
QuickDraw: Improving Drawing Experience for Geometric
Diagrams

Salman Cheema
University of Central Florida

Orlando, FL
salmanc@cs.ucf.edu

Sumit Gulwani
Microsoft Research

Redmond, WA
sumitg@microsoft.com

Joseph J. LaViola Jr.
University of Central Florida

Orlando, FL
jjl@eecs.ucf.edu

ABSTRACT

We present QuickDraw, a prototype sketch-based drawing
tool, that facilitates drawing of precise geometry diagrams
that are often drawn by students and academics in several
scientific disciplines. Quickdraw can recognize sketched dia-
grams containing components such as line segments and cir-
cles, infer geometric constraints relating recognized compo-
nents, and use this information to beautify the sketched dia-
gram. Beautification is based on a novel algorithm that iter-
atively computes various sub-components of the components
using an extensible set of deductive rules. We conducted a
user study comparing QuickDraw with four state-of-the-art
diagramming tools: Microsoft PowerPoint, Cabri II Plus, Ge-
ometry Expressions and Geometer’s SketchPad. Our study
demonstrates a strong interest among participants for the use
of sketch-based software for drawing geometric diagrams.
We also found that QuickDraw enables users to draw precise
diagrams faster than the majority of existing tools in some
cases, while having them make fewer corrections.

Author Keywords

Sketch-based Interfaces; Sketch Recognition; Sketch
Beautification; Geometry Constraint Solving

ACM Classification Keywords

G.4 Mathematical Software: User Interfaces; H.5.2. User In-
terfaces: Interaction Styles

General Terms

Algorithms, Experimentation, Human Factors, Measurement

INTRODUCTION

Students and teachers in scientific disciplines often have to
draw very precise diagrams. Drawing such diagrams is
very time consuming and cumbersome, motivating the de-
velopment of software to aid diagramming. For geometric
drawings, popular tools include Geometer’s Sketchpad [6],
Cabri II Plus [3], and Geometry Expressions [7]. Addition-
ally, a growing number of people use Microsoft Office prod-
ucts such as PowerPoint [16] to draw diagrams, due to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.

Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Figure 1. Source : NCERT Mathematics Book, Grade 11, Chapter 2

availability of several drawing templates for common shapes
within the Microsoft Office suite.

Figure 1 shows an example of a geometry diagram. Here, a
user wants to draw a ladder with four rungs. Notice that a1
and a2 are both vertical and have the same length. Both a1
and a2 begin and end at the same horizontal level. Addition-
ally, line segments b1, b2, b3, b4 are horizontal, equidistant,
of same length and are all perpendicular to both a1 and a2.
Also, b1, b2, b3, b4 begin and end at the same vertical level.
It is clear that this deceptively simple diagram would require
a fair amount of effort if one was to do the construction pre-
cisely, even with existing state-of-the-art tools.

Our research goal is to investigate the use of sketch-based
interfaces for drawing precise diagrams since they can pro-
vide significant benefits over existing tools. Sketch-based
interfaces closely mimic pen and paper and let a user draw
very naturally. They can also lower the input complexity of
a diagram construction tool. We believe that by leveraging
techniques from areas of sketch recognition, machine learn-
ing, and geometry constraint solving, it is possible to build
a sketch-based drawing tool that can reduce the difficulty of
precisely drawing a given diagram and thus enhance the pro-
ductivity of users in various scientific fields. To this end,
we have developed QuickDraw, a prototype sketch-based di-
agram drawing tool, that allows a user to sketch and beautify
a given diagram. QuickDraw can process the input sketch to
recognize components of the diagram and the geometric re-
lationships between them. We examined various elementary
mathematics and science text books to come up with a set
of geometric constraints that can be used to beautify a large
subset of diagrams found in the appropriate books. The set
of inferred constraints is used to beautify the input sketch.
Figure 2 provides an example of such a beautification, where
QuickDraw converts the user’s sketch on the left into the pre-
cise diagram on the right.

Session: Visionary Models + Tools CHI 2012, May 5–10, 2012, Austin, Texas, USA

1037

Figure 2. A diagram beautified by QuickDraw. The input sketch is
shown on the left, while the beautified diagram is shown on the right.

If a user was to construct this diagram in a traditional diagram con-
struction tool, it would require a great amount of precision to ensure the

tangent constraints.

We conducted a usability study to compare drawing perfor-
mance in QuickDraw with four state-of-the-art diagram con-
struction tools. It should be noted that QuickDraw is funda-
mentally different from the other tools in our study. The oth-
ers tools rely on the use of pre-defined templates to let a user
construct a diagram that is a close approximation of what the
user has in mind. QuickDraw allows a user to express intent
by sketching the diagram itself. It then tries to understand the
user’s intent through sketch and constraint recognition. Using
its unique beautification algorithm, it can generate a mathe-
matically precise diagram as opposed to a close approxima-
tion with other tools.

RELATED WORK

In general, sketch recognition is a hard problem due to the
complexity and variation in notation in different disciplines.
User perception of sketch recognition has been explored by
Wais, Wolin, and Alvarado [19], yielding useful insights
for designers of sketch-based interfaces. CogSketch [5] is
an open domain sketch analysis system which enables con-
ceptual labeling of sketches. Hammond et al., have devel-
oped LADDER [9] which lets users specify recognition rules
for sketch primitives and some high level semantics in text
form. LADDER can generate domain-specific recognizers
from such text descriptions. MathPad2 [14] is a domain inde-
pendent system that allows users to associate written mathe-
matics with a sketched diagram to perform animation. None
of these systems focus on enabling a user to easily sketch a
precise diagram.

Techniques for sketch beautification have also been explored
by several researchers. PaleoSketch [18] explores techniques
for recognition of low-level sketch primitives and beautifica-
tion. It can recognize a large set of sketch primitives, but
the beautification aspect of this system is very low level and
applies only to individual primitives. Lineogrammer [21] is a
modeless diagramming tool that enables users to construct di-
agrams by interactively beautifying ink strokes. However, it
does not leverage the power of geometric constraint reasoning
and performs very limited beautification. In contrast to both
of these, QuickDraw infers a user’s intent by recognizing con-
straints relating sketched primitive components and uses this
information to beautify the entire sketch, instead of just indi-
vidual components. Igarashi et al., [11] have investigated the
use of inferred geometric constraints for interactively beauti-
fying a sketched diagram. QuickDraw offers several benefits

Figure 3. The flow of information within QuickDraw. A user’s sketch is

recognized and geometric constraints are inferred, which are then used

for beautification, resulting in a precisely rendered diagram.

in relation to their approach. First, we support an extensible
set of diagram components including lines and circles, and
an extensible set of inferred constraints between components
(earlier work by Igarahi et.al is limited to line segments). Sec-
ond, we employ a novel beautification algorithm to beautify
diagrams that are either very hard to draw with the earlier ap-
proach or cannot be drawn altogether.

Our beautification algorithm uses an extensible set of deduc-
tive rules to solve geometric constraints for model construc-
tion. There are several existing approaches to constraint solv-
ing. The goal here is to find a configuration for a set of geo-
metric objects that satisfy a given set of constraints between
the geometric elements [2]. A variety of techniques have been
proposed including logical inference and term rewriting [1],
numerical methods [17], algebraic methods [13], and graph
based constraint solving [2]. These techniques either require
some symbolic reasoning or some form of search. Quick-
Draw’s beautification algorithm is also a form of geometry
constraint solving. However, it is much simpler because it
deals with saturated constraints, which obviate the need for
any sophisticated symbolic reasoning or search. This makes
our beautification technique more efficient and hence real-
time.

With regards to geometry education, Jiang et al., have devel-
oped PenProof [12] which is a sketch-based geometry the-
orem proving system. Its focus is on correlating steps in a
hand-written proof with aspects of the sketch. Another recent
system is IIPW [15], which is a framework of tools for in-
teractive geometry editing on a whiteboard. While this tool
can beautify diagrams using the Line Intersection Method, it
relies heavily on pre-defined templates to specify geometric
constraints. Gulwani et.al. have developed a method for au-
tomatically synthesizing ruler/compass based geometry con-
structions starting from declarative specifications [8]. Their
method starts out by translating the declarative specification
into a model using numerical search. In principle, declarative
specification can be replaced by an easier sketch-based spec-
ification, while model construction can be performed using
our beautification algorithm.

QUICKDRAW : AN OVERVIEW

In its current form, QuickDraw can recognize and beautify di-
agrams containing line segments and circles. Figure 3 shows
the flow of information among the subsystems of QuickDraw.
A user sketches a diagram using a stylus on a tablet computer.
QuickDraw recognizes the components of the sketch and in-
fers the geometric relationships between them. Using this
information, it beautifies the sketch, resulting in a precisely
rendered diagram from approximate sketch input.

Session: Visionary Models + Tools CHI 2012, May 5–10, 2012, Austin, Texas, USA

1038

Constraints recognized by QuickDraw
Applicable To Constraint

Line Segments

Vertical line segment
Horizontal line segment
Collinear line segments
Parallel line segments
Perpendicular line segments
Equidistant line segments
Touching line segments
Intersecting line segments
Line segments with same length
Line segments with endpoint(s) at same hori-
zontal level
Line segments with endpoint(s) at same ver-
tical level

Circles

Circles with same radius
Concentric circles
Circles touching at their circumference
Intersecting Circles
Circle passing through the center of another
circle

Circles & Line
Segments

Line segment tangent to circle
Line segment intersecting circle
Line segment passing through center of circle
Line segment touching circumference with an
endpoint
Line segment touching circle center with an
endpoint

Table 1. Table showing all the constraints that can be recognized by

QuickDraw’s inference subsystem. The constraints can be grouped into
three categories depending on the type of sketch components that are

related by them.

Recognition

A sketched diagram forms the input to QuickDraw. Recogni-
tion in QuickDraw is a two step process. First, the sketch is
parsed into diagram (basic) components. QuickDraw can rec-
ognize line segments and circles as components. Our recogni-
tion heuristics rely on the IStraw cusp finding algorithm [20].
A cusp is a region of high curvature in a digital ink stroke. An
ink stroke corresponding to a circle has two cusps, its starting
and ending points, both of which should be close together,
resulting in a closed shape. A circle also has approximately
uniform curvature about its centroid. To measure curvature in
an ink stroke, QuickDraw applies a threshold to the standard
deviation in the radius of an ink stroke. Once an ink stroke is
classified as a circle, its centroid is assigned as the center of
the circle. The diameter of the circle is assigned as the aver-
age of the width and height of the ink stroke’s bounding box.
Similarly, an ink stroke corresponding to a line segment has
two cusps, and is approximately straight. To check if an ink
stroke forms an approximately straight line, we use a measure
similar to the approach in IStraw [20]:

Linearity = ∥1.0−

n−1
∑

i=1

∥pi, pi+1∥

∥p1, pn∥
∥

where pi is the ith point in the ink stroke. We use a thresh-
old of Linearity < 0.1 to detect line segments. Ink strokes

containing more than two cusps are broken down into compo-
nents containing two cusps each, which are then examined us-
ing the heuristics described above. Recognized sketch com-
ponents are assigned a canonical ordering O, from left to right
followed by top to bottom. This is done to ensure that a de-
terministic view of each diagram emerges, independent of the
order in which its components were drawn.

Algorithm 1 Beautification Algorithm

{C̃ = Set of Components; α = Set of Constraints; }
Require: C̃, α

A := Set of all sub-components of components in C̃;
B := ∅;
while B ̸= A do

if A− B contains a sub-component s that is computable
from sub-components in B because of α (using V) then

Compute s;
else
s := sub-component from A−Bwith the highest rank.
Read value of s from sketch.

end if
B := B ∪ {s};
C := parent component of s.
if C is determined from its sub-components in B (using
U) then

Beautify C; B := B ∪ Sub-components of C;
end if

end while

Beautification

The recognition engine recognizes basic components C (lines
and circles). After this, the inference subsystem infers the in-
tended constraints between recognized components (see Ta-
ble 1 for supported constraints). We now describe a generic
and extensible beautification algorithm (Algorithm 1) that
takes as input the recognized components and inferred con-
straints between them, and translates them into a precise ge-
ometric drawing whose components satisfy the intended con-
straints.

Each component C has constituent sub-components s such
that it can be uniquely determined after some appropriate
subset of its sub-components have been determined. For ex-
ample, the sub-components of a line segment are its slope,
intercept (y-Intercept if slope is not vertical; otherwise x-
Intercept), length, and x/y coordinates of the two end points.
A line segment can be uniquely determined from the x/y co-
ordinates of the two end points, or alternatively from its slope,
intercept and y coordinates of its two end points (if the slope
is not vertical). Similarly, the sub-components of a circle
are its radius and the coordinates of its center. A circle is
uniquely determined if all of its sub-components are known.
This knowledge is captured as an extensible set of rules U .

The idea behind defining constituent sub-components for
each component is that the constraints between components
uniquely identify some of their sub-components. This knowl-
edge is captured as an extensible set of rules V , each of which
specifies how to determine the value of some sub-component

Session: Visionary Models + Tools CHI 2012, May 5–10, 2012, Austin, Texas, USA

1039

from values of some other sub-components under some ap-
propriate constraints. For example, under the constraint that a
line L is tangent to a circle C, C.radius can be computed from
C.center, L.slope, L.intercept. In particular, C.radius can
be computed as the perpendicular distance between C.center
and the line determined by L.slope and L.intercept. As an-
other example, under the same constraint that a line L is tan-
gent to a circle C, L.intercept can be computed from L.slope,
C.center, and C.radius.

Our beautification algorithm maintains a worklist B that holds
the set of all sub-components whose values have been com-
puted. B is initialized to the empty set. The main loop of the
beautification algorithm is repeated until B is equal to set A
that holds all sub-components of all recognized components.
Each iteration of the main loop attempts to identify a sub-
component s ∈ (A−B) (of some component C) whose value
can be computed from the sub-components in B using any of
the rules V : s is then added to B. If component C is uniquely
determined from its sub-components in B using any of the
rules U , then C is beautified and all of its sub-components
are added to B.

If no such sub-component s exists, then to maintain progress,
the algorithm identifies a sub-component s ∈ (A−B) with the
highest rank. The rank of a sub-component s of a component
C is given by lexicographic ordering on the following tuple:

Rank(s) =

MaxS

∑

s′∈S∩B

W (s′)

∑

s′∈S

W (s′)

,O(C),
1

W (s)

An interesting element of the above rank tuple is a weight
function W that maps each sub-component type to some
score between 0 and 1 and is used to assert the relative impor-
tance of knowing some sub-component over another. More
specifically, the relative weight ordering reflects the order of
observing any visual discrepancies (thereby avoiding the need
to edit components unless really required), and also the or-
der of ease of editing components if QuickDraw didn’t get
it right. For our experiments, we used the following relative
weights: (a) Sub-components of a line-segment: x-y coordi-
nates of the two end-points and length (0.5 each), intercept
(0.75), slope (1). (b) Sub-components of a circle: x-y coordi-
nates of the two end-points (0.5 each), radius (1).

The first element of the rank tuple identifies a component
C that is closest to being determined. This is estimated by
computing the maximum of the weighted ratio of the sub-
components that are known from among some minimal set
of sub-components S of C that uniquely determine the com-
ponent C. The second element of the rank tuple breaks any
ties among C by using the canonical ordering O(C) assigned
to the component at recognition time. The third element of
the rank tuple identifies a sub-component s of component C
that has the lowest weight. In the future, we plan to refine the
rank computation by taking into account the probability of
the constraint recognized by the recognition engine and using
these probabilities to associate a confidence score with each
computed sub-component. The value of the sub-component

Figure 4. A approximate square sketched in QuickDraw.

s with the highest rank is then read off from the sketch. C is
then beautified and all of its sub-components are added to B.

The beautification algorithm has two interesting characteris-
tics: robustness and interactive support. The algorithm is ro-
bust due to the powerful deductive reasoning enabled by an
extensible set of rules U and V over a saturated set of con-
straints returned by the inference engine. This allows it to cor-
rectly beautify diagrams when the recognition engine misses
out on some constraints. The algorithm also allows for inter-
active drawing. The main loop of the algorithm can be run in
an incremental fashion after adding sub-components of any
new component sketched by the user to A and updating the
set of constraints.

Example: A Sketched Square

Given the sketched square in Figure 4, QuickDraw should
ideally infer the following constraints between four recog-
nized line segments:

1. Two line segments are horizontal and two are vertical.

2. The horizontal line segments are parallel, and are both per-
pendicular to the vertical line segments.

3. The vertical line segments are parallel, and are both per-
pendicular to the horizontal line segments.

4. All the line segments in the sketch form a connected path,
and are all equal in length.

5. The perpendicular distance between horizontal line seg-
ments is the same as that between vertical line segments.

Beautification now proceeds as follows. (i) After computing
the slope of all the line-segments, the algorithm reads off the
x-y coordinates of the top-left corner and the y-coordinate of
the bottom-left corner from the sketch and then beautifies the
left line-segment. (ii) Next, the algorithm computes the y co-
ordinate of the top-right corner from the y coordinate of the
top-left corner (because of the top line-segment having hori-
zontal slope constraint), and then the x coordinate of the top-
right corner from the two left corners (because of the equal
length constraint between the top and left line-segments), and
then beautifies the top line-segment. (iii) In a manner sim-
ilar to the previous case, the algorithm computes the y co-
ordinate of the bottom-right corner from the y coordinate of
the bottom-left corner (because of the bottom line-segment
having horizontal slope constraint), and then the x coordi-
nate of the bottom-right corner from the two left corners
(because of the equal length constraint between the bottom
and left line-segments), and then beautifies the bottom line-
segment. However, suppose that the inference engine failed
to infer any equal length constraint involving the bottom line-

Session: Visionary Models + Tools CHI 2012, May 5–10, 2012, Austin, Texas, USA

1040

Figure 5. A diagram sketched in QuickDraw. In this case, the user has

sketch the diagram incrementally. The outer circle has already been
drawn, recognized and beautified. The inner circle and its tangent have

just been sketched and await recognition.

segment. The algorithm can still compute the x coordinate
of the bottom-right corner from the x coordinate of the top-
right corner (because of the right line-segment having vertical
slope constraint). However, suppose that the inference engine
also failed to infer the vertical slope constraint for the right
line-segment. The algorithm can still compute the slope of
the right line-segment from the slope of the top line-segment
(because of the perpendicular constraint between the top and
right line-segments) followed by computing the intercept of
the right line-segment from the x coordinate of the top-right
corner. The algorithm can then compute the x coordinate of
the bottom-right corner from the two top corners (because of
the equal length constraint between the right and top line-
segments). These instances of missing constraints highlight
the robustness of our beautification algorithm, which is able
to make up for the missing constraints by making effective
use of other (logically equivalent) constraints.

User Interaction

Figure 5 shows the user interface for QuickDraw. Users can
sketch a drawing in two ways. They may sketch the entire
drawing and then trigger recognition by hitting the ‘Recog-
nize’ button. However this method does not provide instant
recognition feedback. Users can also sketch incrementally
(i.e., they sketch one component at a time), hitting ‘Rec-
ognize’ after each step. QuickDraw supports both of these
sketching methodologies. For a future version, we are plan-
ning to add support for automatically rendering a component
as soon as it gets uniquely determined.

It must be kept in mind that the goal of QuickDraw is to
come up with a precise diagram, given a user’s sketch as in-
put. However, it is possible for the recognition and constraint
inference engine in QuickDraw to make a mistake. Some are
minor and can be rectified by manipulating the positions of
beautified sketch components. Each sketch component has
one or more ‘edit’ points which can be used to manipulate
its position. These edit points are highlighted in blue on the
screen. For a line segment, these are its endpoints. For a cir-

Figure 6. A photograph showing the tablet computer used for our ex-

periment.

cle, its center can be used to move it. A user can hold the
stylus over an edit point for a few seconds to select it. Once
selected, the point can be moved with the stylus to wherever
the user requires.

Using QuickDraw, a user can draw any diagram contain-
ing lines, polygons and circles. However, we cannot beau-
tify all such drawings since precise reasoning of geometric
constraints reduces to reasoning about non-linear arithmetic,
which is a hard problem. Specifically, we cannot beautify
drawings that require construction of intermediate objects or
drawing of arbitrary angles (e.g., drawing a regular pentagon
requires either drawing an angle of 108 degrees, or drawing
several temporary objects). The current version of Quick-
Draw also has limited editing capabilities. Entire line seg-
ments cannot be moved. A user must move both endpoints
separately. QuickDraw also does not allow users to resize
circles. For more major inference errors, a user can remove
the offending sketch component by going into ‘Erase’ mode
and then redrawing it. Note that QuickDraw in its current
form is a prototype and was engineered to focus primarily
on the recognition, inference and beautification aspects of the
system. As of yet, we have not invested fully into adding
enhanced editing capabilities. However, one of the goals of
our usability study was also to investigate diagram drawing
strategies which would yield insights into the type of editing
functionality required by QuickDraw.

USABILITY STUDY

We conducted a user study to compare drawing performance
in QuickDraw with four state-of-the-art diagramming tools:
Cabri II Plus, Geometry Expressions, Geometer’s SketchPad,
and Microsoft PowerPoint. The first three tools were cho-
sen because they are very popular and for their capabilities
in aiding a user in geometrical drawings. Microsoft Power-
Point was chosen due to its widespread use and convenience
for drawing diagrams. Our primary objective in this study
was to compare QuickDraw with traditional WIMP (Win-
dows, Icons, Menus, Pointers) based drawing tools. A related
question is how does the drawing performance scale with di-
agram difficulty for each tool. Lastly, we wanted to get user
feedback concerning the use of sketch-based interfaces for
diagram drawing.

Session: Visionary Models + Tools CHI 2012, May 5–10, 2012, Austin, Texas, USA

1041

Easy Difficulty Medium Difficulty Hard Difficulty

Table 2. This figure shows the diagrams that were drawn by participants in our study. They have been grouped by difficulty. Difficulty for a diagram
was determined by (i) number of components in the diagram and (ii) number of constraints that a person would have to ensure while drawing it. We

conducted a pilot study with two volunteers that allowed us to verify the difficulty for these diagrams.

Subjects and Apparatus

We recruited 19 participants (17 male and 2 female) from the
University of Central Florida for participation in the study.
The ages of participants were between 18 and 37 years. They
were asked to draw nine diagrams with each of the diagram-
ming tools. Each participant took 90-120 minutes to complete
the experiment and was paid $10 for their time. Only one
participant was left-handed. Eleven participants had used a
computer with stylus input before. Nine participants reported
that they often used a computer for drawing diagrams. None
of the participants had used Cabri II Plus, Geometer’s Sketch-
Pad or Geometry Expressions before the experiment. On the
other hand, only one person was not familiar with Microsoft
PowerPoint. Figure 6 shows the experiment setup for our user
study.

The experiment was conducted on a Lenovo ThinkPad X220
multi-touch tablet computer equipped with an Intel Core-i7-
2620M processor and four gigabytes of memory. The screen
resolution was set at 1366x768 pixels. We disabled multi-
touch interaction on the tablet which was placed on a table for
the experiment. Participants sat down and drew each diagram
either with the mouse or the stylus, depending on the tool
being used. Each participant’s drawing session was recorded
by screen capture via the Fraps utility. For analysis purposes,
we divided the diagrams used in the experiment into three
categories, based on drawing difficulty (see Table 2). The
difficulty of a diagram was initially determined based on the
number of constraints that a user would have to ensure while
drawing that diagram. The assigned order of difficulty was
tested and confirmed during a pilot study with two volunteers.

Experiment Procedure

Each participant was asked to fill out a pre-questionnaire,
which collected demographic information. The participant
was given a tutorial of each of the diagramming tools to be
used in the experiment. They were shown how to draw ba-
sic diagram components such as line segments, circles, trian-
gles, and polygons. They were also shown how to edit each
component’s position and size. Lastly, they were shown how
to erase diagram components in each tool. For QuickDraw,
participants were explicitly told they could either sketch the
entire diagram and then trigger recognition, or they could do
recognition incrementally by sketching and recognizing parts
of it. After the tutorial, the participant was given a set of three
practice diagrams (see Table 3). They were asked to use each
tool to draw all three practice diagrams. This helped famil-
iarize the participants with each tool. Participants were also
asked to be very precise in their drawing.

Table 3. Practice diagrams used to familiarize participants with each
diagramming tool.

After the practice session, participants were asked to draw
nine diagrams with each tool. The drawing difficulty of each
diagram was not communicated to participants. Each diagram
had written instructions about relationships that participants
needed to ensure while drawing. Participants were told that
they should complete each diagram to ensure that the written
instructions were satisfied as closely as possible. Participants
were then told they had three minutes to complete each dia-
gram. This time limit was decided during our pilot study dur-
ing which all volunteers were able to complete all diagrams in
under three minutes. The order in which diagramming tools
were used was randomized for each participant. For each dia-
gramming tool, the order in which participants drew diagrams
was also randomized. Table 2 shows the diagrams used in
the experiment. The entire session was recorded via screen
capture. Furthermore, a proctor monitored each participant
throughout the session and noted the time taken to complete
each diagram with each tool. The number of editing opera-
tions performed by participants was also noted down for each
diagram and tool combination. Editing operations included
copy-paste, manipulating positions of diagram elements, and
erasing diagram elements. At the end of the experiment, par-
ticipants were given a post-questionnaire, allowing them to
give feedback about their experience with each tool.

METRICS

We recorded two quantitative metrics for each diagram drawn
by a participant:

• Completion Time : Time taken to complete a diagram in a
particular software tool.

• Edits : Number of editing operations performed in a soft-
ware tool to complete a diagram.

These metrics allowed us to compare the tools in terms of
how easily a user can complete a given diagram. Addition-
ally, we also wanted to measure QuickDraw’s failure rate. As
mentioned before, QuickDraw can fail due to incorrect recog-
nition of constraints. In such cases, users had to make alter-
ations to the beautified diagram. Minor errors were fixed by
editing the positions of beautified diagram components. Se-

Session: Visionary Models + Tools CHI 2012, May 5–10, 2012, Austin, Texas, USA

1042

Figure 7. Mean time to complete a given diagram in each of the different
software tools examined in our study.

vere errors required a user to erase and redraw part or all of
the diagram. Specifically, we were interested in measuring
the probability that a user would not be able to complete a
diagram in the allotted time due to an error by QuickDraw’s
constraint inference subsystem.

Difficulty Easy Medium Hard
Failure Rate 0% 10.526% 12.281%

Overall Failure Rate 7.602%

Table 4. Failure rate for diagrams in each category of drawing difficulty.

For this purpose, whenever a participant was not able to com-
plete a diagram with QuickDraw in the allotted time due to a
severe error, the proctor made a note of it. By analyzing the
session videos recorded for each participant, we conclude that
these instances of failure were primarily the result of incorrect
constraint inference. They become severe when the inference
system infers a false constraint (as opposed to missing a con-
straint). Table 4 shows the rate of occurrence of failure in-
stances for each category of diagram difficulty.

It should be noted that the other tools in our study do not uti-
lize any sort of diagram recognition or beautification. Instead,
they require a user to construct a precise diagram through use
of predefined templates. QuickDraw on the other hand relies
on correct recognition of a sketched diagram and the con-
straints contained therein to produce a precise diagram. As
participants were given 3 minutes to complete a diagram, it is
possible for them to fail to complete a diagram in QuickDraw
due to inference errors. Including such instances of failure
would inflate some data points for QuickDraw to a constant
180 seconds. As these cannot be directly compared to the
completion times in the other tools in our study, we chose
to disregard such instances of failure where participants were
unable to complete a given diagram in QuickDraw in the al-
lotted time.

FINDINGS

Analysis of Metrics

Figure 7 shows the mean time to complete a given diagram
in each of the software tools tested in our study. Similarly,
Figure 8 shows the mean number of editing operations re-
quired to complete a given diagram. The data in both figures

Figure 8. Mean number of editing operations to complete a given dia-

gram in each of the different software tools examined in our study.

are grouped by drawing difficulty. For each category of dif-
ficulty, we used a 5-way repeated measures ANOVA analysis
to test for significant differences in completion time and edits
between QuickDraw and other tools. If we found significant
differences with respect to either mean completion time or
mean number of edits, we conducted a post-hoc analysis with
pairwise t-tests to find the interesting differences. In our post-
hoc analysis, we controlled the chance of Type I errors by
using a Holm’s Sequential Bonferroni adjustment with four
comparisons at α = 0.05 [10].

Diagrams with Easy Difficulty

We found significant differences between QuickDraw and
the other tools for both completion time (F4,14 =
7.692, p < 0.001) and number of editing operations (F4,14 =
22.826, p < 0.001). Using pairwise t-tests, we found that the
mean completion time for an easy diagram in QuickDraw is
less than Microsoft PowerPoint (t18 = −3.325, p < 0.0125).
Due to the Bonferroni adjustment, the difference in com-
pletion time between QuickDraw and Cabri II Plus (t18 =
−2.570, p = 0.019) was not found to be significant. How-
ever, the small p-value suggests that this difference may be
significant with more participants. We found no significant
differences for completion time between QuickDraw and Ge-
ometer’s SketchPad or Geometry Expressions. We also found
that participants performed fewer edits in QuickDraw than in
Microsoft PowerPoint (t18 = −5.41, p < 0.0125). There
were no significant differences in the number of edits per-
formed in QuickDraw and in either Cabri II Plus , Geometer’s
SketchPad or Geometry Expressions.

Diagrams with Medium Difficulty

Once again, we found significant differences between Quick-
Draw and the other tools for both completion time (F4,14 =
15.553, p < 0.001) and number of edits (F4,14 =
29.003, p < 0.001). The results of pairwise t-tests indi-
cate that completion time for a medium difficulty diagram
in QuickDraw is less than in Microsoft PowerPoint (t18 =
−6.667, p < 0.0125), Cabri II Plus (t18 = −4.586, p <
0.0167) and Geometer’s SketchPad (t18 = −3.002, p <
0.025). There was no significant difference between Quick-
Draw and Geometry Expressions in terms of the time taken to

Session: Visionary Models + Tools CHI 2012, May 5–10, 2012, Austin, Texas, USA

1043

complete a medium difficulty diagram. Additionally, partici-
pants performed fewer edits in QuickDraw than in Microsoft
PowerPoint (t18 = −5.691, p < 0.0125). There were no
significant differences in the number of edits performed in
QuickDraw and in either Cabri II Plus, Geometer’s Sketch-
Pad or Geometry Expressions.

Diagrams With Hard Difficulty

Within the hard difficulty category, we found significant dif-
ferences between QuickDraw and other tools for both com-
pletion time (F4,14 = 8.665, p < 0.001) and number of edits
(F4,14 = 21.208, p < 0.001). We found participants took
less time to complete hard diagrams in QuickDraw than in
Microsoft PowerPoint (t18 = −8.781, p < 0.0125), Cabri
II Plus (t18 = −3.489, p < 0.0167) or Geometer’s Sketch-
Pad (t18 = −3.222, p < 0.025). There was no significant
difference in completion time between QuickDraw and Ge-
ometry Expressions for hard to draw diagrams. Participants
also performed fewer edits in QuickDraw than in Microsoft
PowerPoint (t18 = −6.788, p < 0.0167). Due to the Bon-
ferroni adjustment, the difference in edit operations between
QuickDraw and Cabri II Plus (t18 = −2.378, p = 0.029)
and between QuickDraw and Geometer’s SketchPad (t18 =
−2.541, p = 0.020) was insignificant. There was no signifi-
cant difference in the number of editing operations performed
in QuickDraw and Geometry Expressions.

Factors Affecting Completion Time

Completion time, as defined earlier, is a broad metric, which
glosses over a lot of detail. Several factors influence the
completion time for a given diagram in a particular tool.
First, completion time is affected by the order in which a tool
is used. Cabri II Plus, Geometer’s SketchPad and Geometry
Expressions all have similar usage scenarios. It is possible
for users to learn aspects of one of them while using another.
This may have happened in our study despite our best efforts
to randomize the order of tools and diagrams for each tool.
We also noticed variation in drawing strategy among people.
Some participants took extreme care to ensure the constraints
indicated for each diagram while others did not. Some people
drew quickly, whereas others took their time and tried to draw
carefully. In QuickDraw, it is possible to complete a diagram
in two ways. A user can sketch the entire diagram and
then trigger recognition. Alternatively, the diagram can be
drawn incrementally (i.e., sketching individual components
one at a time and triggering recognition after each step).
Depending on the strategy used, completion time can vary
greatly within QuickDraw. We found that a large majority
of participants drew the diagrams incrementally. While it
is critical to support both modes of drawing, it should be
noted that QuickDraw’s best performance is achieved when
the diagram is drawn in a non-incremental manner. Lastly,
incorrectly inferred constraints can increase the completion
time for diagrams drawn in QuickDraw. As none of the
other tools does any recognition, inference errors inflate the
completion time for QuickDraw by forcing users to perform
extra editing operations.

Questionnaire : All Tools
No. Question Response Type
1. I was given a sufficient introduction

to each tool.
7-point Likert

2. Please rate your overall reaction to
each tool.

7-point Likert

3. Please rate your drawing perfor-
mance with each tool.

7-point Likert

4. I was able to draw a given diagram
in a relatively straightforward man-
ner.

7-point Likert

5. Was it difficult to correct your mis-
takes?

7-point Likert

6. I was confused by the interface. 7-point Likert
7. The system had adequate capabili-

ties to allow me to complete a given
diagram in an easy manner.

7-point Likert

8. Please explain your answer to Q7. free response
9. Please rate the different tools from

best to worst.
ranking

Questionnaire : QuickDraw Specific
1. QuickDraw was able to correctly

understand the sketched diagram
most of the time.

7-point Likert

2. Using QuickDraw would enable me
to draw diagrams more quickly.

7-point Likert

3. I would find QuickDraw useful in
my work.

7-point Likert

4. Would you like to use a sketch-
based interface for drawing dia-
grams in the future?

Yes/No

5. List the most positive aspects of
QuickDraw’s interface.

free-response

6. List the most negative aspects of
QuickDraw’s interface.

free-response

7. Please suggest any new features
that would enhance the usefulness
of QuickDraw.

free response

Table 5. Table showing the post-questionnaire used in our study. For the
7-point Likert scale responses, one is the most negative response while

seven is the most positive response. Questions in the ‘All Tools’ section

were asked for each of the five diagramming tools tested in the experi-
ment, while questions in the ‘QuickDraw specific’ section pertained only

to QuickDraw

ANALYSIS OF QUESTIONNAIRE DATA

We asked participants to fill out a questionnaire at the end
of the experiment. The questionnaire was based on [4] and
was split into two sections. In the first section, participants
were asked to rate each diagramming tool on a number of
qualitative metrics. The second section contained questions
related only to QuickDraw. Table 5 shows the questions asked
in each section.

Participant Reaction to All Tools

Our post-questionnaire (see Table 5) asked participants to
rate each tool at the end of the experiment. We used a non-
parametric Friedman test to check for significant differences
in qualitative metrics reported by participants for each tool.
If significant differences were found, we performed as post-
hoc analysis with Wilcoxon signed rank tests to uncover in-
teresting patterns. In our post-hoc analysis, we controlled the

Session: Visionary Models + Tools CHI 2012, May 5–10, 2012, Austin, Texas, USA

1044

Figure 9. Software tools ranked from worst to best by participants.

chance of Type I errors by using a Holm’s Sequential Bonfer-
roni adjustment with four comparisons at α = 0.05 [10].

We found significant differences for overall reaction (χ2 =
11.810, p < 0.05), perceived drawing performance (χ2 =
15.93, p < 0.005), and the ability of each tool to enable easy
diagram drawing (χ2 = 17.675, p < 0.01). Using Wilcoxon
signed rank tests, we found no significant difference in par-
ticipants’ overall reaction to any of the software tools. Par-
ticipants rated their drawing performance in QuickDraw as
better compared to Microsoft PowerPoint (z = −2.431, p <
0.0125), but not significantly different from Cabri II Plus, Ge-
ometer’s SketchPad or Geometry Expressions. There was no
significant difference in drawing capabilities among the soft-
ware tools. QuickDraw’s interface was no less confusing than
that of any other tool in the experiment. It was no less diffi-
cult to correct mistakes in QuickDraw than in any of the other
tools. It was also possible to draw in a straightforward man-
ner in each tool. These are interesting findings because, in
light of our non-parametric Friedman tests, we expected to
find significant differences between QuickDraw and at least
one of the other tools in terms of overall reaction and ability
to enable easy drawing. However, the only differences ap-
proaching significance in both these aspects were with respect
to Microsoft PowerPoint and were culled due to the Bonfer-
roni adjustment. This leads us to suspect that given a larger
number of participants, these differences may become signifi-
cant. We also asked participants to rank all the software tools
from worst to best. Figure 9 shows the rankings assigned
by participants. It shows that more participants assigned the
highest ranking to QuickDraw than to any of the other tools
used in our experiment.

Feedback and Suggestions

The post-questionnaire asked participants to rate QuickDraw
in terms of recognition accuracy and usefulness. It also asked
them to list positive and negative aspects and sought feature
suggestions (see Table 5). When asked if QuickDraw was
able to recognize the sketched diagram correctly most of the
time, the majority of the participants responded positively
(Median = 6, Mean = 5.22). Similarly, when asked if Quick-
Draw enabled them to draw faster, the participants responded
positively (Median = 6, Mean = 5.44). Lastly, when asked

if they would find QuickDraw useful in their work, the over-
all response was a little above neutral (Median = 5, Mean =
4.94). 16 out of 19 participants indicated that they would like
to use a sketch-based interface in the future.

Participants liked QuickDraw’s simple interface. A large
number remarked that the interface enabled very fast drawing,
while freeing them from worrying about drawing correctly by
doing beautification itself. When asked to list the negative as-
pects, the major complaint was about having limited editing
capabilities. For some users, incorrectly beautified diagrams
due to inference errors negatively impacted their experience,
while others were happy to erase and redraw. A few partici-
pants lamented the lack of keyboard shortcuts, and redo/undo
functionality. The most commonly suggested feature was the
inclusion of better editing capabilities (manipulation, snap-
ping, grid, etc). Some people suggested the inclusion of a
mathematics recognition engine in order to be able to write
down angles/dimensions on the sketched diagram. Some peo-
ple wanted to be able to sketch out constraints on the diagram.

DISCUSSION

Our usability study highlights the usefulness of sketch-based
interaction for building a diagramming tool. Participants’ re-
sponses indicate a strong desire to use sketch-based software
in the future. An analysis of data collected in our study pro-
vides several useful insights. For easy diagrams, participants
were able to finish them more quickly using QuickDraw than
with Microsoft PowerPoint. At this level of difficulty, Quick-
Draw was no worse than Cabri II Plus, Geometer’s SketchPad
or Geometry Expressions. However, as the difficulty of dia-
grams increased, QuickDraw overtook Cabri II Plus and Ge-
ometer’s SketchPad in terms of completion time, while still
being no worse than Geometry Expressions. It seems that for
a sufficiently complicated diagram, QuickDraw would enable
a user to achieve the minimum completion time among all the
tools we have studied.

QuickDraw’s performance is hampered by three major fac-
tors. First is a high failure rate (∼ 13%) for difficult di-
agrams, which degrades performance and causes frustration
among users. We adjusted for this by disregarding instances
where participants could not complete diagrams in Quick-
Draw. This is fair because the completion time in such in-
stances is inflated to a constant 180 seconds for QuickDraw
which cannot be directly compared with the completion time
in other tools. The second detriment to performance is the
lack of adequate editing capabilities. Lastly, the majority
of participants in our study chose to draw diagrams incre-
mentally in QuickDraw. This slightly inflates the completion
time, as QuickDraw achieves the best time when the entire
diagram is recognized in one go. Yet it must be noted, that
despite these detriments, QuickDraw was, in some cases, able
to outperform three out of four state-of-the-art geometry con-
struction tools. Indeed, we believe that if QuickDraw was to
incorporate better editing capabilities and a further improved
constraint inference engine, it would outperform the state-of-
the-art in diagramming tools at all levels of difficulty.

Our analysis of the questionnaire data also raises some inter-
esting points. Participants rated their drawing performance

Session: Visionary Models + Tools CHI 2012, May 5–10, 2012, Austin, Texas, USA

1045

in QuickDraw as higher compared to Microsoft PowerPoint.
However, the overall reaction to QuickDraw was no worse
than any of the other software tools. Interestingly, several
participants complained about inadequate editing capabilities
in QuickDraw. Yet there were no significant differences in
their responses when asked to rate each tool on its ability to
allow correction of mistakes. This seems to indicate that par-
ticipants thought all tools including QuickDraw had a similar
level of editing capability.

FUTURE WORK

The results of our user study suggest two avenues of future
work. First, we would like to improve the editing abilities in
QuickDraw. These include the ability to move/resize compo-
nents, as well as the ability to zoom in/out of a diagram. We
would also like to see if allowing users to explicitly sketch
constraints on a diagram improves performance. Second, we
want to improve inference of constraints by using classifiers
over a variety of features (as inferred by machine learning
techniques) as opposed to our existing hard-coded thresholds
over a small number of features. We plan to examine the ses-
sion videos recorded during the course of our study to identify
instances that can cause incorrect constraints to be inferred
and then work to rectify as many of them as possible. Ad-
ditionally, we also want to extend the constraint language to
refer to virtual components. These components are not ex-
plicitly sketched out by the user, but are required to express
constraints between diagram components such as reference
line-segments.

CONCLUSION

We have presented QuickDraw, a prototype sketch-based dia-
gramming tool that lets a user easily express her intent in the
form of a sketched diagram. QuickDraw can recognize in-
dividual components in a sketch, infer constraints between
them, and then beautify them using a deductive geometry
constraint solving algorithm. In this manner, it enables the
drawing of precise diagrams. We conducted a usability study
to compare QuickDraw with four state-of-the-art diagram-
ming tools : Microsoft PowerPoint, Cabri II Plus, Geometer’s
SketchPad, and Geometry Expressions. Analysis of quanti-
tative metrics shows that QuickDraw performed better than
Microsoft PowerPoint for all difficulty levels, and better than
Cabri II Plus and Geometer’s SketchPad for medium and hard
difficulty diagrams. There was no significant difference in
drawing performance between QuickDraw and Geometry Ex-
pressions. However, deeper analysis revealed that the major-
ity of participants did not utilize QuickDraw to its full poten-
tial. We believe that by adding better editing capabilities and
improving the beautification algorithm further, QuickDraw
has the potential to perform better than any WIMP based dia-
gramming tool.

ACKNOWLEDGMENTS

This research was conducted at Microsoft Research during
the course of a summer internship. Microsoft Research also
supported this research by a Consulting Grant. We would
also like to thank Bo Kang and Sarah Buchanan for helping to
pilot test QuickDraw. This work is supported in part by NSF

CAREER award IIS-0845921 and NSF awards IIS-0856045
and CCF-1012056.

REFERENCES
1. Aldefeld, B. Variation of geometries based on a geometric-reasoning

method. Computer Aided Design 20, 3 (April 1988), 117–126.

2. Bouma, W., Fudos, I., Hoffmann, C. M., Cai, J., and Paige, R.
Geometric constraint solver. Computer-Aided Design 27, 6 (1995),
487–501.

3. Cabri ii plus, 2011. http://www.cabri.com.

4. Chin, J. P., Diehl, V. A., and Norman, K. L. Development of an
instrument measuring user satisfaction of the human-computer
interface. In Proceedings of the SIGCHI conference on Human factors

in computing systems, ACM (1988), 213–218.

5. Forbus, K., Usher, J., Lovett, A., Lockwood, K., and Wetzel, J.
Cogsketch: Sketch understanding for cognitive science research and for
education. Topics in Cognitive Science (2011).

6. Geometer’s sketchpad, 2011. http://dynamicgeometry.com/.

7. Geometry expressions, 2011.
http://www.geometryexpressions.com/.

8. Gulwani, S., Korthikanti, V. A., and Tiwari, A. Synthesizing geometry
constructions. In Proceedings of the 32nd ACM SIGPLAN conference

on Programming language design and implementation, PLDI ’11,
ACM (New York, NY, USA, 2011), 50–61.

9. Hammond, T., and Davis, R. Ladder, a sketching language for user
interface developers. Computers and Graphics 29, 4 (2005), 518 – 532.

10. Holm, S. A simple sequentially rejective multiple test procedure.
Scandinavian Journal of Statistics 6, 2 (1979), 65–70.

11. Igarashi, T., Matsuoka, S., Kawachiya, S., and Tanaka, H. Interactive
beautification: a technique for rapid geometric design. In Proceedings

of the 10th annual ACM symposium on User interface software and

technology, UIST ’97 (1997), 105–114.

12. Jiang, Y., Tian, F., Wang, H., Zhang, X., Wang, X., and Dai, G.
Intelligent understanding of handwritten geometry theorem proving. In
Proceedings of the 15th international conference on Intelligent user

interfaces, IUI ’10, ACM (New York, NY, USA, 2010), 119–128.

13. Kondo, K. Algebraic method for manipulation of dimensional
relationships in geometric models. Computer-Aided Design 24, 3
(1992), 141–147.

14. LaViola, Jr., J. J., and Zeleznik, R. C. Mathpad2: a system for the
creation and exploration of mathematical sketches. ACM Trans. Graph.

23 (August 2004), 432–440.

15. Li, Q., Liu, Y., Xu, H., Ren, L., and Ma, C. An intelligent interactive
pen-based whiteboard for dynamic geometry teaching. In Information

Technologies and Applications in Education, 2007. ISITAE ’07. First

IEEE International Symposium on (nov. 2007), 396 –401.

16. Microsoft powerpoint, 2011.
http://office.microsoft.com/en-us/powerpoint/.

17. Nelson, G. Juno, a constraint-based graphics system. In SIGGRAPH

(1985), 235–243.

18. Paulson, B., and Hammond, T. Paleosketch: accurate primitive sketch
recognition and beautification. In Proceedings of the 13th international

conference on Intelligent user interfaces, IUI ’08, ACM (New York,
NY, USA, 2008), 1–10.

19. Wais, P., Wolin, A., and Alvarado, C. Designing a sketch recognition
front-end: user perception of interface elements. In Proceedings of the

4th Eurographics workshop on Sketch-based interfaces and modeling,
SBIM ’07, ACM (New York, NY, USA, 2007), 99–106.

20. Xiong, Y., and LaViola Jr., J. J. Technical section: A shortstraw-based
algorithm for corner finding in sketch-based interfaces. Comput. Graph.

34 (October 2010), 513–527.

21. Zeleznik, R. C., Bragdon, A., Liu, C.-C., and Forsberg, A.
Lineogrammer: creating diagrams by drawing. In Proceedings of the

21st annual ACM symposium on User interface software and

technology, UIST ’08, ACM (New York, NY, USA, 2008), 161–170.

Session: Visionary Models + Tools CHI 2012, May 5–10, 2012, Austin, Texas, USA

1046

