
Quickly Finding Known Software Problems via Automated Symptom
Matching

Mark Brodie, Sheng Ma
IBM T.J. Watson
Research Center

Yorktown Heights, NY

Guy Lohman,
Tanveer Syeda-Mahmood

IBM Almaden Research Center
 San Jose, CA, USA

Laurent Mignet,
Natwar Modani

IBM India Research Lab
New Delhi, India

Mark Wilding
IBM Toronto Development Lab

Markham, Ontario, Canada

Jon Champlin, Peter Sohn
Lotus Development Lab

Westford, MA, USA

Abstract

 We present an architecture for and prototype of a
system for quickly detecting software problem
recurrences. Re-discovery of the same problem is very
common in many large software products and is a
major cost component of product support. At run-time,
when a problem occurs, the system collects the
problem symptoms, including the program call-stack,
and compares it against a database of symptoms to
find the closest matches. The database is populated
off-line using solved cases and indexed to allow for
efficient matching. Thus problems that occur
repeatedly can be easily and automatically resolved
without requiring any human problem-solving
expertise. We describe a prototype implementation of
the system, including the matching algorithm, and
present some experimental results demonstrating the
value of automatically detecting re-occurrence of the
same problem for a popular sofware product.

1. Introduction

 Much of the research to date in autonomic and self-
managing systems has focused on self-optimizing and
self-configuring systems, largely because standard
performance metrics are available which can be used
to measure progress. Unfortunately, there has been far
less investigation into how to develop self-healing
computer systems, particularly software systems. This
is likely a result of the challenge presented by the task
of automating how to detect, isolate, identify the root
cause of, and repair the full breadth of complex
problems that may occur in modern systems, as well
as how to predict and avoid such problems.

 We can begin to address the complexity of this
challenge by distinguishing between two categories of

problems: known problems and new problems. Many
products report that typically half, and sometimes as
many as 90 percent, of all problems reported by users
are re-occurrences – or rediscoveries – of known
problems. While such statistics may seem
encouraging, support staffs typically spend a
significant amount of time manually determining
whether a given problem report is in fact new or not.
In aggregate, over a third of all time spent by the
service organization of at least one major IBM product
is consumed by rediscoveries, i.e., by determining
whether the symptoms reported by a user match those
of any known problem.

 While rediscoveries may seem to be “low-hanging
fruit” for automation, matching the problem symptoms
provided by a user to a large database of such
symptoms is not as straightforward as it may seem.
Because the symptoms are still largely collected
manually by humans and conveyed verbally or by e-
mail, there is much potential for miscommunication.
The symptoms provided by the user may or may not
be relevant to the problem, and critical symptoms may
inadvertently be omitted. Each user – or service
analyst – may describe the symptoms imprecisely or in
slightly different terminology, and even in a different
language! Even automated systems collect different
types of information and use different formats, for
historical or organizational reasons or because the
same code operates slightly differently or reports
different diagnostics on different platforms. On the
other hand, closely-matching symptoms alone may not
necessarily represent the same problem, but could be
due to an incomplete “fix” or even accidental re-
introduction of a bug during the repair process or in
subsequent releases.

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on October 10, 2008 at 15:55 from IEEE Xplore. Restrictions apply.

 Our ultimate goal in this research is to significantly
reduce the cost of servicing software products by
developing symptom databases that can be populated
and searched automatically, i.e., by self-healing agents.
But a necessary first step is to solve the more
immediate problem of speeding the process by which
human service analysts now perform this function,
Typically, structured symptoms, particularly those
generated by software, are more amenable to
automated matching than semi-structured or
unstructured symptom descriptions provided by
humans, so we began with these and hope to extend
our work to the more challenging types of symptoms
in the future.

Perhaps the most pervasive and highly-structured
type of symptom in software systems is the call stack
produced by a hard system failure such as a “trapped”
error, a “hang”, or an undetected “system crash”. The
call stack reconstructs the sequence of function calls
leading up to the failure via the operating system’s
stack of addresses that is pushed each time a function
is called and popped when it returns. Error-handling
routines map each address on this stack back to the
function’s name and the offset from that function’s
entry point at which the next call was initiated. This
provides the exact address at which the problem
occurred (in the case of a crash) or was first detected
(i.e., “trapped”), as well as the path through the code
by which the system arrived at that address. This
information can be extremely useful to anyone
attempting to fix the problem, so it is typically
captured in human-readable form. More importantly
for our purposes, the call stack also defines a kind of
signature of instances of this class of problem, which
we exploit in this work to search and match known
problems in a database.

An example of a call stack is given in Figure 1.
In this format, each line gives the function’s address,
followed by the function name, separated by two
underscores from the C++ “mangled” names of the
arguments of that function and the offset (note that a
few lines in the figure wrap). The first line gives the
top of the stack, i.e. the most recently invoked
function, and the bottom of the stack gives the entry
point (which has been omitted for brevity).

The stack in Figure 1 illustrates a number of
features that any stack-matching procedure must take
into account. The top few routines are typically
common error-handling routines that any error in a
component is supposed to call (by coding convention),

and are therefore often useless for isolating or
identifying the problem. Similarly, the entry function
at the bottom of the stack is common to all invocations
of this product and hence irrelevant. The stack may
also contain recursive calls which may need to be
ignored in order not to confuse the matching.

6401261 *** Start stack traceback ***

0xD10ED244 sqloDumpEDU + 0x1C

0x200B852C sqldDumpContext__FP20sqle_agent_privatecbiN42PcPvT2 + 0x148

0xDE244A8C sqlrr_dump_ffdc__FP8sqlrr_cbiT2 + 0x520

0xD1220FC0 sqlzeDumpFFDC__FP20sqle_agent_privatecbUlP5sqlcai + 0x48

0xD1220BB0 sqlzeSqlCode__FP20sqle_agent_privatecbUiUlT3P5sqlcalUsPc + 0x2D4

0xDF9C08EC sqlnn_erds__FiN41e + 0x174

0x2158F5D4 sqlno_ff_compute__FP13sqlno_globalsP19sqlno_ff_essentials + 0x628

0x2158FBBC sqlno_ff_or__FP13sqlno_globalsP19sqlno_ff_essentialsPf + 0x260

0x2158F384 sqlno_ff_compute__FP13sqlno_globalsP19sqlno_ff_essentials + 0x3D8

0x2158FBBC sqlno_ff_or__FP13sqlno_globalsP19sqlno_ff_essentialsPf + 0x260

0x2158F384 sqlno_ff_compute__FP13sqlno_globalsP19sqlno_ff_essentials + 0x3D8

0x2158FBBC sqlno_ff_or__FP13sqlno_globalsP19sqlno_ff_essentialsPf + 0x260

0x2158F384 sqlno_ff_compute__FP13sqlno_globalsP19sqlno_ff_essentials + 0x3D8

0x2172AF50 sqlno_ntup_ff_scan__FP13sqlno_globals + 0x10E0

0x2174D1EC sqlno_prep_phase__FP13sqlno_globalsP9sqlnq_qur + 0x1704

0x2174B29C sqlno_exe__FP9sqlnq_qur + 0x944

0xDFAA7C3C sqlnn_cmpl__FP20sqle_agent_privatecbP11sqlrrstrings17sqlnn_compileMod

eT3P14sqlrr_cmpl_envlT7PP9sqlnq_qur + 0x48E4

0xDFAA32CC sqlnn_cmpl__FP20sqle_agent_privatecbP11sqlrrstrings17sqlnn_compileMod

eT3P14sqlrr_cmpl_env + 0x68

0xDE514DD0 sqlra_compile_var__FP8sqlrr_cbP14sqlra_cmpl_envPUciUsN54P16sqlra_cach

ed_varPiPUL + 0x1290

…

Common
Error
Handling
Routines
(Ignore)

Levels of
Recursion
Probably
Not
Relevant

FAILURE!

Entry-level
Routines
Definitely
Not
Relevant
(Too
Common)

Figure 1: Example of a call stack.

 The further up the stack one goes, short of the error
handling routines, the more relevant is each function
name. The function just below the error handling
routines is the function that first detected the error, but
it may or may not have caused that error. It’s possible
that the routines that called it passed an illegal value,
or otherwise contributed to the error, so the path to
that routine may or may not be relevant to the problem.

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on October 10, 2008 at 15:55 from IEEE Xplore. Restrictions apply.

 Matching a call stack to a database of such call
stacks therefore comprises the following steps:

1. Parsing the text field in which the call stack
occurs, to identify each function name in the
stack (this step may be omitted if the stack is
already tagged, e.g. via XML);

2. Removing the error handling routines at the
top of the stack and (some of) the common
entry routines;

3. Removing recursive function calls if
appropriate;

4. Matching the remaining stack to those in the
database by a matching algorithm that takes
into consideration the position of each
function in the remaining stack.

We will describe each of these steps in more
detail in this paper, and also detail ways to index the
stacks for efficient search without having to compare
the target stack against every stack in the database.

The remainder of the paper is organized as
follows. We first provide an overview of the
architecture of our symptom-matching system in
Section 2. Section 3 discusses the design and
implementation details of each of the steps, including
how the symptom database is populated and indexed,
as well as the details of how stack matching is
performed. Section 4 presents experimental results
for a version of this system that will soon be deployed
in the Lotus Notes/Domino 7.0 product. We compare
our approach to related work in Section 5, and in
Section 6 describe future work and conclusions.

2. Architecture

 Figure 2 illustrates the overall process. It has two
main parts: the on-line components that collect
information from end-users and conduct matching and
search operations for a match request, and the off-line
components that manage the case database.

 The matching and search engine (MSE) is the core
of the on-line part. It begins by logging the received
request for record-keeping and problem trend analysis.
Its main function is to provide matching results to a
matching or search request based on the case
knowledge base or its indexing database. The request
can be submitted by either a software agent or a query
interface. The latter, similar to a web search
application, provides an interfaces for a user (e.g. a
member of the support staff) to submit a matching
request and view the returned results - a ranked list of
similar cases, with their resolutions and recommended
actions. This will help the user to diagnose a problem
based on previously solved cases.

 Our architecture also supports automated data
collection, problem reporting and possibly automated
actions. When a problem occurs in the customer
environment, a data collection agent automatically
gathers diagnosis information, such as the program
call-stack, other problem symptoms and
environmental information. It then sends a diagnosis
request to the matching and search engine and
coordinates further actions based on the returned
matching results.

 In this paper we will focus on the program call-
stack, but more generally a wide variety of
information, such as which applications are running,
the version of the operating system, and so on, could

Figure 2: Overview of the architecture of the symptom-matching system

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on October 10, 2008 at 15:55 from IEEE Xplore. Restrictions apply.

be collected. Further, our current prototype only
displays matching results and the recommended
actions. It can be extended to support automated
actions; e.g. opening a ticket to a problem
management system if the case is a new problem, or
installing a recommended fix for a known problem.

 Knowledge management is an important task to
support large scale deployment and maintain the
system’s effectiveness over time. It includes data
management, such as case database indexing for
scalable search, as well as the capability to extract
cases from existing data sources, support continuous
learning to improve matching effectiveness, and
authoring and administration interfaces.

3. Implementation

 In this section we describe in more detail the
following aspects of the symptom-matching system:
data collection, case database population and indexing,
and call stack matching, including preprocessing steps
such as removal of error-handling routines and
recursive calls.

3.1. Data-collection

Java exception
watcher.dll

Data collection
communicator

Window exception
watcher library

 java
app

Window
app

Other watcher

Other
app

Matching
request to
MSE

Results
from MSE

GUI

Figure 3: Data-collection agent.

 In general, any software product may use its own
method to collect problem symptom data. However to

create our own testbed for the automated symptom-
matching system, we implemented a simple data-
collection agent. As shown in Figure 3, the agent has
three main components: a communicator that
communicates with the matching and searching engine
(MSE); a set of watchers that monitor a native
application and collect the diagnosis information when
a problem such as a crash or exception occurs; and a
GUI that interacts with the user to display results.

 We have implemented two watchers for Java and
Window application respectively. For Java
applications we use the JVMDI (Java Virtual Machine
Debug Interface) [8]. When the target Java application
starts, the JVMDI watcher is loaded into the java.exe
process using a command line option. The JVMDI
watcher can subscribe to JVM events, in particularly
Java exceptions in our implementation. Each time the
Java application throws an exception the agent
retrieves the information about the class name, failed
method, line number, and variable names and values.
Such information is handed over to the communicator
that in turn submits a request to the MSE.

3.2. Call stack extraction from known
problem records

 The initial case database against which matching is
done can be populated from known problem records.
The process employed is the following. An actual call
stack in the midst of a problem description appears as
shown in Figure 1. We extract the function sequence
by looking for consecutive lines that obey the regular
expression

address<space>*<func_>+__<rest>*<space>*+<
offset>

where address is a string of the form

<Digit>X<HexaDigit>+

and <func> and <rest> are both alphanumeric
sequences. The offset is represented by the same
regular expression as the address.

 In the database creation stage, the following steps,
which are described in detail in the following sections,
are also performed: stop-word removal (i.e. removal of
common functions, e.g. error-handling routines)
recursive-function-call removal, indexing (so that

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on October 10, 2008 at 15:55 from IEEE Xplore. Restrictions apply.

queries can be matched efficiently without searching
the entire database) and function frequency estimation,
used later in the matching procedure.

3.3. Stop-word Removal

 The call stack matching process contains a
preprocessing phase before the stack is matched
against the case database. Preprocessing is needed to
account for error handling routines and other common
functions and recursive calls.

 Call stacks often include the functions which are
either entry points or error handling routines. These
occur very frequently across various call stacks
without providing any additional information about
the problem itself. We call these stop-words, by
analogy with common words, such as “the”, which are
ignored by convential text search-engines.

 While the entry points only increase the length of
the call stack a little, the error handling routines can
have a more profound impact as they are near the top
of the stack. For instance if we prune the collection of
matches by looking only at the top of the stack, the
number of candidate matches would be much larger
because the error handling routines are very common
across the various call stacks. More dangerous is the
case when a new error handling routine is introduced
in a new version. This would cause the call stacks for
the same problem from previous versions to be
rejected as candidate matches. Hence it is critical to
remove these stop words from the call stacks prior to
matching.

 Currently, our system uses a stop-word list
provided by a domain expert, but we are exploring the
possibility of determining the stop-words
automatically by analyzing the frequency and pattern
of the occurrences of the function calls near the top
and bottom of the call stacks.

3.4. Recursive Function Calls

 Recursive function calls occur often in call stacks.
For example, a call stack that looks like a()->b()->b()-
>c() should probably be treated as identical to a call
stack a()->a()->b()->b()->b()->c() from the point of
view of detection of known problems, as the root
cause for the two is likely to be the same. In our

system, we remove the recursive function calls to
normalize both these call stacks to a()->b()->c().

 The pattern of recursion could be a simple
sequence of function repeats or a more complex
pattern such as a()->b()->c()->b()->c(). For example
Figure 4 shows a stack containing a repeat of the
functions sqlno_call_sf, sqlno_each_opr, sqlno_call_sf,
sqlno_walk_qun. The matching metric should be
insensitive to the number of recursive calls so that call
stacks with different number of repetitions of the same
recursive subsequence should be treated as matches.

sqlzeDumpFFDC
sqlzeSqlCode
sqlnn_erds
sqlno_prop_pipe
PIPE
sqlno_crule_pipe
_root
sqlno_crule_pipe
sqlno_plan_qun
sqlno_call_sf
sqlno_each_opr
sqlno_call_sf
sqlno_walk_qun
sqlno_call_sf
sqlno_each_opr
sqlno_call_sf
sqlno_walk_qun
sqlno_call_sf
sqlno_each_opr
sqlno_call_sf
sqlno_walk_qun
sqlno_call_sf
sqlno_each_opr
sqlno_call_sf

sqlzeDumpFFDC
sqlzeSqlCode
sqlnn_erds
sqlno_prop_pipe
PIPE
sqlno_crule_pipe_
root
sqlno_crule_pipe
sqlno_plan_qun
sqlno_call_sf
sqlno_each_opr
sqlno_call_sf
sqlno_walk_qun
sqlno_call_sf
sqlno_each_opr
sqlno_call_sf

Figure 4: Illustration of recursion removal.

 To handle recursions of arbitrary patterns, we
conduct a linear scan of the function sequence looking
for possible repeats of a symbol. Suppose the stack is
the sequence {a1, a2,…, an}. Let {i1, i2, …, ik} be the
set of start positions for a symbol aj such that ai1=ai2=...
=aik=aj. Then the subsequence ail-aj is a recursive
pattern if aim=a j+(m-i) for all 1<m<i-l. This can be used to
perform recursion removal in O(n3) in the worst case.

3.5. Matching

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on October 10, 2008 at 15:55 from IEEE Xplore. Restrictions apply.

 The problem of matching a call stack against a case
database can be described as follows. Given a query
stack Q={q1, q2, …, qm} consisting of a sequence of
functions, find the best matching sequence D={d1, d2,
…, dn} from the database, or a ranked list of the best
matching database sequences.

 How can the best matching function sequence be
defined? Intuitively, a sequence is a good match if it
has considerable overlap with the query sequence.
There is a large body of algorithms from the string
matching literature for both edit distance - the
minimum number of edit operations, insertions,
deletions and letter substitutions that transform one
string to another [Levenshtein 66] - and biological
sequence searching that could be applicable to our
problem. However call stack matching contains some
distinct features (in addition to the recursive function
calls removed above): function gaps are more common
than function substitutions, and position in a sequence
is important.

Gaps vs. substitutions

 First, simple approaches such as finding the longest
common subsequence would not be suitable, as they
allow arbitrary gaps between contiguous subsequences
in defining the overall subsequence. Variants based on
edit-distance allow for substitutions as well as
insertions. For the case of call stack matching, while
gaps or insertions are tolerable (corresponding to
extra function calls or missing functions calls), it is
unlikely that function names can be substituted and
still represent a manifestation of the same problem.
Thus insertions and deletions should be emphasized
over substitutions. However, a long gap would imply a
sequence of different set of function calls in one of the
sequences, so that it is unlikely that they represent the
same problem.

Position in a sequence

 Further, edit distance-based algorithms are
insensitive to the position in the string where the
match occurs. This is important for call stack matching
because, once the common functions (e.g. error
handling) are discarded (see section 3.3), the function
that is responsible for the problem is likely to occur
closer to the top of stack rather than the bottom. Thus
the position from the top of stack must be a factor
taken into account during sequence matching.

 We now present an algorithm to match call stacks
keeping the above requirements in mind. Our
algorithm is a variant of the Needleman-Wunsch
algorithm in bioinformatics [Needleman 70]. It is also
based on the dynamic programming principle in
composing best matching sequences by extending best
matches from prefixes of candidate sequences. Like
the Needleman-Wunsch algorithm, it does a global
alignment of candidate sequences. It finds the best
global alignment as the maximum match consisting of
the largest number of residues i.e. subsequences of one
sequence that can be matched to the other while
allowing for all possible gaps. However, it does not
allow substitutions, a key operation in Needleman-
Wunsch that is necessary in bioinformatics but not in
call stack matching.

 The algorithm conducts a global alignment of the
query and database call stacks by computing a
dynamic programming matrix H, where the element
H(i,j) is the optimal score for aligning the sequences
up to the ith and jth element in the respective
sequences. The higher the score of a path through the
matrix, the better the alignment. The matrix H is found
by progressively finding the matrix elements, starting
at H1,1 and proceeding in the directions of increasing i
and j. Each element is set according to:

where d is a fixed gap penalty to account for a single
function insertion or deletion, and Sij is the match
score of the functions at position i and j in the stacks
respectively.

 It is in the computation of Sij that we model the
specifics of the call stack matching problem.
Specifically, when ai=bj=f we associate a cost with the
matching by considering three independent factors,
namely, (a) the importance of the function symbol f,
(b) the position of the query symbol ai from the top of
stack, and (c) the extent of the gap between the ith
symbol in the query sequence with the jth symbol in
the database sequence. Each of these independent
factors we model using probabilities as follows.

 The importance of a function symbol f is given by
its discriminability, defined as

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on October 10, 2008 at 15:55 from IEEE Xplore. Restrictions apply.

stacksofnumberTotal

containingstacksofNumber
1)(1

f
fP −=

 The position of the query symbol ai from the top of
the stack is given by

m

i
faP i −== 1)(2

where m is the length of the query call stack.

 The gap between the positions of the query and
database call stacks is given by

2

||

3),(
ji

ji ebaP
−−

=

using an exponential weighting of the gap penalty.

 Since P1, P2, and P3 are independent, the overall cost
of match Sij is given by their product as:

===
otherwise

fbawhen

baPaPfP

S
ji

jii

ij

0

),(*)(*)(321

3.6. Indexing

 The matching algorithm described above compares
the query call stack with each call stack in the
database. This clearly does not scale well to
industrial-sized databases. To more quickly locate the
most likely matches, a more scalable approach would
be to create an index of the call stacks in the database.
The difficulty is deciding upon a key on which to
index, so that the index will return a superset of those
call stacks that are most likely to be good matches for
the query call stack. The matching algorithm can then
be applied to that much smaller superset of good
candidates. If it were not truly a superset, using the
index would result in false negatives (missed matches).

 Postulating as before that the top of the stack (after
removing the common error handling functions)
contains the best discriminators for matching purposes,
we constructed keys for a standard B+-tree by hashing
the top J function names in the stack. We
experimented with J varying from 1 to 4, and found
little difference in the results. The hashing of course

raises the possibility of collisions (false positives), but
we are applying the matching algorithm to all the
results returned by the index anyway, so false
positives simply end up being ranked very low. If any
of the top 4 function names are missing, it’s very
unlikely to be the same problem.

 Creating the index entries is part of the normal
population of the database: as new entries are inserted,
the top J function names are concatenated, hashed, and
stored with the resulting hash code as an additional
column in the database over which a standard B+-tree
is defined. When a query call stack is submitted, it
goes through the exact same processing: it too is
parsed and has its error routines removed, so that the
key can be constructed by hashing the top J functions.
This key is then used to query the database in far less
time than it would take to access every call stack in the
database. In general it is better to keep J small (say
J=2), so that results aren’t biased by how the function
that first detects the problem is reached. However in
practice it’s very rare where the top two functions are
the same but the third is different – usually the two
stacks will be the same.

4. Experiments

 In our initial experiment we have a collection of
crash-stacks from crashes whose causes are unknown.
We use simple matching to explore how often the
identical stack occurs, in order to confirm that most of
the software crashes are indeed due to a small number
of underlying problems. This also allows the stacks to
be collected into groups of identical stacks which can
then be presented to a human analyst for further
analysis and classification.

 The data consists of about 100 call stacks collected
by Lotus Notes’ Automatic Data Collection (ADC)
mechanism at customer locations. When a Notes client
crashes, NSD (Notes System Diagnostics) is called
automatically to collect diagnostic data (which
includes the call stacks of all threads along with other
information such as the Operating System version,
patch levels, etc). This is saved to a file on disk.
When the client is restarted, it detects that it is
restarting after a crash and automatically calls ADC to
find the collected NSD output. It parses through it to
find the call stack of the thread that crashed. It then
normalizes the stack across platforms (pulls out only
the function name, de-mangles C++ mangled names,
reverses the call stack on some platforms that read the

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on October 10, 2008 at 15:55 from IEEE Xplore. Restrictions apply.

stack from top to bottom instead of bottom to top, etc).
The normalized stack is sent via email to a repository
database where all crash-stacks are accumulated and
provide the basis for matching.

 In our experiment the match-score between every
pair of stacks is computed and all stacks with a 100%
match-score are grouped together. This yields about
30 different groups of call stacks, which are then
ordered by the number of stacks they contain. The
cumulative frequency of the number of stacks in each
group is shown in Figure 5 below. The largest group
contains 31 identical stacks, the next largest contains
13 stacks, which are identical to one another but
different from the stacks in the first group (raising the
cumulative frequency to 44), and so on. Eventually we
reach the groups that contain stacks that occur only
once.

Problem Occurrence

0

20

40

60

80

100

0 10 20 30

Problems

O
c
c
u

rr
e
n

c
e

Figure 5 – A small number of problems
account for most of the crashes.

 If we assume that each group of identical stacks
corresponds to the same underlying cause, the results
clearly show that a large proportion of crashes are
caused by a small number of problems. The two most
common problems account for about 40% of the
crashes, and fewer than half the total problems are
responsible for 80% of the crashes. In fact these
estimates are probably conservative, because stacks in
different groups, although different, may in fact
sometimes represent the same problem. Nonetheless,
this demonstrates the potential of even a very simple
method that simply looks for identical stacks. This will
allow a large proportion of crashes to be automatically
identified, and only a small number of remaining cases
will need to be resolved by human analysts.

5. Related Work

 Our work lies at the intersection of several areas:
Automated software problem diagnosis, case-based
reasoning, call stack analysis, and string matching.

 Automated testing techniques typically operate on
the source code to automatically localize failures
[Zeller 02, Choi 02]. However in our situation the
source code is not available and users lack
sophisticated software skills. Therefore we adopt a
matching mechanism that does not require any
knowledge from the users who report bugs. Other
automated debugging techniques include: collecting
software run-time state information from many users
[Liblit 03], decision trees to build failure models
[Chen 04, Podgurski 03], and discovering program
invariants by building detailed execution state profiles
using a collection of normal examples [Hangal 02,
Ernst 01]. Compared with these approaches, we rely
only on call stack information from crashes, instead of
extensive and detailed information from many normal
program executions.

 The general idea of solving problems by matching
symptoms against a historical database is also a well-
known technique, known as case-based reasoning
(CBR). It has been applied to customer support and
help-desk situations [Acorn 92, Li 01], but these
approaches try to find similarities in the problem
report information supplied by users, not at the
program execution level. The Microsoft Windows
Error Reporting Service [Microsoft] collects crash
data and groups crashes using module and application
names and offsets, but does not consider call stacks or
the approach of looking for repeated sequences in the
stack.

 The collection and use of call stack information has
also been explored. [Feng 03] uses call stack
information to develop an anomaly detection
algorithm for the purposes of intrusion detection, not
problem diagnosis. [Lambert 01] describes the
collection of Java stack traces and discuss various
techniques for comparing call stacks. [Brodie 05]
adopts a similar framework to ours but does not do
stop-word and recursive function removal and uses a
simpler matching algorithm which finds the highest
weighted common subsequence of functions.

 There is a large body of literature in string
matching algorithms, ranging from “Longest Common

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on October 10, 2008 at 15:55 from IEEE Xplore. Restrictions apply.

Subsequence” to various adaptations of edit distance
between two strings - the minimum number of edit
operations, insertions, deletions, and letter
substitutions that transform one string to another
[Levenshtein 66] to suffix trees [Gusfield 98]. The
string matching problem has also been addressed
extensively in bioinformatics for biological sequence
alignment. The subsequent literature on alignment has
been enormous, and includes seminal papers such as
the original Needleman–Wunsch dynamic
programming solution [Needleman 70] and many
others since then. Recently, the literature on basic
methodology and tools development has been growing
rather than shrinking, indicating that the alignment
problem is still not solved in bioinformatics. As
explained above, our algorithm is a variant of the
Needleman-Wunsch algorithm with appropriate
modifications for the problem of call stack matching.

6. Conclusion

 Automated problem diagnosis is a critical
component of any self-managing system and a
prerequisite to self-healing. Much unnecessary work
can be avoided by first determining whether a problem
is already known or not, and automating that step
requires methods to match the symptoms of the
problem to those in the database of known problems.
We have presented in this paper an initial system that
enables efficient location and ranking of known
problems, in response to a query providing a program
call stack. By suitably removing common error and
entry routines, indexing the case database, and using
sophisticated matching algorithms, we have
demonstrated an architecture that scales well for large
databases while still having excellent precision and
recall. The system is scheduled to be deployed within
Lotus Notes/Domino 7.0, and other IBM products are
considering its incorporation as well.

 In the future, we hope to further refine the matching
algorithms, preprocessing, and indexing based upon
further testing and customer experience on large
databases from multiple products. We also hope to
automate the detection of the error functions and other
“stop-words”, rather than relying upon domain experts
to identify them. This will make the algorithm more
generic. We also plan to fully integrate a learning
component in the system. One can easily envisage a
system that learns to adjust its matching procedure
over time in response to feedback about which
matches were or were not successful. (Some

preliminary work in this direction appears in [Brodie
05]).

 Call stacks are only one type of symptom, and
perhaps the easiest to match. In the future, we plan to
extend the symptom database to incorporate a wide
variety of symptom types in the database, in order to
be able to handle a wider range of problem types and
perhaps to exploit synergy between the specification
of multiple symptom types to better isolate the best
match in the database. Lastly, this symptom matching
symptom must be integrated with other components
into a comprehensive self-healing system.

References

[Acorn 92] Acorn, T., and Walden, S., SMART:
Support Management Reasoning Technology for
Compaq Customer Service, Innovative Applications of
Artificial Intelligence, Volume 4, 1992.
[Brodie 05] Brodie, M., Ma, S., Rachevsky, L, and
Champlin, J., Automated Problem Determination
using Call-Stack Matching, Journal of Network and
Systems Management, special issue on self-managing
systems, to appear.
[Chen 04] Chen, M., Zheng, A., Lloyd, J., Jordan, M.,
and Brewer, E., Failure Diagnosis Using Decision
Trees, International Conference on Autonomic
Computing, 2004.
[Choi 02] Choi, J.D. and Zeller, A., Isolating Failure-
Inducing Thread Schedules, Proceedings of the
Interational Symposium on Software Testing and
Analysis, July 2002.
[Ernst 01] Ernst, M.D., Cockrell, J., Grisowold W. and
Notkin, D., Dynamically Discovering Likely Program
Invariants to Support Program Evolution, IEEE
Transactions on Software Engineering, Volume 27,
No. 2, February 2001.
[Feng 03] Feng, H. H., Kolesnikov, O., Fogla, P., Lee,
W. and Gong, W., Anomaly Detection Using Call
Stack Information, Proceedings of the 2003 IEEE
Symposium on Security and Privacy, 2003, pg 62.
[Gusfield 98] D. Gusfield, J. Stoye, Linear time
algorithms for finding and representing all the tandem
repeats in a string, Report CSE-98-4, Department of
Computer Science, University of California, Davis, 1998
[Hangal 02] Hangal, S. and Lam, M., Tracking down
software bugs using automatic anomaly detection, 24th

International Conference on Software Engineering,
2002, pg 291.

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on October 10, 2008 at 15:55 from IEEE Xplore. Restrictions apply.

[JVMDI] JVMDI -
http://java.sun.com/j2se/1.4.2/docs/guide/jpda/jvmdi-
spec.html
[Lambert 01] J. and Podgurski, A., xdProf: A Tool for
the capture and analysis of stack traces in a
distributed Java system, International Society of
Optical Engineering (SPIE) Proceedings, Volume
4521, 2001, pg 96-105.
[Levenshtein 66] Levenshtein V.I., Binary codes
capable of correcting deletions, insertions and
reversals, Soviet Physics Doklady 10(8), pp. 707-710.
[Li 01] Li, T., Zhu, S., and Ogihara, M., Mining
Patterns from Case Base Analysis, Workshop on
Integrating Data Mining and Knowledge Management,
2001.
[Liblit 03] Liblit, B., Aiken, A., Zheng, A., and Jordan,
M., Sampling User Executions for Bug Isolation,
Workshop on Remote Analysis and Measurement of
Software Systems, 2003.
[Microsoft] Microsoft Windows Error Reporting
Service
http://www.microsoft.com/whdc/maintain/WER/ErrCl
ass.mspx#EAAA
[Needleman 70] Needleman, S. B., and C. D. Wunsch. A
General Method Applicable to the Search for Similarities
in the Amino Acid Sequences of Two Proteins. In Journal
of Molecular Biology ~8. 1970, pp. 443-453.
[Podgurski 03] Podgurski, A., Leon, D., Francis, P.
and Minch, M., Automated Support for Classifying
and Prioritizing Software Failure Reports, 25th

International Conference on Software Engineering,
2003, pg 465.
[Zeller 02] Zeller, A. and Hildebrandt, R., Simplifying
and Isolating Failure-Inducing Input, IEEE
Transactions on Software Engineering 28(2), February
2002, pp. 183-200.

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05)
0-7695-2276-9/05 $ 20.00 IEEE

Authorized licensed use limited to: Drexel University. Downloaded on October 10, 2008 at 15:55 from IEEE Xplore. Restrictions apply.

