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ABSTRACT In the past decades, the internet has emerged as the fastest way to access information. However,

this revolutionary information age comes with its own set of challenges. The privacy of Internet users is at

increasing risk with the advances in surveillance techniques. Users’ online behavior, activities, and even

personal information are being tracked by ISPs and major tech companies. In response to the increasing

need for preserving and protecting the privacy of online users, anonymity networks were developed. Tor

anonymity network is a low-latency anonymity network that has gained quite a good reputation over the

past years and is being adopted by thousands of users. With the great attention Tor’s network is getting,

the original design of Tor was proven to have performance limiting issues.With the motivation for addressing

the performance limitation in Tor, we present QuicTor, a datagram-based design to solve Tor’s transport-layer

limiting issue. We evaluated the performance of QuicTor in comparison to vanilla Tor as well as other

performance-enhancing proposals. QuicTor achieved significant performance improvements for interactive

applications as well as streaming applications. Running Tor over a datagram-based protocol entails a careful

security analysis. In this article, we assess the behavior of QuicTor under side-channel attacks aiming to

de-anonymize Tor’s clients. We show that the performance improvements brought by QuicTor do not reduce

the anonymity of clients under the investigated types of attacks.

INDEX TERMS Privacy, anonymity, tor, transport protocols, QUIC.

I. INTRODUCTION

Since its introduction in the 1950s, the internet has revolu-

tionized the landscape of computers and communications on

a global scale and is nowadays an integral part of daily lives.

The World Wide Web is a client/server application running

over the Internet and TCP/IP intranets. Communication over

the Internet is highly vulnerable to many attacks threatening

the integrity, confidentiality, and authenticity of the traffic.

Many of the tasks performed in the digital world require

access to the users’ private information, which increases the

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudio Agostino Ardagna .

effect of network threats on internet users. Users’ credentials

and private information are being stolen using Botnet or

phishing emails [1], [2]. Advertising agencies acquire users’

information from the Internet Service Providers (ISPs), vio-

lating users’ privacy to develop their marketing strategies.

Identity theft is another way of violating users’ privacy and

causing damage. Some governments monitor internet users to

identify and track their opponents, which can threaten their

security.

A famous example of the technologies developed to pro-

tect the confidentiality and privacy of the users’ informa-

tion, by encrypting the communication between a client

and a server, is Virtual Private Networks (VPNs). However,
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in this case, the VPN provider is actually in control of all

the traffic and can access it. Moreover, some services are

blocking VPNs and cannot be reached through them [3].

Anonymity networks were then introduced to preserve the

users’ online anonymity. Anonymity networks hide the links

between the online user’s IP address and his online activi-

ties. Many anonymity networks were developed to serve this

target, by using multiple proxies between the client and the

server. The earliest anonymity networks used based on the

technique introduced by Chaum [4] provided anonymity at

the expense of high latency to the network [5], [6]. Interactive

applications, on the other hand, can not bear such latency,

consequently, there was a need for low-latency anonymity

network.

Tor anonymity network is a low-latency anonymity net-

work that has gained quite a good reputation over the past

years and is being adopted by millions of users. Tor was

first introduced in 2003, and since then it has been grow-

ing in the number of running routers and supported users.

As per the statistics from Tor’s live network [7], in 2019 the

number of directly connected users, not including those con-

necting through bridges, exceeded 3 million users, the num-

ber of operating relays reached 6500 relays and more than

1000 bridge, and more than 60 thousands unique.onion

addresses for hidden services.

Tor anonymity network is designed based on the concept

of Onion Routing [8], [9], to hide the link between the

source and destination of TCP traffic. Onion routing provides

anonymization of TCP traffic for interactive applications by

distributing the traffic overmultiple hops as shown in figure 1.

The significant increase in the usage of the Tor anonymity

network brought to light the fact that, while Tor is powerful in

hiding user’s identities and protecting their privacy, it suffers

from performance issues introducing a delay that could be

unacceptable [10], [11].

Achieving an acceptable performance of Tor’s anonymity

network does not only affect the user’s experience, but also

the security and anonymity of the network in many ways.

Usability is known to be an important factor of security, and

the impact of usability on Tor’s anonymity was identified in

the work of Dingledine and Mathewson [12]. The growth of

Tor’s network resource, the volunteered relays, is affected by

how well it is utilized and how the load-balancing is handled.

The growth of Tor’s network resources can be directly related

to the level of anonymity provided by the network. Several

studies addressed the performance problems in Tor [13], [14].

The main goal of these studies was to identify the sources

of delay in the network. A clear understanding of the delay

causes would lead to a more informed design of Tor’s net-

work and help enhance the overall performance. A significant

result of these results was that the current design of Tor’s

transport layer is one of the major sources of delay in the

network. Motivated by this knowledge, the Tor community

started considering the use of datagram protocols as the base

for the transport layer.

FIGURE 1. Tor network overview.

Since its introduction by Google, the UDP-based proto-

col QUIC gained increasing attention and is being studied

as a possible replacement of TCP for much better perfor-

mance [15]. One of the motivating goals for designing QUIC

was to reduce the delay introduced by TCP’s congestion

control and flow control mechanisms as well as the delay

caused by the handshake process of TLS. The performance

gain anticipated by the use of QUIC motivated the idea of

running Tor over QUIC. Developers from Tor’s community

discussed the possibilities of using QUIC in the transport

layer of Tor instead of the current design and listed several

design decisions to be considered that are specific to the

case of Tor’s network [16]. In our work, we address the

existing problem in Tor’s transport layer and expand on the

proposed design for running Tor over QUIC in [17]. The work

contribution can be summarized as follows.

Our Contribution:

• We discuss in details the features of QUIC protocol that

make it a suitable candidate for Tor transport layer.

• We built a realistic test-bed that supports the use of

UDP-based protocols (e.g. QUIC) and calibrated our

environment using the performance of Tor’s live net-

work.

• We evaluated the performance gain of QuicTor over

vanilla Tor for different types of applications (web

browsing, bulk downloads, and video streaming).

• We present a comprehensive study of the security of

QuicTor by analyzing different categories of attacks on

the Tor network and highlighting the type of attacks that

can be affected by the transport protocol being used.

We implemented diverse types of attacks and assessed

their impact on QuicTor in comparison to vanilla Tor.

The rest of the article is organized as follows; in

Section 2 we present the necessary background of Tor’s

anonymity network and QUIC protocol. We follow that by

reviewing the improvement techniques designed for Tor’s

network. We discuss QuicTor’s design and architecture in

section 3. The performance evaluation results are presented

and discussed in section 4. In section 5, we present QuicTor’s

security analysis and evaluation Finally, our conclusion and

the plan for future work are in section 6.
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II. BACKGROUND

In this section, we start by introducing the basic background

of how Tor works and the design of the QUIC protocol, and

how it reduces communication delay. Then we review the

research work done to enhance the performance and security

of the Tor network.

A. TOR

Tor’s overlay network consists of several interconnected

Onion Routers (ORs) over which the traffic is being dis-

tributed through circuits. On the client-side, the process run-

ning is called Onion Proxy (OP). An OP learns the required

details to establish a connection to the Tor network by con-

tacting the authority directory routers to obtain the router

descriptors. A router descriptor is a summary created for each

OR, which includes its encryption keys. OPs establish con-

nections to the first (entry)OR requesting the build of a circuit

to the destination. The entry OR then extends the circuit to

the next hop, until it reaches the exit OR. Figure 2 illustrates

how Tor builds its circuits until the client is connected to the

destination.

FIGURE 2. Tor’s circuit build.

The onion proxy accepts TCP requests ( TCP streams) and

then multiplexes them over the created circuits. The traffic

from the client is encrypted with three keys, one for each

hop on the circuit. At the exit OR, the destination address

is revealed so the exit OR can complete the connection.

The original Onion Routing design uses one circuit per TCP

stream. However, due to the latency cost of this approach, Tor

is multiplexing multiple TCP streams over the same circuit.

All communication between each two onion routers is done

over a TLS connection. The use of TLS adds one more level

of encryption and integrity protection to the communication.

Tor’s communications use a fixed size cell, the cell size is

512 byte. The idea of using a fixed cell size is to add some

resistance to some types of attacks, such as traffic analysis.

However, it was found to be inefficient and results in a distinc-

tive distribution of the packet-size in a specific stream [18].

Hence, control and padding cells are usedwith variable length

to limit the information leak. The typical structure of the cell

is shown in figure 3. The circuit ID and command fields are

not encrypted, hence it can be processed by all ORs along

the circuit to allocate the cell to the corresponding circuit

queue. The remaining fields of the cell are encrypted, and

can only be processed at the exit OR. The entire cell is then

encapsulated in the payload of the transport packet to be sent

over the Internet. [18]

FIGURE 3. Tor’s cell.

B. THE CURRENT PROBLEM

Currently, Tor suffers from many performance problems

related to network capacity, path selection, queuing, conges-

tion control, and others. While many of them are well-known

problems in the networking community, there is currently no

perfect solution. In this work, we specifically address issues

of Tor’s current transport layer design, such as head-of-line

blocking which is explained below.

1) HEAD-OF-LINE BLOCKING

The head-of-line blocking problem has been well studied

in the area of router design. In essence, this problem stems

from the conflicting requirements of multiplexing streams

onto a single connection and preserving the ordering of the

combined stream in case of failure or packet loss. Head-

of-line blocking is an issue related to the use of reliable

transport protocols such as TCP. As illustrated in figure 4,

this problem happens when a certain TCP flow loses a packet

and requires a re-transmission. All subsequent packet of this

flows as well as other flows over the same connection are

blocked until the lost packet is recovered. In the Tor context,

we can map each stream on the connection to a Tor stream

that is passing over a circuit, and the TCP connection is the

one maintained between two ORs on this circuit. As Tor

becomes more popular, we will likely observe similar situ-

ations where a file download stream happens to share a TCP

connection with a web browsing stream.Moreover, when net-

work links become more congested due to limited capacity,

we expect congestion-induced packet losses to become more

common, which will lead to more occurrences of the head-

of-line blocking problem. Reardon, et al. [19] measured the

effect of packet dropping on shared TCP Connection. Rear-

don’s experiments concluded that multiplexing circuits over

FIGURE 4. Head-of-line-blocking Problem Illustration.
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FIGURE 5. Tor’s protocol stack.

a single TCP connection adds unnecessary latency and

degrade the throughput significantly.

C. ENHANCING TOR’s PERFORMANCE

There is a considerable number of research proposals made

to improve the performance of the Tor network by address-

ing multiple design weaknesses. The research proposals of

interest for the presented work are the ones addressing the

transport layer design issues. For a better understanding of

the modifications introduced by researchers to achieve better

performance, we will adopt the protocol-stack-like descrip-

tion used by Murdoch [20]. As shown in figure 5, all nodes

on the path are relying on the host’s operating systems imple-

mentation of TCP/IP, which ensures reliable packet deliv-

ery between the two communicating parties. The TCP stack

provides congestion control and in-order delivery, from one

hop to the next. On top of TCP comes Tor’s built-in TLS

stack to provide data integrity, confidentiality, and authen-

ticity. An additional level of confidentiality is performed by

the cryptography process in Tor’s circuit. The circuit layer,

which is implemented at the application level within Tor,

provides de-multiplexing between different circuits using the

same TLS connection. On the client-side (Onion Proxy), all

requests go through SOCKS5 proxy bound to a specific port

number, and then passed to the TCP layer.

There is a considerable number of research works attempt-

ing to improve the performance of Tor [13]. Improve-

ment efforts concerning traffic management concentrated on

removing the source of delays in the network, either by

reducing network congestion, traffic overload, or transport

overhead. At its application layer, the lack of congestion

control in Tor was a major aspect considered by researchers

for possible improvements. Proposal for circuit scheduling

improvement was introduced by Tang and Goldberg [21].

Their method to schedule the packets based on the cir-

cuit activity is called Exponential Weighted Moving Average

(EWMA). In this method, each circuit keeps a state variable

to track the value of the weighted moving average, this

value is an indication of how active is this circuit, the less

active circuits are then given higher priority in scheduling.

Tschorsch and Scheuermann [22] noticed that Tor assigns

equal bandwidth for all connections opened between routers,

this leads to unfair queuing. They propose to re-allocate any

un-utilized bandwidth to a connection that needs more band-

width. Alsabah, et al. [23], introduced a congestion control

method for Tor (Tor N23). Tor N23 is based on the algorithm

used for Asynchronous Transfer Mode (ATM) Networks.

At the circuit-level, a different approach to enhancing

the performance of Tor’s network by changing its transport

design addresses the multiplexing of several circuits over a

single TCP channel. Alsabah and Goldberg [24] proposed

the use of a single TCP connection per-circuit. To provide

security, they used IPsec and its Encapsulation Security Pay-

load protocol. Although the performance enhancement of

PCTCP was significant, the use of IPsec with Tor faces

many challenges. Gopal and Heninger [25] in their Torchestra

proposed to use two separate TCP connections between each

pair of communicating relays. One connection is dedicated to

light-weight traffic, the other connection is used for bulk traf-

fic. Torchestra was not tested on a large enough network to get

a better understanding of how it improved Tor’s performance.

It was pointed out by Geddes, et al. [26], that PCTCP and

Torchestra were subject to socket exhaustion attacks, hence

they introduced their IMUX design. IMUX uses a manager

and scheduler for the connections.

Aside from that, the process of circuit building and

path selection is another rich field for improvements.

Barton, et al. [27] presented a path-selection algorithm that

avoids highly congested relays dynamically while building

the circuits. Their algorithm uses a Random Forest classifier

to predict the performance of the path and only choose relays

with high performance. The authors of [28] propose an exten-

sion to Tor’s path selection algorithm. They use the latency as

a measure of congestion and infer the congestion status of the

relays. Based on the congestion information of the network

relays, Tor selects the circuit relays that are less congested.

Using datagram protocols for Tor’s transport layer was

first proposed by Liberatore [29]. Liberatore proposed an

extension for the basic specifications of Tor by building the

circuits on top of DTLS/UDP. The proposed approach did

not offer an alternative to the reliability and in-order delivery

functionalities of TCP. The lack of reliability raised two main

problems in Liberatore’s design. First, the encryption done

by Tor at the level of relays was done using the counter

mode, in which each block being encrypted depended on the

previous and next ones. Hence, in the case of a lost packet,

the decryption process would not be successful. Second,

the integrity check at both ends of Tor’s communication is

based on the assumption that no packet will be lost. The

extension was meant to be used in parallel to the original
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design of Tor. The control cells are sent over the TCP

connection, only the UDP payload cells are sent over the

UDP connection. Eventually, Liberatore’s extension did not

go any further due to its problems.

Later on, Reardon and Goldberg [19] proposed an

improved design using TCP over DTLS. In this design,

TCP is moved to the user-level while using Datagram Trans-

port Security Layer (DTLS) to secure the communication

between ORs only. Each circuit is assigned a separate

user-level TCP connection. The reliability and congestion

control are done hop-by-hop. However, the use of user-level

TCP suffers from several limitations such as CPU cost.

UDP-OR is another approach to improve Tor’s performance

was proposed by Viecco [30]. Viecco used UDP for the com-

munication between the ORs only, while the end connections

at the OP and exit are using TCP. Viecco’s design simplifies

the processing of packets at intermediate routers, however,

it does not provide reliability and in-order delivery function-

alities at the routers, which will affect Tor’s cryptography

and integrity validation. The head-of-line blocking problem

rises from the fact that if one packet is lost on one TCP

streams all other streams are blocked until this lost packet

is being resent. To address this problem Nowlan, et al. [31],

introduced uTor. In uTor, Un-ordered TCP (uTCP) is used

for communication between Tor’s node and is protected by

Un-ordered TLS (uTLS). This allowed TCP to send any

available data regardless of the lost packet event. This design

adds to the application layer the additional cost of processing

the packets, which affects the overall performance of the net-

work. The evaluation of this design showed an insignificant

improvement in the performance. Another approach to use

datagram protocol as a base for Tor’s transport layer was

proposed by Loesing, et al. [32], using a modified version of

libutp library of Bittorrent. However, the implementation was

not mature enough to be evaluated against the performance of

vanilla Tor.

D. TOR SECURITY

Performance is closely related to the security and anonymity

of Tor. Some attacks such as traffic correlation attacks use the

network latency and throughput to reduce the anonymity of

the network. The possible impacts of datagram proposals for

Tor on its security and anonymity were discussed thoroughly

in [33]. Therefore, we are presenting here an analysis of dif-

ferent types of de-anonymization attacks that aim to infer the

identity of internet users, even if anonymization techniques

are applied. In the following, we review Tor’s threat model

and techniques proposed to exploit Tor’s design flows to

launch de-anonymization attacks.

1) TOR ADVERSARY MODEL

Most of the de-anonymization attacks assume that the

attacker is controlling at least one of the circuit hops, entry

or exit guard, or both of them [34], [35]. Furthermore,

an attacker can present a compromised client or a malicious

destination. An attacker can either passively monitor the

traffic, or actively manipulate it. A global attacker can mon-

itor the traffic end-to-end, Tor does not provide security

against this type of attackers. A different assumption for

an attacker is based on traffic monitoring. The attacker in

this model can sniff the network packets and extract their

features, train a model, and classify the traffic to identify

it. The attacker can also manipulate the packets in a certain

way [13], [36], [37]. In Fingerprinting Attacks, the adversary

is assumed to be able to monitor the traffic between the client

and the entry point to the anonymity network. The adversary

then extracts certain features from the traffic, such as packet

count, flow direction, the time between consecutive packets.

The next step is to match these features to indicative patterns

of certain websites, using machine learning techniques. The

effectiveness of these attacks depends on the selected features

and the machine learning classifier used.

One of the earliest attempts to evaluate the effect of this

type of attack on Tor’s anonymity network was done by

Herrmann, et al. [38]. The features they used were the fre-

quency distribution of the size of IP packets, and the clas-

sifier used was multinomial Naive Bayes. Herrmann’s clas-

sifier did not perform well on Tor since it only depended

on the packet size, and Tor’s cells have fixed size. Later,

Panchenko, et al. [39], worked on an enhanced version of fin-

gerprinting attack on Tor by choosing different features based

on the traffic volume, timing, and direction. Panchenko’s

classifier reached disturbing results raising red flags for Tor’s

community. Experimental defenses were recently developed

against website fingerprinting attacks on Tor’s anonymity

network [40]. The AS-level attack is a traffic analysis attack

enabled by the presence of the same AS network between the

client and the entry guard and between the exit and desti-

nation. In their research, Edman and Syverson [41] provide

an evaluation of the impact of the AS-level adversary on

Tor network security. Their experiment showed that there is

a probability of 20% that a single AS appears at the two

ends of a circuit. This probability can be reduced by using

a different path selection algorithm that is designed to avoid

this problem.

2) SIDE CHANNEL ATTACKS

Side-channel attacks are the type of attacks based on some

information acquired about the network. In the context of

Tor, side-channel attacks can be the first step to launch one

of the previously discussed attacks by identifying ORs on

the circuit. Throughput Fingerprinting is one of the attacks

used for this purpose, it depends on the diverse nature of the

volunteered routers and their unique behavior while building

the circuit to identify the ORs.

Another type of side-channel attack aims to decrease the

anonymity of the communication directly, such as Network

Latency. Two network latency attacks were introduced by

Hopper [42], the goal of the first attack was to identify the

user initiating the traffic by analyzing the latency distribution

of two exit nodes. The second attack aims to locate, approx-

imately, the client by controlling a malicious server that
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collects any leaked information about the client’s network

every time the client tries to access the server.

With proposals being made to use datagram-based pro-

tocols for Tor’s transport layer to improve its performance,

an alarming security concern rises on how this type of proto-

col would affect the security and anonymity of Tor. The study

was done byMathewson and Perry [33] discussed thoroughly

the different types of attacks, and specifically the attacks

that are more likely to affect Tor over a datagram-based

protocol. The described attacks in this study can be viewed as

two main types. First, attacks exploiting protocol behavioral

differences such as re-transmissions, congestion, and flow

control. Second, attacks exploiting the reduced communica-

tion latency, such as timing correlations, and timing water-

marking.

Various attacks were developed aiming to reduce the

degree of Tor’s network anonymity using different network

performance metrics such as latency and throughput [43].

III. QuicTor

A. QUIC

For decades, TCP has been the key protocol for reliable data

transfer over IP networks. However, with the rapid growth

of the Internet, many recent applications were designed for

interactive use, in which delay is not tolerable. For such

applications, TCP was found to be limiting because of its

strict in-order-delivery process. TCP is a stream-based pro-

tocol, which is suitable for activities carried over a long

duration with data that need to be preserved. On the other

hand, UDP is more convenient for transactions that need to

be executed quickly and independently. For applications that

use both short and long transactions, it is difficult to come

up with a suitable trade-off that will result in an acceptable

performance. In recent years, new transport protocols were

designed to provide proper support to different network appli-

cations. One possible design approach is to use unordered

version of TCP (uTCP) as a base component and build

application-level libraries on top of it [44]. A different design

approach is to replace TCP with UDP and implement, at the

application level, the required level of reliability. DCCP [45]

is a protocol that followed this approach and was designed

to provide only the congestion control mechanism to a data-

gram transport. However, most of these approaches were not

widely deployed or used so far.

One recent protocol following the same design approach

and is being deployed and used by an increasing number of

applications recently is Google’s new protocol called QUIC.

Quick UDP Internet Protocol (QUIC) uses UDP as the trans-

port protocol to avoid the limitations of TCP, and implements

at the user-level the congestion and flow control mechanisms.

QUIC was designed with the motivation of reducing com-

munication delay introduced by the handshaking process

and by the head-of-line blocking while providing an accept-

able level of security and deployability. QUIC is deployed

at the user-space to enable its deployment across differ-

ent platforms. To eliminate the head-of-line blocking issue,

QUIC uses an abstracted data structure called streams and

multiplexes multiple streams within the same connection.

QUIC streams represent a reliable bidirectional commu-

nication byte-stream. Streams are uniquely identified by

stream ID, and the units sent over streams are called frames.

A QUIC packet, as illustrated in figure 6 is composed of a

header and one or more frames. After the early handshaking

packet exchange, all QUIC packets are fully authenticated

and encrypted except for the header parts required for routing

and decryption. QUIC implements loss recovery, flow con-

trol, and congestion control mechanisms on top of the UDP

implementation to ensure reliable transmission.

FIGURE 6. QUIC’s packet structure.

QUIC avoids the head-of-line blocking problem allowing

multiple streams to be transferred over the same connection

while ensuring that a lost UDP packet only affects the stream

to which it belongs, while other streams can continue to

deliver their subsequent packets. Moreover, QUIC limits the

buffer space assigned to each specific stream.

1) SECURITY CONCERNS

TCP protocol uses TLS for securing its traffic, which has

been proven to provide solid authentication and confidential-

ity. On the other hand, QUIC protocol is using a different

security library, which we discuss in the following. We will

explain how QUIC is providing authentication and confiden-

tiality to its traffic. In QUIC all packets are authenticated

and encrypted, except for the early negotiation packets and

the retry packets. The receiver is always authenticated while

the initiator authentication is optional. The authenticating

certificate of the receiver party is sent in a server-config-

seg at the initial handshake phase. The initiator stores the

server-config-seg received at the connection setup, and use it

for later communication. The encryption keys are computed

using Diffie-Hellman(DH) and are based on the information

exchanged during the handshake phase. Tampering with the

initial handshaking packets will lead to wrong values of the

keys, a reset packet will be sent, unauthenticated and unen-

crypted, to indicate the failure of the connection [15].

TLS has multiple combination methods of authentication

and encryption, the method that was found the most robust

is encrypt-then-authenticate. In this method, the data is first

encrypted then an authentication MAC is computed over the

ciphertext. QUIC’s data are placed in frames, which are also

encrypted and then authenticatedwithin the packets, as shown

in figure 6, ensuring a similar level of robustness. TLS is vul-

nerable to denial-of-service (DoS) attacks, where the attacker

imitates a large number of TCP connections and exhaust-

ing the server with a large number of handshake requests.

By neglecting unauthenticated traffic, QUIC reduces the risks
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FIGURE 7. QuicTor protocol stack.

for DoS attacks. Both protocols are susceptible to the attacks

targeting specific cryptographic standard implemented on the

receiver party, such as Bleichenbacher’s attack on RSA [46].

B. QuicTor DESIGN

In our work, we built on the direction of using datagram

protocol for Tor’s transport layer, and we considered the

problems faced by previous attempts. QUIC is a UDP-based

multiplexed and secure transport protocol designed for

bandwidth-hungry and latency-sensitive applications. It was

designed by Google and now going through the standardiza-

tion process in IETF standard track [47]. The main reason

QUIC was proposed as a standard way to address head of

line blocking at the transport layer in support of HTTP-2.

We believe the same issues of the head of line blocking are

affecting the performance of TOR. While research propos-

als such as PCTCP, IMUX, and Torchestra tried to solve

the problem at the application level by proposing different

methods to de-multiplex Tor’s circuits, the use of UDP-based

transport protocol, such as QUIC, would provide a solution at

the transport-layer level which will also avoid the increasing

probability of socket exhausting attacks. Moreover, the use of

QUIC protocol for the transport design on Tor’s network was

considered by Tor’s community, as a promising direction to

improve the performance of Tor [48]. We believe that QUIC

is well-suited to address the two problems mentioned above.

First of all, QUIC has native support formultiplexingmultiple

application-layer streams. This allows QUIC to avoid the

head-of-line blocking problem. Besides, QUIC has a plug-

gable congestion control module whose behavior is specific

to each application-layer stream. This means that we can

easily change its congestion control behavior for different cir-

cuits sharing the same connection in the Tor network. Figure 7

shows QuicTor’s protocol stack implementation at each node

along the path from the client to the destination. In QuicTor,

all communication with onion routers is using QUIC, includ-

ing the connection from the OP to the entry OR. To explain

this design decision, we need to highlight some facts about

QUIC and Tor traffic. Since QUIC traffic represents almost

7% of the overall Internet traffic [15], and it is never guar-

anteed that the destination server will be supporting QUIC

protocol, as it is being adopted so far mainly by Google’s

services. Therefore, we kept the connection between the exit

and the destination as it is. It can be seen that the TLS

security layer in vanilla tor was replaced by QUIC’s security

layer QuicCrypto. QuicCrypto is part of QUIC that provides

transport layer security to a connection. The negotiation of

used cryptographic suites is done during the cryptographic

handshake which QUIC combines with the transport hand-

shake to reduce initial RTTs. Currently, QUIC is being drafted

by IETF and efforts are beingmade tomove the cryptographic

handshake implementation to be similar to TLS 1.3 [47]. Two

important works have analyzed the security of QUIC [49],

[50]. Both confirm it has reasonable security guarantees.

QUIC/HTTP-2 was an inspiration work for TLS 1.3. Current

versions of the QUIC standard uses TLS 1.3 using creative

designs to maintain QUIC performance advantages.

To explain the QUIC communication process, we will refer

to the two communicating ORs as initiator OR and receiv-

ing OR. As previously mentioned, QUIC’s functionalities are

implemented in user-space, includingmechanisms tomonitor

events on UDP sockets, and timeout alerts. This introduced a

considerable challenge for our QuicTor API implementation

to maintain an accurate timing method that would trigger

QUIC’s callbacks while dealingwith the asynchronous events

for the UDP sockets at user-space. QuicTor’s API was pack-

aged as a UNIX socket, which means that using a pooling

loop to wait for socket events was not possible. To over-

come this obstacle without significant re-writing of the code,

a dedicated thread was generated for each UDP socket to pro-

cess its events using libevent, while handling QUIC’s alerts

using libevent as well. The main thread communicates with

each generated thread using a regular UNIX file descriptor

(eventfd), which can be treated by the user as an actual

socket.

When the initiator OR opens a connection, it starts a

blocking operation to create a UDP socket and complete the

handshaking with the receiving OR. Once the handshaking

is complete the main thread on the initiator OR generates a

separate thread for this UDP socket to maintain the QUIC

states’ updates and the socket events. The generated thread

will return eventfd that will be used to trigger the thread in

case of pending reads. The generated thread will be responsi-

ble for processing received packets without halting the main

thread. On the receiving OR’s end, the main thread will be

listening for an incoming connection, creates a UDP socket,

and generates a thread dedicated for this socket to handle its

events.
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One advantage of this design is that, since all libevent

operations and QUIC states are handled in one thread, there

will be no need for synchronizing multiple threads, which

reduces the complexity of the implementation. For the few

shared data structures, fine-grained locking is being used.

A second advantage is that we provide a TCP-like usage by

moving all asynchronous events to a background thread away

from the main thread, in the same way, the kernel is handling

them for TCP. Finally, the interface for the API is a standard

UNIX socket interface, which reduces the code changes to

port existing Tor implementation.

C. QUIC’s DEPLOYMENT AND IMPLEMENTATION

IN TOR’s NETWORK

Tor’s original design layers the network communications as

follows, connections and channels describing the communi-

cation between two nodes only. Circuits and streams, on the

other hand, are end-to-end connections. A stream is main-

tained between the client and the server and is running on top

of a circuit. At each hop, the circuit is mapped to a connection.

To use the QUIC API within Tor, we decided to limit the

modifications to the connection layer while keeping other

layers unchanged. Therefore, we added a flag to indicate

whether the connection is using quic or it is a regular TCP

connection. To allow incremental deployment and giving the

option of falling back to TCP at any point, we added a new

QUIC socket to be used by quic connections along with the

TCP socket created by Tor. The architecture of QuicTor is

illustrated in figure 8 in which the different layers of QuicTor

compared to the existing Vanilla Tor is shown. In QuicTor,

the transport protocol used at the kernel layer is UDP. At user-

space-level, the QUIC protocol implements its reliability and

flow and congestion control functionalities.

FIGURE 8. QuicTor Architecture.

On the nodes that support the use of QUIC, all OR

connections are being done using the QUIC socket, which

includes OR-to-OR connections and OR-to-OP connec-

tion. We also simplified the connection layer read and

write callbacks by transferring the TLS handshake process

to QUIC, which makes it unnecessary to use the hand-

shake code in Tor’s callbacks. Other minor modifications,

that are not at the connection-level, were required to sup-

port the use of QUIC. We needed to add a streamID

field for the packed_cell structure to be used by QUIC

to differentiate user streams. We used the packed_cell

structure since it’s the only one used by ORs for relaying the

user streams. The streamID is used whenever Tor calls send to

flush some packets to associate these packets with the correct

stream. To avoid major modifications in Tor, we designed the

QUIC library to provide a similar interface as TCP from Tor’s

perspective. The API functions connect, send, and recv are

following the blocking behavior of TCPwhile other functions

are non-blocking. Moreover, in standard Tor, when a relay

is about to send a cell, it will format the cell, copy it to the

connection’s output buffer, and add a pending write event to

the event base. Then in the future when the socket associated

with the connection becomes writable, libevent will trigger

the write event and run a callback function to send the data

out. It is important to note that theoretically, QUIC has no

notion of being writable as it uses a non-blocking UDP

socket. This means that Tor does not have to wait for buffer

space since the buffers are all maintained by QUIC. However,

to follow the TCP semantics, we decided to maintain this

blocking behavior because we want to make sure that any

performance gain comes from QUIC instead of changes in

the semantics of TCP.

IV. QuicTor PERFORMANCE EVALUATION

To show the performance gain achieved by the proposed

design, we compare the presented work to two other proposed

approaches that address the problem of circuit multiplex-

ing over a single TCP connection, namely, we compare our

QuicTor to PCTCP [24] and IMUX [26]. However, PCTCP

and IMUX address the head-of-line blocking problem at the

application layer, by de-multiplexing the circuits and use an

appropriate scheduler, while QuicTor addresses the problem

at the transport layer. Figure 9 depicts the details of theOR-to-

OR connections in QuicTor compared to Vanilla Tor, PCTCP,

and IMUX. It can be perceived that QuicTor introduced

minimum changes To Tor’s architecture by merely adding

a different socket identifier to be used for all OR-to-OR

connections.

Tor, as a low-latency anonymity network, aims to provide

anonymity for the users of interactive web applications such

as web browsing. Files downloading, e.g. using BitTorrent,

is a commonly used application over the web that consumes

plenty of its bandwidth [51]. We consider both types of

applications in our evaluation of how QuicTor is performing

compared to vanilla Tor as well as different enhancement

approaches, namely PCTCP and IMUX. In recent years,

video streaming has been the top internet application type

in terms of traffic percentage. According to the report by

Sandvin [51], video streaming reaches 58% of the global

downstream traffic. Considering its importance, we evaluate

the performance of video streaming over QuicTor compared

to vanilla Tor. We implemented our design for QuicTor on

Tor’s source code version (0.3.3.5-rc).1 For a fair comparison,

1QuicTor’s source code is available upon request.
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FIGURE 9. OR-to-OR connections in the different approaches.

we ported the implementation of PCTCP and IMUX to the

same version. We use a configuration flag to indicate which

version of Tor is being used.

We set up our experiments using NetMirage [52] network

emulator. NetMirage is a platform designed to allow testing

IP-based network applications. The feature required in the

tested application is the ability to bind to a specific IP address.

We had to modify our code to pass the IP provided by

NetMirage to the QUIC API for binding instead of using the

localhost by default.

To ensure a fair comparison, we ported the implementation

of both methods to the same version of Tor used in our

experiment (0.3.3.5-rc).

A. EXPERIMENT SETUP

NetMirage emulates the network on its code node using a

GraphML file describing the topology of the network. Net-

Mirage then generates IP addresses for the network nodes on

its edge node(s) to be assigned to the tested applications. Traf-

fic and communications between applications on the edge

node(s) are routed through the core node. The network topol-

ogy used for NetMirage configuration is in GraphML format,

similar to the topologies used by other network simulators

such as Shadow [53]. GraphML allows defining network

parameters such as latency, jitters, and drop rate. In our

experiments, we configure NetMirage’s core node using the

model described by Jansen, et al. [54]. NetMirage requires

machines to run a Linux-based operating system. We used

a machine with Intel Core i7 and 64 GB RAM that runs

Ubuntu 16.4 for the NetMirage edge machine. For the core

machine, we used an Intel Core i7 powered machine with

8 GB RAM running Ubuntu 16.4 OS. We used a connected

graph with each vertex represent a network node to config-

ure the core machine of NetMirage. To simulate real internet

behavior, we added latency to the edges that are randomly

generated in the range of (50ms - 100ms), and drop rate in the

range of (1% - 2.5%). The network configuration runs on the

edge machine consists of 50 relays and 350 clients. 10% of

the clients performed bulk downloads (files of size 5 MB),

while the rest of the clients were sending regular HTTP

requests representing web browsing activity. Conventionally,

the web browsing activity is represented by the download

of 320 KB files [24], [26], [55], [56], [25]. However, recently

the average size of a web page increased drastically to reach

more than 2 MB [57]. Hence, we used files of 2 MB in our

experiment to represent web clients. For the video stream-

ing applications performance, we used a 5 minutes video

uploaded on a separate server and dedicated one client for

video streaming. To validate the realism of our network,

we used the performance metrics of Tor’s live metrics [7]

for 5 MB files, measured over the period starting from

01-11-2019 until 31-01-2020 to calibrate our configuration.

The results of Vanilla Tor running on NetMirage’s emulated

network compared to Tor metrics are shown in figure 10. Tor

metrics is an important tool developed by The Tor Project

to collect data of the live Tor network. The collected data is

then aggregated, analyzed, and presented on the Tor metrics

website [7]. Tor’s relay performance is one of the metrics

provided that is used by researchers as a reference for their

experiments [56], [58], [59] [24]. The emulated network

using NetMirage achieved a performance that is very close

to the performance of Tor’s live network with an average

download time of 10 seconds for 5 MB files, which shows

that our emulated network is realistic. We used this network

for all of the performance evaluation experiments.

FIGURE 10. Tor network validation.

B. EVALUATION METRICS

For an application like web browsing and file download-

ing, the time required to complete the action, display the

web content, or completely download the file, is the key

player in the user’s experience, we refer to this metric as
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FIGURE 11. Downloading 2 MB files.

Download Time. In Tor’s experiments, the time required to

establish the circuit and start receiving the first byte is a

considerable factor in its performance evaluation, it will be

referred to later as Time To First Byte. We use both metrics to

evaluate the performance gain of using QuicTor compared to

Vanilla Tor.

On the other hand, the user experience of different types

of applications such as video streaming is measured by

different metrics. In a study of how the quality of experi-

ence (QoE) affects the user engagement in video streaming by

Dobrian, et al. [60], a set ofmetrics were described to evaluate

the QoE for the video streaming applications. Out of the

defined metrics, the following metrics are related to network

performance.

• Join Time: The time required for the player to establish

a connection, initialize the playing buffer, and fill the

buffer to be able to start playing.

• Buffering Ratio: The buffering time as a percent of the

total session time. Buffering time is the total time spent

filling the playing buffer while the player is frozen.

• Rate of Buffering Events: The number of re-buffering

events / total session time.

The session time is calculated as the total time since the client

hits play until the end of the stream. We use these three

metrics to evaluate the performance of streaming applications

over QuicTor compared to vanilla Tor.

C. RESULTS

The main performance gain from the use of QUIC protocol

instead of TLS/TCP lies in reducing handshaking time and

overcoming the head-of-line blocking problem. The number

of round trips required for handshaking is the main source of

pain for light-weight and short traffic such as web browsing.

However, the actual performance gain, in this case, is mini-

mal, equals to two RTTs, and this can be shown by the Time

to First Byte results, figure 11-a. In figure 11-b, it can be seen

that the average download time of a 2 MB file is reduced

by 80% by using QuicTor compared to vanilla Tor. The aver-

age download time for PCTCP and IMUX is almost the same

as QuicTor, however, The overall performance using Quic-

Tor is improved by 40% compared to PCTCP and IMUX.

File sharing applications on the other side last for longer,

hence, they can benefit from the improved design of QUIC

that eliminated the head-of-line blocking problem. In this

case, the actual performance gain of QUIC can be noticed.

Figure 12-a shows that 100% of QuicTor requests success-

fully established the connection in almost 1 second, while

only 50% of Tor’s connections were established within the

same period. For the total time required to complete bulk

file download, The average for QuicTor is 3 seconds, and for

vanilla, Tor is 15 seconds. QuicTor enhanced the performance

for this type of application by almost 80%.

Video streaming applications also benefit from the reduced

connection establishment latency of QUIC, which is reflected

in the join time (initial buffering duration). It can be seen

in figure 13-a that the average initial buffering duration in

QuicTor is below 20 seconds, while for vanilla Tor it exceeds

45 seconds. Figure 13-c and 13-b show two ratios that reflect

the QoE presented to the user. The rate of buffering events

represents how frequent the user will face a frozen player,

the less this rate is the better experience the user is getting.

The rate of buffering events over QuicTor is 25% less than

it is over vanilla Tor. The second ratio is the buffering ratio,

which represents the percentage of the session time spent on

buffering. QuicTor enhances this metric by 40% compared to

vanilla Tor.

V. SECURITY ANALYSIS

From the aforementioned discussion, we concluded that the

category of attacks called side-channel attacks use some

information gathered from the network traffic, such as delay,

and circuit lifetime. The use of different transport protocols

could have an impact on the nature of such information,

which in turn would either facilitate or impede the launch of
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FIGURE 12. Downloading 5MB files.

FIGURE 13. Video Streaming Performance Results.

a side-channel attack on Tor’s network. The attacks of this

category can be traffic correlation attacks, or traffic classi-

fication attacks. In traffic correlation attacks, the adversary

monitors the traffic at one end of the connection (entry/exit

traffic) as well as at one or more nodes within Tor’s network.

The target of the adversary is to correlate the entry/exit

traffic to the traffic monitored at one or more of Tor’s relay

to reduce the anonymity of the network. To evaluate the

security of QuicTor against side-channel attacks, we imple-

mented two attacks, a timing-based attack described by
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FIGURE 14. Probing Results of Vanilla Tor Relays.

Murdoch and Danezis [61] and a correlation attack described

by Mittal, et al. [62].

A. LOW-COST TRAFFIC ANALYSIS OF TOR

In this attack, [61] Murdoch and Danezis explained how

an attacker can launch a traffic correlation attack despite

the anonymity property that hides the direct link between

communicating parties. Murdoch’s attack is based on timing

information that the adversary can acquire while staying

within the threat model of Tor. The attack depends on the

idea that traffic streams over Tor’s network have certain

characteristics, and that a change in one stream can affect

other streams passing through the same node. The adversary

assumed in this attack is not global, he cannot observe the tim-

ing characteristics of the network. However, the adversary can

inject his delay pattern into the network traffic and observe

the network streams. The adversary is also assumed to be able

to control a corrupted Tor node, which is still within the threat

model of Tor. To determine if the injected stream is passing

through a specific Tor node, the adversary uses the corrupted

node to send a stream to the targeted Tor node and measures

the latency of this stream. The adversary then tries to spot

the delay pattern injected by the corrupt server in the traffic

of the probed relays, and calculate a correlation percentage

according to the formula:

c =

∑
S(t) ∗ L ′(t)
∑
S(t)

(1)

where, S = 1 if the server is sending traffic at time t, and

S = 0 otherwise. L’(t) is the normalized latency of the

probed Tor relay. In a successful test, the correlation for a

true positive (the injected traffic passes through the probed

relay) should be higher than the correlation in the case of a

true negative (the injected traffic does not pass through the

probed relay).

We replicated the experiment described by the authors and

tested for vanilla Tor to validate the original implementation.

Then, we tried to launch the attack on the QuicTor network to

evaluate its behavior against the attack. We created a network

topology of 13 relays and 50 clients. One client, the one

considered to be the victim, establishes a connection to the

malicious server by creating a normal circuit of 3 relays.

The malicious server keeps sending for a random period of

15-25 seconds followed by a silent period of 20-40 seconds.

For each of the probed relays, a dedicated client is used and

configured to allow a single hop.We bind a server to the same

IP used for the probed relay and start sending through the

client to that server and measure the latency. The rest of the

clients are performing regular downloads over the network

(web browsing applications). To validate our attack setup,

we launched the attack against vanilla Tor and calculated the

correlation value for both cases where the probed relay is and

is not on the path between the victim client and the malicious

server. Figure 14 shows the results from launching the attack

on vanilla Tor. In 14-a the probing results of a relay that does

not carry the injected traffic by the attacker, while in 14-b

the probed relay is on the path from the corrupted server to

the victim client. It can be seen from these results that the

correlation value is higher in the case of true positive, this

indicates a successful test and validates our setup.

The next step was to try launching the attack on Quic-

Tor. Following the same process described for vanilla Tor,

we obtained the results shown in figure 15. It was not possible

to spot the injected delay pattern in the traffic from all probed

relays, whether the relay is on the victim circuit or not. Using

logs on QuicTor nodes, we identified the relays on the victim

circuit and the relays that are not, the calculated correlation

values were almost the same for both cases. The correlation

value can be used as an indicator of the impact of the attack

on the anonymity of the network. The value of the correla-

tion between the probe data and the victim flow is higher

in the cases where the pattern is present in the prob data.

Using this information the attacker can significantly reduce

the anonymity set by considering the relays with correlation

value ≥ a certain threshold T . In figure 16, we show the

cumulative correlation measured for all probed relays. With

correlation threshold T = 0.4 [62], it can be seen that the

attacker can reduce the anonymity set of the Vanilla Tor

network to almost 25% of the total number of relays. On the

other hand, the anonymity set of the QuicTor network was not

affected. Using the entropy measures defined for measuring

anonymity by [63], the attacker can reduce the entropy of the
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FIGURE 15. Probing Results of QuicTor Relays.

FIGURE 16. Correlation Measured.

vanilla Tor network by 89%, while for the same correlation

threshold the attacker cannot confidently identify any of the

relays on the circuits path.

QUIC protocol uses a separate stream for every

request/response sent to/from the server. Introducing delay

in a certain server response will only affect the stream

assigned to this response. Other streams for different

requests/responses will not be affected by the introduced

delay. When the attacker initiates a connection to probe the

delay pattern of the relay in question, a new stream is created.

The attacker stream in this case does not experience any

additional delay. This makes it harder for the attacker to

identify whether or not the examined relay is on the circuit

path of the victim flow. Based on this, we can claim that

timing-based attacks depending on tracking injected delay

into the network can not successfully reduce the anonymity

of QuicTor. A different attack that also depends on injecting

time gapes to be used as a watermark was described by

Iacovazzi, et al. [64]. Iacovazzi’s attack is a flow water-

marking attack that aims to de-anonymize Tor’s hidden

services. Another flow watermarking attack that uses an

inter-packet delay pattern as a watermark was introduced

by Wang, et al. [65].

B. STEALTHY TRAFFIC ANALYSIS USING THROUGHPUT

FINGERPRINTING

Mittal’s attack [62] is a passive attack that does not require

any altering or manipulation of the traffic, instead the attack

use the Tor flow’s throughput as a fingerprint. The described

attacker appears to be like any other Tor user which makes

it harder to detect that an attack is being launched. The

authors described multiple scenarios to reduce the anonymity

of Tor’s network by implementing two types of fingerprint-

ing, stream-based fingerprinting and circuit-based finger-

printing. Circuit-based fingerprinting is used to identify Tor

relays, guard relays, and relays offering location hidden

services. Mittal’s work shows the correlation between the

throughput of two circuits in different cases where the cir-

cuits share all three relays on the circuit path, two relays

shared, and only one relay is common. A conclusion is

drawn from these experiments that two circuits with highly

correlated throughput have common Tor relay(s). To identify

Tor relay(s) along the circuit path of the targeted (victim)

flow, the attacker is assumed to be able to monitor the victim

flow’s throughput. Monitoring the flow can be achieved by

compromising the exit relay, the destinationweb server, or the

ISP carrying the data. The attacker then probes the throughput

of other relays in the network and tries to find a correlation

with the throughput measured of the victim flow. To start

probing the network relays, the attacker builds a one-hop

circuit to these relays. The higher the correlation between the

probe flow and the victim the flow, the more probable it is

that both flows are traversing through a common relay.

We recreatedMittal’s experiments, using 25 relays selected

from the network topologywe used to configureNetMirage in

our previous experiments. We allow our attacker to observe

the victim flow for an observing window (OW) of 300 sec-

onds, 400 seconds, and 600 seconds, the observing window

represents the lifetime of a client’s circuit. In Mittal’s experi-

ments, they used a correlation threshold (T) of 0.4 that reflects

the moderate confidence of the attacker. However, with Quic-

Tor none of the observed flows correlated higher than 0.3.

Using this value as a threshold adds to the uncertainty of

the attacker, which further weakens the attack. To quantify

the degree of a system’s anonymity, entropy is used as a

measure [63], [66]. Entropy is the level of uncertainty the

attacker has about Tor relays in a circuit. After running the

attack, the less the entropy is the higher the probability of the

attacker being able to identify the circuit relays. In Mittals’
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FIGURE 17. Entropy Set Reduction Results.

experiment, they were able to reduce the entropy to less than

2.5 bits in 50% of the cases. Given that the maximum entropy

for 25 relays is 4.6, the attack was able to reduce the attacker’s

uncertainty by 40%. Figure 17 depicts the measured entropy

after running the experiment for different observation win-

dows. Only 10% of the cases were reduced to 2.5 bits, while

50% of the cases has entropy ≥ 3 bits. In 100% of the cases,

the degree of the system’s anonymity was ≥ 0.55.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented an assessment of the performance

of different applications over QuicTor using a realistic net-

work setup. The results show a significant improvement in the

performance of file sharing applications. The performance

improvement for video streaming applications would lead

to a promising quality of experience for the users. We pre-

sented an analysis of the security and anonymity of QuicTor.

We found that the basic security guaranteed by TLS/TCP was

met by QUIC. The effect of attacks against Tor’s anonymity

has also been discussed, we reviewed the categories of attacks

that are most likely to be affected by the change of the

under-laying transport protocol. We implemented two differ-

ent attacks, evaluated QuicTor’s behavior under these attacks,

and the results showed that QuicTor’s maintained the basic

anonymity requirements, and proven better resistance in some

cases. The next step in our research is to conduct a study

of traffic classification attacks and how they can affect the

anonymity of QuicTor. We also plan to address other aspects

discussed by Tor’s developer Mike Perry in his post [16]

regarding the use of Tor over QUIC.
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