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Abstract 

      We present an architecture for and prototype of a 
system for quickly detecting software problem 
recurrences. Re-discovery of the same problem is very 
common in many large software products and is a 
major cost component of product support. At run-time, 
when a problem occurs, the system collects the 
problem symptoms, including the program call-stack, 
and compares it against a database of symptoms to 
find the closest matches. The database is populated 
off-line using solved cases and indexed to allow for 
efficient matching. Thus problems that occur 
repeatedly can be easily and automatically resolved 
without requiring any human problem-solving 
expertise. We describe a prototype implementation of 
the system, including the matching algorithm, and 
present some experimental results demonstrating the 
value of automatically detecting re-occurrence of the 
same problem for a popular sofware product. 

1. Introduction 

    Much of the research to date in autonomic and self-
managing systems has focused on self-optimizing and 
self-configuring systems, largely because standard 
performance metrics are available which can be used 
to measure progress.  Unfortunately, there has been far 
less investigation into how to develop self-healing
computer systems, particularly software systems.  This 
is likely a result of the challenge presented by the task 
of automating how to detect, isolate, identify the root 
cause of, and repair the full breadth of complex 
problems that may occur in modern systems, as well 
as how to predict and avoid such problems.  

    We can begin to address the complexity of this 
challenge by distinguishing between two categories of 

problems: known problems and new problems.  Many 
products report that typically half, and sometimes as 
many as 90 percent, of all problems reported by users 
are re-occurrences – or rediscoveries – of known 
problems.  While such statistics may seem 
encouraging, support staffs typically spend a 
significant amount of time manually determining 
whether a given problem report is in fact new or not.  
In aggregate, over a third of all time spent by the 
service organization of at least one major IBM product 
is consumed by rediscoveries, i.e., by determining 
whether the symptoms reported by a user match those 
of any known problem. 

    While rediscoveries may seem to be “low-hanging 
fruit” for automation, matching the problem symptoms 
provided by a user to a large database of such 
symptoms is not as straightforward as it may seem.  
Because the symptoms are still largely collected 
manually by humans and conveyed verbally or by e-
mail, there is much potential for miscommunication.  
The symptoms provided by the user may or may not 
be relevant to the problem, and critical symptoms may 
inadvertently be omitted.  Each user – or service 
analyst – may describe the symptoms imprecisely or in 
slightly different terminology, and even in a different 
language!   Even automated systems collect different 
types of information and use different formats, for 
historical or organizational reasons or because the 
same code operates slightly differently or reports 
different diagnostics on different platforms.  On the 
other hand, closely-matching symptoms alone may not 
necessarily represent the same problem, but could be 
due to an incomplete “fix” or even accidental re-
introduction of a bug during the repair process or in 
subsequent releases. 
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     Our ultimate goal in this research is to significantly 
reduce the cost of servicing software products by 
developing symptom databases that can be populated 
and searched automatically, i.e., by self-healing agents. 
But a necessary first step is to solve the more 
immediate problem of speeding the process by which 
human service analysts now perform this function, 
Typically, structured symptoms, particularly those 
generated by software, are more amenable to 
automated matching than semi-structured or 
unstructured symptom descriptions provided by 
humans, so we began with these and hope to extend 
our work to the more challenging types of symptoms 
in the future. 

Perhaps the most pervasive and highly-structured 
type of symptom in software systems is the call stack 
produced by a hard system failure such as a “trapped” 
error, a “hang”, or an undetected “system crash”.  The 
call stack reconstructs the sequence of function calls 
leading up to the failure via the operating system’s 
stack of addresses that is pushed each time a function 
is called and popped when it returns.  Error-handling 
routines map each address on this stack back to the 
function’s name and the offset from that function’s 
entry point at which the next call was initiated.  This 
provides the exact address at which the problem 
occurred (in the case of a crash) or was first detected 
(i.e., “trapped”), as well as the path through the code 
by which the system arrived at that address.  This 
information can be extremely useful to anyone 
attempting to fix the problem, so it is typically 
captured in human-readable form.  More importantly 
for our purposes, the call stack also defines a kind of 
signature of instances of this class of problem, which 
we exploit in this work to search and match known 
problems in a database. 

An example of a call stack is given in Figure 1.  
In this format, each line gives the function’s address, 
followed by the function name, separated by two 
underscores from the C++ “mangled” names of the 
arguments of that function and the offset (note that a 
few lines in the figure wrap).  The first line gives the 
top of the stack, i.e. the most recently invoked 
function, and the bottom of the stack gives the entry 
point (which has been omitted for brevity).  

The stack in Figure 1 illustrates a number of 
features that any stack-matching procedure must take 
into account. The top few routines are typically 
common error-handling routines that any error in a 
component is supposed to call (by coding convention), 

and are therefore often useless for isolating or 
identifying the problem.  Similarly, the entry function 
at the bottom of the stack is common to all invocations 
of this product and hence irrelevant. The stack may 
also contain recursive calls which may need to be 
ignored in order not to confuse the matching. 

6401261 *** Start stack traceback ***

0xD10ED244 sqloDumpEDU + 0x1C

0x200B852C sqldDumpContext__FP20sqle_agent_privatecbiN42PcPvT2 + 0x148

0xDE244A8C sqlrr_dump_ffdc__FP8sqlrr_cbiT2 + 0x520

0xD1220FC0 sqlzeDumpFFDC__FP20sqle_agent_privatecbUlP5sqlcai + 0x48

0xD1220BB0 sqlzeSqlCode__FP20sqle_agent_privatecbUiUlT3P5sqlcalUsPc + 0x2D4

0xDF9C08EC sqlnn_erds__FiN41e + 0x174

0x2158F5D4 sqlno_ff_compute__FP13sqlno_globalsP19sqlno_ff_essentials + 0x628

0x2158FBBC sqlno_ff_or__FP13sqlno_globalsP19sqlno_ff_essentialsPf + 0x260

0x2158F384 sqlno_ff_compute__FP13sqlno_globalsP19sqlno_ff_essentials + 0x3D8

0x2158FBBC sqlno_ff_or__FP13sqlno_globalsP19sqlno_ff_essentialsPf + 0x260

0x2158F384 sqlno_ff_compute__FP13sqlno_globalsP19sqlno_ff_essentials + 0x3D8

0x2158FBBC sqlno_ff_or__FP13sqlno_globalsP19sqlno_ff_essentialsPf + 0x260

0x2158F384 sqlno_ff_compute__FP13sqlno_globalsP19sqlno_ff_essentials + 0x3D8

0x2172AF50 sqlno_ntup_ff_scan__FP13sqlno_globals + 0x10E0

0x2174D1EC sqlno_prep_phase__FP13sqlno_globalsP9sqlnq_qur + 0x1704

0x2174B29C sqlno_exe__FP9sqlnq_qur + 0x944

0xDFAA7C3C sqlnn_cmpl__FP20sqle_agent_privatecbP11sqlrrstrings17sqlnn_compileMod

eT3P14sqlrr_cmpl_envlT7PP9sqlnq_qur + 0x48E4

0xDFAA32CC sqlnn_cmpl__FP20sqle_agent_privatecbP11sqlrrstrings17sqlnn_compileMod

eT3P14sqlrr_cmpl_env + 0x68

0xDE514DD0 sqlra_compile_var__FP8sqlrr_cbP14sqlra_cmpl_envPUciUsN54P16sqlra_cach

ed_varPiPUL + 0x1290

…

Common 
Error 
Handling 
Routines 
(Ignore)

Levels of 
Recursion 
Probably
Not 
Relevant

FAILURE!

Entry-level 
Routines 
Definitely
Not 
Relevant 
(Too 
Common)

Figure 1: Example of a call stack. 

   The further up the stack one goes, short of the error 
handling routines, the more relevant is each function 
name.  The function just below the error handling 
routines is the function that first detected the error, but 
it may or may not have caused that error.  It’s possible 
that the routines that called it passed an illegal value, 
or otherwise contributed to the error, so the path to 
that routine may or may not be relevant to the problem. 
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    Matching a call stack to a database of such call 
stacks therefore comprises the following steps: 

1. Parsing the text field in which the call stack 
occurs, to identify each function name in the 
stack (this step may be omitted if the stack is 
already tagged, e.g. via XML); 

2. Removing the error handling routines at the 
top of the stack and (some of) the common 
entry routines;  

3. Removing recursive function calls if 
appropriate; 

4. Matching the remaining stack to those in the 
database by a matching algorithm that takes 
into consideration the position of each 
function in the remaining stack. 

We will describe each of these steps in more 
detail in this paper, and also detail ways to index the 
stacks for efficient search without having to compare 
the target stack against every stack in the database. 

The remainder of the paper is organized as 
follows. We first provide an overview of the 
architecture of our symptom-matching system in 
Section 2.  Section 3 discusses the design and 
implementation details of each of the steps, including 
how the symptom database is populated and indexed, 
as well as the details of how stack matching is 
performed.  Section 4 presents experimental results 
for a version of this system that will soon be deployed 
in the Lotus Notes/Domino 7.0 product.  We compare 
our approach to related work in Section 5, and in 
Section 6 describe future work and conclusions. 

2. Architecture

    Figure 2 illustrates the overall process. It has two 
main parts: the on-line components that collect 
information from end-users and conduct matching and 
search operations for a match request, and the off-line 
components that manage the case database. 

     The matching and search engine (MSE) is the core 
of the on-line part. It begins by logging the received 
request for record-keeping and problem trend analysis. 
Its main function is to provide matching results to a 
matching or search request based on the case 
knowledge base or its indexing database. The request 
can be submitted by either a software agent or a query 
interface. The latter, similar to a web search 
application, provides an interfaces for a user (e.g. a 
member of the support staff) to submit a matching 
request and view the returned results - a ranked list of 
similar cases, with their resolutions and recommended 
actions. This will help the user to diagnose a problem 
based on previously solved cases.   

     Our architecture also supports automated data 
collection, problem reporting and possibly automated 
actions.  When a problem occurs in the customer 
environment, a data collection agent automatically 
gathers diagnosis information, such as the program 
call-stack, other problem symptoms and 
environmental information. It then sends a diagnosis 
request to the matching and search engine and 
coordinates further actions based on the returned 
matching results. 

     In this paper we will focus on the program call-
stack, but more generally a wide variety of 
information, such as which applications are running, 
the version of the operating system, and so on, could 

Figure 2: Overview of the architecture of the symptom-matching system 
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be collected. Further, our current prototype only 
displays matching results and the recommended 
actions. It can be extended to support automated 
actions; e.g. opening a ticket to a problem 
management system if the case is a new problem, or 
installing a recommended fix for a known problem. 

     Knowledge management is an important task to 
support large scale deployment and maintain the 
system’s effectiveness over time. It includes data 
management, such as case database indexing for 
scalable search, as well as the capability to extract 
cases from existing data sources, support continuous 
learning to improve matching effectiveness, and 
authoring and administration interfaces.  

3. Implementation 

     In this section we describe in more detail the 
following aspects of the symptom-matching system: 
data collection, case database population and indexing, 
and call stack matching, including preprocessing steps 
such as removal of error-handling routines and 
recursive calls. 

3.1.  Data-collection 

Java exception 
watcher.dll

Data collection 
communicator

Window exception 
watcher library

 java 
app

Window 
app

Other watcher

Other  
app

Matching 
request to 
MSE

Results 
from MSE

GUI

Figure 3: Data-collection agent. 

    In general, any software product may use its own 
method to collect problem symptom data. However to 

create our own testbed for the automated symptom-
matching system, we implemented a simple data-
collection agent. As shown in Figure 3, the agent has 
three main components: a communicator that 
communicates with the matching and searching engine 
(MSE); a set of watchers that monitor a native 
application and collect the diagnosis information when 
a problem such as a crash or exception occurs; and a 
GUI that interacts with the user to display results. 

     We have implemented two watchers for Java and 
Window application respectively. For Java 
applications we use the JVMDI (Java Virtual Machine 
Debug Interface) [8]. When the target Java application 
starts, the JVMDI watcher is loaded into the java.exe 
process using a command line option. The JVMDI 
watcher can subscribe to JVM events, in particularly 
Java exceptions in our implementation. Each time the 
Java application throws an exception the agent 
retrieves the information about the class name, failed 
method, line number, and variable names and values. 
Such information is handed over to the communicator 
that in turn submits a request to the MSE. 

3.2. Call stack extraction from known 
problem records 

     The initial case database against which matching is 
done can be populated from known problem records. 
The process employed is the following. An actual call 
stack in the midst of a problem description appears as 
shown in Figure 1. We extract the function sequence 
by looking for consecutive lines that obey the regular 
expression  

address<space>*<func_>+__<rest>*<space>*+<
offset> 

where address is a string of the form 

<Digit>X<HexaDigit>+  

and <func> and <rest> are both alphanumeric 
sequences. The offset is represented by the same 
regular expression as the address.  

     In the database creation stage, the following steps, 
which are described in detail in the following sections, 
are also performed: stop-word removal (i.e. removal of 
common functions, e.g. error-handling routines) 
recursive-function-call removal, indexing (so that 

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05) 
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on October 10, 2008 at 15:55 from IEEE Xplore.  Restrictions apply.



queries can be matched efficiently without searching 
the entire database) and function frequency estimation,
used later in the matching procedure. 

3.3. Stop-word Removal 

     The call stack matching process contains a 
preprocessing phase before the stack is matched 
against the case database. Preprocessing is needed to 
account for error handling routines and other common 
functions and recursive calls. 

     Call stacks often include the functions which are 
either entry points or error handling routines. These 
occur very frequently across various call stacks 
without providing any additional information about 
the problem itself. We call these stop-words, by 
analogy with common words, such as “the”, which are 
ignored by convential text search-engines.  

     While the entry points only increase the length of 
the call stack a little, the error handling routines can 
have a more profound impact as they are near the top 
of the stack. For instance if we prune the collection of 
matches by looking only at the top of the stack, the 
number of candidate matches would be much larger 
because the error handling routines are very common 
across the various call stacks. More dangerous is the 
case when a new error handling routine is introduced 
in a new version. This would cause the call stacks for 
the same problem from previous versions to be 
rejected as candidate matches. Hence it is critical to 
remove these stop words from the call stacks prior to 
matching.  

     Currently, our system uses a stop-word list 
provided by a domain expert, but we are exploring the 
possibility of determining the stop-words 
automatically by analyzing the frequency and pattern 
of the occurrences of the function calls near the top 
and bottom of the call stacks. 

3.4.  Recursive Function Calls 

     Recursive function calls occur often in call stacks. 
For example, a call stack that looks like a()->b()->b()-
>c() should probably be treated as identical to a call 
stack a()->a()->b()->b()->b()->c() from the point of 
view of detection of known problems, as the root 
cause for the two is likely to be the same. In our 

system, we remove the recursive function calls to 
normalize both these call stacks to a()->b()->c().  

     The pattern of recursion could be a simple 
sequence of function repeats or a more complex 
pattern such as a()->b()->c()->b()->c(). For example 
Figure 4 shows a stack containing a repeat of the 
functions sqlno_call_sf, sqlno_each_opr, sqlno_call_sf, 
sqlno_walk_qun. The matching metric should be 
insensitive to the number of recursive calls so that call 
stacks with different number of repetitions of the same 
recursive subsequence should be treated as matches.  

sqlzeDumpFFDC
sqlzeSqlCode
sqlnn_erds
sqlno_prop_pipe
PIPE
sqlno_crule_pipe
_root
sqlno_crule_pipe
sqlno_plan_qun
sqlno_call_sf
sqlno_each_opr
sqlno_call_sf
sqlno_walk_qun
sqlno_call_sf
sqlno_each_opr
sqlno_call_sf
sqlno_walk_qun
sqlno_call_sf
sqlno_each_opr
sqlno_call_sf
sqlno_walk_qun
sqlno_call_sf
sqlno_each_opr
sqlno_call_sf

sqlzeDumpFFDC
sqlzeSqlCode
sqlnn_erds
sqlno_prop_pipe
PIPE
sqlno_crule_pipe_
root
sqlno_crule_pipe
sqlno_plan_qun
sqlno_call_sf
sqlno_each_opr
sqlno_call_sf
sqlno_walk_qun
sqlno_call_sf
sqlno_each_opr
sqlno_call_sf

Figure 4: Illustration of recursion removal.

    To handle recursions of arbitrary patterns, we 
conduct a linear scan of the function sequence looking 
for possible repeats of a symbol. Suppose the stack is 
the sequence {a1, a2,…, an}. Let {i1, i2, …, ik} be the 
set of start positions for a symbol aj such that ai1=ai2=... 
=aik=aj. Then the subsequence ail-aj is a recursive 
pattern if aim=a j+(m-i) for all 1<m<i-l. This can be used to 
perform recursion removal in O(n3)  in the worst case.  

3.5.  Matching 
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     The problem of matching a call stack against a case 
database can be described as follows. Given a query 
stack  Q={q1, q2, …, qm} consisting of a sequence of 
functions, find the best matching sequence D={d1, d2,
…, dn} from the database, or  a ranked list of the best 
matching database sequences.  

     How can the best matching function sequence be 
defined? Intuitively, a sequence is a good match if it 
has considerable overlap with the query sequence. 
There is a large body of algorithms from the string 
matching literature for both edit distance - the 
minimum number of edit operations, insertions, 
deletions and letter substitutions that transform one 
string to another [Levenshtein 66] - and biological 
sequence searching that could be applicable to our 
problem. However call stack matching contains some 
distinct features (in addition to the recursive function 
calls removed above): function gaps are more common 
than function substitutions, and position in a sequence 
is important. 

Gaps vs. substitutions 

     First, simple approaches such as finding the longest 
common subsequence would not be suitable, as they 
allow arbitrary gaps between contiguous subsequences 
in defining the overall subsequence. Variants based on 
edit-distance allow for substitutions as well as 
insertions. For the case of call stack matching, while 
gaps or  insertions are tolerable (corresponding to 
extra function calls or missing functions calls), it is 
unlikely that function names can be substituted and 
still represent a manifestation of the same problem. 
Thus insertions and deletions should be emphasized 
over substitutions. However, a long gap would imply a 
sequence of different set of function calls in one of the 
sequences, so that it is unlikely that they represent the 
same problem.   

Position in a sequence 

     Further, edit distance-based algorithms are 
insensitive to the position in the string where the 
match occurs. This is important for call stack matching 
because, once the common functions (e.g. error 
handling) are discarded (see section 3.3), the function 
that is responsible for the problem is likely to occur 
closer to the top of stack rather than the bottom. Thus 
the position from the top of stack must be a factor 
taken into account during sequence matching. 

     We now present an algorithm to match call stacks 
keeping the above requirements in mind. Our 
algorithm is a variant of the Needleman-Wunsch 
algorithm in bioinformatics [Needleman 70]. It is also 
based on the dynamic programming principle in 
composing best matching sequences by extending best 
matches from prefixes of candidate sequences. Like 
the Needleman-Wunsch algorithm, it does a global 
alignment of candidate sequences. It finds the best 
global alignment as the maximum match consisting of 
the largest number of residues i.e. subsequences of one 
sequence that can be matched to the other while 
allowing for all possible gaps. However, it does not 
allow substitutions, a key operation in Needleman-
Wunsch that is necessary in bioinformatics but not in 
call stack matching. 

     The algorithm conducts a global alignment of the 
query and database call stacks by computing a 
dynamic programming matrix H, where the element 
H(i,j) is the optimal score for aligning the sequences 
up to the ith and jth element in the respective 
sequences. The higher the score of a path through the 
matrix, the better the alignment. The matrix H is found 
by progressively finding the matrix elements, starting 
at H1,1 and proceeding in the directions of increasing i 
and j. Each element is set according to:  

where d is a fixed gap penalty to account for  a single 
function insertion or deletion, and Sij is the match 
score of the functions at position i and j in the stacks 
respectively.  

     It is in the computation of Sij that we model the 
specifics of the call stack matching problem. 
Specifically, when ai=bj=f we associate a cost with the 
matching by considering three independent factors, 
namely, (a) the importance of the function symbol f, 
(b) the position of the query symbol ai from the top of 
stack, and (c) the extent of the gap between the ith 
symbol in the query sequence with the jth symbol in 
the database sequence. Each of these independent 
factors we model using probabilities as follows.  

    The importance of a function symbol f is given by 
its discriminability, defined as 
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stacksofnumberTotal

containingstacksofNumber
1)(1
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    The position of the query symbol ai from the top of 
the stack is given by 

m

i
faP i −== 1)(2

where m is the length of the query call stack.  

     The gap between the positions of the query and 
database call stacks is given by  

2

||
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ji

ji ebaP
−−

=

using an exponential weighting of the gap penalty. 

    Since P1, P2, and P3 are independent, the overall cost 
of match Sij is given by their product as: 

===
otherwise

fbawhen

baPaPfP

S
ji

jii

ij

0

),(*)(*)( 321

3.6.  Indexing 

    The matching algorithm described above compares 
the query call stack with each call stack in the 
database.  This clearly does not scale well to 
industrial-sized databases.  To more quickly locate the 
most likely matches, a more scalable approach would 
be to create an index of the call stacks in the database.  
The difficulty is deciding upon a key on which to 
index, so that the index will return a superset of those 
call stacks that are most likely to be good matches for 
the query call stack.  The matching algorithm can then 
be applied to that much smaller superset of good 
candidates.  If it were not truly a superset, using the 
index would result in false negatives (missed matches).   

     Postulating as before that the top of the stack (after 
removing the common error handling functions) 
contains the best discriminators for matching purposes, 
we constructed keys for a standard B+-tree by hashing 
the top J function names in the stack.  We 
experimented with J varying from 1 to 4, and found 
little difference in the results. The hashing of course 

raises the possibility of collisions (false positives), but 
we are applying the matching algorithm to all the 
results returned by the index anyway, so false 
positives simply end up being ranked very low.  If any 
of the top 4 function names are missing, it’s very 
unlikely to be the same problem. 

    Creating the index entries is part of the normal 
population of the database:  as new entries are inserted, 
the top J function names are concatenated, hashed, and 
stored with the resulting hash code as an additional 
column in the database over which a standard B+-tree 
is defined.  When a query call stack is submitted, it 
goes through the exact same processing: it too is 
parsed and has its error routines removed, so that the 
key can be constructed by hashing the top J functions.  
This key is then used to query the database in far less 
time than it would take to access every call stack in the 
database. In general it is better to keep J small (say 
J=2), so that results aren’t biased by how the function 
that first detects the problem is reached. However in 
practice it’s very rare where the top two functions are 
the same but the third is different – usually the two 
stacks will be the same. 

4. Experiments 

    In our initial experiment we have a collection of 
crash-stacks from crashes whose causes are unknown. 
We use simple matching to explore how often the 
identical stack occurs, in order to confirm that most of 
the software crashes are indeed due to a small number 
of underlying problems. This also allows the stacks to 
be collected into groups of identical stacks which can 
then be presented to a human analyst for further 
analysis and classification. 

    The data consists of about 100 call stacks collected 
by Lotus Notes’ Automatic Data Collection (ADC) 
mechanism at customer locations. When a Notes client 
crashes, NSD (Notes System Diagnostics) is called 
automatically to collect diagnostic data (which 
includes the call stacks of all threads along with other 
information such as the Operating System version, 
patch levels, etc).  This is saved to a file on disk. 
When the client is restarted, it detects that it is 
restarting after a crash and automatically calls ADC to 
find the collected NSD output. It parses through it to 
find the call stack of the thread that crashed.  It then 
normalizes the stack across platforms (pulls out only 
the function name, de-mangles C++ mangled names, 
reverses the call stack on some platforms that read the 
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stack from top to bottom instead of bottom to top, etc). 
The normalized stack is sent via email to a repository 
database where all crash-stacks are accumulated and 
provide the basis for matching. 

    In our experiment the match-score between every 
pair of stacks is computed and all stacks with a 100% 
match-score are grouped together. This yields about 
30 different groups of call stacks, which are then 
ordered by the number of stacks they contain. The 
cumulative frequency of the number of stacks in each 
group is shown in Figure 5 below. The largest group 
contains 31 identical stacks, the next largest contains 
13 stacks, which are identical to one another but 
different from the stacks in the first group (raising the 
cumulative frequency to 44), and so on. Eventually we 
reach the groups that contain stacks that occur only 
once.
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Figure 5 – A small number of problems 
account for most of the crashes. 

    If we assume that each group of identical stacks 
corresponds to the same underlying cause, the results 
clearly show that a large proportion of crashes are 
caused by a small number of problems. The two most 
common problems account for about 40% of the 
crashes, and fewer than half the total problems are 
responsible for 80% of the crashes. In fact these 
estimates are probably conservative, because stacks in 
different groups, although different, may in fact 
sometimes represent the same problem. Nonetheless, 
this demonstrates the potential of even a very simple 
method that simply looks for identical stacks. This will 
allow a large proportion of crashes to be automatically 
identified, and only a small number of remaining cases 
will need to be resolved by human analysts. 

5. Related Work 

    Our work lies at the intersection of several areas: 
Automated software problem diagnosis, case-based 
reasoning, call stack analysis, and string matching. 

    Automated testing techniques typically operate on 
the source code to automatically localize failures 
[Zeller 02, Choi 02]. However in our situation the 
source code is not available and users lack 
sophisticated software skills. Therefore we adopt a 
matching mechanism that does not require any 
knowledge from the users who report bugs. Other 
automated debugging techniques include: collecting 
software run-time state information from many users 
[Liblit 03], decision trees to build failure models 
[Chen 04, Podgurski 03], and discovering program 
invariants by building detailed execution state profiles 
using a collection of normal examples [Hangal 02, 
Ernst 01]. Compared with these approaches, we rely 
only on call stack information from crashes, instead of 
extensive and detailed information from many normal 
program executions. 

    The general idea of solving problems by matching 
symptoms against a historical database is also a well-
known technique, known as case-based reasoning 
(CBR). It has been applied to customer support and 
help-desk situations [Acorn 92, Li 01], but these 
approaches try to find similarities in the problem 
report information supplied by users, not at the 
program execution level. The Microsoft Windows 
Error Reporting Service [Microsoft] collects crash 
data and groups crashes using module and application 
names and offsets, but does not consider call stacks or 
the approach of looking for repeated sequences in the 
stack. 

    The collection and use of call stack information has 
also been explored. [Feng 03] uses call stack 
information to develop an anomaly detection 
algorithm for the purposes of intrusion detection, not 
problem diagnosis. [Lambert 01] describes the 
collection of Java stack traces and discuss various 
techniques for comparing call stacks. [Brodie 05] 
adopts a similar framework to ours but does not do 
stop-word and recursive function removal and uses a 
simpler matching algorithm which finds the highest 
weighted common subsequence of functions. 

     There is a large body of literature in string 
matching algorithms, ranging from “Longest Common 

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05) 
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on October 10, 2008 at 15:55 from IEEE Xplore.  Restrictions apply.



Subsequence” to various adaptations of edit distance 
between two strings - the minimum number of edit 
operations, insertions, deletions, and letter 
substitutions that transform one string to another 
[Levenshtein 66] to suffix trees [Gusfield 98]. The 
string matching problem has also been addressed 
extensively in bioinformatics for biological sequence 
alignment. The subsequent literature on alignment has 
been enormous, and includes seminal papers such as 
the original Needleman–Wunsch dynamic 
programming solution [Needleman 70] and many 
others since then. Recently, the literature on basic 
methodology and tools development has been growing 
rather than shrinking, indicating that the alignment 
problem is still not solved in bioinformatics. As 
explained above, our algorithm is a variant of the 
Needleman-Wunsch algorithm with appropriate 
modifications for the problem of call stack matching.

6. Conclusion

    Automated problem diagnosis is a critical 
component of any self-managing system and a 
prerequisite to self-healing.  Much unnecessary work 
can be avoided by first determining whether a problem 
is already known or not, and automating that step 
requires methods to match the symptoms of the 
problem to those in the database of known problems.  
We have presented in this paper an initial system that 
enables efficient location and ranking of known 
problems, in response to a query providing a program 
call stack.  By suitably removing common error and 
entry routines, indexing the case database, and using 
sophisticated matching algorithms, we have 
demonstrated an architecture that scales well for large 
databases while still having excellent precision and 
recall.  The system is scheduled to be deployed within 
Lotus Notes/Domino 7.0, and other IBM products are 
considering its incorporation as well.   

    In the future, we hope to further refine the matching 
algorithms, preprocessing, and indexing based upon 
further testing and customer experience on large 
databases from multiple products.  We also hope to 
automate the detection of the error functions and other 
“stop-words”, rather than relying upon domain experts 
to identify them. This will make the algorithm more 
generic.  We also plan to fully integrate a learning 
component in the system. One can easily envisage a 
system that learns to adjust its matching procedure 
over time in response to feedback about which 
matches were or were not successful. (Some 

preliminary work in this direction appears in [Brodie 
05]).

    Call stacks are only one type of symptom, and 
perhaps the easiest to match.  In the future, we plan to 
extend the symptom database to incorporate a wide 
variety of symptom types in the database, in order to 
be able to handle a wider range of problem types and 
perhaps to exploit synergy between the specification 
of multiple symptom types to better isolate the best 
match in the database.  Lastly, this symptom matching 
symptom must be integrated with other components 
into a comprehensive self-healing system. 
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