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Abstract

Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle.
Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower
glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that
primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By
monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that
contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of
proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the
pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled
glutamine, we also detected a ‘‘backwards’’ flux in the tricarboxylic acid cycle from a-ketoglutarate to citrate that was
enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to
cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward
breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced
metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements
associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions
beneficial to the organism as a whole.
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Introduction

Proliferating and quiescent cells are expected to have vastly

different metabolic needs. Proliferating cells must replicate the

entirety of their cellular contents in order to divide. As a result,

much of the metabolic energy in a proliferating cell is devoted to

synthesizing DNA, proteins, and lipids. Quiescent cells are relieved

of this massive metabolic requirement since they are not dividing

and, in several well-studied model systems, they decrease their

metabolic rates in accordance with their decreased proliferation

rates. Yeast cultures, for instance, enter stationary phase when

liquid cultures are grown to saturation in rich medium [1]. Within

this population, the quiescent yeast cells fail to accumulate mass

and volume [2], in part because quiescent yeast cells induce

autophagy, or self-cannibalism [3]. In addition, the overall

transcription rate is three to five times slower in stationary-phase

than in logarithmic-phase cultures [4], and protein synthesis is

reduced to approximately 0.3% of the rate in logarithmically

growing cultures [5]. Therefore, the quiescent cells within a

stationary-phase culture of yeast likely represent an example of a

quiescent cell that has significantly reduced its metabolic activity.

Lymphocytes also undergo a major metabolic shift upon

transitioning between proliferation and quiescence. Early studies

showed that lectin stimulation of lymphocytes led to increased

glucose uptake, and an increased rate of glycolysis and pentose

phosphate pathway (PPP) activities [6,7]. More recent experiments

have focused on a murine pro-B cell lymphoid cell line, FL5.12,

that proliferates in response to the cytokine interleukin IL-3 [8].

IL-3 stimulation results in an 8-fold increased glycolytic flux. IL-3

also induces the cells to consume less oxygen per glucose
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consumed, and to excrete much more lactate, indicating a shift

away from oxidative toward glycolytic metabolism. For human

peripheral blood T lymphocytes, stimulation resulted in a 30-fold

increase in glycolysis [9]; for thymocytes, the increase was 50-fold

[10]. These differences in quiescent and proliferating lymphocytes

have played a pivotal role in our understanding of the quiescent

state, and experiments with lymphocytes as a model system have

been important contributors to the development of the idea that

quiescence is characterized by decreased metabolic activity.

Lymphocytes, however, are relatively unique among mammalian

cells in having primarily a ‘‘watching and waiting’’ function when

quiescent and performing much of their physiological role only

after activation.

Our studies focus on newborn dermal fibroblasts as a model

system of quiescence [11–13]. In vitro, primary fibroblasts isolated

directly from newborn foreskin can be induced into reversible

quiescence by serum withdrawal or contact inhibition. Unlike

most primary cells, fibroblasts remain healthy in culture in a

quiescent state for as long as 30 d with little apoptosis or

senescence, and can then re-enter the cell cycle [13]. In vivo,

quiescent fibroblasts are central to normal physiology as the

primary synthesizers of extracellular matrix necessary for the

formation of cellular tissues. In response to a wound, fibroblasts

enter the cell cycle from quiescence, proliferate, and secrete a

collagen-rich extracellular matrix [14], pro-angiogenesis factors

that recruit new blood vessels [13], and other molecules that

facilitate the wound healing response [15]. A better understanding

of the transition between proliferation and quiescence in

fibroblasts would have broad implications for physiology and

medicine. Scarring and fibrosis result from excessive fibroblast

proliferation and secretion of extracellular matrix during and after

wound healing [16,17]. Additionally, tumors may contain

quiescent cells that contribute to cancer dormancy [18,19]. Thus,

a better understanding of the transition between proliferation and

quiescence, including the metabolic changes that occur, could

have implications for a wide range of medical conditions.

The emerging field of metabolomics promises to augment our

understanding of mammalian cell physiology through the systems-

level characterization of cell-wide metabolite concentrations and

fluxes. Using liquid chromatography–triple quadrupole mass

spectrometry, we have developed a methodology for monitoring

the pool size and turnover of a large number of metabolites

simultaneously [20–22]. Here we apply metabolomic technology,

flux analysis, and biochemical assays to investigate metabolic

changes after primary dermal fibroblasts enter quiescence. We

discovered that contact-inhibited primary fibroblasts remain

highly metabolically active while adjusting their metabolic

emphasis to produce NADPH, steadily renew their proteins and

lipids, and enhance secretion of specific extracellular matrix

proteins.

Results

A Model for Cellular Quiescence in Primary Fibroblasts
We have developed a model system that allows us to monitor

metabolic differences between proliferating and quiescent cells.

Primary dermal fibroblasts were expanded and analyzed while

actively proliferating, after 1 wk of growth to confluence (contact-

inhibited for 7 d [CI7]), after 2 wk of confluence (contact-inhibited

for 14 d [CI14]), or after 2 wk of confluence with serum

concentrations decreased for the final week from 10% to 0.1%

(contact-inhibited for 14 d and serum-starved for 7 d [CI14SS7]).

Alternatively, fibroblasts were plated sparsely so that they did not

touch each other and induced into quiescence by serum starvation

and monitored after 4 d (serum-starved for 4 d [SS4]) or 7 d

(serum-starved for 7 d [SS7]). In quiescent fibroblasts, the fraction

of cells with 2N DNA content increased so that 80% or more of

the cells were in the G0/G1 phase of the cell cycle (Figure 1A). The

fraction of cells in S phase was significantly reduced, indicating

that very few cells were actively dividing under these conditions. In

both contact-inhibited and serum-starved fibroblasts, levels of the

cyclin-dependent kinase inhibitor p27Kip1 were upregulated, as

expected for cells that entered quiescence (Figure 1B) [23]. In

addition, staining with pyronin Y for total RNA indicated that the

fraction of cells with low pyronin Y, interpreted as cells in G0 [24],

increased in fibroblasts induced into quiescence by all of these

methods (Figure 1C). Pyronin Y labeling data indicate that in the

contact-inhibited and serum-starved cell populations investigated

as quiescence models, approximately 60%–75% of the cells are in

G0 and most of the remainder are in G1.

Rapid Glycolytic Flux in Proliferating and Quiescent
Fibroblasts
Previous studies have reported that lymphocytes induced to exit

the cell cycle in response to mitogen withdrawal exhibit decreased

glycolytic activity [8]. We used several methods to assess metabolic

rates in proliferating, CI7, CI14, and CI14SS7 cells. We

monitored the rates at which glucose and glutamine were

consumed from the medium, and lactate and glutamate were

secreted into the medium. As shown in Figure 2A, the rate of

glucose consumption was approximately 2-fold lower in the

contact-inhibited than in the proliferating fibroblasts. Lactate

secretion decreased less than 2-fold with contact inhibition alone,

and roughly 2-fold with additional serum deprivation. Glucose

consumption actually slightly increased in fibroblasts induced into

quiescence by serum starvation (without contact inhibition) for 4

or 7 d (Figure S1). We also monitored metabolic rates in

fibroblasts cultured in medium conditions containing physiological

levels of glucose and glutamine (1 g/l glucose and 0.7 mM

glutamine compared with 4.5 g/l glucose and 4 mM glutamine in

Dulbecco’s Modified Eagle Medium [DMEM]) [25,26]. Metabolic

rates were somewhat lower in proliferating fibroblasts in these low

glucose/low glutamine conditions compared with proliferating

Author Summary

Many cells in the human body are in a reversible state of
quiescence, where they have exited the cell cycle but
retain the capacity to re-enter it and divide again. Previous
experiments in lymphocytes had suggested that quiescent
cells reduce their glucose uptake and metabolic rate. In
our studies, we have investigated the metabolism of
fibroblasts, cells found in connective tissue and skin. Using
‘‘metabolomics’’ to monitor flux through metabolic
pathways, we discovered that fibroblasts remain highly
metabolically active even though they are not dividing.
They degrade and resynthesize protein and fatty acid, and
secrete large amounts of protein into the extracellular
environment. Despite our expectation that quiescent cells
would not have a high demand for nucleotide biosynthe-
sis, we found that they do divert glucose to the pentose
phosphate pathway, presumably to generate NADPH. The
NADPH created may help the quiescent fibroblasts to
detoxify free radicals or to synthesize fatty acids. Experi-
ments in which we inhibited the pentose phosphate
pathway resulted in increased apoptosis in quiescent cells,
suggesting a possible strategy for selectively killing
nondividing cells.

Active Metabolism in Quiescent Fibroblasts
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Figure 1. Model system of proliferating and quiescent fibroblasts. (A) Proliferating (P), CI7, CI14, and CI14SS7 fibroblasts were stained with PI
and analyzed for cell cycle distribution with flow cytometry. The fraction of cells in G0/G1 increased in quiescent cells. Images of cells in different
proliferative states are shown below. (B) Lysates from fibroblasts induced into quiescence by contact inhibition or serum starvation were collected
over a time course and analyzed by immunoblotting with an antibody to p27Kip1. p27Kip1 levels were induced in cells made quiescent by either
antiproliferative signal. (C) Proliferating and quiescent fibroblasts were stained with pyronin Y and Hoechst 33342 and analyzed by flow cytometry
(lower panels). The fraction of cells with low pyronin Y content increased in fibroblasts induced into quiescence by multiple methods (upper panel).
doi:10.1371/journal.pbio.1000514.g001
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fibroblasts in standard medium (Figure S1). Quiescent fibroblasts

cultured in these conditions exhibited consumption and excretion

rates approximately half that of proliferating fibroblasts. Our

finding that glycolytic rates are similar within a factor of two in

proliferating and quiescent fibroblasts is surprising given that

changes in glycolytic rate have been shown to mirror changes in

proliferative rate in multiple model systems [8–10]. Indeed, while

there is a dramatic decrease in the fraction of cells in the

proliferative cell cycle, even the CI14SS7 condition resulted in

only a 2-fold change in glucose consumption, much less than

reported in other systems. Thus, decreased metabolic activity is

not a universal hallmark of quiescence.

To further assess glycolytic rates in proliferating and contact-

inhibited fibroblasts, we monitored the steady state pool sizes of

glycolytic intermediates using liquid chromatography coupled to

tandem mass spectrometry [20–22]. In total, we monitored the

levels of 172 metabolites, 62 of which gave signals above

background in proliferating, CI7, and CI14 fibroblasts. Metabolite

levels were normalized per microgram of protein in cells plated at

the same density because quiescent fibroblasts are smaller and

contain less protein per cell than proliferating fibroblasts (E. M.

Haley, A. L.-M., and H. A. C., unpublished data). The ratio of

metabolite levels in the contact-inhibited (CI7 and CI14) to

proliferating fibroblasts was determined for each metabolite. Some

metabolites were present at consistently higher levels in prolifer-

ating fibroblasts, while others were enriched in contact-inhibited

fibroblasts, although the magnitude of these changes in metabolite

levels was generally modest (Figure S2).

Levels of five glycolytic intermediates and pentose-5-phosphate

(a combination of ribose-5-phosphate, ribulose-5-phosphate, and

xylulose-5-phosphate, which could not be reliably differentiated in

our liquid chromatography–tandem mass spectrometry [LC-MS/

MS] method) are shown in Figure 2B. No statistically significant

differences were observed in the levels of glycolytic intermediates

between contact-inhibited (CI7 or CI14) and proliferating

fibroblasts at a false discovery rate of 0.05. Some glycolytic

metabolites were present at lower levels in contact-inhibited,

serum-deprived (CI14SS7) fibroblasts. Thus, the transition be-

tween proliferation and quiescence induced by contact inhibition

alone has little effect on the pool sizes of glycolytic metabolites in

primary fibroblasts. While pool sizes are not a direct indication of

changes in flux, the constant levels of glycolytic metabolites in

proliferating, CI7, and CI14 fibroblasts are consistent with our

finding that there is little change in the rate of glucose uptake or

lactate secretion among fibroblasts in these different states.

To more directly assess the rate of flux through glycolytic

pathways, we incubated fibroblasts with [U-13C]-glucose and

determined how quickly the label was incorporated into glycolytic

intermediates (Figure 2C). For hexose phosphate (a combination of

glucose-1-phosphate, glucose-6-phosphate, and fructose-6-phos-

phate), fructose-1,6-bisphosphate (FBP), dihydroxyacetone phos-

phate (DHAP), and phosphoenolpyruvate, the unlabeled pools of

intermediates were converted into fully 13C-labeled intermediates

at a similar rate in proliferating, CI7, and CI14 fibroblasts.

We also developed a computational model based on ordinary

differential equations (ODEs) of central carbon metabolism for the

proliferating, CI7, CI14, and CI14SS7 fibroblasts. TheODEs in the

model quantify the isotope labeling dynamics of the relevant

metabolites after switching into 13C-labeled carbon sources (Figure

S3). Model parameters (i.e., metabolic fluxes and some unmeasured

pool sizes) were identified by fitting all of the available laboratory

data (labeling dynamics, pseudo-steady-state labeling patterns,

measured pool sizes, and uptake and excretion rates). This

systems-level approach enabled quantitation of flux through

Figure 2. Glycolytic rates are similar in proliferating and
quiescent fibroblasts. (A) The amount of glucose, lactate, glutamine,
and glutamate were measured in conditioned medium from prolifer-
ating (P), CI7, CI14, and CI14SS7 cells. Data are from three experiments
with five replicates at each time point, and error bars indicate standard
error. (B) Metabolites were extracted from cells in different proliferative
states, and the levels of specific metabolites were quantified using mass
spectrometry. Metabolite levels in individual samples were normalized
to protein content at the time of harvest. Means from four experiments,
each containing 4–5 replicates, are shown. Error bars indicate standard
error. With a false discovery rate of 0.05, none of the metabolite levels
are different between the proliferating, CI7, and CI14 cells. (C) Isotope
labeling dynamics of glycolysis in proliferating, CI7, and CI14 fibroblasts.
Medium was changed to [U-13C]-glucose at time zero, and the fraction
of each metabolite that is 13C-labeled was determined at the indicated
times after switching to labeled medium. Data are pooled from five
experiments, and error bars indicate standard deviations. 3PG, 3-
phosphoglycerate; Hexose-P, hexose phosphate; Pentose-P, pentose
phosphate; PEP, phosphoenolpyruvate.
doi:10.1371/journal.pbio.1000514.g002
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different metabolic pathways in proliferating, CI7, CI14, and

CI14SS7 fibroblasts (Figure S4 and Table S1). For glycolysis, the

inferred fluxes from hexose phosphate to FBP, and from DHAP to

3-phosphoglycerate, were similar in proliferating, CI7, and CI14

conditions (Figures 3 and S4 and Table S1; see Materials and

Methods for information regarding statistical significance). In

CI14SS7 fibroblasts, hexose phosphate–to-FBP and DHAP-to–3-

phosphoglycerate fluxes are approximately half those in the other

conditions (Figure S4 and Table S1), consistent with an approxi-

mately 2-fold reduction in glucose consumption. We conclude that

glucose consumption and lactate excretion proceed rapidly in

fibroblasts induced into quiescence by contact inhibition.

Quiescent Fibroblasts Exhibit High PPP Activity
The PPP produces ribose-5-phosphate, needed for the biosynthe-

sis of nucleotides, and NADPH, which can be used as a cofactor for

the biosynthesis of macromolecules including fatty acids. We

anticipated that proliferating cells would have higher demands for

both ribose-5-phosphate and NADPH than quiescent cells, and thus

higher PPP flux. Surprisingly, the pentose phosphate pool

incorporated 13C label very rapidly in proliferating, CI7, and CI14

fibroblasts when the cells were incubated with labeled [U-13C]-

glucose (Figure 4A). Indeed, according to our computational model,

hexose phosphate–to–pentose phosphate flux was actually slightly

higher in contact-inhibited (both CI7 and CI14) fibroblasts than in

proliferating fibroblasts (though the effect was not statistically

significant). Additional serum deprivation only slightly decreased

oxidative PPP flux, with the oxidative PPP flux–to–glycolytic flux

ratio highest in CI14SS7 fibroblasts. Thus, the oxidative PPP is

actively utilized in both proliferating and quiescent cells.

We anticipated that ribose generated from the PPP would be

incorporated into nucleotide triphosphates more rapidly in

proliferating than quiescent cells because of their increased need

for nucleotide triphosphates for RNA and DNA synthesis. Indeed,

in proliferating fibroblasts, ATP and UTP with labeled ribose rings

accumulate more rapidly in proliferating fibroblasts (Figure 4A).

The results confirm that biosynthesis of nucleotides is more rapid

in the proliferating cells.

Given that quiescent fibroblasts do not commit ribose phosphate

to nucleotide biosynthesis, we reasoned that quiescent cells might

recycle ribose phosphate back to glycolytic intermediates through

the non-oxidative branch of the PPP. To test this hypothesis, we

monitored the ratio of 1613C-lactate to 2613C-lactate after

incubating the cells with [1, 2-13C]-glucose. As previously described

[27], 1613C-lactate is formed when glucose is metabolized through

the oxidative portion of the PPP to ribulose-5-phosphate. In this

pathway, glucose molecules lose one 13C atom in the form of CO2,

and are then returned to glycolysis through the non-oxidative

branch of the PPP (Figure 4B). 2613C-lactate is formed by the

canonical glycolysis pathway from glucose to lactate. The ratio of

1613C-lactate to 2613C-lactate provides an indication of the extent

to which the non-oxidative branch of the PPP is utilized. This ratio

is significantly higher in CI7 than proliferating fibroblasts, and even

higher in CI14 fibroblasts (Figure 4C).

As another indication of the rate of flux through the non-

oxidative branch of the PPP, we monitored labeling of

sedoheptulose-7-phosphate, a metabolic intermediate in the non-

oxidative PPP. Sedoheptulose-7-phosphate is labeled rapidly in

CI7 and CI14 but not proliferating fibroblasts fed [U-13C]-glucose

(Figure 4A), indicating higher flux through the non-oxidative

branch of the PPP in quiescent cells. Our systems-level flux

analysis confirmed increased flux from ribose phosphate back to

glycolysis in contact-inhibited compared with proliferating fibro-

blasts (Figures 3 and S4 and Table S1). Thus, ribose phosphate

generated from the PPP is utilized for nucleotide biosynthesis in

proliferating fibroblasts but is recycled back to glycolytic

intermediates in quiescent fibroblasts.

Functional Importance of the PPP
To investigate the mechanistic basis for the high PPP flux in

quiescence fibroblasts, we monitored protein levels of two key

enzymes in the PPP, both of which generate NADPH: glucose-6-

phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehy-

drogenase (PGD). Protein levels of both G6PD and PGD were

elevated in fibroblasts induced into quiescence by either contact

inhibition or serum starvation in comparison to proliferating

fibroblasts (Figure 5A). These results suggest that contact-inhibited

and serum-starved fibroblasts may activate a program that results

in increased levels of PPP enzymes.

Both proliferating and quiescent fibroblasts generate NADPH

through the PPP. The NADPH may be used for biosynthesis or to

regenerate the reduced forms of glutathione or thioredoxin. We

Figure 3. Comparison of central metabolic fluxes in proliferat-
ing and CI14 fibroblasts. Fluxes were derived by computational
integration of all available experimental data within a systems-level,
flux-balanced metabolic model. Arrow size indicates the magnitude of
the flux in CI14 fibroblasts. Color indicates relative rates compared to
proliferating fibroblasts; red indicates higher flux in CI14 fibroblasts and
green indicates higher flux in proliferating fibroblasts. While the ribose
phosphate–to-UTP flux is mostly faster (within the 1,000 identified
solutions) for proliferating than quiescent fibroblasts, its distributions
do overlap across different proliferative states, so our stringent
condition for different rates is not met in this particular case (see
Materials and Methods). aKG, a-ketoglutarate; Hexose-P, hexose
phosphate; OAA, oxaloacetate; Pentose-P, pentose phosphate; PEP,
phosphoenolpyruvate.
doi:10.1371/journal.pbio.1000514.g003
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monitored reduced and oxidized glutathione (GSH and GSSG,

respectively) in proliferating, CI7, CI14, and CI14SS7 fibroblasts.

As shown in Figure 5B and 5C, GSH was slightly increased, and

the ratio of GSH to GSSG significantly enhanced, in quiescent

(CI7, CI14, and CI14SS7) compared with proliferating fibroblasts.

The results are consistent with a model in which quiescent

fibroblasts upregulate NADPH production in part to ensure

adequate GSH as protection against free radicals [28].

We then tested the functional importance of the PPP in

quiescent and proliferating fibroblasts. We incubated proliferating

or CI14 fibroblasts with dehydroepiandrosterone (DHEA), a small

molecule inhibitor of the PPP [29,30] for 4 d and monitored the

fraction of cells that were dead with propidium iodide (PI) labeling

followed by flow cytometry. We discovered that the contact-

inhibited fibroblasts exhibited a statistically significant increase in

cell death compared with the proliferating fibroblasts from DHEA

Figure 4. The PPP is active in quiescent fibroblasts. (A) Isotope labeling dynamics in the PPP for proliferating (P), CI7, and CI14 fibroblasts. The
fraction of fully labeled hexose phosphate, pentose phosphate, or sedoheptulose-7-phosphate after addition of [U-13C]-glucose is plotted for cells in
each condition at each time point. Similarly, the fraction of ATP and UTP with five 13C atoms is plotted. The 5613C-ATP and 5613C-UTP are uniformly
labeled in their ribose portion and unlabeled in the base portion, as confirmed by tandem mass spectrometry analysis. Data are pooled from five
experiments, and error bars indicate standard deviation. -P, phosphate. (B) Schematic diagram of lactate labeling from [1, 2-13C]-glucose. [1, 2-13C]-
glucose is converted into 2613C-lactate through the canonical glycolysis pathway and 1613C-lactate through the PPP. (C) Fibroblasts in different
proliferative conditions were incubated with [1, 2-13C]-glucose for 4 h. Levels of 1613C-lactate and 2613C-lactate were monitored with mass
spectrometry. The ratio of 1613C-lactate to 2613C-lactate is plotted for fibroblasts in each condition. Means 6 one standard error (n= 4) are shown.
Asterisks indicate p-value,0.01 (proliferating versus CI7, p=0.006, and proliferating versus CI14 fibroblasts p=0.002 by Student’s t test).
doi:10.1371/journal.pbio.1000514.g004
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treatment at 100 mM and 250 mM doses (p,0.01) (Figure 6A).

This result is particularly impressive given that almost all known

metabolic inhibitors and cytotoxins preferentially kill proliferating

cells [18,31,32]. Assaying for caspase-3/7 activity revealed that the

mechanism of DHEA-induced cell death in the quiescent

fibroblasts is via apoptosis (Figure 6B). The apoptosis-inducing

effect of DHEA was significantly stronger in fibroblasts that were

confluent for 11 d than in proliferating fibroblasts, and yet

stronger in fibroblasts serum-starved for 7 d in the absence of

contact inhibition.

Truncated Tricarboxylic Acid Cycle in Proliferating but
Not Quiescent Fibroblasts
Previous studies concluded that proliferating lymphocytes

actively utilize glycolytic pathways to generate ATP while quiescent

lymphocytes generate energy via an influx of fatty acids and proteins

that are metabolized through the tricarboxylic acid (TCA) cycle [8].

To investigate TCA cycle usage, we monitored metabolite labeling

through the TCA cycle after addition of [U-13C]-glucose, [3-13C]-

glucose or [U-13C]-glutamine in proliferating, CI7, and CI14

Figure 5. PPP enzymes are induced and the fraction of GSH is
enhanced in quiescent fibroblasts. (A) Protein levels of G6PD and
PGD, both of which generate NADPH, were monitored in proliferating
(P) and quiescent fibroblasts by immunoblotting. GAPDH was
monitored as a loading control. (B) Total GSH and GSSG content of
proliferating, CI7, CI14, and CI14SS7. Data represent one experiment
performed in duplicate, and error bars indicate standard deviation. (C)
The ratio of GSH to GSSG was calculated using the data from (B).
doi:10.1371/journal.pbio.1000514.g005

Figure 6. The PPP contributes to the survival of quiescent
fibroblasts. (A) Proliferating (P) or CI14 fibroblasts were treated with
DMSO control, 100 mM DHEA, or 250 mM DHEA for 4 d. Cells were
incubated with PI and analyzed by flow cytometry. Data are from four
independent experiments; error bars indicate standard error. For CI14
versus proliferating with no treatment, p=0.113. For CI14 versus
proliferating with 100 mM DHEA, p= 0.0012. For CI14 versus proliferat-
ing with 250 mM DHEA, p= 0.0011. Asterisks indicate statistical sig-
nificance of p,0.01. (B) Proliferating fibroblasts, fibroblasts contact-
inhibited for 11 d (CI11), or SS7 fibroblasts were treated with ethanol
vehicle control or varying amounts of DHEA dissolved in ethanol for
4 d. Cells were analyzed for caspase-3/7 activity by monitoring
luminescence emission of a caspase-3/7 substrate. Data were normal-
ized to the vehicle control. For proliferating versus CI11 cells, results are
an average of four experiments with 2–3 replicates; error bars represent
standard error and asterisks indicate statistical significance of p,0.05.
Normalized caspase-3/7 activity in CI11 and proliferating cells was
statistically significantly different at all doses except 100 mM. For
proliferating versus SS7 cells, data represent three experiments with
three replicates in each. Normalized caspase activity in SS7 and
proliferating cells was statistically significantly different at all doses.
doi:10.1371/journal.pbio.1000514.g006
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fibroblasts. As shown in Figure 7, proliferating and contact-inhibited

fibroblasts incorporate two carbon units from glucose into citrate via

acetyl-CoA at comparable rates. In CI7 and CI14 fibroblasts, the

labeled carbons progress through the TCA cycle to form 2613C-a-

ketoglutarate, as expected. In proliferating fibroblasts, however,

there is a substantial decrease in the transmission of labeled carbons

from citrate to a-ketoglutarate, succinate, and malate. Experiments

using [U-13C]-glutamine further support the truncation of the TCA

cycle (Figure 8). While carbon from glutamine effectively transverses

the left side of the TCA cycle in the standard clockwise direction to

yield 4613C-citrate in both proliferating and quiescent fibroblasts,

subsequent formation of 3613C-a-ketoglutarate by isocitrate

dehydrogenase hardly occurs in proliferating fibroblasts. The

decreased flux from citrate to a-ketoglutarate in proliferating

fibroblasts was confirmed via our systems-level flux identification

(Figures 3 and S4 and Table S1).

When carbon skeletons are removed from the TCA cycle for the

synthesis of macromolecular precursors including amino acids,

other long carbon skeletons are needed to replace them. This

anaplerotic refilling should be especially important for proliferat-

ing fibroblasts since their TCA cycle activity is truncated at citrate.

The major anaplerotic reaction from glycolysis involves the

carboxylation of pyruvate to form oxaloacetate. This reaction

can be monitored by feeding cells [3-13C]-glucose and monitoring

the fraction of citrate or malate with label, since the 13C is retained

only when the anaplerotic reaction via pyruvate carboxylase is

utilized. Surprisingly, the ratios of 1613C-citrate to unlabeled

citrate and/or 1613C-malate to unlabeled malate were signifi-

cantly increased in CI7, CI14, and CI14SS7 fibroblasts compared

with proliferating fibroblasts (Table S2). In addition, quantitative

flux analysis revealed that anaplerotic flux from pyruvate to

oxaloacetate is elevated in CI7, CI14, and CI14SS7 compared

with proliferating fibroblasts (Figure S4 and Table S1), while the

flux from pyruvate to acetyl-CoA is lower in CI14 and CI14SS7

fibroblasts than in proliferating fibroblasts. Thus, contact inhibi-

tion was associated with both an increase in canonical TCA cycle

activity past citrate, and an increase in anaplerotic TCA cycle flux

from pyruvate to oxaloacetate. Proliferating fibroblasts, in

contrast, seem unlikely to have sufficient carbon skeletons from

glucose for the production of proteogenic amino acids not present

in the cell growth medium.

Glutamine Is the Preferred Anaplerotic Source in
Proliferating Fibroblasts
We hypothesized that proliferating fibroblasts rely on another

source for carbon skeletons. Supplementation with glutamine has

been shown to be necessary for cultured cells, especially actively

proliferating cells [33–36]. Accordingly, we monitored the rate of

Figure 7. A truncated TCA cycle in proliferating but not contact-inhibited fibroblasts. Proliferating (P), CI7, and CI14 fibroblasts were
switched from unlabeled to [U-13C]-glucose at time zero. The graphs show the fractional incorporation of 13C into the indicated metabolites over
time. Data represent averages from three experiments, and error bars indicate standard deviation. Note the minimal labeling of a-ketoglutarate and
succinate in the proliferating cells.
doi:10.1371/journal.pbio.1000514.g007
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Figure 8. Glutamine drives both clockwise and counterclockwise flux through the TCA cycle. (A) Proliferating (P), CI7, or CI14 fibroblasts
were incubated with [U-13C]-glutamine. Metabolites were harvested and their extent of labeling measured by LC-MS/MS. a-Ketoglutarate in the TCA
cycle can be converted to succinate in the clockwise (or ‘‘forward’’) direction or converted to citrate in the counterclockwise (or ‘‘reverse’’) direction.
The only known route to 5613C-citrate is via this ‘‘reverse’’ flux from a-ketoglutarate. 5613C-Citrate can then be converted to 3613C-malate by ATP-
citrate lyase to produce acetyl-CoA to drive fatty acid biosynthesis. Data represent the average of four experiments. Error bars indicate standard
deviations. (B) IDH1 is upregulated at the transcript and protein level in quiescent fibroblasts. Transcript levels of IDH1 were monitored in two
independent experiments (indicated with subscripts) of proliferating, CI7, and CI14 fibroblasts by microarray (left panel). Data are shown in a
heatmap format with elevated expression in quiescent cells shown in red and decreased expression in quiescent cells in green. Results are shown for
multiple isocitrate dehydrogenase isozymes. Protein levels for IDH1, a metabolic enzyme that catalyzes the conversion of isocitrate to a-ketoglutarate
and thereby generates NADPH, were monitored by immunoblotting (right panel). GAPDH was monitored as a loading control. (C) Proliferating, CI7,
CI14, and CI14SS7 fibroblasts were incubated with [U-14C]-glutamine for 24 h. Fatty acids were extracted, and 14C incorporation was determined by
scintillation counting and normalized for the amount of protein present. Error bars indicate standard error. p-Values were determined with the
Student’s t test, and asterisks indicate p,0.05. For CI7 versus proliferating, p=0.0025; for CI14 versus proliferating, p= 0.018; for CI14SS7 versus
proliferating, p= 0.0001.
doi:10.1371/journal.pbio.1000514.g008
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glutamine consumption by proliferating, CI7, CI14, and CI14SS7

fibroblasts (Figures 2A and S1). CI7, CI14, and CI14SS7 fibroblasts

consume approximately half as much glutamine per microgram of

protein as proliferating fibroblasts. CI7 and CI14 fibroblasts secrete

glutamate at a lower rate compared with proliferating fibroblasts,

and CI14SS7 fibroblasts secrete glutamate at a lower rate than CI7

or CI14 fibroblasts. SS4 and SS7 fibroblasts, on the other hand,

consume glutamine and secrete glutamate at a faster rate than

proliferating fibroblasts (Figure S1). The relative rate of glutamine

consumption in proliferating versus CI14 fibroblasts in low glucose/

low glutamine conditions is similar to that in standard medium. As

shown in Figure 8, incubation of proliferating, CI7, and CI14

fibroblasts with [U-13C]-glutamine results in rapid labeling of

glutamate, a-ketoglutarate, succinate, malate, and citrate, indicating

that glutamine is used by both proliferating and contact-inhibited

fibroblasts for TCA cycle anaplerosis. Since very few glucose

carbons are incorporated into the TCA cycle in proliferating

fibroblasts, glutamine may serve as the major anaplerotic precursor

in proliferating fibroblasts [36–39].

Glutamine Labeling Reveals ‘‘Reverse’’ TCA Flux
[U-13C]-glutamine is converted into 5613C-glutamate and

subsequently to 5613C-a-ketoglutarate. 5613C-a-ketoglutarate

can proceed through the TCA cycle in the forward direction to

generate 4613C-succinate, or, alternatively, it can be reductively

carboxylated to 5613C-citrate using NADPH as the electron

source [40,41]. As shown in Figure 8A, introduction of [U-13C]-

glutamine led to conversion of approximately 15% of the citrate to

the 5613C form in proliferating, CI7, and CI14 fibroblasts by 8 h,

with more rapid labeling in contact-inhibited fibroblasts. These

results support a model in which there is both forward and reverse

flux between citrate and a-ketoglutarate, with greater flux in both

directions in contact-inhibited than in proliferating fibroblasts

(Figures 3 and S4 and Table S1). The forward and reverse flux

likely occur in different compartments, with a-ketoglutarate

reductively carboxylated by isocitrate dehydrogenase 2 (IDH2)

in the mitochondrion, and the resulting citrate reconverted to a-

ketoglutarate by IDH1 in the cytosol [42]. As both IDH1 and

IDH2 use NADP(H) as their redox cofactor, the net effect is

transfer of high energy electrons in the form of NADPH to the

cytosol. Consistent with greater flux through this pathway in

contact-inhibited fibroblasts, IDH1 protein is increased by contact

inhibition at the transcript and protein levels (Figure 8C). Thus,

two major pathways to cytosolic NADPH, the PPP and the IDH2/

IDH1 shuttle, are upregulated at both the protein and flux level in

contact-inhibited fibroblasts.

Fatty Acid and Protein Degradation and Resynthesis
Occur Rapidly in Proliferating and Quiescent Fibroblasts
Quiescent cells do not dilute out older macromolecules,

organelles, or membranes with cell division, and thus may be

more dependent than proliferating cells on mechanisms to break

down and resynthesize membrane components and macromole-

cules. Our data are consistent with increased fatty acid

degradation in contact-inhibited fibroblasts. Carnitine, a metab-

olite involved in the transport of fatty acids from the cytoplasm to

the mitochondria during fatty acid degradation, is present at

higher levels in CI7 and CI14 fibroblasts than in proliferating

fibroblasts (Figure S2). Also, quantitative flux identification

revealed, based on long-term labeling patterns of citrate, increased

fatty acid breakdown in CI7 and CI14 fibroblasts, but lower rates

of fatty acid breakdown in CI14SS7 fibroblasts (Figures 3 and S4

and Table S1).

The enhanced rate of fatty acid degradation in contact-inhibited

fibroblasts seems to be enabling fatty acid biosynthesis to occur at

a similar rate in proliferating and contact-inhibited fibroblasts.

During fatty acid synthesis, citrate is transported out of the

mitochondria to the cytoplasm, where it is broken down by ATP

citrate lyase into oxaloacetate and acetyl-CoA used in fatty acid

biosynthesis. ATP citrate lyase activity can be monitored based on

the conversion of 5613C-citrate to 2613C-acetyl-CoA and 3613C-

oxaloacetate (measured as 3613C-malate). As shown in Figure 8A,

3613C-malate is produced similarly in proliferating, CI7, and

CI14 cells, consistent with fibroblasts in all of these states being

actively engaged in fatty acid biosynthesis. To more directly assess

fatty acid biosynthesis in proliferating and quiescent fibroblasts, we

extracted lipids from proliferating, CI7, CI14, and CI14SS7

fibroblasts fed [U-14C]-glutamine. The contribution of carbons to

fatty acids from glutamine was significantly higher in all of the

quiescent fibroblasts compared with the proliferating fibroblasts

(Figure 8B), consistent with higher ‘‘backwards’’ flux from a-

ketoglutarate to citrate (Figures 3 and S4 and Table S1). The

higher levels of fatty acid synthesis in contact-inhibited fibroblasts

may contribute to the maintenance of membrane integrity, and

may also provide a major sink for cytosolic NADPH.

Similarly, our results suggest that contact-inhibited fibroblasts

may also be actively degrading existing protein, and thus

resynthesizing protein to replace the degraded proteins. As shown

in Figure 9, the fraction of glutamate that is labeled in fibroblasts

under all conditions increases rapidly after switching cells into

[U-13C]-glutamine and then drops off in CI7 and CI14 fibroblasts,

but not in proliferating fibroblasts. This decline in the fraction of

glutamate molecules with five labeled carbons corresponds to an

increase in the fraction of unlabeled glutamate. One possible

explanation for these data is a breakdown of unlabeled proteins

and release of free amino acids into the glutamate pool. These

results are in agreement with our quantitative flux analysis: protein

synthesis rates are similar across all conditions [43,44] (Figures 3

and S4 and Table S1). Protein synthesis rates in the best-fit model

are 3.3 nmol/min/mg protein for proliferating fibroblasts,

4.3 nmol/min/mg protein for CI7 fibroblasts, 4.1 nmol/min/mg

protein for CI14 fibroblasts, and 2.9 nmol/min/mg protein for

CI14SS7 fibroblasts. Thus, one reason for the active metabolism

observed in contact-inhibited fibroblasts may be to rebuild and

thus refresh their lipid and protein contents.

Figure 9. Labeled glutamate levels decrease with time after
switching into [U-13C]-glutamine in CI7 and CI14 but not
proliferating fibroblasts. Proliferating (P), CI7, or CI14 fibroblasts
were switched from unlabeled medium to medium containing [U-13C]-
glutamine, and the fraction of fully labeled glutamate (left plot) and
unlabeled glutamate (right plot) was determined over time. Results are
an average of four experiments, and error bars indicate standard
deviations.
doi:10.1371/journal.pbio.1000514.g009

Active Metabolism in Quiescent Fibroblasts

PLoS Biology | www.plosbiology.org 10 October 2010 | Volume 8 | Issue 10 | e1000514



Contact-Inhibited Fibroblasts Secrete Large Amounts of
Extracellular Matrix Proteins
The high metabolic activity of quiescent fibroblasts might also

be partially explained by their synthesis and secretion of

extracellular matrix molecules needed for the structural integrity

of tissue. While proliferating fibroblasts would be expected to

secrete molecules important for wound healing [15], quiescent

fibroblasts might be expected to secrete extracellular matrix

molecules required at the end of a wound healing process or for

maintenance of quiescent tissue [45]. We monitored the levels of

secreted protein in conditioned medium collected from plates

containing proliferating or CI14 fibroblasts [13]. Because serum

interferes with immunoblotting for specific proteins, these

experiments were performed in no serum and 0.1% serum

conditions. As shown in Figure 9, the levels of fibronectin, collagen

21A1, and laminin alpha 2 in conditioned medium from CI14

fibroblasts was higher than the levels in conditioned medium from

proliferating fibroblasts, thus demonstrating a biosynthetic com-

mitment for contact-inhibited fibroblasts that may contribute to

their high metabolic rate.

Overview of the Metabolic Changes between
Proliferation and Quiescence in Fibroblasts
The metabolic profiles of proliferating and CI14 fibroblasts are

summarized in Figure 3. Fibroblasts in both proliferating and

contact-inhibited states utilize glycolysis extensively. Proliferating

fibroblasts rely on the PPP to generate ribose for nucleotide

biosynthesis and NADPH for biosynthetic purposes. Contact-

inhibited fibroblasts employ the oxidative PPP to generate

NADPH, and the carbon skeletons are largely returned to

glycolysis as glyceraldehyde-3-phosphate and fructose-6-phos-

phate. Fibroblasts in both proliferating and contact-inhibited

states contribute some glucose carbons to the TCA cycle. In

contact-inhibited fibroblasts, carbons contributed by glucose are

transmitted through the TCA cycle; in proliferating fibroblasts,

there is little forward flux between citrate and a-ketoglutarate.

Contact-inhibited fibroblasts rely more heavily on anaplerotic flux

from pyruvate to oxaloacetate via pyruvate carboxylase; prolifer-

ating fibroblasts rely more heavily on glutamine, perhaps because

of their higher demand for nitrogen. Glutamine drives the forward

flux through the TCA cycle and also reverse flux from a-

ketoglutarate to citrate, especially in the contact-inhibited

fibroblasts. This reverse flux provides a mechanism for shuttling

NADPH from mitochondria to the cytosol.

Discussion

What Do Quiescent Fibroblasts Do with All of Their
Energy?
We discovered that fibroblasts induced into quiescence by

contact inhibition maintain a high metabolic rate. In contact-

inhibited fibroblasts, nucleotide biosynthesis is reduced, yet the

rate of glycolytic, PPP, and TCA flux is almost completely

maintained. Even fibroblasts that have been contact-inhibited for

2 wk and starved of serum for the final week show only a 2-fold

reduction in glycolytic flux. Contact-inhibited fibroblasts also

presumably generate substantial energy through the TCA cycle,

where we observed flux of both glucose- and glutamine-derived

carbons through more than a complete cycle. Consistent with

these multiple routes of energy generation, the ATP/AMP ratio is

high in contact-inhibited fibroblasts (Figure S2).

What then do the quiescent fibroblasts do with all of their

energy? Our data suggest three avenues for energy utilization.

First, contact-inhibited fibroblasts may continuously degrade and

resynthesize their macromolecules and membrane components

via increased autophagy [43,44] (E. M. Haley, A. L.-M., and H.

A. C., unpublished observation), a strategy that would help to

ensure that old and potentially damaged macromolecules and

membranes do not accumulate. Our data suggest that contact-

inhibited fibroblasts may degrade protein and fatty acids at an

enhanced rate compared with proliferating fibroblasts. The

conclusion most consistent with our data is that the proliferating

and contact-inhibited fibroblasts synthesize amino acids and fatty

acids at rates that are comparable, with the new biomass

contributing to new cells in proliferating fibroblasts and the new

biomass replacing degraded molecules in the contact-inhibited

fibroblasts.

Second, contact-inhibited and serum-starved fibroblasts induce

pathways that generate NADPH. We discovered that three

NADPH-generating enzymes, G6PD, PGD, and IDH1, are

expressed at higher levels in quiescent than in proliferating

fibroblasts. The results suggest that quiescent fibroblasts activate

an NADPH-generating program of enzyme induction. One role of

the NADPH may be to ensure the availability of GSH and

thioredoxin for the detoxification of free radicals. Indeed, levels of

total free radicals are lower in the contact-inhibited than in

proliferating fibroblasts (E. M. Haley and H. A. C., unpublished

data). Another role for the NADPH generated may be to support

resynthesis of fatty acids, as fatty acid degradation yields NADH

while synthesis requires NADPH.

Third, quiescent fibroblasts may acquire new cell-type-specific

functions. In contrast to lymphocytes, which, with the exception of

plasma cells, lack a major biosynthetic function in their quiescent

state, fibroblasts secrete proteins and other molecules needed for

the extracellular matrix even when they are quiescent. Contact-

inhibited fibroblasts direct some of their metabolic activity toward

this biosynthetic purpose, as we observed elevated levels of specific

extracellular matrix proteins in contact-inhibited compared with

proliferating fibroblasts (Figure 10). Thus, quiescent fibroblasts,

relieved of the biosynthetic requirements associated with creating

progeny, can turn their protein synthesis machinery toward the

synthesis of proteins that are beneficial for the organism as a

whole.

What Is Distinctive about Quiescence?
Our findings shed light on some larger questions about

quiescence: What are the fundamental attributes of a quiescent

state? Is there a single quiescent state or are there multiple

quiescent states? Our results suggest that quiescence is not

necessarily associated with a shutdown of glycolysis, as reported

for lymphocytes and thymocytes [6–10]. Quiescent cells can

actually be highly metabolically active. In this respect, quiescent

fibroblasts resemble terminally differentiated cells like cardiomy-

ocytes, neurons, and renal tubular epithelial cells, which are

among the highest energy consumers in mammals. These

terminally differentiated cells are well-known to employ nutrients

to achieve their contractile, signaling, and transport functions.

Whether their metabolic activity, like that of contact-inhibited

fibroblasts, is also directed to continuously refreshing their protein

and lipid composition merits further study.

In addition to differing from quiescent lymphocytes, different

types of quiescent fibroblasts can vary. While CI7, CI14, and

CI14SS7 fibroblasts are indistinguishable morphologically or by

traditional cell cycle analysis, they differ with regard to their

metabolic profiles. Compared with fibroblasts induced into

quiescence by contact inhibition, fibroblasts also deprived of serum

exhibited a decrease in lactate excretion rates, smaller pool sizes of
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glycolytic intermediates, and decreased flux from pyruvate to acetyl-

CoA. Our findings suggest that cells of different types may actually

be in distinct quiescent states, and may have discovered distinct

solutions to the metabolic challenges associated with quiescence.

Finally, our findings suggest that contact-inhibited and serum-

starved fibroblasts are particularly susceptible to apoptosis induced

by treatment with DHEA, a pentose phosphate pathway inhibitor.

The ability to selectively kill quiescent cells could have therapeutic

potential [46,47]. For instance, tumor stem cells may exist in a

quiescent state for years, while retaining the capacity to emerge

from dormancy, proliferate, and initiate a tumor recurrence. Small

molecules that target the pathways invoked by these cells to

facilitate their survival during dormancy could be useful additions

to our therapeutic arsenal. We discovered that contact-inhibited

and serum-starved fibroblasts rely on the PPP and possibly other

NADPH-generating reactions for viability. Small molecule

inhibitors like DHEA might ultimately prove valuable for targeting

quiescent tumor cells.

Materials and Methods

Tissue Culture
Primary human fibroblasts were isolated from foreskin as

previously described (see Supplemental Data in [48]). Fibroblasts

were maintained in DMEM (Hyclone, Thermo Fisher Scientific)

supplemented with 10% fetal bovine serum (Hyclone) and

100 mg/ml penicillin and streptomycin (Invitrogen). Cells were

collected while proliferating, after 1 wk of confluent maintenance

(CI7), after 2 wk of confluent maintenance (CI14), after 2 wk of

maintenance with the last 7 d in 0.1% serum (CI14SS7), and after

serum starvation in 0.1% serum for 3 d, 4 d (SS4), or 7 d (SS7).

Cells made quiescent by serum starvation alone were plated

sufficiently sparsely so that they did not contact surrounding cells.

Medium was changed every 2 d. Proliferating cells were sampled

the day after seeding. In order to better simulate conditions in

vivo, we also used low glucose/low glutamine conditions in which

the glucose level was 1 g/l and the glutamine level was 0.7 mM,

compared with a glucose level of 4.5 g/l and a glutamine level of

4 mM in standard DMEM. While cells were confluent, the

medium was changed regularly. For analysis, cells were transferred

to DMEM (Invitrogen) with 7.5% dialyzed fetal bovine serum

(Atlanta Biologicals or Hyclone) the day before the experiment.

Fibroblasts were photographed through a Nikon Eclipse TS100

microscope using a Scion 8-bit color firewire 1394 digital camera.

Images were captured with Scion VisiCapture software (Scion).

Flow Cytometry for Cell Cycle
Cells were trypsinized and collected into phosphate-buffered

saline (PBS) containing 5% bovine growth serum (Hyclone). Cells

were pelleted, resuspended in 67% ethanol in PBS, and stored at

4uC. For flow cytometry, cells were pelleted, washed with PBS,

and resuspended in PBS with PI (40 mg/ml) (VWR) and RNAse A

(200 mg/ml) (Thermo Fisher Scientific). Samples were incubated

in the dark for 1 h at room temperature, and analyzed using a

FACSort flow cytometer (BD Biosciences). The PI was excited at

488 nm, and emitted fluorescence was collected on detector FL2

with a bandpass filter of 585/42 nm. At least 20,000 cells were

collected and analyzed with CellQuest software (BD Biosciences).

Cell cycle distributions were calculated with ModFit LT software

using the Watson Pragmatics algorithm.

Flow Cytometry Analysis for Pyronin Y
To differentiate cells in G0 versus G1, fibroblasts representing

each quiescence condition were trypsinized and suspended in cold

Hank’s buffered saline solution at a concentration of 26106 cells/

ml, then added to a fixative of ice-cold 70% ethanol. Cells were

fixed for at least 2 h, washed, and resuspended at 46106 cells/ml.

A solution of 4 mg/ml pyronin Y and 2 mg/ml Hoechst 33342 was

added to the cell suspension and incubated on ice for 20 min

before measuring cell cycle status by flow cytometry. To determine

RNA content, pyronin Y was excited at 488 nm and emission was

measured at 562–588 nm. DNA content was determined by

Hoechst 33342. Excitation was measured at 355 nm and emission

was measured at 425–475 nm. Cells in G0 were identified as the

population with 2N DNA content and an RNA content lower than

the level in S phase [49].

Protein Content and Immunoblot Analysis of
Proliferating and Quiescent Fibroblasts for p27Kip1, IDH1,
G6PD, and PGD Levels
Cells were made quiescent by contact inhibition, serum

starvation, or a combination as indicated in the text or figure,

and collected at the indicated times. The cells were lysed in RIPA

buffer (50 mM Tris-Cl [pH 7.4], 150 mM NaCl, 1% Triton X-

100, 1% sodium deoxycholate, and 0.1% SDS) containing

protease and phosphatase inhibitors (10 mM NaPO4 [pH 7.2],

0.3 M NaCl, 0.1% SDS, 1% NP40, 1% Na deooxycholate, 2 mM

EDTA, protease inhibitor cocktail [Roche, Basel, Switzerland]

and Halt Phosphatase inhibitors [Thermo Fisher Scientific]).

Lysates were sonicated with five pulses for 15 s each at 60 J/W.

Lysates were then incubated for 30 min on ice with periodic

Figure 10. Contact-inhibited fibroblasts secrete high levels of
specific extracellular matrix proteins. Conditioned medium (4 d)
was collected from proliferating (P) and CI14 fibroblasts conditioned
with either no serum or 0.1% serum, and with 0.03% platelet-derived
growth factor (PDGF-BB) for proliferating cells. The amount of
conditioned medium was normalized to the change in protein content
over time. Conditioned medium was precipitated and immunoblotted
with an antibody to fibronectin, collagen (col21a1), or laminin (lama2).
doi:10.1371/journal.pbio.1000514.g010
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vortexing and cleared by centrifugation for 2–5 min at 4uC at

10,000 rpm. Total protein amount was assessed by the Lowry

method using the Bio-Rad DC Protein Assay Kit II (Bio-Rad) as

described by the manufacturer. Spectrophotometer readings taken

at 650 nm were compared against a standard curve to determine

lysate concentration. Total protein content was determined as the

product of lysate concentration and lysate volume. Equal amounts

of total cellular proteins were resolved on 12% SDS-PAGE and

electro-transferred onto a PVDF membrane. Membranes were

blocked for 1 h at room temperature in Tris-buffered saline

containing 0.1% Tween-20 (TBS-T) (10 mM Tris [pH 7.6],

15 mM NaCl, and 0.1% Tween-20) or phosphate-buffered saline

containing 0.1% Tween-20 (PBS-T) containing 5% nonfat dried

milk. Membranes were incubated with antibodies to p27 (1:500

diluted in TBS-T/5% milk) (Santa Cruz Biotechnology), IDH1 (1

mg/ml diluted in PBS-T/1% milk) (Lifespan Biosciences), G6PD

(1:1,500 diluted in PBS-T/1% milk) (Novus Biologicals), or PGD

(1:1,000 diluted in PBS-T/1% milk) (GeneTex) overnight.

Following incubation, the membranes were washed three times

in TBS-T or PBS-T and incubated for 1 h with horseradish

peroxidase–conjugated anti-rabbit secondary antibody (1:3,000

diluted into TBS-T/5% milk for p27 or 1:10,000 diluted in PBS-

T/1% milk for IDH1 and G6PD) (GE Healthcare). The

membranes were washed three times with TBS-T or PBS-T,

and immunoreactive bands were detected with an enhanced

chemiluminescence kit (Pierce, Thermo Scientific). The mem-

branes were stripped using Restore Western Blot Stripping Buffer

(Thermo Scientific) according to the manufacturer’s instructions

and immunoblotted with GAPDH (Abcam) (1:5,000 dilution) in

PBS-T/1% milk or TBS-T/5% milk as a loading control.

Intracellular Metabolite Analysis
Highly parallel measurement of intracellular metabolites was

performed as previously described [21]. Metabolites were

extracted from proliferating, CI7, CI14, or CI14SS7 cells by

aspirating the medium from the plate and flash-quenching

metabolic activity with 80% methanol maintained at 280uC.

Cells were incubated in methanol for 15 min, scraped on dry ice,

and pelleted with centrifugation at 4,400 rpm for 5 min. Samples

were re-extracted twice with 80% methanol on dry ice. The three

extractions were pooled and dried under nitrogen gas, dissolved in

300 ml of 50% methanol, and spun at 13,0006 g for 5 min.

Methanol supernatant was then passed through an aminopropyl

column [50]. Eluate from the column was analyzed with positive

ion mass spectrometry via a Finnigan TXQ Quantum Ultra triple-

quadrupole mass spectrometer equipped with an electrospray

ionization source (Thermo Fisher Scientific) [22]. A TSQ

Quantum Discovery MAX mass spectrometer, also equipped with

an electrospray ionization source, was used to collect data on

negative mode ions after separation on a 25-cm C18 column

coupled with a tributylamine ion pairing agent to aid in the

retention of polar compounds [51,52].

To quantify metabolites, peak heights were initially assigned

using XCalibur software (Thermo Fisher Scientific) and then

evaluated manually. Metabolites enriched at least 5-fold in a

sample compared with a control plate containing only medium

were retained in the analysis. Of the 172 metabolites monitored,

62 met these criteria. Signals that were below the limit of detection

were assigned 100. Metabolite levels were normalized by the

amount of protein present.

Metabolic Flux Analysis
To monitor the flux through metabolic pathways, samples were

incubated with medium containing isotope-labeled nutrient for

different amounts of time. Dulbecco’s medium lacking glucose and

glutamine was isotope-labeled by adding back glucose or

glutamine ([U-13C]-glucose, [1, 2-13C]-glucose, [3-13C]-glucose,

or [U-13C]-glutamine; Cambridge Isotope Laboratories) to a final

concentration of 4.5 g/l glucose or 0.584 g/l glutamine. Samples

were taken at the indicated time points after medium change and

processed as described above. Levels of 12C and 13C forms of

metabolic intermediates were monitored with LC-MS/MS [53].

Metabolite Uptake and Excretion
Medium was sampled from cells under a variety of conditions:

proliferating, CI7, CI14, CI14SS7, SS4, SS7, low glucose/low

glutamine proliferating, and low glucose/low glutamine CI14.

Conditioned medium was sampled over a time course from 0 to

96 h for fibroblasts, depending upon the experiment. The levels of

glucose, lactate, glutamine, and glutamate were measured using a

YSI 7100 Select Biochemistry Analyzer (YSI Incorporated). The

rate of glucose consumption, lactate excretion, glutamine con-

sumption, and glutamate excretion was determined as the rate that

these metabolites appeared or disappeared from the medium

divided by the time integral of the protein mass of cells on the plate

during that time period.

Glutathione Measurement
The total GSH and GSSG content of proliferating, CI7, CI14,

and CI14SS7 fibroblasts were determined using Cayman Chem-

ical’s Glutathione Assay Kit according to the manufacturer’s

instructions (Cayman Chemical). Cayman’s GSH assay kit employs

a carefully optimized enzymatic recycling method, using glutathione

reductase for the quantification of GSH. Briefly, cells were

harvested using a cell lifter in 1.5 ml of cold buffer (i.e., 50 mM

MES or phosphate buffer [pH 6–7] containing 1 mM EDTA) and

were centrifuged at 10,0006 g for 15 min at 4uC, followed by

metaphosphoric acid deproteinization and addition of triethanol-

amine solution. Half of the samples were then treated with 2-

vinylpyridine to allow quantification of the GSSG pool exclusively.

Assay Cocktail (a mixture of 2-(N-morpholino) ethanesulfonic acid

Buffer [11.25 ml], reconstituted Cofactor Mixture [0.45 ml],

reconstituted Enzyme Mixture [2.1 ml], water [2.3 ml], and

reconstituted 5,59-dithiobis-(2-nitrobenzoic acid) [0.45 ml]) was

added, and total GSH and GSSG in the deproteinated samples

were measured at 405 nm in a spectrophotometer. GSH concen-

tration of the samples was determined by the endpoint method and

expressed in micromolar concentrations.

PPP Inhibition and PI Live/Dead Analysis
Proliferating and CI14 fibroblasts were treated with DHEA

dissolved in ethanol or dimethylsufoxide (0.1% vol/vol) for 4 d.

On the fourth day of treatment with the inhibitor, cells were

trypsinized and collected into conditioned medium. Cells were

then centrifuged for 5 min at 1,000 rpm. The supernatant was

aspirated and cells were taken up in PBS with 1 mg/ml PI (VWR).

Cells were kept on ice and immediately analyzed by flow

cytometry using a BD LSRII multi-laser analyzer (BD Bioscienc-

es). PI was excited at 488 nm, and emitted fluorescence was

collected through a 610/20 bandpass filter. At least 40,000 cells

were collected and analyzed with FACSDiVa software (BD

Biosciences). PI-negative cells were counted as live cells, and PI-

positive cells were counted as dead cells.

PPP Inhibition and Apoptosis Analysis
Apoptosis was measured based on the levels of caspase-3/7

released into the medium using the ApoTox-Glo Triplex Assay
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according to the manufacturer’s instructions (Promega). Cells were

plated in triplicate at 10,000 cells per well in white-walled, clear-

bottom 96-well plates (Costar, Corning Life Sciences). For contact

inhibition, cells were plated 7 d prior to the start of treatment; for

serum starvation, cells were plated 4 d prior to treatment and

switched to 0.1% serum medium for the remaining 3 d;

proliferating cells were plated the day prior to the start of

treatment. Increasing concentrations of DHEA or ethanol vehicle

alone were added to the medium in each well, and treatment

proceeded for 4 d. Cells in serum starvation conditions were

incubated in 0.1% serum during treatment as well. The apoptosis

reagent was added at 100 ml per well and incubated for 1 h prior

to reading. Luminescence was read from the top using a Synergy-2

plate reader (Biotek). Luminescence data were normalized to the

vehicle only condition.

Measurement of Carbon Incorporation into Fatty Acids
Lipid synthesis from glutamine was measured using a modified

version of a previously published protocol [53]. Briefly, prolifer-

ating, CI7, CI14, and CI14SS7 fibroblasts were incubated in

medium containing 5 mCi/ml [U-14C]-glutamine at 4 mM (0.4%

labeled). After incubation for 24 h, the culture medium was

aspirated, cells were washed with PBS, and phospholipids were

extracted by addition of 500 ml of 3:2 hexane:isopropanol. The

culture dishes were then washed with an additional 500 ml of the

hexane:isopropanol mixture. The resulting total extract was dried

using a speed-vac, resuspended in 500 ml of 1 N KOH in 90:10

methanol:water, and incubated at 70uC for 60 min to saponify

lipids. Sulfuric acid (100 ml, 2.5 M) was then added, followed by

hexane (700 ml) to extract the saponified fatty acids. The organic

and aqueous phases were separated by centrifugation and

scintillation-counted.

Microarray Analysis
To monitor gene expression levels, proliferating, CI7, or CI14

fibroblasts were trypsinized, removed from the plate, pelleted, and

stored at 280uC. Total RNA was isolated using the mirVana

miRNA Isolation kit (Ambion) according to the manufacturer’s

instructions. RNA quality was verified using a Bioanalyzer 2100

(Agilent Technology), and the amount was determined with a

NanoDrop spectrophotometer (NanoDrop Technologies). Total

RNA (325 ng) was amplified using the Low RNA Input

Fluorescent Labeling Kit (Agilent Technologies) according to the

manufacturer’s protocol. Cy-3 (PerkinElmer) was directly incor-

porated into the cRNA from proliferating cells during in vitro

transcription. Cy-5 was incorporated into complementary RNA

from CI7 or CI14 fibroblasts. Mixtures of Cy-3-labeled and Cy-5-

labeled cRNA were co-hybridized to Whole Human Genome

Oligo Microarray slides (Agilent Technologies) at 60uC for 17 h

and subsequently washed according to the Agilent Technologies

standard hybridization protocol. Slides were scanned with a dual

laser scanner (Agilent Technologies). Images were monitored for

quality control. The Agilent Technologies feature extraction

software, in conjunction with the Princeton University MicroArray

database (http://puma.princeton.edu/), was used to compute the

log ratio of the two samples for each gene after background

subtraction and dye normalization. The entire experiment was

performed twice.

Analysis of Extracellular Matrix Protein Levels in
Conditioned Medium
For the analysis of extracellular matrix proteins in conditioned

medium, we could not perform the experiments in the presence

of high amounts of serum because serum inhibited protein

transfer after immunoblotting. As previously described [13],

proliferating fibroblasts were conditioned at low cell density in the

presence of platelet-derived growth factor with either no serum or

0.1% serum. Quiescent fibroblasts were cultured at high density

in the absence of platelet-derived growth factor with either no

serum or 0.1% serum. Medium was conditioned over 4 d and

during that time, protein lysates were collected over a time

course. The protein content of the cell lysates was plotted against

the time of lysate collection. A curve that fit the data was

generated and the area under the curve, the integrated protein–

hour quantity, was divided by the volume of medium collected

from the proliferating or quiescent plate. The total protein–hour/

volume for each sample was used to adjust the volume of

conditioned medium, which was then mixed with 25% volume of

trichloroacetic acid (Sigma-Aldrich) containing 0.1% sodium

deoxycholate (Sigma-Aldrich), and incubated for 30 min on ice.

Following centrifugation, samples were washed 3–4 times with

220uC acetone, resuspended in sodium dodecyl sulfate-poly-

acrylamide gel electrophoresis sample buffer and separated under

reducing conditions on 5% (for fibronectin and COL21A1) or

12% (for LAMA2) sodium dodecyl sulfate-polyacrylamide gels.

Proteins were transferred for 1 h at 100 V to Westran

polyvinylidene fluoride membranes (PerkinElmer). Membranes

were blocked for 1 h at room temperature in 5% nonfat dried

milk in PBS-T. Membranes were then incubated overnight at

4uC with a mouse monoclonal anti-fibronectin clone HFN7.1

(1:2,000 dilution, generous gift of Jean Schwarzbauer, Princeton

University), mouse polyclonal antibody against COL21A1 (1:750

dilution, Abcam), or mouse monoclonal antibody against

LAMA2 (3 mg/ml, Abnova) diluted in PBS-T/1% milk. Follow-

ing overnight incubation in the primary antibody, membranes

were washed three times in PBS-T, incubated for 1 h in a

1:10,000 dilution of horseradish peroxidase–conjugated sheep

anti-mouse secondary antibody (GE Healthcare) in PBS-T/1%

milk. Membranes were exposed to X-ray film, and film was

scanned with a Hewlett-Packard Scanjet 4890 using Hewlett-

Packard software. The intensity of individual bands was

determined with ImageJ analysis software.

Computational Determination of Fluxes
Fluxes were determined by integration of all available forms of

experimental data within a quantitative flux-balanced framework

using the same strategy as described in Munger et al. [53]. An

ODE model (Figure S3) of central carbon metabolism was

constructed. The model assumes steady-state, mass-balanced flux

and simulates the resulting labeling dynamics after switching cells

from unlabeled medium to uniformly 13C-labeled glucose or

glutamine. The model consists of 55 ODEs, describing the rate of

loss of unlabeled metabolites and the rate of accumulation of

labeled metabolites. It builds upon the previously described model

[53] with a few changes. An exchange flux (F12) was introduced in

glycolysis between DHAP and FBP. Backward flux (F11) from a-

ketoglutarate to citrate, together with a latent citrate pool that is

never labeled (determined by the lowest unlabeled citrate pool size

observed in all experiments), was introduced in the TCA cycle.

The latent citrate pool was added because for citrate, but not other

metabolites, a substantial fraction of the pool (approximately 40%

for the proliferating cells) did not label over the course of the

experiment. Beyond labeling dynamics, additional input data

included metabolite levels, rates of metabolite consumption and

excretion, and the glycolysis–PPP flux convergence ratio deter-

mined after feeding [1, 2-13C]-glucose for 2 h. Model parameters

(fluxes, as well as pool sizes of a small number of metabolites that
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could not be directly experimentally measured) were identified by

a genetic algorithm that minimizes a cost function defined as the

sum of weighted differences between the experimental data and

computational results (Table S3) [54]. As a global search

algorithm, the genetic algorithm computationally probes for

alternative flux solutions consistent with the experimental results.

For each cell type, the algorithm was run until 1,000 consistent

solutions (i.e., parameter sets that produced the lowest cost values

when the algorithm reached convergence) were obtained. The

distribution of the 1,000 values was then used to quantitatively

represent each identified parameter. Since the distributions are not

Gaussian, a flux is considered quantitatively different between

proliferating and quiescent cells only when the distributions from

the proliferating and quiescent fibroblasts do not overlap. This

measure minimizes the false positives that may occur when only

one or a few solutions are identified [54]. Although qualitatively

supportive of the model-inferred enhancement of anapleurotic flux

from glucose in quiescent fibroblasts, labeling data for [3-13C]-

glucose, which was taken at 8 h, were quantitatively inconsistent

with the other labeling data, which covered the first 2 h of

incubation only. The [3-13C]-glucose data were accordingly

excluded from the computational analysis. The computer code is

available upon request.

Accession Numbers
The Entrez Gene (http://www.ncbi.nlm.nih.gov/gene) acces-

sion numbers for the proteins discussed in this paper are G6PD,

2539; IDH1, 3417; IDH2, 3418; and PGD, 5226.

Supporting Information

Figure S1 Glycolytic rates in proliferating and quies-

cent fibroblasts. (A) Rates of glucose consumption, lactate

excretion, glutamine consumption, and glutamate excretion were

monitored in proliferating, CI7, CI14, CI14SS7, SS4, SS7,

proliferating low glucose/low glutamine, and CI14 low glucose/

low glutamine fibroblasts using the YSI 7100 bioanalyzer. Levels

were normalized for the amount of cellular protein present during

the conditioning time. Error bars indicate standard error. (B–E)

Representative plots of metabolite levels over time used to

determine the reported rates.

Found at: doi:10.1371/journal.pbio.1000514.s001 (7.08 MB PDF)

Figure S2 Basal metabolites in proliferating, CI7, and

CI14 fibroblasts. Metabolites were analyzed using LC-MS/

MS. Individual metabolite levels were normalized for protein

content. The log (base 2) of the ratio of CI7 or CI14 to the

average proliferating metabolite levels over all experiments was

determined for each sample. Means from four experiments each

containing 4–5 replicates are shown. Error bars indicate standard

error.

Found at: doi:10.1371/journal.pbio.1000514.s002 (0.59 MB TIF)

Figure S3 Flux-balanced model of central carbon me-

tabolism. An ODE-based model of central carbon metabolism

was developed to describe the time-dependent metabolic labeling.

(A) Schematic of fluxes in the model. F0–F12 represent the

unknown fluxes, except for F9, which is the latent hexose–

phosphate pool. A, B, C, and D are the uptake and excretion rates.

X, Y, and Z are dependent parameters of the above fluxes and pool

sizes, whose expressions are determined by balancing all the

relevant fluxes. X is the protein synthesis rate, Y is the anaplerotic

flux from pyruvate, and Z is the net flux from malate to

oxaloacetate. (B) Conversion of the isotopically labeled metabolic

forms in the glucose and glutamine labeling experiments. The

numbers under the metabolite names represent the positions at

which a metabolite is labeled (‘‘0’’ means an unlabeled metabolite).

Low-abundance isotope-labeled forms, such as 1613C-citrate,

were excluded from the model.

Found at: doi:10.1371/journal.pbio.1000514.s003 (1.15 MB TIF)

Figure S4 Modeling results for central carbon metabo-

lism. (A) Model fits for metabolites in proliferating, CI7, CI14,

and CI14SS7 fibroblasts. Experimentally measured concentrations

of different labeled and unlabeled metabolites (mean 6 one

standard deviation) at the indicated time points are plotted against

the model predictions (smooth curves) from a typical flux solution

set. The time axis is in logarithmic scale to better illustrate the

samples at early time points. Data and simulated results for

[U-13C]-glucose labeling experiments are labeled by the metab-

olite name only. For the [U-13C]-glutamine labeling, a ‘‘Q’’

precedes the metabolite name. (B) Histogram of the distribution of

consistent fluxes in each condition. The x-axis indicates the flux

values (in logarithmic scale); the y-axis is the number of counts

(within the 1,000 consistent solution sets) that have a specific flux

value. The resultant solution distribution provides a representation

of the fluxes that are potentially consistent with the observed

laboratory data in each cell state.

Found at: doi:10.1371/journal.pbio.1000514.s004 (0.43 MB TIF)

Table S1 Absolute fluxes in proliferating and quiescent

fibroblasts. For each identified flux, the median value of its

distribution (A) and the best value (i.e., the one that resulted in the

best match between the experimental data and computational

simulations) (B) are reported. Flux values that are statistically

higher in quiescent than proliferating conditions (i.e., their

distributions do not overlap) are highlighted in red, while the

fluxes that are lower in quiescent than proliferating conditions are

highlighted in blue.

Found at: doi:10.1371/journal.pbio.1000514.s005 (0.07 MB

DOC)

Table S2 Malate and citrate labeling after incubation

with [3-13C]-glucose in proliferating, CI7, CI14, and

CI14SS7 fibroblasts.

Found at: doi:10.1371/journal.pbio.1000514.s006 (0.01 MB XLS)

Table S3 Functional forms of the components of the

cost function for the genetic algorithm. The expression for

the total cost is

J~
1

5

X5

n~1

JnzJ6 ð1Þ

The best possible cost value is 1, when the model results fit all

experimental data perfectly.

Found at: doi:10.1371/journal.pbio.1000514.s007 (0.06 MB

DOC)
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