), adaptive mean shift

(see Zvitia et al., 2008, 2010), k-means (see El Kouby et al., 2005),

and expectation maximization (see Maddah et al., 2008). Although

these methods often try to avoid distance matrices they still suf-

fer from low time efficiency. All the same, if clustering is to be

used in clinical practice or to make neuroscientists’ analysis more

efficient and practical we need algorithms that can provide useful

clusters and cluster descriptors in acceptable time. None of the

papers covered in this literature review provide a solution for this

issue of efficiency and most of the methods would require from

many hours to many days to run on a standard sized dataset.

In fact tractographies have high levels of redundancy with many

similar streamlines. Our approach is to take advantage of this to

reduce the size and dimensionality of the data sets as a precursor

for higher complexity classification and/or input from experts. To

address these key issues of time and space we present a stable,

generally linear time clustering algorithm that can generate mean-

ingful clusters of streamlines in seconds with minimum memory

consumption. Our approach is straightforward and we do not need

to calculate all pairwise distances unlike most existing methods.

Furthermore we can update our clustering online, i.e., as and when

new data points become available. In this way we can overcome

the previous barriers of space and time.

We show that QuickBundles can generate these clusters many

times much faster than any other available method, and that it

can be used to cluster from a few hundred to many millions of

streamlines.

We think that there is no current unsupervised anatomical seg-

mentation method that can have general usability without expert

knowledge integration. Nonetheless, neuroanatomists often dis-

agree on definition of major structures or on which streamlines

correspond to actual tracts (Catani et al., 2005; Makris et al., 2005;

Mori et al., 2005; Frey et al., 2008; Schmahmann and Pandya, 2009;

Verstynen et al., 2011; Fernandez-Miranda et al., 2012). What we

propose is to use QuickBundles to simplify the tractography at the

level where such distinctions are not an issue (see Figure 1). On

top of these simplifications we can use other methods of higher

complexity much more efficiently.

2. MATERIALS AND METHODS

2.1. STREAMLINE DISTANCES AND PREPROCESSING

A wide range of approaches have been taken in the literature for

representing or coding for tractographies (Chung et al., 2010; Gue-

vara et al., 2010). The approach we have taken with streamline

coding has gone in parallel with the selection of appropriate func-

tions for inter-streamline distances. Numerous inter-streamline

distance functions have been proposed (Ding et al., 2003; Zhang

and Laidlaw, 2005; Maddah et al., 2007). The most common is the

Hausdorff distance (Corouge et al., 2004; and many other studies).

There are two primary disadvantages of this function: it ignores

the sequential nature of the streamlines and treats each streamline

FIGURE 1 | Part of the CST bundle (left, in blue) consisting of

11,041 streamlines. At first glance it looks as though all streamlines

have a similar shape, and possibly converge toward the bottom, and

fan out toward the top. However, this is a misreading caused by the

unavoidable opaque density when all the streamlines are visualized.

QB can help us see the finer structure of the bundle and identify its

elements. In the middle we see the 16 QB centroid streamlines of

the CST. We can now clearly observe that several parts which looked

homogeneous are actually broken bundles or bundles with rather

different shapes. On the right panel we see the streamlines colored

according to their cluster label. The clustering threshold used here

was 10 mm.
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simply as a cloud of points, and its computation requires every

point on the first streamline to be compared with every point on

the second streamline, and vice versa. Thus the Hausdorff dis-

tance requires the calculation O(KL) inter-point distances when

comparing streamlines of K and L points.

For these reasons we have opted to use a rather simpler symmet-

ric distance function (Garyfallidis et al., 2010; Visser et al., 2011)

which we call the minimum average direct-flip (MDF) distance,

see equation (1). MDF can be applied only when both stream-

lines have the same number of points, see Figure 2. Therefore we

assume from now on that an initial discretization of streamlines

has been applied, so that all streamlines have the same number of

points K, and all segments of each streamline have equal length.

This is achieved by a simple linear interpolation.

As it has no preferred orientation, a streamline s= [s1, s2, . . .,

sK] is equivalent to two ordered polylines: s= [s1, s2, . . ., sK] in R
3

and its flipped version sF= (sK, sK−1, . . ., s1). With this notation

the direct, flipped and MDF distances are defined as follows:

ddirect(s, t ) = d(s, t ) =
1

K

K∑

i=1

|si − ti |,

dflipped(s, t ) = d(s, t F ) = d(sF , t ),

MDF(s, t ) = min(ddirect(s, t ), dflipped(s, t )). (1)

Here |x − y | denotes the Euclidean distance between two points

x and y. The direct distance ddirect(s, t ) between two streamlines s,

and t is the mean of the Euclidean distances between correspond-

ing points. Clearly the MDF distance between two streamlines of

K points requires the calculation of just 2K inter-point distances.

The MDF distance is in fact a metric on the space of stream-

lines. Obviously MDF distances are non-negative, are zero if and

only if the two streamlines are identical, and symmetrical. The

triangle inequality is established as follows. Let s, t, and u be three

streamlines and assume, without loss of generality, that d(s, t )

and d(t, u) actually minimize the corresponding MDF distances

MDF(s, t ) and MDF(t, u). (If not, we replace, e.g., t by tF) Then

MDF(s, t )+MDF(t, u)= d(s, t )+ d(t, u)≥ d(s, u) (by the tri-

angle inequality for the Euclidean distance) ≥min(d(s, u), d(s,

uF))=MDF(s, u).

The main advantages of the MDF distance are that it is fast to

compute, it takes account of streamline direction issues through

consideration of both direct and flipped streamlines, and that its

behavior is easy to understand (see Figure 3), from the simplest

case of parallel equi-length streamlines to the most complicated

with very divergent streamline.

Another advantage of the MDF distance function is that it sep-

arates short streamlines from long streamlines; a streamline s that

is a portion of a streamline s ′ will be relatively poorly matched on

MDF to s ′. This is consistent with our proposed approach to leave

decisions about the status of short versus long streamlines till after

applying a clustering. At this later stage one can determine whether

there are several similar short streamlines – perhaps reflecting a

damaged fiber tract – or localized noise if there are only a few

similar streamlines.

A further important advantage of having streamlines with the

same number of points is that we can easily do pairwise calcula-

tions on them; for example add two or more streamlines together

to create a new average streamline. We will see in the next section

how streamline addition is a key property that we exploit in the

QB clustering algorithm.

Care needs to be given to choosing the number of points

required in a streamline (streamline discretization). We always

keep the endpoints intact and then discretize into segments of

equal lengths. One consequence of short streamlines having the

same number of points as long streamlines is that more of the cur-

vature information from the long streamlines is lost relative to the

short streamlines, i.e., the short streamlines will have higher reso-

lution. We found empirically that this is not an important issue and

that for clustering purposes even discretizing to only K = 3 points

per streamline can produce useful clusterings (Garyfallidis et al.,

2010). Depending on the application, more or fewer points can be

used. In the results presented we often use K = 12 which achieves

a good trade-off between streamline resolution and memory size

reduction.

FIGURE 2 |The principal distance used in this work is minimum average

direct-flip distance MDF = min(d direct, d flipped) which is a symmetric

distance function that can deal with the streamline bi-directionality

problem; it works on streamlines which have the same number of

points. Another distance we use is the mean average distance which is again

symmetric but does not require the streamlines to have the same number of

points: MAMmean = (d mean(s, s′)+d mean(s′, s)/2 [see equation (5)]. In this figure

the components of both distances are shown; the streamlines are drawn with

solid lines, and then with dashed lines we connect the pairs of points of the

two streamlines whose distances contribute to the overall metric. Note that

we cannot calculate the MDF between the streamlines on the left of the

figure because they have different numbers of points.
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FIGURE 3 | Color coding shows MDF distances from QB centroid to

every other track in the bundle.

In some later stages in the analysis of tractographies, e.g.,

for merging clusters, we find a use for Hausdorff-type dis-

tance functions which for simplicity we denote as MAM

distances – short for Minimum (or Maximum, or Mean) Average

Minimum distance (MAM). (In this nomenclature the classical

Hausdorff distance is the Maximum Average Minimum distance.)

We mostly use the Mean version of this family, see equation (5)

but the others are potentially useful as they can weight different

properties of the streamlines. As noted above, these distances are

slower to compute but they can work with different number of

segments on streamlines; this is useful for some applications. The

equations below show the formulation of these distances:

dmean(s, s ′) =
1

KA

K∑

i=1

d(xi , s ′),

dmin(s, s ′) = min
i=1,...,K

d(xi , s ′), and (2)

dmax(s, s ′) = max
i=1,...,K

d(xi , s ′), where (3)

d(x , s ′) = min
j=1,...,K ′

|x − x ′j |.

MAMmin = min(dmean(s, s ′), dmean(s ′, s)) (4)

MAMmax = max(dmean(s, s ′), dmean(s ′, s))

MAMmean = (dmean(s, s ′)+ dmean(s ′, s))/2 (5)

where the number of points K and K ′ on the two streamlines are

not necessarily the same. For the same distance value MAMmin,

MAMmax, and MAMmean will give different results. For example,

MAMmin will bring together more short streamlines with long

streamlines than MAMmax, and MAMmean will have an in-between

effect. Other distances than d(x i, s ′) can be used in equations (2

and 3). However, we have not investigated them in this work in

relation to clustering algorithms.

2.2. THE QB ALGORITHM

QuickBundles (QB) is a surprisingly simple and very fast algo-

rithm which can reduce tractography representation to an accessi-

ble structure in a time that is linear in the number of streamlines N.

QB is an extended update on our preliminary work (Garyfallidis

et al., 2010).

In QB each item, a streamline, is a fixed-length ordered

sequence of points in R
3, and QB uses comparison functions and

amalgamations which take account of and preserve this structure.

Moreover each item is either added to an existing cluster on the

basis of the distances between the cluster descriptor of the item

and the descriptors of the current list of clusters. Clusters are

held in a list which is extended according to need. Unlike amalga-

mation clustering algorithms such as k-means (Steinhaus, 1956;

MacQueen, 1967) or BIRCH (Zhang et al., 1997), there is no reas-

signment or updating phase in QB – once an item is assigned to a

cluster it stays there, and clusters are not amalgamated. QB derives

its speed and efficiency from this idea.

A clustering algorithm needs a measure of distance between

two streamlines, and QB uses a particular distance measure that

we call minimum average direct flip (MDF). The MDF measure

requires that each streamline be resampled to have K points. We

have described the MDF measure and the resampling in Section

2.1.

QuickBundles stores information about clusters in cluster

nodes. We index the streamlines with i= 1, . . ., N where si is the

K × 3 matrix representing streamline i. A cluster node is defined

as a triple c = (I, h, n) where I is the list of the integer indices

i= 1, . . ., N of the streamlines in that cluster, n is the number of

streamlines in the cluster, and h is the streamline sum. h is a K × 3

matrix which can be updated online when a streamline is added

to a cluster and is equal to:

h =

n∑

i=1

si (6)

where si is the K × 3 matrix representing streamline i, 6 here rep-

resents matrix addition, and n is the number of streamlines in the

cluster. One summary of the cluster node is the centroid streamline

v where:

v = h/n (7)

An example of the QB centroid is presented in Figure 3.

Algorithm 1: QuickBundles

Input: T = {s1, . . ., si, . . ., sN}, θ

Output: C = [c1, . . ., ck, . . ., cM]

# create first cluster

c1 ← ([1],s1,1)

C ← [c1]

M ← 1

for i = 2 to N do

t ← si

alld ← infinity(M) # distance buffer

flip ← zeros(M) # flipping check buffer

for k = 1 to M do

v ← ck·h/ck·n
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d ← ddirect(t,v)

f ← dflipped(t,v)

# evaluate MDF

if f < d then

d ← f

flipk ← 1

end if

alldk ← d

end for

m ← min(alld)

l ← argmin(alld)

if m < θ then

# append to current cluster

if flipl is 1 then

cl·h ← cl·h + t
F

else

cl·h ← cl·h + t

end if

cl·n ← cl·n + 1

append(cl·I,i)

else

# create new cluster

cM+1 ← ([i],t,1)

append(C,cM+1)

M ← M+1

end if

end for

The algorithm proceeds as follows. At any one step in the algo-

rithm we have M clusters. Select the first streamline s1 and place

it in the first cluster c1← ({1}, s1, 1); M = 1 at this point. For each

remaining streamline in turn i= 2, . . ., N : (i) calculate the MDF

distance between streamline si and the centroid streamlines ve of

all the current clusters ce, e = 1, . . ., M, where v is defined on the

fly as v = h/n; (iii) if any of the MDF values me are smaller than

a clustering threshold θ , add streamline i to the cluster e with the

minimum value for me; ce= (I, h, n), and update ce← (append(I,

i), h+ s, n+ 1); otherwise create a new cluster cM+1← ([i], si, 1),

M←M + 1.

Choice of orientation can become an issue when adding stream-

lines together, because streamlines can equivalently have their

points ordered 1, . . ., K or be flipped with order K, . . ., 1. A step

in QB takes account of the possibility of needing to perform such

a flip of a streamline before adding it to a centroid streamline

according to which direction produced the MDF value.

The complete QB algorithm is described in formal detail in

Algorithm 1. One of the reasons why QB has on average linear

time complexity derives from the structure of the cluster node: we

only save the sum of current streamlines h in the cluster and the

sum is cumulative; moreover there is no recalculation of clusters,

the streamlines are passed through only once and a streamline is

assigned to one cluster only.

2.3. THE QB REPRESENTATION

One of the major benefits of applying QB to tractographies is that

it can provide meaningful simplifications and find features that

were previously invisible or difficult to locate because of the high

density of the tractography. For example we used QB to cluster

part of the corticospinal tract (CST). This bundle was labeled in

the data sets provided by PBC (2.5) and it was selected by an expert.

The QB representation is clearly shown in Figure 1 where every

cluster is represented by a single centroid streamline. To generate

this clustering we used a tight threshold of 10 mm. We observe

that only a few centroid streamlines travel the full distance from

bottom to top and that they are many streamlines that are broken

(i.e., shorter than what was initially expected) or highly divergent.

Another interesting feature of QB is that it can be used to merge

or split different structures by changing the clustering threshold.

This is shown in Figure 4; on the left we see simulated paths made

from simple sinusoidal and helicoidal functions packed together.

The color coding is used to distinguish the three different struc-

tures. With a lower threshold the three different structures remain

separated but when we use a higher threshold the red and blue

bundles are represented by only one cluster indicated by the purple

centroid streamline.

We can see similar effects with real streamlines, for instance

those of the fornix shown at the left panel of Figure 5 where we

can obtain different numbers of clusters at different thresholds. In

that way we can stress thinner or thicker sub-bundles contained

inside other bigger bundles.

In order to quantify the dimensionality reduction it achieves

we applied QB clustering to the 10 human subject data sets (2.5).

The mean data compression (ratio of tractography size to number

of QB clusters) was 34.4:1 with a 10 mm threshold and 230.4:1

with a 20 mm threshold.

2.4. COMPARISON OF CLUSTERINGS

We have found rather few systematic ways available in the literature

to directly compare different clustering results for tractographies,

beyond that of Moberts et al. (2005) who quantified the agree-

ment between a clustering and a “gold standard” tractography

labeled by their team. We have used a more symmetrical mea-

sure of agreement between two clusterings that do not require

a prior labeled dataset. It is called the optimized matched agree-

ment (OMA). As with the adjusted Rand index (ARI; Moberts

et al., 2005), OMA requires the calculation of the M ×N stream-

line cross-classification matrix X = (xij). The entries of X are the

counts of the number of streamlines in all pairwise intersections

of clusters, one from each of the two clusterings. If A= {Ai : i= 1,

. . ., M } and B= {Bj : j = 1, . . ., N are the two clusterings, then

xij= |Ai ∩Bj|. As there is no a priori correspondence or matching

between the clusters in A and those in B, and vice versa, we need

to find one empirically. If j =π(i) is a possible matching then the

corresponding matched agreement is MA(π) =
∑M

i=1 xi,π(i). A

matching π that yields OMA by maximizing MA(π) can be found

using the Hungarian Algorithm (Kuhn, 1955). The interpretation

of the OMA statistic is analogous to that of the well-known Kappa

measure of inter-rater agreement (Altman, 1995), with the range

61–80% corresponding to a good strength of agreement.

We will use OMA to compare the different clusterings that arise

when the streamlines in the tractography are shuffled. However

this statistic has its limitations. Not only are there considerable

computational overheads in calculating the cross-classification

matrix, there is also a fundamental disadvantage because they do
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FIGURE 4 | Left: 3 bundles of simulated trajectories; red, blue, and

green consisting of 150 streamlines each. All 450 streamlines are

clustered together using QB. Middle and Right: centroid streamlines

using thresholds 1 and 8, respectively. At low threshold the underlying

structure is reflected in a more detailed representation. At higher

threshold, closer bundles merge together. Here the red and blue

bundle have merged together in one cluster represented by the purple

centroid streamline.

FIGURE 5 | QB clustering of the Fornix bundle. The original Fornix

(1076 streamlines) is shown on the left panel using a standard

orientation colormap. We observe that the Fornix consists of two long

distant legs (left and right Fimbria) and a thicker upper part (Body of

Fornix). We show here how QB will be able to distinguish the parts of

the Fornix at different resolutions. With a 15 mm threshold QB

generates 4 clusters shown on the second panel with distinct colors.

Here the left and right Fimbria are clearly distinguished from the Body.

A last cluster (with blue) exposes a shorter part of the Body which is

probably due to noise in the data. With a 18 mm threshold only two

clusters are created. Both Fimbria are brought together as one cluster.

A property useful for studies which want to use both Fimbria as one.

With a 20 mm threshold the entire Fornix is one cluster. This is useful

for interactive applications because now the entire Fornix can be

described by only one centroid streamline. The streamlines of the

Fornix were discretized to have 18 points.

not work with clusterings of different tractographies. Being able to

compare results of clusterings across brains is crucial for creating

stable brain imaging procedures, and therefore it is necessary to

develop a way to compare different tractography clusterings on

different sets of streamlines from the same or different subjects.

Although we recognize that these are difficult problems, we

introduce three novel comparison functions which we call cov-

erage, overlap, and bundle adjacency. The first two metrics aim

to quantify how well a data reduction performs, and the third

quantifies how similar two reductions are to each other. Ideally

most points of the full dataset should be near to the reduced set

(coverage), but not too many (overlap).

Let S and T be two sets of streamlines, and let θ > 0 be a selected

adjacency threshold. We will say that s ∈ S is adjacent to T if there

is at least one streamline t ∈T with MDF(s, t )≤ θ . We define cov-

erage of S by T as the fraction of S that is adjacent to T. Coverage

ranges between 0 (when all streamlines in S are too far from T )

and 1 (when every streamline in S is adjacent T ).

We define the overlap of T in S as the average number of adja-

cent streamlines in T across adjacent streamlines in S. Overlap is

undefined if no streamlines in S are approximated by T, otherwise

it can take any value greater then or equal to 1, with higher values

indicating the degree of redundancy of T in S; if T has several

similar streamlines then this will tend to boost overlap.

Coverage and overlap measure how well one set approximates

another. In order to compare two reductions of possibly different

data sets we define the symmetric measure bundle adjacency (BA).

BA is the average of the coverage of T by S and the coverage of S

by T :

BA(S, T ) = (coverage(S, T )+ coverage(T , S))/2.

BA ranges between 0, when no streamlines of S or T have

neighbors in the other set, and 1 when they all do.

2.5. DATA SETS

We applied QuickBundles to a variety of data sets: simulations, 10

human tractographies collected and processed by ourselves, and

one tractography with segmented bundles which was available

online.
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2.5.1. Simulated trajectories

We generated 3 different bundles of streamlines from parametric

paths sampled at 200 points. The streamlines were made from dif-

ferent combinations of sinusoidal and helicoidal functions. Each

bundle contained 150 streamlines. For the red bundle in Figure 4

a pencil of helical streamlines all starting at the same point on a

cylinder was generated by linearly varying the pitch of the helices;

the green bundle was made up from a divergent pencil of rays on

a sinusoidally corrugated sheet; the blue bundle is similarly made

from a divergent rays on a sinsusoidally corrugated sheet, with

the rays undergoing sinusoidal modulated lateral bending over a

range of amplitudes.

2.5.2. Human subjects

We collected data from 10 healthy subjects at the Medical Research

Council’s Cognition and Brain Sciences Unit with a 3 T scanner

(TIM Trio, Siemens), using a Siemens advanced diffusion work-in-

progress sequence, and STEAM (Merboldt et al., 1992; Bernstein

et al., 2004) as the diffusion preparation method. The field of

view was 240× 240 mm2, matrix size 96× 96, and slice thickness

2.5 mm (no gap). Fifty five slices were acquired to achieve full

brain coverage, and the voxel resolution was 2.5× 2.5× 2.5 mm3.

A 102-point half grid acquisition (Yeh et al., 2010) with a max-

imum b-value of 4000 s/mm2 was used. The total acquisition

time was 14′21′′ with TR= 8200 ms and TE= 69 ms. The experi-

ment was approved by the Cambridge Psychology Research Ethics

Committee (CPREC).

For the reconstruction of the 10 human data sets we used Gen-

eralized Q-Sampling (Yeh et al., 2010) with diffusion sampling

length 1.2 and for the tractography propagation we used EuDX

(Euler integration with trilinear interpolation; Garyfallidis, 2012),

angular threshold 60˚ total weighting 0.5, propagation step size

0.5, and quantitative anisotropy stopping threshold 0.0239 (see

Figure 9).

2.5.3. PBC human subjects

We also used labeled data sets by experts (see Figures 1 and 5), from

the freely available tractography database used in the Pittsburgh

Brain Competition Fall 2009, ICDM1.

3. RESULTS

In this section we justify our claims about the speed and linear

complexity of QB (3.1). Next we demonstrate the robustness of

QB as a method for clustering tractographies (3.2). In Section

3.3 we show a new way to find similarities across different trac-

tographies and in Section 3.4 we discuss about some potential

limitations of our methods and possible workarounds.

3.1. COMPLEXITY AND TIMINGS

The execution time of QB is affected by the following parame-

ters: K, the fixed number of discretized points per streamline; θ

the clustering threshold, which controls the heterogeneity of clus-

ters; and N the size of the subset of the tractography on which

the clustering will be performed. When θ is higher, fewer more

1http://pbc.lrdc.pitt.edu

heterogeneous clusters are assembled, and conversely when θ is

low, more clusters of greater homogeneity are created.

The complexity of QB is in the best case linear time O(N ) with

the number of streamlines N and worst case O(N 2) when every

cluster contains only one streamline. The average case is O(MN )

where M is the number of clusters however because M is usually

much smaller than N (M≪N ) we can neglect M and denote it

only as O(N ) as it is common in complexity theory. We created

the following experiment to investigate this claim and we found

empirically that the average case is actually O(N ) for tractogra-

phies (see Figure 6). In this experiment we timed the duration of

QB clustering of tractographies containing from 50,000 to 500,000

streamlines in steps of 50,000, with 12 points per streamline and

different QB thresholds (20, 25, and 30 mm). These results were

obtained using a single thread Intel(R) CPU E5420 at 2.50 GHz on

a standard notebook. The results for a single subject can be seen

in Figure 6. The same pattern was observed for the remaining 9

subjects. This experiment concludes that QB is suitable for fast

and linear time clustering of tractographies.

As a further test we compared QB (with 12 point streamlines

and a clustering threshold of 10 mm) with timings reported from

the fastest state of the art methods found in the literature. These

methods have different goals from those of QB however we think

that it is useful to show the important speedup that QB offers

for the same number of streamlines. With 1000 streamlines Wang

et al.’s (2011) algorithm took 30 s whereas QB took 0.07 s. 14,400 s

were required for the same method to cluster 60,000 streamlines;

QB took 14.7 s. In a third study a substantial tractography of size

400,000 was clustered by Visser et al. (2011) in 75,000 s; QB com-

pleted this task in only 160.1 s. The speedup factors in these three

comparisons were 429, 980, and 468, respectively. Therefore, we see

the valuable speedup that QB achieves, holding out the prospect

FIGURE 6 |Time comparisons of QB using different clustering

thresholds and different number of streamlines. Time increases linearly

as the number of streamlines increases.
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of real-time (less than 1 s) clustering on data sets of up to 20,000

streamlines.

3.2. ROBUSTNESS AND EFFECTIVENESS OF QB CLUSTERING

One of the disadvantages of most clustering algorithms is that they

give different results with different initial conditions; for exam-

ple this is recognized with k-means, expectation maximization

(Dempster et al., 1977) and k-centers (Gonzalez, 1985) where it

is common practice to try a number of different random initial

configurations. The same holds for QB so if there are not dis-

tinct clusters such that the distance between any pair of clusters is

supra-threshold and the diameter of all clusters is sub-threshold,

then with different permutations of the same tractography we will

typically see similar number of clusters but different underlying

clusters. We will examine the robustness of QB in this respect in a

number of ways.

[A] First we look at the stability of the number of clusters with

respect to random permutations. [B] Next we will use optimized

matching agreement (OMA) to establish how well the detailed

content of QB clustering is preserved under random permutations.

[C] Next we will show using the coverage and overlap metrics how

the QB centroids are a better reduction of the tractography dataset

than an equivalent number of random selection of streamlines.

[D] Finally we will show how well QB clustering on a subset of a

tractography dataset serves as an approximation to the remainder

of the dataset.

[A] We recorded the numbers of QB clusters in 25 different

random permutations of the tractographies of 10 human sub-

jects acquired as described in Section 2.5. Streamlines shorter

than 40 mm were first removed and then the remaining stream-

lines were discretized to 12 points. The mean number of retained

streamlines was 98,159.5 (±14,298.0). Then we applied QB with

a threshold of 10 mm. The mean number of clusters across sub-

jects was 4,144.0 (±830.0), representing a data compression ratio

of about 24:1. There is therefore a considerable between-subject

variation in this metric. Some of this inter-subject variability is

related to the sizes of the tractographies: the correlation between

number of QB clusters and and the size of the full tractography

was calculated (r = 0.867, N = 10, clustering threshold= 10 mm);

however the correlation with full tractography size only decreased

marginally to r = 0.786 when the clustering was performed on

subsets of fixed size (80,000). If the number of clusters was more

driven by the size of the dataset on which it was based we would

expect this correlation to have dropped more. This result suggests

that QB clusterings of the subsets reflects the range of shapes of

streamlines in the full tractography not solely its size.

By contrast the within-subject variability of the number of clus-

ters across random permutations is rather small, with mean SD

12.7 (min. 7.3; max. 17.4). The standard error of the individual

subject means above is (worst case)±3.9 which gives strong assur-

ance that 25 random permutations are adequate to get reliable

subject level estimates and that there is minimal fluctuation across

these permutations. This suggests a good level of consistency in

the data reduction achieved by QB within each tractography.

[B] Next we investigated how consistent QB clusterings are

when datasets are permuted. Sixteen different random permu-

tations were generated for each of 10 tractographies and the

corresponding QB clusterings were computed with clustering

threshold 10 mm. For each subject the 120 pairings of QB clus-

terings were compared using the optimized matched agreements

index and then averaged. Across subjects the average OMA (see

Section 2.4) over the 1,200 comparisons was 72.0% (±0.60%);

the average intra-subject SD was ±0.63%. According to Altman

(1995) this represents a good level of agreement consistent across

tractographies, well above chance.

To motivate our understanding of worst and best case scenarios

when the clusterings in question faithfully capture the structure

of the underlying dataset, we consider what happens when the

dataset consists of parallel lines of uniform spacing. The result of

QB clustering is an approximate partitioning into equally spaced

pieces. There will typically be an offset between two such parti-

tionings, and the OMA between them will range between 100%

when they coincide and 50% when they are most out of phase.

[C] Recognizing that large tractography datasets present a com-

putational challenge, some authors (e.g., O’Donnell and Westin,

2007; Visser et al., 2011) have taken random samples of stream-

lines (say 10,000) and applied their clustering algorithms to those.

We have shown in [A] above that large random subsets do con-

tain much of the information about the full dataset. However

they are suboptimal reductions of the full dataset: inevitably they

overrepresent the denser parts of the tractography space, and they

underrepresent the sparser regions of that space. By their construc-

tion the QB centroids will be more uniformly distributed in this

space and thus a better simplification of the original dataset. We

quantify this using the coverage and overlap statistics (see Section

2.4). Each of the 10 human subject tractographies was split into

two halves, the second of which was set aside. QB clusterings were

derived for the first halves. The coverage and overlap statistics for

the resulting QB centroids and for an equal sized random set of

streamlines are presented in Table 1. This was done for two choices

of values for the clustering threshold and adjacency threshold: both

10 mm, and then both 20 mm.

We conclude from this that the QB centroids have near perfect

coverage, and the typical streamline is adjacent to 2–4 centroids,

depending on threshold. By comparison the random subsets have

rather lower coverage, failing to approximate between 5 and 10%

of the tractography depending on choice of threshold. Moreover

the overlap rises strikingly to between 6 and 7. Therefore QB has

overall superior performance to a random set.

[D] The final check on the effectiveness of QB clustering cen-

troids is to see how well they approximate a dataset from which

they were not derived. For this purpose the coverage and overlap

statistics for the QB centroids were compared between the first

half of the tractographies from which they were derived, and the

second half. The results are presented in Table 2.

For each threshold, the first row repeats that of the previous

table, while the second row shows that there is only a small fall-off

in coverage, and that the overlap is unchanged. The QB centroids

are therefore can be taken as a valid reduction of the other halves

of the datasets.

3.3. GROUP COMPARISONS

We warped 10 tractographies each belonging to a different healthy

subject (see Section 2.5) in MNI space and applied QuickBundles
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Table 1 | QB centroids performance compared with random subsets.

Thresholds Comparison Coverage% (SD) Overlap (SD)

10 mm/10 mm QB Centroids 99.96 (0.007) 2.44 (0.08)

Random 90.49 (0.41) 6.16 (0.55)

20 mm/20 mm QB Centroids 99.99 (0.004) 3.54 (0.18)

Random 95.86 (0.62) 6.81 (0.93)

Table 2 | Performance of QB centroids tested on split halves of

datasets.

Thresholds Comparison Coverage% (SD) Overlap (SD)

10 mm/10 mm First half 99.96 (0.007) 2.44 (0.08)

Second half 99.31 (0.08) 2.44 (0.08)

20 mm/20 mm First half 99.99 (0.004) 3.54 (0.18)

Second half 99.91 (0.007) 3.54 (0.18)

on each tractography independently using clustering threshold

10 mm and discretizing to 18 points. In order to warp the stream-

lines we first warped FAs from native space to MNI space using

the FSL tools2. Then we applied the (continuously resampled)

displacements to the points in the tractographies in native space

in order to warp them to MNI space. The code for doing this

is available in http://dipy.org, module dipy.external.fsl, functions

create_displacements, and warp_displacements_tracks.

For every subject we only considered the biggest 100 QB

clusters, i.e., the clusters which contained the highest number

of streamlines. The purpose of this experiment was to identify

a similarity measure between the streamlines of the different

subjects.

In Figure 7 we present both the complete tractographies and

the centroid tracks which correspond to the 100 biggest clus-

ters. Because the complete tractographies are very large con-

taining hundreds of thousands of tracks (mean= 171,002.5,

SD= 23,879.9) we visualize them using low opacity so that at least

an overall projection of the streamlines can be observed. The pur-

pose of this is to show empirically the variability of the streamlines

across subjects. By contrast the centroids of the 100 biggest clusters

for the 10 subjects are easily observed with full opacity in Figure 7.

Each tractography has been substantially simplified by QB such

that by visual inspection shows considerable similarities, as well as

an interesting range of individual differences. No such visual com-

parisons could begin to be made based on the whole brain images

because the data sets are too dense to draw any conclusions.

Further insights into the kind of correspondences that QB

establishes are shown in Figure 8. Taking the clusterings of

Figure 7 as the starting point, the centroids belonging to the three

largest clusters for subject 1 were identified and the corresponding

MDF-nearest centroids were found. For all 10 subjects each of the

corresponding clusters is shown. The red and the blue clusters are

likely to relate to parts of the corpus callosum while the green clus-

ters indicate parts of the cingulum. Figure 8 gives an impression

2http://fsl.fmrib.ox.ac.uk

of the inter-subject variability in the white matter tracts that the

centroids represent.

The mean total number of streamlines in the 100 biggest clus-

ters was 4,818.6 (±794.4). These clusters covered on average

16.18% (±1.4%) of the total number of streamlines. We pro-

ceeded to use these centroids to study the variability between the

streamlines across different subjects.

For this purpose we evaluated the bundle adjacency statistic

(BA; see Section 2.4) between all pairs of these 100 centroids of

each of the 10 tractographies. This generated 45 BA values with

adjacency threshold 10 mm (BA10). We also generated another 45

BA values with adjacency threshold 20 mm (BA20). Note that this

latter adjacency threshold for BA is twice that of the initial QB

clustering threshold.

For BA10 the most dissimilar subjects were subjects 4 and 6

with BA= 38.5%. The most similar subjects were 4 and 5 with

BA= 59.5%. The mean BA10 was 48% (±4.9%). With BA20 the

most dissimilar subjects were subjects 7 and 10 with BA= 72%.

The most similar subjects were, in agreement with BA10, 4 and 5

with BA= 88.5%. The mean BA20 was 80% (±3.2%).

In this experiment there was a great variability of centroid

lengths (mean= 73.6± 43.9 mm). If we suppose that shorter

streamlines are more likely to be noise artifacts we would expect

that by concentrating on longer streamlines we would have a more

robust similarity measure for tractography comparison. We pro-

pose to follow this up in future work by studying how the length

of the big clusters affects BA.

3.4. SHORT STREAMLINES

In general taking short streamlines into account is less valid

because (a) the longer streamlines have greater potential to be use-

ful landmarks when comparing or registering different subjects, as

they are more likely to be present in most subjects, (b) removing

short streamlines facilitates the usage of distance based cluster-

ing (no need for manually setting the clustering threshold) and

interaction with the tractography, and (c) typically one first wants

to see the overall representation of the tractography and later go

to the details. MDF distance often separates shorter from longer

neighboring streamlines which is both a strength and a limitation

according to application. Nonetheless, after having clustered the

longer streamlines there are many ways to assign the shorter clus-

ters to their closest longer clusters. For this purpose we recommend

using a different distance from MDF for example the minimum

version of MAM referred to as MAMmin in equation (2).

Here we discuss two simple strategies for clustering short

streamlines. The first is an unsupervised technique and the second

is supervised.

(1) Cluster the long streamlines using QB with clustering

threshold at 10 mm and then cluster the short streamlines

(<100 mm) to a lower threshold and assign them to their

closest long streamline bundle from the first clustering using

the MAMmin distance.

(2) Cluster the tractography of a subject, pick a centroid stream-

line and then find the closest streamlines to that selected

streamline using MDF, cluster the closest streamlines found

from the previous step and for each one of these new centroid
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FIGURE 7 | QuickBundles centroids of the biggest 100 clusters for 10 subjects. Full tractographies are also presented using high transparency. All

streamlines are visualized with the same standard orientation colormap.

streamlines find the closest streamlines using the MAMmin

distance. We should now have an amalgamation of shorter

and longer streamlines in one cluster.

An example of this second strategy is shown in Figure 9. A sin-

gle centroid streamline of interest (Figure 9A) from the region of

arcuate fasciculus is selected; the streamlines closer than 15 mm

(MDF) to the selected cluster are shown (Figure 9B) and clustered

with a distance threshold of 6.25 mm (Figure 9C); finally from

every centroid streamline in Figure 9C we find the closest stream-

lines from the entire tractography (Figure 9D) using the MAMmin

distance. In this way we managed to bring together in a semi-

automatic fashion an entire bundle consisting both of long and

short streamlines by just selecting initially a single representative

streamline.

4. DISCUSSION AND CONCLUSION

We have presented a novel and powerful algorithm – QuickBun-

dles (QB). This algorithm provides simplifications to the problem

of revealing the detailed anatomy of the densely packed white

matter which has recently attracted much scientific attention; and

it is recommended when large data sets are involved. QB can be

used with all types of diffusion MRI tractographies which gen-

erate streamlines (e.g., probabilistic or deterministic) and it is

independent of the reconstruction model. QB is supported by

a distance function MDF on the space of streamlines which makes

it a metric space. QB can achieve compression ratios of the order

of 200:1 depending on the clustering threshold while preserving

characteristic information about the tractography.

In common with mainstream clustering algorithms such as

k-means, k-centers, and expectation maximization, QB is not a
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FIGURE 8 | Following Figure 7, the three largest clusters for subject 1 are shown together with the corresponding clusters in the other nine subjects.

The correspondence is established by finding the centroids in subjects 2–9 that are nearest to the three centroids for subject 1.

FIGURE 9 | What could be considered as the strength and limitation of

QB is that short streamlines will be clustered differently from longer

streamlines although they may belong in the same anatomical bundle.

A solution to this problem is illustrated. The colormap here encodes

streamline length. (A) A single centroid streamline, (B) the 245 actual

streamlines closer than 15 mm (MDF distance), (C) the streamlines from

(B) clustered with 23 centroid streamlines using QB with threshold

6.25 mm, (D) the 3421 actual streamlines closer than 6 mm (MAMmin

distance) from the centroid streamlines in (C) are shown. We can see that a

great number of short streamlines have been brought together along with

the streamlines in (B).

global clustering method therefore it can give different results

under different initial conditions of the dataset when there is

no obvious clustering threshold which can separate the clusters

into meaningful bundles; for example we should expect differ-

ent clusters under different permutations of the streamlines in a

densely packed tractography. However, we found that there is good

agreement even between two clusterings of the same tractography

with different permutations. If the clusters are truly separable

by distances then there is a global solution independent of per-

mutations. This is often visible in smaller subsets of the initial

tractography.

Other algorithms previously too slow to be used on the

entire tractography can now be used efficiently too if they start

their clustering on the output of QB rather than the initial full

tractography.

We saw that QB is a linear time clustering method based on

streamline distances, which is on average linear time O(N ) where

N is the number of streamlines and with worst case O(N 2) when

every streamline is a singleton cluster itself. Therefore QB is the

fastest known tractography clustering method and even real-time

on smaller tractographies (≤ 20,000 streamlines, depending on

system CPU). We also showed that it uses a negligible amount of

memory.

Additionally, QB can be used to explore multiple tractogra-

phies and find correspondences or similarities between differ-

ent tractographies. This can be facilitated by the use of Bun-

dle Adjacency (BA) a new similarity measure introduced in this

paper.

The reduction in dimensionality of the data achieved by QB

means that BOIs (bundles of interest) can be selected as an alter-

native to ROIs for interrogating or labeling the data sets. Our

experience with ROI-based matter atlases (WMAs) is that they

cannot differentiate fiber directions, i.e., several different bundles

could cross an ROI. Therefore, ROIs constructed with a WMA

do not lead to anatomical bundles and typically lead to large

sprawling sets of streamlines. BOIs seem to be a solution to this

problem and BOI creation can be facilitated by QB. Furthermore,

we showed that QB can be used to find obscured streamlines

not visible to the user at first instance. Therefore, QB opens up
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the road to create rapid tools for exploring tractographies of

any size.

In the future we would like to investigate different ways to

merge QB clusters by integrating prior information from neu-

roanatomists. We are currently working on developing interac-

tive tools which exploit the simplification that QB provides (see

Garyfallidis et al., 2012).

We have shown results with data from simulations, single

and multiple real subjects. The code for QuickBundles is freely

available at http://dipy.org.
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