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Abstract

QuickFF is an software package to derive accurate force fields for isolated and
complex molecular systems in a quick and easy manner. Apart from its general ap-
plicability, the program has been designed to generate force fields for metal-organic
frameworks in an automated fashion. The force field parameters for the covalent in-
teraction are derived from ab initio data. The mathematical expression of the covalent
energy is kept simple to ensure robustness and to avoid fitting deficiencies as much as
possible. The user needs to produce an equilibrium structure and a Hessian matrix for
one or more building units. Afterwards, a force field is generated for the system using
a three-step method implemented in QuickFF. The first two steps of the methodology
are designed to minimize correlations among the force field parameters. In the last
step the parameters are refined by imposing the force field parameters to reproduce
the ab initio Hessian matrix in Cartesian coordinate space as accurate as possible. The
method is applied on a set of 1000 organic molecules to show the easiness of the software
protocol. To illustrate its application to MOFs, QuickFF is used to determine force
fields for MIL-53(Al) and MOF-5. For both materials accurate force fields were already
generated in literature but they requested a lot of manual interventions. QuickFF is a
tool that can easily be used by anyone with a basic knowledge of performing ab initio
calculations. As a result accurate force fields are generated with minimal effort.

Keywords: QuickFF, automated software, force-field development, metal-organic
frameworks, molecular simulation

∗Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Bel-
gium

†Lehrstul für Anorganische Chemie 2, Organometallics and Materials Chemistry, Ruhr-Universität
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QuickFF is an automated software package to derive accurate force fields for isolated and
complex molecular systems in a quick and easy manner. Apart from its general applicability,
the program has been designed to generate force fields for metal-organic frameworks in an
automated fashion. The force field parameters for the covalent terms are derived from ab
initio data. As a result accurate force fields are generated with minimal effort.
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1 Introduction

Force fields have become a very powerful tool in molecular simulation nowadays. They are

used in a very broad range of research fields to describe the inter- and intramolecular in-

teractions of molecular systems. This is mainly because they allow to perform molecular

simulations on a length and time scale unaccessible to ab initio calculations. The following

examples show the versatility of their usage: the investigation of the protein-ligand structure

for rational drug design1–4, the design of new materials for methane storage5, the investi-

gation of a molecular device for tetra-hertz signal processing6, the validation of continuum

models describing the van der Waals interface in nanopumps7, the investigation of the abil-

ity of water in pure silica zeolites to absorb mechanical energy8, an atomistic study of the

temperature influence on the reactivity of plasma species9, the investigation of adsorption

of water and ions on carbon surfaces10. Specifically in the field of nanoporous materials and

in particular metal-organic frameworks (MOFs), they are used intensively to study adsorp-

tion11–13, diffusion11,14–16, separation17 and breathing18,19 processes.

The literature on force field development is very rich and it is not possible to give a

complete overview here. There are polarizable versus non-polarizable force fields, all-atom

versus coarse-grained force fields, diagonal force fields versus force fields with cross terms,

. . . Another possible scheme to classify them can be the transferability, the range of systems

to which they are applicable. On one hand, one has universal or general force fields, these are

force fields that are applicable to a very wide range of systems, e.g. organic molecules. Exam-

ples of such force fields are UFF20, GAFF21 and DREIDING22. Force fields like OPLS23,24,

AMBER25–27, CHARMM28–30, MM331 and MM432 can also be labeled as transferable, but

between a more specific set of systems such as proteins or organic molecules. Recently var-

ious independent groups proposed automated procedures to derive force fields. The group

of Barone developed JOYCE33,34, a program to derive all-atom and united-atom force fields

for small to medium-sized molecules. The force fields were parameterized by minimizing a

cost function that measures the error between force field energy, gradient and Hessian on the

one hand, and ab initio energy, gradient and Hessian on the other hand. However, the user
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needs to determine weight factors for the different contributions in the cost function, which

is a non-trivial task that has to be repeated for every molecule separately. These weight

factors can be of crucial importance to get reliable results, especially for more complex sys-

tems18. The choice of these weight factors has a large impact on the correlations between

rest values and force constants of harmonic force field terms. Another approach was used

by the group of Ayers, they proposed an automated procedure for parameterizing Amber-

compatible force fields35. This procedure requires input from AMBER force fields and the

force constants of the harmonic terms are derived by means of a term-by-term projection

of the ab initio Hessian. Very recently, Huang and Roux proposed GAAMP36, General

Automated Atomic Model Parameterization, a program to derive AMBER or CHARMM

compatible force fields. The harmonic terms were mainly taken from GAFF or CGenFF37

and they focused their attention to the derivation of AMBER or CHARMM compatible

charges and reliable potentials for soft dihedrals. Mayne et al. developed the Force Field

Toolkit as a VMD plug-in to automatically parametrize CHARMM compatible force fields

for small molecules38. Also very recently, Stefan Grimme developed QMDFF (Quantum

Mechanically derived Force Field)39, a procedure to automatically derive force fields from

quantum mechanical input. The methodology also includes a parameterization of the van

der Waals interactions inspired by earlier work of Grimme regarding DFT-D340. The FF was

shown to be accurate for organic molecules and transition metal complexes. However, the

rest values of the covalent terms are systematically set to the ab initio equilibrium values. It

remains to be tested whether this remains valid for MOFs, especially if a force field is used

with no exclusions of 1-2 and 1-3 electrostatic interactions.

The development of a new program package QuickFF for deriving force fields, is inspired

by the general quest from the MOF-community to develop in a transparent way accurate

force fields for these systems. New MOFs are being synthesized at a considerable rate. Fur-

thermore, large databases of hypothetical MOFs have been proposed41,42 recently. A tool

that is able to generate force fields with a minimum of manual interventions would be very

valuable to screen a large number of materials in a fast and easy way. Once force fields

are generated they may be used in molecular dynamics (MD) and Monte-Carlo (MC) sim-
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ulations to describe phenomena, with a fixed connectivity of the material, not reachable by

quantum mechanical approaches due to the high computational cost. MOFs differ from other

nanoporous materials, such as zeolites, in various aspects, but the specific framework flexibil-

ity is by far the feature that attracts the most attention. This lattice flexibility has a strong

influence on physical properties such as elastic constants, thermal conductivity, diffusion14,43

and adsorption properties of guest molecules in the pores44–48. The latter phenomenon is

mostly referred to as the breathing effect49–51, by which the host framework can shrink or

expand. The force fields generated by QuickFF need to be able to describe these processes,

which is a very challenging task.

When generating force fields for MOFs, special attention needs to be payed to describe

the metal-ligand bond. Indeed these interactions are not easily described by suitable coor-

dination bond terms in force fields, as they may also have large ionic contributions. For the

organic linker a wealth of reliable FFs exists in literature but the combination of organic

entities with inorganic building blocks poses extra complexities. Recently various groups

have proposed theoretical schemes to construct force fields for MOFs. First of all MOF-

FF was developed by the group of Schmid et al. The force field energy expression is very

similar to the MM3 expression31 and includes cross terms and anharmonic bonds.52–54 The

electrostatic interactions are described using Gaussian charges. The covalent parameters are

fitted to ab initio cluster data using a genetic algorithm. MOF-FF has been able to produce

accurate force fields for a series of well known MOFs such as MOF-5, HKUST-1, UIO-66 and

others. During the fitting procedure of the force fields, additional user interference could be

necessary to adjust the allowed range of the parameters or to run several parallel genetic

algorithm runs and to combine them afterwards.55

Very recently the group of Walsh et al. developed the BTW-FF procedure56. Periodic

ab initio calculations are used to fit the force field. The energy expression is identical to

that of the MM3 force field. Some initial parameters have been refined from existing force

fields (MM3 and MOF-FF). The reparameterization of the MM3 force field includes the

terms describing the carboxylic head and interaction between metal node and ligand. New
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parameters were also derived for the metal node, particularly for the metal-inorganic oxygen

interactions. Charges are derived from the periodic wave function using Bader analysis57.

The resulting force fields have been used to calculate bulk moduli, thermal expansion coef-

ficients and heat capacities. Presently, BTW-FF has been parameterized for a set of well

known MOFs such as MOF-5, HKUST-1, UiO-66 and others. Finally UFF4MOF58 is an

extension for the well-known Universal Force Field to describe metal-organic frameworks.

New parameters are provided for Al and all row four transition metal elements. Further-

more, additional O parameters are proposed that provide reliable structures of the metal

oxide clusters of the connectors. These extra parameters were extracted from fits to ab

initio cluster calculations. This extension can be used to construct a UFF force field for

any MOF containing row 4 transition metals or Al. Although UFF4MOF has been shown

to be very accurate in reproducing the unit cell dimensions of several MOFs, it needs to be

tested in how far the parameter set will be accurate enough to simulate more exotic MOFs

or physical phenomena that are more sensitive to the specific shape of the potential energy

surface, such as breathing.

QuickFF is an easy to use program that uses as input the equilibrium geometry and

the Hessian matrix elements in cartesian coordinates. The intention is to derive force fields

based on a maximal transfer of knowledge from the quantum mechanical system and that

are transferable to larger systems. We implemented the procedure in a user-friendly Python

code. Currently, the Python code is written to read formatted checkpoint files of a frequency

job performed in Gaussian59, but it can easily be extended to read input from other programs.

The paper is structured as follows. In section 2 we briefly discuss the methodology

as embedded in QuickFF for the derivation of force fields from ab initio calculations and

elaborate on the practical usage. In section 3.1 the method is applied on a set of 1000

organic molecules to illustrate the ease with which one can derive accurate force fields for a

large test set. As a proof of principle for the construction of force fields on MOFs, QuickFF

is used to construct a force field for Mil-53(Al) and for MOF-5 (section 3.2).
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2 Implemented methods for generation of force fields with

QuickFF

2.1 Force field potential energy expression

In a force field, the various contributions to the potential energy are expressed in terms of

atom types, i.e. atoms with a similar chemical identity. In QuickFF, the atom type of each

atom can be determined automatically based on local environment, or defined manually by

the user. More information about the automatic assignation of atom types can be found in

the Supporting Information. The force fields generated with QuickFF are composed of three

contributions: a valence contribution describing covalent interactions between chemically

bonded atoms (V ff
cov), a van der Waals part describing the Pauli repulsion and dispersion

interactions (using a Lennard-Jones or an MM3-Buckingham potential) and an electrostatic

contribution governed by the Coulomb interaction between point charges or Gaussian dis-

tributed charge densities (V ff
el ):

V ff = V ff
cov + V ff

vdW + V ff
el (2.1)

V ff
vdW =





1

2

Nat∑

i,j=1
(i 6=j)

ǫij

[
1.84 105 · e

−12
rij

σij − 2.25

(
σij

rij

)6
]

(MM3)
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Nat∑
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(i 6=j)

4ǫij

[(
σij

rij

)12

−
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σij

rij

)6
]
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(2.2)

V ff
el =

1

2

Nat∑

i,j=1
(i 6=j)

QiQj

4πǫ0rij
f(rij) (2.3)

with

f (rij) =





1 point charges

erf

(
rij

dij

)
Gaussian charges

(2.4)

Nat is the total number of atoms in the system, Qi is the charge of atom i and rij is the

distance between atoms i and j, erf is the error function and dij =
√

d2i + d2j is the mixed

radius of the Gaussian charges (di is the radius of the Gaussian charge distribution of atom

i).
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The valence contribution to the potential energy has the following mathematical form:

V ff
cov = Vbond + Vbend + Vtorsion + Voopdist (2.5)

Vbond =
Nr∑

i=1

1

2
Kr,i (ri − r0,i)

2 (2.6)

Vbend =

Nθ∑

j=1

1

2
Kθ,j (θj − θ0,j)

2 (2.7)

Vtorsion =

Nφ∑

k=1

1

2
Kφ,k [1− cos (mk (φk − φ0,k))] (2.8)

Voopdist =

Nd∑

l=1

1

2
Kd,l (dl − d0,l)

2 (2.9)

The force field includes harmonic bonds Vbond, harmonic bends Vbend, cosine dihedrals Vtorsion

and harmonic out-of-plane distances Voopdist. Nr is the total number of stretch bonds, Nθ

the number of bending angles, Nφ the number of dihedral angles, and Nd the number of

out-of-plane distances. An out-of-plane distance represents the distance from a plane deter-

mined by 3 atoms to a fourth atom that is only bonded to each of these 3 atoms (see figure

1). These out-of-plane distances are related to out-of-plane bends60, also called inversion

terms. We prefer to work with out-of-plane distances because for every out-of-plane pattern,

there is a unique out-of-plane distance. The introduction of out-of-plane terms enables us

to accurately describe both the planarity of conjugated π-systems and the non-planarity of

some sp3-units such as amines. The valence FF contains several unknown parameters: force

d

Figure 1: Illustration of the out-of-plane distance d

constants (Kr,i, Kθ,j, Kφ,k and Kd,l), rest values (r0,i, θ0,j, φ0,k and d0,l) and multiplicity
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factors (mk). All these parameters will be estimated in such a way that the force field re-

produces the ab initio equilibrium geometry and ab initio Hessian in equilibrium as well as

possible.

To account for the van der Waals (vdW) interaction, a repulsive short-range term—modeling

the Pauli exclusion principle—and attractive long-range dispersion terms should be added

to the force field potential. In the current version of QuickFF two vdW potentials are im-

plemented, the Buckingham potential, as used in MM331, and the Lennard-Jones (LJ) 6-12

type potential, as used in UFF20. The repulsive interaction is described better by the ex-

ponential part of the Buckingham potential than by the steep r−12 part of the LJ potential.

The user has the choice to use one of the implemented potentials. More details on the

practical implementation of these van der Waals interactions can be found in section 2.3. If

necessary, QuickFF can easily be extended with other van der Waals schemes such as the

ones developed by Grimme and coworkers.

The last contribution to the FF potential is the electrostatic interaction. Atomic point

charges can be derived from the quantum mechanical wave function belonging to the equi-

librium geometry using one of the various partitioning schemes available in literature, e.g.

Hirshfeld-I61,62, Hirshfeld-E63, RESP64 charges, . . . Hirshfeld based schemes apply the atom-

in-molecule (AIM) principle to partition the ab initio molecular electron density into over-

lapping atomic electron densities from which the charges can be derived. The RESP method

estimates point charges by fitting them to the ab initio electrostatic potential. In QuickFF

the user is free to apply one of the available charge population schemes. The derivation

of atomic charges is not part of the QuickFF procedure. Only the exclusion rule for the

non-bonding interactions should still be chosen. An option is built in to exclude some inter-

atomic electrostatic force terms (for example 1-3, 1-4 bonded pairs). More details on the

practical implementation of these electrostatic interactions can be found in section 2.3.
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2.2 Parameterization protocol implemented in QuickFF

The parameterization implemented in QuickFF aims at determining values for the force con-

stants and rest values figuring in the covalent part of the force field expression. A small note

regarding the nomenclature is in order. In this work, the term rest value is used for the

parameters figuring in the harmonic energy term expressions, while the term equilibrium

value is used for the value of an internal coordinate in the equilibrium structure. These two

values are not necessarily identical (which is also illustrated in the Supporting Information),

as opposed to many force fields. The procedure consists of three steps as explained below.

2.2.1 Step 1 - Determining the dihedral multiplicities and rest angles

In the first step the dihedral multiplicities mk and rest angles φ0,k are determined directly

from the equilibrium geometry based on local symmetry. Dihedral patterns belonging to the

same atom types may have widely varying equilibrium angles. For example, the H-C-C-H

dihedrals in ethane have values of 60, 180 and 300 degrees. Hence, the dihedral potential

should have local minima at each of these values. Therefore, we need to choose the mul-

tiplicity and rest angle accordingly, which is mk = 3 and φ0,k = 60➦ in the case of ethane.

The general procedure for determining mk and φ0,k is explained in detail in the Supporting

Information. In some cases this procedure will not result in a unique dihedral potential of the

type as given in expression (2.8) because of its simple mathematical form; we then choose to

ignore that dihedral all together, in accordance with the QuickFF philosophy. If necessary

one could construct more complicated forms of the potential afterwards to represent the

dihedral angles in particular cases, such as internal rotors36,39,65.

2.2.2 Step 2 - perturbation trajectories

In a second step a new methodology is implemented to determine values of the force constants

and rest values and addresses the correlation between the force field parameters. To this

end trajectories are constructed along the multidimensional potential energy surface (PES)
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near the equilibrium structure. Changes to the potential energy along such trajectories

can be modeled with the suggested FF expressions and compared with the first principles

predictions, achieved by a second order Taylor expansion of the ab initio PES along the

perturbation trajectory. Force field parameters can be extracted directly from the ab initio

Hessian for each IC consequently by carefully choosing the trajectories. This is an important

feature, as it doesn’t require an ambiguous Cartesian-to-IC transformation of the Hessian, nor

does it require complicated cost functions. As a result, a unique set of force field parameters

will be obtained. In this section, we will briefly outline this procedure, more details can be

found in the Supporting Information. To extract the force field parameters for a certain IC,

we construct so-called perturbation trajectories. Each frame in the trajectory corresponds to

a certain perturbation imposed on the IC under consideration. Consider a particular IC qn

and assume some small perturbation bringing it to the value q̃n. The geometry corresponding

to this perturbation is determined by relaxing all other degrees of freedom (apart from qn)

by minimizing the strain corresponding to all these other degrees of freedom. The strain is

quantified by means of the following function:

χS
n

(
#»

R
)
=

1

2

∑

m 6=n

[
qm(

#»

R)− qm(
#»

R0)
]2

(2.10)

The summation runs over all internal coordinates qm, different from the perturbed IC qn.

Each IC in the summation is expressed in atomic units as a means of preconditioning.

Repeating this procedure of minimal internal strain for several perturbation values q̃n
1 yields

trajectories
#»

R(q̃n) along an internal coordinate qn, that are as much as possible decoupled

from the other IC’s and in which all other IC’s are relaxed as much as possible. Hence, all

contributions to the covalent force field energy along the trajectory will be small, except for

the harmonic term related to qn. Therefore, we approximate the covalent force field energy

V ff
cov(q̃n) along the perturbation trajectory, by a single harmonic potential in q̃n.

V ff
cov(q̃n) =

Kn

2
(q̃n − qn,0)

2 (2.11)

instead of the full expression of the covalent energy, where the variations of all bond lengths,

bending angles, out-of-plane distances and dihedral angles are taken into account. The

1By default the procedure is repeated for 11 frames, with perturbations in a range of 0.05 Å for distances

and 5 ➦ for angles.

11



unknown force field parameters figuring in expression 2.11, i.e. Kn and qn,0, can now be

estimated by expressing that the force field energy should be equal to the ab initio energy

along the perturbation trajectory, apart from a constant shift c, for each chosen q̃n:

V ai
(

#»

R(q̃n)
)
= V ff

el

(
#»

R(q̃n)
)
+ V ff

vdW

(
#»

R(q̃n)
)
+

Kn

2
(q̃n − qn,0)

2 + c (2.12)

Hence, one can fit a parabola to the difference between V ai and V ff
el + V ff

vdW yielding directly

an estimate of the force constant Kn and rest value qn,0. The procedure can be repeated for

each internal coordinate qn, however, we only apply it to bond lengths, bending angles and

out-of-plane distances. No dihedral angles are considered in this step of the procedure. The

main reason is that the goal of this step is to get accurate estimates of the rest values, while

the rest values of the dihedral angles were already determined in the previous step based on

local symmetry. Finally, an averaging procedure is applied to all IC’s belonging to the same

atom types. The standard deviation can be regarded as a measure to assess the quality of

the atom types which compose the IC’s.

The force constants derived in this step are overestimated because even along the perturba-

tion trajectories with minimal strain, coupled IC’s cannot be completely decoupled and that

by consequence contributions from other IC’s along the trajectory ~R(q̃n) should be consid-

ered instead of the single harmonic potential of Eq. (2.11). The third step consists of a fine

tuning to address this error and match the force field Hessian with the ab initio Hessian.

2.2.3 Step 3 - refinement of the force constants

In the third step, the harmonic force constants from the previous step are refined, and the still

missing dihedral force constants are fitted according to a simple least-square cost function

that measures the error between the various ab initio Hessian and the force field Hessian

matrix elements expressed in Cartesian coordinates:

χH(
#»

K) =
∑

i≤j

([
Hai

]
ij
−

∂2V ff
el

∂Ri ∂Rj

−
∂2V ff

vdW

∂Ri ∂Rj

−
∂2V ff

cov

∂Ri ∂Rj

(
#»

K
))2

(2.13)

#»

K represents a vector containing all force constants. All force constants are constrained to

be positive. In addition, we impose that all dihedral force constants are smaller than 200

kJ/mol to prevent possible compensation effects. The rest values, as extracted from step 2,
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are kept fixed. In this way, troublesome fitting deficiencies due to the correlations between

force constants and rest values are avoided. The constrained optimization is performed using

the Sequential Least SQuares Programming66 algorithm.

2.3 Practical usage

QuickFF can be used in two ways: from a command-based terminal by means of a sin-

gle command using the script qff-est.py or by writing an external script and importing

QuickFF as a Python library. The former is very straightforward to use and will be outlined

in this section, the latter is less straightforward but allows more control. Both usages are

also documented on line at http://molmod.github.io/QuickFF/.

The most straightforward way to construct a force field from the command line is by means

of the following command:

qff-est.py [options] fns

fns is a space-separated list of input file names, while options is a list of space-separated

optional keyword arguments with the format - -key=value. Several input file formats are

supported for reading input data. For example, a Gaussian formatted checkpoint file can

be specified to read the ab initio geometry, forces and Hessian in equilibrium and a HDF5

file can be used to specify the electrostatic and/or van der Waals parameters. All supported

file formats are discussed in detail in the on-line documentation. The optional keyword ar-

guments can be used to control the force field model, all of these options are documented

on line as well as by means of the - -help option. The list below enumerates the most

important options:

❼ - -atypes-level: the level of automatic atom type assignation (low, medium, high or

highest) as explained in the Supporting Information. By default, the atom types are

taken from the input files.

❼ - -ei-model: Defines the potential used for the electrostatic interactions. Can be

CoulPoint, CoulGauss, HarmPoint, HarmGauss or Zero. The Harm variants use a

second order Taylor expression to speed up the calculation considerably (and remain

accurate). The default is HarmPoint.
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❼ - -ei-scales: Defines the scaling rule for the electrostatic interactions. Three comma-

separated floats are required. The first one sets the scale for atoms separated by 1

bond, the second for atoms separated by 2 bonds and the third for atoms separated

by 3 bonds. The default is 0.0,0.0,1.0.

❼ - -ei-path: Defines the path in the HDF5 file, given as an input file, from which the

charges (and optionally the radii in case gaussian distributed charges are required) will

be extracted.

❼ - -vdw-model: Defines the potential used for the van der Waals interactions. Can be

LJ, MM3, HarmLJ, HarmMM3 or Zero. The default is Zero.

❼ - -vdw-scales: Defines the scaling rule for the van der Waals interactions. Three

comma-separated floats are required. The default is 0.0,0.0,1.0.

❼ - -vdw-path: Defines the path in the HDF5 file, given as an input file, from which the

van der Waals parameters, epsilons and sigmas, will be extracted.

To illustrate the usage of the qff-est.py script, suppose one disposes of a Gaussian for-

matted checkpoint file (gaussian.fchk) that is the result of a frequency job performed

on the equilibrium geometry and a HDF5 file (gaussian wpart.h5) that contains Iterative

Hirshfeld charges in the path /wpart/hi. One can now easily construct a force field using

automatically assigned atom types according to the level high, containing a covalent term

for all IC’s, an electrostatic part in which all atom pairs are allowed to interact (including

bonded atoms) using the Iterative Hirshfeld point charges and no van der Waals terms. This

can be achieved by means of the following command:

qff-est.py - -atypes-level=high - -ei-path=/wpart/hi - -ei-scales=1,1,1

gaussian.fchk gaussian wpart.h5

The option - -ei-model is not needed here because its default value is the desired one.
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3 Applications

3.1 QuickFF on a large set of organic molecules

The ease of generating accurate force fields in a fast and efficient way for a large set of

molecules is illustrated by applying the program on a set of 1100 organic molecules. To

this end, 1100 molecules were randomly selected from a subset of the PubChem Compound

database67. Several selection criteria were introduced to define a subset that can be accepted

as sufficient for a serious assessment of the QuickFF procedure for deriving force fields. The

detailed procedure to select randomly a thousand molecules from an initial set of 408366

molecules from the PubChem Compound database is outlined in the Supporting Information

(SI). To illustrate the chemical diversity in this final set of molecules, we constructed various

histograms, shown in Figure 2. The figure illustrates the distribution of several properties:

the total number of atoms in a molecule, the number of C, H, N and O atoms in a molecule,

the size of cyclic patterns and the hybridization of C, N and O atoms. OpenBabel68 was

used to determine the hybridization of each atom.
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Figure 2: Histograms to illustrate the diversity of the test set. Left: distribution of the

total number of atoms in a molecule and number of C, H, O and N atoms in a molecule.

Middle: distribution of the size of cyclic patterns. Right: distribution of the hybridization

of C, N and O atoms.

For every molecule in this set, ab initio calculations have been performed to generate the

reference data, serving as input for the derivation of the force field. First, the geometry of

the molecule was optimized and the ab initio Hessian was constructed with corresponding

frequencies using Density Functional Theory (DFT). The B3LYP69–71 density functional was
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chosen for its well-known accuracy in describing small molecules consisting of first and sec-

ond row atoms72,73, together with the 6-311+G(d,p) basis set74–76. These calculations were

performed with the Gaussian 0959 program. The optimization was done using the VeryTight

convergence criterion and the SCF(tight,xqc) and int(grid=ultrafine) options were selected

for both the optimization and frequency tasks. Next, the atomic charges were computed

using the Hirshfeld-E63 partitioning scheme with Horton77, a development platform for elec-

tronic structure methods. With the Gaussian output and the atomic charges, we derived a

force field using QuickFF without an electrostatic exclusion rule, and atom types derived ac-

cording to the atom type level ‘high’ (see Supporting Information). Next, the force fields were

used to perform a geometry optimization and to calculate the Hessian with YAFF78, an in-

house developed force-field code for molecular simulations of both periodic and non-periodic

systems. Finally, the frequencies were calculated using TAMkin79, a post-processing toolkit

for normal mode analysis, thermochemistry and reaction kinetics. One remark concerns the

ab initio method used to generate the reference data. Due to computational efficiency DFT

methods are mostly preferred. For the training set used here B3LYP was selected, which in-

cludes no dispersion interaction. In this case the van der Waals interactions can be added to

full strength afterwards to the force field potential without the risk of double counting, as the

reference ab initio data did not contain any dispersion forces. For some molecules accurate

geometries may only be obtained by using functionals including long-range dispersion (such

as M06-2X80,81) or with B3LYP+D3 correction terms of Grimme40 (at each optimization

cycle). Fitting the parameters of the bonded FF terms indirectly incorporates the influence

of dispersion. Including additional vdW terms to the total FF potential may lead to an

overestimation of the dispersion effects. One can account for this double counting by intro-

ducing a scale factor to the non-bonded interactions, but there is no conclusive protocol to

fix it. Another possibility is to restrict the vdW terms to 1,4 interactions and higher, i.e.

excluding 1,2 and 1,3 interactions, to restrict the van der Waals terms from influencing the

bond lengths and bending angles

The quality of the force fields generated by QuickFF for the large data set is first vali-

dated by comparing equilibrium bond lengths, bending angles, dihedral angles, out-of-plane

distances and frequencies with regard to the reference data and by comparing its perfor-
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mance to the results obtained with two well-known general force fields, UFF20 and GAFF21.

These two force fields are universal force fields adjusted to reproduce mostly experimental

data. The validity of QuickFF on small organic units is also a necessary condition for its

application to hybrid materials such as MOFs.

The results are shown in Figure 3 for four force fields (QuickFF with van der Waals

terms taken from UFF, QuickFF without van der Waals terms, GAFF and UFF). Each

row in Figure 3 displays the scatter plots of a certain observable (bond lengths, bending

angles, ...). Each dot represents the value of an internal coordinate or a vibrational mode

of a molecule in the data set. The x-value represents the ab initio value, while the value on

the y-axis reports the force field prediction. The diagonal line corresponds to the situation

where the force field exactly reproduces the ab initio reference value. Above each scatter

plot, the standard deviation is included, which gives an indication of the error between the

force field predictions and the ab initio reference data.

The scatter plots of Figure 3 show that QuickFF performs very well compared to the

other general force fields. The standard deviation of any observable is lower for QuickFF than

for both GAFF and UFF (except for the dihedrals, see later). This is not really surprising

since the QuickFF parameters have been fitted for each molecule separately and sufficient

flexibility was taken into account in the assignment of atom types. By construction the two

universal FF’s GAFF and UFF allow less flexibility in the assignment of atom types. Bond

lengths are relatively well reproduced but a significantly larger scattering is noticed for the

bending angles. The lack of an out-of-plane (oop) term in the covalent force field expression

in GAFF and UFF gives rise to a cross pattern centered at the origin. It implies that ab

initio and force field predictions for the out-of-plane structure belonging to the equilibrium

geometry are not consistent with each other. Planar configurations may result from ab initio

calculations, while force fields rather predict a non-planar equilibrium, or vice versa. In the

scatter plots, these cases give rise to the presence of horizontal and vertical branches. No

such cross pattern is present in the scatter plot of QuickFF, which clearly illustrates the

added value of the valence force field terms containing the oop distances.

The series of scatter plots related to the dihedral angles show that these internal degrees

of freedom are more difficult to reproduce with all investigated force fields. This could
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Figure 3: Scatter plots visualizing the performance of the force fields (QuickFF (with vdW

from UFF), QuickFF (without vdW), GAFF and UFF) in reproducing geometrical quantities

and frequencies with respect to the ab initio reference data. The x-value reports the ab initio

value of the various properties for each molecule of the data set, while the FF prediction is

given on the y-axis.

be anticipated because soft dihedral angles, e.g. dihedrals related to internal rotors, are

typically the internal degrees of freedom that are the most flexible. Moreover, these soft
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dihedrals correspond to anharmonic motions while the Hessian used in the reference data for

QuickFF only involves harmonic motions. Hence, insufficient information is incorporated in

the model to accurately fit the force field terms of soft dihedrals. As QuickFF is designed

to accurately generate first-generation force fields for a large set of molecules, this does not

pose a serious problem. In cases where such soft dihedral angles come into play prominently,

a second generation force field can be built including information on the torsional potential

of the internal rotor. Such refinements come at a higher computational cost as additional

ab initio data need to be performed, as such this procedure is not taken up in the standard

workflow of QuickFF which is designed to generate force fields in a fast and easy way.

The scatter plots of Figure 3 further reveal that van der Waals interactions only have a

small impact on the geometry and the frequencies of these small organic molecules. However,

one must be careful not to extrapolate these conclusions to larger molecules without further

investigation. As our final aim is the construction of a transparent methodology for hybrid

materials, these extensions are beyond the scope of the present article.

3.2 Quick and easy force field generation for MIL-53(Al) and MOF-5

The main reason to develop QuickFF is to have a transparent and easy protocol for the

construction of viable force fields for metal-organic frameworks. Easy generation of force

fields for these materials could be beneficial to screen these materials quickly for optimal

properties. Hereafter QuickFF is used to generate force fields for two materials MIL-53(Al)82

and MOF-583. MIL-53(Al) was chosen as it is one of the prototype MOFs that shows an

intriguing flexible behavior, having the capacity to undergo large structural deformations.

For this material, some of the present authors already constructed a force field earlier, but

the procedure required various manual interventions and can not be regarded as quickly

applicable to a larger set of materials18. However the original constructed force field was

very accurate, as it was able to reproduce the breathing behavior of the material properly

and predict the transition pressure of the mechanically induced transition from large pore

to narrow pore84. QuickFF can only be approved for further applications if it equally well

reproduces all these properties. The other benchmark system is MOF-5, which is the first

MOF for which a specific force field was developed by the group of Schmid et al.52 This force
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field was able to reproduce geometry, negative thermal expansion and benzene diffusion.

3.2.1 Validation for MIL-53(Al)

The generation of the force field for MIL-53(Al) relies on ab initio calculations on two isolated

clusters, which are representative for the metal-oxide unit at one hand and the terephthalate

linker on the other hand (see Figure 4). The computational details can be found in ref. 18.

In a next step, QuickFF is applied to each individual clusters. To be consistent with our

previous work, some assumptions are made, which facilitates the comparison of the newly

derived QuickFF force field directly with our previous force field. First, no van der Waals

interactions were included a priori, instead they will be added a posteriori and taken from the

MM3 force field. Second, we include all electrostatic interactions without any exclusions and

we use the same charges. Third, a covalent term was associated with all internal coordinates.

As out-of-plane vibrations have not been included in the covalent terms of the previous FF,

we constructed two force fields with QuickFF with and without Voopdist. As a result the

performance of the two force fields can be compared on equal basis, and at the same time

the added value of the out-of-plane term in the covalent interaction can be examined.

In a next step, the data of the individual clusters need to be merged to produce a force

field for the periodic crystal. The same procedure was followed as in our earlier work, in which

a core region is defined in both systems. These core regions are illustrated in Figure 4 and

consist of atom types that are considered relevant for the periodic crystal. From each cluster

force field, energy terms are only retained when their internal coordinates have at least one

atom in the core region. Whenever a term is present in the force fields of both clusters, their

parameters are averaged over both clusters. The resulting force field parameters can be found

and compared with our previous force field in the Supporting Information. This comparison

reveals that the force field parameters are not differing much from each other, the largest

deviations are noticed in the dihedrals. The concept applied here nicely illustrates how

to build force fields for periodic systems from ab initio data generated on smaller building

units. Such a procedure is beneficial in terms of computational time, as the computation

of accurate Hessians for periodic systems is non-trivial and comes at a large computational
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cost85. The validation of the FF should take place at the level of periodic calculations, for

(a) linker (b) oxide

Cpc
Cph

Hph
CcaOca

Al

Ohy

Cpc

Hhy

Cca

Figure 4: (left) Linker cluster and (right) oxide cluster on which QuickFF was performed.

The solid line defines the core region used to define atom types relevant for the periodic

system. Reprinted (adapted) with permission from ref. 18. Copyright (2014) American

Chemical Society.

which the flexibility, the geometry, unit cell dimensions, energy profile of the breathing mode

should be described appropriately.

Starting from an initial structure of the material, the atomic coordinates and unit cell

parameters are fully relaxed during the geometry optimization of the periodic structure with

the force field. The resulting equilibrium values of several bond lengths are compared with

the ab initio predictions extracted from the extended cluster calculations as they are used

as reference data in the parametrization of the FF (see Table 1). Both force fields (with

and without out-of-plane terms) succeed in accurately reproducing the bond lengths (a more

extended comparison including bending angles and dihedral angles is given in the Supporting

Information). Furthermore, the table also reveals that the new QuickFF force field and the
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ATYPES Linker Oxide Previous QuickFF

nooop oop

AL-OCA 1.93± 0.01 1.92± 0.01 1.93± 0.01 1.87± 0.00 1.86± 0.00

AL-OHY − 1.86± 0.00 1.88± 0.01 1.83± 0.00 1.82± 0.00

CCA-CPC 1.50± 0.00 1.49± 0.00 1.50± 0.00 1.49± 0.00 1.49± 0.00

CCA-OCA 1.27± 0.00 1.27± 0.00 1.27± 0.00 1.26± 0.00 1.26± 0.00

CPC-CPH 1.40± 0.00 1.41± 0.00 1.41± 0.00 1.40± 0.00 1.41± 0.00

CPH-CPH 1.39± 0.00 − 1.39± 0.00 1.39± 0.00 1.39± 0.00

CPH-HPH 1.08± 0.00 1.08± 0.00 1.08± 0.00 1.08± 0.00 1.08± 0.00

HHY-OHY − 0.96± 0.00 0.91± 0.00 0.96± 0.00 0.96± 0.00

Table 1: Ab initio optimized bond lengths (in Å) of the linker and oxide cluster compared

with the periodic predictions made by our previous18 force field and the present QuickFF

force field. Two options are investigated in QuickFF: inclusion of out-of-plane distance terms

(oop) or not (nooop).

previous force field perform equally.

The ultimate validation of the force field generated with QuickFF, is the prediction of a

correct flexibility behavior for the unit cell. By starting from initial geometries close to the

experimental structure of the narrow pore (np) and large pore (lp) phase, we can determine

the unit cell dimensions for both phases with the force field. The definition of the unit cell

dimensions is illustrated in the Supporting Information. In Table 2, we compare the various

force-field predictions with the experimental results of Liu et al86. We can conclude that all

FF variants perform fairly well, however, the presence of an oop term in the valence potential

energy improves the prediction of the large pore unit cell.

Finally, the energy profile along the interdiagonal angle θ is computed. This energy pro-

file is characteristic for a breathing material, because the motion related to a variation in

θ represents this breathing motion. The result is plotted in Figure 5. According to Walker

et al.87, the energy difference between np and lp should be in the range 33-42 kJ.mol−1 de-

pending on which functional is used in the DFT-D method. The force field, presented in our

previous work18, predicts an energy difference of 60 kJ.mol−1, which was outside the range
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Narrow pore Large pore

Expa QuickFF Prevb Expa QuickFF Prevb

oop nooop oop nooop

a [Å] 20.82 19.32 19.22 19.57 16.91 16.66 16.05 17.05

b [Å] 6.61 6.75 6.73 6.53 6.62 6.71 6.73 6.59

c [Å] 6.87 6.10 6.10 6.25 12.67 12.77 13.59 12.91

α [deg] 90.00 89.98 95.26 87.89 90.00 89.98 90.00 90.00

β [deg] 90.00 90.20 90.41 89.43 90.00 90.01 90.00 90.00

γ [deg] 113.95 92.60 92.58 97.15 90.00 90.01 90.00 90.63

D [Å] 21.93 20.24 20.14 20.54 21.13 20.99 21.03 21.38

θ [deg] 36.52 35.04 35.15 35.41 73.68 74.95 80.49 74.25

Table 2: Comparison of the unit cell predicted by the force field with the experimental cell

parameters (a) Ref. 86 (b) Ref. 18

suggested by Walker. At that point we argued that a scaling of the MM3-vdW parameters

had a large impact on the quantitative energy differences between the large and narrow pore

forms. The results generated by QuickFF in the two options (oop and nooop) demonstrate

that the energy profile is very sensitive to the method of how dihedral forces are treated and

the inclusion of out-of-plane motions. The QuickFF/nooop force field predicts an energy

difference of about 39 kJ mol−1 per unit cell, which is consistent with the range of Walker,

while a slightly different parametrization due to incorporation of oop terms, increases the

np-lp barrier to 49 kJ mol−1, which more consistent with our previous force field. In our

earlier force field (Ref. 18), the force constants corresponding to the Al-OCA-CCA-CPC and

Al-OCA-CCA-OCA dihedrals had to be reparametrized to reproduce the periodic behavior

more accurately. Therefore, an ab initio scan of the periodic structure along the interdiag-

onal angle θ was necessary at that point and thus the procedure required some manual

interventions and additional generation of ab initio data. In this case, using QuickFF/oop,

such manual interventions are no longer necessary and thus the procedure is more transpar-

ent to use to a broader set of MOFs. For MIL-53(Al), the prototype example of a flexible

MOF, QuickFF successfully passed the validation and thus the protocol may be used to
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Figure 5: Breathing profile of Mil-53(Al) according to the new QuickFF force field (with

the two options oop and nooop) and the previous force field (with unscaled MM3-vdW).

other hybrid flexible materials.

3.2.2 Validation for MOF-5: QuickFF versus MOF-FF

MOF-FF is the force field protocol developed by Schmid et al. and is very successful in

generating force fields for a variety of hybrid materials, but as we mentioned before, man-

ual interventions may prove necessary during the fitting procedure of the force field. For

MOF-5 an assessment is made on the force field generated by QuickFF and by MOF-FF.

Both methodologies have some common features but also some differences in the analyti-

cal FF expression for the description of the covalent part of the force field. In MOF-FF a

Morse potential is used to describe the coordination bonds in which the metal is involved.

Additionally, some stretch-stretch and stretch-bend cross terms are taken into account. We

generated a force field using QuickFF starting from the same reference data of a single cluster

(Figure 6), used for the MOF-FF force field55. Instead of point charges the same spherical

Gaussian charge distributions are employed in the two FF protocols.

A first validation of the force fields concerns the reproduction of the equilibrium geometry

and the vibrational frequencies of the model system. Bond lengths are geometrical parame-
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ters, that are the most sensitive to variations of the FF parameters. They are tabulated in

Table 3. There is a slight preference for MOF-FF in reproducing the ab-initio reference data.

The largest deviation is noticed in the metal-oxygen bond distance Oce-Zn, which is slightly

underestimated by QuickFF. The remaining geometrical parameters are all accurately repro-

duced; the whole list is reported in the SI. The final goal of the FF is its adequacy to predict

Zn

Oca

Oce

Cca

Cpc

Cph

Hph

Figure 6: Structure of basic zinc benzoate as model system for MOF-5. All atomic types

are given.

properties of the MOF-5 framework. Unit cell parameters are tabulated in Table 4, they

were calculated by performing a full relaxation of the unit cell. Both force fields reasonably

succeed in reproducing the experimental estimates, with a slight preference to MOF-FF. A

serious test for the force fields is the prediction of the (low) frequencies of the normal modes.

They are tabulated in the SI, but a one-to-one correspondence of the data, resulting from

the two force fields, is not meaningful due to the degeneracies corresponding to each normal

mode, which are obviously different for each FF (different terms). A correlation diagram is

therefore more instructive and transparent (Figure 7). In this diagram, both the QuickFF
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ATYPES DFT QuickFF MOF-FF

Cca-Cpc 1.497± 0.000 1.510± 0.000 1.497± 0.000

Cca-Oca 1.271± 0.000 1.274± 0.000 1.271± 0.000

Cpc-Cph 1.404± 0.000 1.413± 0.000 1.402± 0.000

Cph-Cph 1.398± 0.002 1.402± 0.000 1.399± 0.001

Cph-Hph 1.090± 0.001 1.090± 0.001 1.093± 0.001

Oca-Zn 1.960± 0.000 1.968± 0.000 1.962± 0.000

Oce-Zn 1.963± 0.000 1.921± 0.000 1.967± 0.000

Table 3: Comparison of bond lengths in the benzoate cluster as predicted by DFT, QuickFF

and MOF-FF.

and MOF-FF frequencies are sorted numerically and plotted against each other. The step-

wise increase of the frequencies in the correlation diagram (best visualized in the inset of the

figure) points toward a different degeneracy observed in the QuickFF frequencies, but the

global trend of the two sets of data is similar at least for frequencies below 1400 cm−1.

QuickFF MOF-FF exp83

a [A] 26.173 26.080 25.885

b [A] 26.173 26.080 25.885

c [A] 26.173 26.080 25.885

α [deg] 90.000 90.000 90.000

β [deg] 90.000 90.000 90.000

γ [deg] 90.000 90.000 90.000

Table 4: Comparison of the unit cell of MOF-5 as predicted by QuickFF, MOF-FF and

experiment.
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Figure 7: Comparison of frequencies of MOF-5 as calculated by QuickFF and MOF-FF.

4 Conclusions

Quick FF is a new and fast protocol to derive force fields for isolated and complex molecular

systems from ab initio calculations. The development of the new software is inspired by the

quest from the MOF community to determine in a fast, transparent and easy way force fields

for these new type of hybrid materials. The input data for QuickFF consists of ab initio

equilibrium geometries and a Hessian on smaller building units. The mathematical expression

for the covalent energy terms is kept simple using harmonic terms for bond lengths, bending

angles and out-of-plane distances and single cosine functions for dihedral angles. Such an

approach was preferred to ensure robustness and to avoid fitting deficiencies as much as

possible. The parameters of the electrostatic and van der Waals interactions are assumed to

be known a priori and can be taken from population schemes that are available in literature.

An option is built in to spread the atomic point charge over a spherical Gaussian distribution

function centered on the nucleus. The resulting force fields are intended for direct use in

molecular simulations. If they are too simple to describe more complex systems, they still

provide a first generation force field for further fine tuning.

A new methodology was implemented that relies on the generation of perturbation tra-
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jectories around the equilibrium. For each internal coordinate a trajectory was constructed

to minimize the strain along the trajectory generated by the other IC’s. Finally, all force

constants were refined using a least-square cost function that measures the error between

the force field and ab initio Hessian expressed in Cartesian coordinates. In QuickFF, there

is no need for complicated cost functions nor for an introduction of weight factors.

The QuickFF procedure was illustrated by applying it on a large set of organic molecules,

for which the new force fields succeeded in reproducing the ab initio geometry and Hessian

in equilibrium. Furthermore QuickFF performed well in comparison with general force fields

such as UFF and GAFF. Especially the introduction of a term containing out-of-plane dis-

tances was shown to be very valuable.

To show the validity of the protocol for generation of force fields on MOFs, two materials

(MIL-53(Al) and MOF-5) were studied for which force fields are available in literature but

which were constructed using several manual interventions. The force fields for the periodic

structures are constructed on basis of a building block concept as originally introduced by

Schmid and co-workers. Ab initio calculations are performed on smaller building units,

from which force-field parameters are deduced using the QuickFF methodology. Afterward

the parameters are merged in an appropriate way to generate a force field for the periodic

structure. For MIL-53(Al), QuickFF fully complies with the expectations, the force field was

able to reproduce the geometries, unit cell dimensions and relative stabilities of the large and

narrow pore phases. Furthermore the new force field was able to predict a correct breathing

profile for this flexible material.

In addition, QuickFF and MOF-FF were compared for generating a force field for MOF-5.

The two FF methodologies succeed in achieving the expected accuracy. The more elaborated

MOF-FF turned out to be slightly superior to the present version of QuickFF in reproducing

properties of the framework. QuickFF was developed within the scope of offering a fast and

easy recipe to the MOF community to construct a valuable FF for any MOF structure.

QuickFF has been implemented in a user-friendly Python code and is available via http:

//github.com/molmod/QuickFF. The program is clearly valuable for the screening of large

databases of MOFs and for the derivation of their properties based on extensive molecular

dynamics or Monte Carlo simulations.
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Program Availability

The Python code can be downloaded from the web-interface to the revision control system

Git: http://github.com/molmod/QuickFF.
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A. Malek, Horton 1.2.1, http://theochem.github.com/horton/,2014.

78. T. Verstraelen, L. Vanduyfhuys, S. Vandenbrande, Yaff, yet another force field,

http://molmod.ugent.be/software/.

79. Ghysels A, Verstraelen T, Hemelsoet K, Waroquier M, Van Speybroeck V. TAMkin: A

versatile package for vibrational analysis and chemical kinetics. J. Chem. Inf. Model.

Aug 2010; 50(9):1736–1750.

37



80. Zhao Y, Truhlar D. The m06 suite of density functionals for main group thermochem-

istry, thermochemical kinetics, noncovalent interactions, excited states, and transition

elements: two new functionals and systematic testing of four m06-class functionals and

12 other functionals. Theor. Chem. Account 2008; 120:215–241.

81. Zhao Y, Truhlar D. Tdensity functionals with broad applicability in chemistry. Acc.

Chem. Res. 2008; 41:157–167.

82. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Ferey G.

A rationale for the large breathing of the porous aluminum terephthalate (mil-53) upon

hydration. Chem.Eur.J. 2004; 10:1373–1382.

83. Li H, Eddaoudi M, O’Keeffe M, Yaghi O. Design and synthesis of an exceptionally stable

and highly porous metal-organic framework. Nature 1999; 402:276.

84. Yot P, Boudene Z, Macia J, Granier D, Vanduyfhuys L, Verstraelen T, Speybroeck
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